
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

AC-PROT: An Access Control Model to Improve
Software-Defined Networking Security

Wei Wu∗, Renping Liu∗, Wei Ni†, Dali Kaafar†, Xiaojing Huang∗

∗University of Technology Sydney, Australia
†Data 61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia

Email: {Alven.Wu, Wei.Ni, Dali.Kaafar}@csiro.au, {RenPing.Liu, Xiaojing.Huang}@uts.edu.au

Abstract—The logically-centralized controllers have largely
operated as the coordination points in software-defined network-
ing(SDN), through which applications submit network operations
to manage the global network resource. Therefore, the validity of
these network operations from SDN applications are critical for
the security of SDN. In this paper, we analyze the mechanism that
generates network operations in SDN, and present a fine-grained
access control model, called Access Control Protector(AC-PROT),
that employs an attribute-based signature scheme for network
applications. The simulation result demonstrates that AC-PROT
can efficiently identify and reject unauthorized network opera-
tions generated by applications.

Keywords: software-defined networking, attribute-based signa-
ture, access control.

I. INTRODUCTION

Software-defined networking (SDN) paradigm decouples
network control from data forwarding, offering high pro-
grammability of control plane and a global view of the
network. The basic SDN architecture consists of three layers
including the application layer, the control layer and the data-
plane layer. The adoption of this paradigm promotes the
development of logically centralized and integrated security
policies, which simplifies the solution of complex network
security problems [1].

SDN network operations, like flow rule insertion, port
configuration and network state inquiry, are generated dynam-
ically by a variety of network applications. The controller
receives these network operations from network applications
and delivers them to switches in the data-plan layer. Switches
in the data-plan layer will subsequently operate according to
these network operations and absolutely trust them. However,
the current design of SDN does not provide an efficient
access control mechanism to mediate these network operations
between the application layer and the control layer. SDN
network is vulnerable to various attacks such as denial of
service, information disclosure attacks and flow-rule forging
attacks caused by the compromised network operations from
malicious applications [3], [6], [8]. Even worse, an adversary
may tamper with a set of network operations to control the
states of all switches by masquerading as a valid application.
Therefore, ensuring the validity of network operations from
network applications is definitely one of the main challenges
in SDN security.

Many techniques for enhancing the network application
security in SDN have been developed in recent years [2]–[5],
[7], [8]. Porraset et al. proposed a new security system called
SE-Floodlight [3], which extends the Floodlight controller
with a role-based authorization scheme, with three default
authorization roles among applications, i.e., administrator,
security application, and traffic application. Therefore, it may
simply treat different applications as the same role. Son et
al. implemented FLOVER [5], a model checking system to
verify the aggregation of flow polices instantiated within an
SDN network, while Mattos et al. presented a new framework
for control applications, enabling software-defined network
controllers to use the host identity as a new flow field to define
forwarding rules [1]. However, as the network status in SDN
changes dynamically, these methods could protect the flow
rules in its execution process, but could not prevent malicious
applications from taking abnormal network operations into the
controller. Compared with them, our work contributes a fine-
grained access control model to verify the legality of network
operations from network applications with multiple attributes
in SDN.

In this paper, we present a fine-grained access control
model called Access Control Protector(AC-PROT) for SDN
applications. AC-PROT manages the access control policies
for each network operation defined in SDN and detects
the applications whose network operations are against these
policies. To achieve these security functionalities, we take
advantage of the feature of the logically-centralized SDN
structure and introduce an attribute-based signature scheme
in AC-PROT. Each application uses this scheme to sign its
network operations with its unique attributes in SDN. As a
result, the controller can authenticate these applications net-
work operations based on the access control policies and their
signatures, thus to prevent malicious applications launching
unauthorized network operations to switches in the data-plane
layer.

II. ACCESS CONTROL MODEL FOR SDN APPLICATIONS

In this section, we present our design of a fine-grained
access control model for network applications running on the
controller.

A. System Model

1) Overall Structure: Fig.1 illustrates the conceptual dia-
gram of AC-PROT, which extends the classical SDN architec-
ture with three additional security components: i) an attribute-
based signature module, and ii) a trusted authority(TA), iii)
an application verifier(App-Verifier). It provides two security
functionalities: i) managing the access control policy for
applications network operations, and ii) verifying the validity
of applications network operations.

Northbound Interface

Attribute-based Signature Module

App App App App………

Application Layer

Southbound Interface

Trusted Authority Application Verifier

Control Layer

Fig. 1. The conceptual architecture of AC-PROT.

2) Access Structure: AC-PROT provides digital signature
validation for applications to provisionally limit their network
operations based upon their attributes. To support the security
functionality, we summarize a set of 7 application attributes
in the Table I, which may be augmented by the SDN admin-
istrator with additional attributes when necessary.

TABLE I
ATTRIBUTE SET FOR NETWORK APPLICATIONS

Notation Attribute Description Attribute Id
App-Developer The developer of App a1
App-SerialNumber The serial number of App a2
App-Name The name of App a3
App-Function The main function of App a4
App-Version The current version of App a5
App-CreateTime The create time of App a6
App-UpdateTime The update time of App a7

Let {a1, a2, . . . , an} be a set of application attributes. An
access structure is a collection A of non-empty subsets of
{a1, a2, . . . , an}.

In this paper, the set of all applications that produce network
operations for the controller is denoted as APP . An applica-
tion Appi ∈ APP will be assigned a user access structure
Au to generate its attribute-based signature by the network
administrator.

3) Access Control Policy: The access control policies de-
fine the granted network operations of the application, e.g.,
read network states, write flow rules, etc. According to the
categorization of message communication between applica-
tions and the controller presented in previous work [3], [7],
we define a set of 16 access control policies that would be
enforced by AC-PROT on the controller and classify them
into three categories, as illustrated in Table II.

TABLE II
CATEGORY OF ACCESS CONTROL POLICY

Category Policy Name Policy Id
Read policies Read-Topology p1

Read-Flow p2
Read-Statistics p3
Read-Packet-in-Payload p4

Notification Policies Packet-in-Event p5
Flow-Removed-Event p6
Error-Event p7
Topology-Event p8

Write Policies Packet-in-Event p9
Flow-Mod-Route p10
Flow-Mod-Drop p11
Set-Flow-Priority Event p12
Flow-Mod-Modify p13
Modify-All-Flows p14
Set-Packet-Out p15
Set-Device-Configuration p16

An attribute tree is used to describe an access control
policy. Each non-leaf node of the tree represents a threshold
gate. If numx is the number of children of a node x and kx
is its threshold value, then 0 < kx < numx. Each leaf node x
of the tree is described by an attribute and a threshold value
kx = 1. prt(x) represents the parent of the node x in the tree.
The children of every node are numbered from 1 to num.
The function index(x) returns such a number associated with
the node x, where the index values are uniquely assigned to
nodes in the attribute tree in an arbitrary manner. The function
attr(x) denotes the attribute associated with the leaf node x.

AND

OR AND

(2/4)

a4 a5 a6 a7

a3a1 a2

Ap={a1,a2,a3,a4,a5,a6,a7}

Fig. 2. Logic Structure of An Attribute Tree.

We illustrate the logic structure of an attribute tree in Fig.2.
A policy access structure Ap represents the attribute collection
set of all the leaf nodes in an attribute tree.

Let Tx be the subtree of T rooted at the node x. If an
access structure A satisfies the access tree Tx, we denote it as
Tx(A) = 1. We compute Tx(A) recursively by the Satisfying
an Attribute Tree (SAT) Algorithm defined as follows. If x
is a non-leaf node, evaluate Tx(A) for all children z of node
x, returns 1 if at least kx children return 1; If x is a leaf node,
then Tx(A) returns 1 if att(x) ∈ A.

B. Attribute-Based Signature Scheme

Our attribute-based signature scheme is an extension
of the signature scheme proposed by Cao et al. [9]
and the attribute-based encryption scheme presented by
Junbeom et al. [10]. It consists of the following five
polynomial time algorithms which is based on bilin-
ear groups and computational Diff-Hellman(CDH) prob-
lem: Setup, Public-Key-Generation, Private-Key-Generation,
Operation-Signing, and Operation-Verification.

TABLE III
NOTATIONS

Notation Description

params Public parameters
msk Master secret key
A A system access structure
Au A user access structure
Ap A policy access structure
As A signing access structure
Av A verifying access structure
Tp An attribute tree for a policy
pkp The public key for a policy

First, we assume that operation messages produced by valid
applications are n-bit strings. Then, Table III summarizes
several notations and their corresponding meanings that will
be used in the paper. Our attribute-based signature scheme
includes the following steps.

Setup: TA generates two groups G, and GT of prime order
p, and constructs a bilinear map e : G × G → GT , and
randomly chooses a generator g of G. Then, α ∈ Zq is
randomly chosen by TA as a secret. TA sets g1 = gα and picks
g2 randomly in G, and computes V = e(g1, g2). After that,
TA defines the system access structure A = {a1, a2, . . . , an}
for some integer n and a hash function H : {0, 1}∗ → G.
For each ai ∈ A, TA chooses a random element ri ∈ Zq
and calculates Ri = gri . Therefore, the public parameters
are param = (q,G,GT, e, g, g1, g2, V,H, {Ri}ni=1), and the
master secret key consists of the following components msk =
(α, {ri}ni=1). We summary the setup algorithm as Algorithm
1.

Algorithm 1 Setup
Input: κ: the security parameter
Output: params, msk

1) generate two groups: G and GT
2) construct a bilinear map e
3) randomly choose a generator g of G and α ∈ Zq
4) compute g1 = gα

5) randomly choose g2 ∈ G
6) compute V = e(g1, g2)
7) define a hash function H : {0, 1}∗ → G
8) for each ai ∈ A, where A is the system access structure,

do
9) randomly choose ri ∈ Zq

10) compute Ri = gri

11) end for
12) return param = (q,G,GT, e, g, g1, g2, V,H, {Ri}ni=1)
13) return msk = (α, {ri}ni=1)

Public-Key-Generation: An applications network opera-
tion is regarded as authorized when its access structure satisfies
the access control policy. Receiving an attribute tree defined
by the network administrator, TA uses Public-Key-Generation
algorithm to compute the corresponding policy public key. The
Public-Key-Generation algorithm of our approach is shown in
Algorithm 2, which proceeds as follows.

For a defined attribute tree, TA chooses a polynomial px
of degree dx = kx − 1 for each node x in an attribute tree,

where kx is the threshold value. That is done in a top-down
manner. Starting from the root proot(0) = α and droot, other
points in the polynomial will be random. For any other node x,
set px(0) = pprt(x)(index(x)) and choose dx for other points
randomly. Then, let Y be the set of leaf nodes in Tp. Once
the polynomials have been decided, the public key for the
attribute tree is pkp = {Dy = gpy(0), Di = R

py(0)
i }, and the

policy access structure is Ap = {ai}, where i is the subscript
of ai = att(y), and y is a leaf node.

Algorithm 2 Public-Key-Generation
Input: Tp
Output: pkp, Ap

1) for each node x ∈ Tp in a top-down manner, do
2) choose a polynomial px of degree dx = kx − 1, where

kx is the threshold value
3) if node x is the root node
4) set proot(0) = α
5) else
6) set px(0) = pprt(x)(index(x))
7) end if
8) for each leaf node y ∈ T , do
9) compute Dy = gpy(0), Di = R

py(0)
i , where i is the

subscript of ai = att(y)
10) end for
11) return pkp = {Dy, Di} and Ap = {ai}, where i is the

subscript of ai = att(y), and y is the leaf node

Let P denotes the policy set defined in Table II. When all the
attribute trees are constructed by the Public-Key-Generation
algorithm, TA will send {pi, pkpi , Tpi , Api}pi∈P to the APP-
Verifier, and then distribute {pi, Api}pi∈P to each application
Appi ∈ APP .

Private-Key-Generation: TA generates the private keys for
each applicaiton Appi ∈ APP . The private key includes
two components: (1)the base component, and (2)the attribute
component. The algorithm is described in Algorithm 3, which
works as follows.

Algorithm 3 Private-Key-Generation
Input: msk, params and A
Output: sk: the private key

1) randomly choose u ∈ Zq
2) compute k0 = g

α(u−1)
2

3) for each attribute ai ∈ A, do
4) randomly choose λi ∈ Zq
5) compute ki1 = gu2R

λi
i

6) compute ki2 = gλi

7) end for
8) return sk = (k0, {ki1, ki2}ai∈A)

TA takes a random u ∈ Zp and compute the base component
of the secret key k0 = g

α(u−1)
2 . Then for each attribute ai ∈ A,

TA chooses λi ∈ Zq randomly and set ki1 = gu2R
λi
i , ki2 = gλi

as the attribute components of the secret key. Therefore, the
secret key sk = (k0, {ki1, ki2}ai∈A), where A is the system
access structure.

After that, TA chooses the attribute components of the
private key for each Appi ∈ APP based on its user access
structure Aui , and delivers skui = (k0, {ki1, ki2}ai∈Aui

) to it
securely.

Operation-Signing: An application should sign its opera-
tion with the attribute-based signature scheme before it sends
the operation message to the controller. The operation-sign
algorithm of our approach is shown in Algorithm 4, which
works as follows.

Let m be the n-bit string that represents the operation
message. The application firstly chooses a random s ∈ Zq
and computes σ0 = gs and σ1 = H(m)sk0. Then for each
ai ∈ As, where As = Ap

⋂
Au as a signing access structure,

a random λ′i ∈ Zp is chosen. TA computes σi1 = ki1R
λ′
i
i ,

σi2 = ki2g
λ′
i . Therefore, a signature on the operation message

m is constructed as σ = (σ0, σ1, {σi1, σi2}ai∈As
).

Algorithm 4 Operation-Signing
Input: m, sk, params, Ap and Au
Output: σ: the signature on m

1) randomly choose s ∈ Zq
2) compute σ0 = gs

3) compute σ1 = H(m)sk0

4) compute As = Ap
⋂
Au

5) for each attribute ai ∈ As, do
6) randomly choose λ′i ∈ Zq
7) compute σi1 = ki1R

λ′
i
i

8) compute σi2 = ki2g
λ′
i

9) end for
10) return σ = (σ0, σ1, {σi1, σi2}ai∈As

)

Operation-Verification: It is run by the APP-Verifier on the
controller, when the controller receives an operation message.
The Operation-Verification algorithm takes a signature σ, an
operation message m and the public key pkp as inputs. If it
is a valid signature on m, the algorithm will output accept.
Otherwise it will output reject.

To verify the signature, a recursive function
V erNode(σ, pkp, x) is defined in the Operation-Verification
Algorithm, where x is a node in the attribute tree. It outputs
a group element of GT or fail, which works as follows.

For a node x in the attribute tree, the SAT algorithm Tx(Av)
is firstly run to check if the node satisfies the attribute tree,
where Av = Ap

⋂
Au as a verifying access structure. When

Tx(Av) = 1 and x is a leaf node:
V erNode(σ, pkp, x)

= e(σi1, Dx)/e(σi2, Di)

= e(ki1R
λ′
i
i , g

px(0))/e(ki2g
λ′
i , R

px(0)
i)

= e(gu2 , g
px(0))e(R

λi+λ
′
i

i , gpx(0))/e(gλi+λ
′
i , R

px(0)
i)

= e(g, g2)upx(0).

When Tx(Au) = 1 and x is a non-leaf node, the
V erNode(σ, pkp, x) proceeds as follows: For all nodes z that
are children of x, it calls V erNode(σ, pkp, z) and stores the
output as Fz . Let Sx be an arbitrary kx-sized set of child

nodes z, i = index(z), Sz = {index(z) : z ∈ Sx}. Then it
calculates:

Fx =
∏
z∈Sx

F
∆i,Sz (0)
z

=
∏
z∈Sx

(e(g, g2)upz(0))∆i,Sz (0)

=
∏
z∈Sx

(e(g, g2)upprt(z)(index(z)))∆i,Sz (0)

=
∏
z∈Sx

e(g, g2)upx(i)∆i,Sz (0)

= e(g, g2)upx(0)

where ∆i,Sz (x) =
∏

j∈Sz,j 6=i

(x− j)/(i− j)

as a lagrange interpolation item. otherwise, it returns fail.
To verify the signature, the Operation-Verification Algo-

rithm runs the function V erNode(σ, pkp, xroot) to compute
Froot, where xroot is the root node of the attribute tree. Then
it checks if

V == Froote(H(m), σ0)/e(g, σ1).

The Operation-Verification Algorithm is described in Algo-
rithm 5 as follows.

Algorithm 5 Operation-Verification
Input: m, σ and pkp
Output: Result: the verification result

1) choose the root node xroot in the attribute tree T
2) call function Froot = V erNode(σ, pkp, xroot)
3) if Froot = fail
4) Result = reject
5) else
6) compute V alue = Froote(H(m), σ0)/e(g, σ1)
7) end if
8) if (V alue == V)
9) Result = accept

10) else
11) Result = reject
12) end if
13) return Result

If the Operation-Verification Algorithm returns accept,
App-Verifier will accept the network operation message and
send it to network devices in the data-plan layer. Otherwise,
the App-Verifier will reject the network operation request.

III. IMPLEMENTATION AND EVALUATION

We have deployed a simple prototype of AC-PROT with
the Pairing-Based Cryptography Library, and evaluated it on
its granularity and actual time consumption.

A. Granularity Analysis

We compare AC-PROT to the current existing schemes [3],
[8], which are also authentication schemes in SDN. As illus-
trated in Table IV, SE-Floodlight [3] offers a role-based source
authentication for network operations, which recognizes all

applications with only three roles. OperationCheckpoint [8]
provides a permission management system, which can also
manage the flow rule permissions of each application for the
SDN controller.

TABLE IV
THE GRANULARITY OF NETWORK OPERATIONS SOURCE AUTHENTICATION

COMPARISON

Schemes Permission Management Granularity
SE-Floodlight Role-based 3 roles
OperationCheckpoint Access control list 15 permissions
AC-PROT Attribute-based 16 policies

Our scheme represents a fine-grained access control model
based on attribute-based signature scheme, which dynamically
provides a more flexible way to manage the network operations
of each application by access control policies. Thus, the
granularity of network operation authentication is more fine-
grained compared with other schemes. In addition, it also
achieves higher flexibility because the network administrator
can modify these policies according to the dynamic SDN
network state.

B. Time Consumption Analysis

We calculate the overhead of AC-PROT by two criteria: (i)
the time consumption for an application to sign its network
operations with the Attribute-based Signature Module in the
signing phase, and (ii) the time consumption for the App-
Verifier to verify signed network operations in the verification
phase. The time consumption in both the signing and the
verification phase is an important measure to estimate the
performance of AC-PROT, because it determines how many
network operations could be handled by AC-PROT.

0.0215

0.0217

0.0219

0.0221

0.0223

0.0225

0.0227

0.0229

0.0231

0.0233

0.0235

1 51 101 151

C
o

st
 T

im
e

 (
Se

co
n

d
)

Operation Numbers Signed by AC-PROT

Fig. 3. The time to sign each network operation.

In our experiment, we construct the attribute tree for the
access control policy as showed in Fig.2, then run the signing
and verification algorithm on a Linux machine with an Intel
Core 4.0 GHz i7-6700K CPU. We test 200 network operation
messages to measure the average time for the machine to sign
and verify each operation message, respectively.

As shown in Fig.3, the horizontal-axis corresponds to new
operation to be signed, and the vertical-axis corresponds to
the time cost to sign each message in signing phase. We can
observe that the average time the machine takes to sign each
operation message is about 22.4ms, which means that 2,678
new operation messages can be signed every minute with the
Attribute-based Signature Module.

As illustrated in Fig.4, the average time to verify each
signed operation message is about 44.5ms. It means 1,348
newly network operations per minute can be handled on the
machine. Therefore, AC-PROT is very efficient and absolutely
acceptable by networks described in [1], [3], [4], [7].

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

1 51 101 151

C
o

st
 T

im
e

(S
ec

o
n

d
)

Operation Numbers Verified by AC-PROT

Fig. 4. The time to verify each network operation.

IV. CONCLUSION

In this paper, we propose AC-PROT, an access control
model to authenticate the validity of network operations from
applications in SDN. The key challenge that we address is
the lack of trust introduced by the open interface between the
application plane and the control plane that knowledgeable
adversaries can exploit. As there are no standard security def-
initions for the northbound API, a serious concern is whether
a network operation that produced by an application can be
trusted or not. Our proposed AC-PROT enables the control
plane to shield the controller from varieties of malicious
network operation attacks launched by applications without
the granted access structure.

REFERENCES

[1] D. M. F. Mattos, & O. C . M. B. Duarte, “AuthFlow: authentication and
access control mechanism for software defined networking,” in annals
of telecommunications, pp.1-9, 2016.

[2] F. Klaedtke, G. O. Karame, R. Bifulco, & H. Cui, “Access control for
sdn controllers,” Ecosystems, vol.16, pp.1325-1335, 2014.

[3] P. Porras, S. Cheung, & M. Fong, “Securing the software-defined
network control layer,” Network and Distributed System Security Sym-
posium, 2015.

[4] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N.
McKeown, & S. Shenker, “Sane: a protection architecture for enterprise
networks,” Conference on Usenix Security Symposium, vol.15, pp.1-15,
2006.

[5] S. Son, S. Seungwon, V. Yegneswaran, P. Porras, & G. Guofei, “Model
checking invariant security properties in openflow,” IEEE International
conference on communications, pp.1794-1799, 2013.

[6] X. Wen, Y. Chen, C. Hu, C. Shi, & Y. Wang, “Towards a secure con-
troller platform for openflow applications,” the second ACM SIGCOMM
workshop on hot topics in software defined networking, 2013.

[7] M. Wang, J. Liu, & J. Chen, “PERM-GUARD: Authenticating the Valid-
ity of Flow Rules in Software Defined Networking,” IEEE, International
Conference on Cyber Security and Cloud Computing, pp.1-17, 2016.

[8] S. Scott-Hayward, C. Kane, & S. Sezer, “Operationcheckpoint:Sdn
application control,” IEEE, International Conference on Network Pro-
tocols, pp.618-623, 2014.

[9] D. Cao, X. Wang, B. Zhao, J. Su, & Q. Hu, “Mediated attribute based
signature scheme supporting key revocation,” IEEE, Information Science
and Digital Content Technology, vol.2, pp.277-282, 2012.

[10] H. Junbeom, C. Park, & S. Hwang, “Fine-grained user access control
in ciphertext-policy attribute-based encryption,” Security & Communi-
cation Networks, vol.5, pp.253-261, 2012.

	Blank Page

