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Abstract. We propose a continuous-time heterogeneous agent model consisting

of fundamental, momentum, and contrarian traders to explain the significant time

series momentum. We show that the performance of momentum strategy is de-

termined by both time horizon and the market dominance of momentum traders.

Specifically, when momentum traders are more active in the market, momentum

strategies with short (long) time horizons stabilize (destabilize) the market, and

meanwhile the market under-reacts (over-reacts) in short-run (long-run). This

provides profit opportunity for time series momentum strategies with short hori-

zons and reversal with long horizons. When momentum traders are less active in

the market, they always lose. The results provide an insight into the profitability

of time series momentum documented in recent empirical studies.

Key words: Time series momentum, profitability, market stability, stochastic delay

differential equations.

JEL Classification: C62, D53, D84, G12
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1. Introduction

This paper studies time series momentum and its profitability in financial markets.

Time series momentum investigated recently in Moskowitz, Ooi and Pedersen (2012)

characterizes a strong positive predictability of a security’s own past returns. For

a large set of futures and forward contracts, Moskowitz et al. (2012) find a time

series momentum or “trend” effect based on past 12 month excess returns persists

for 1 to 12 months that partially reverses over longer time horizons. This effect

based purely on a security’s own past returns is related to, but different from,

the cross-sectional momentum phenomenon studied extensively in the literature.

Through return decomposition, Moskowitz et al. (2012) argue that positive auto-

covariance is the main driving force for time series momentum and cross-sectional

momentum effects, while the contribution of serial cross-correlations and variation

in mean returns is small. This paper introduces a model to provide an explanation

on the profitability of time series momentum over short horizons and reversal over

longer horizons.

To explain the time series momentum, we introduce a simple continuous-time as-

set pricing model consisting of three types of agents based on typical fundamental,

momentum, and contrarian trading strategies. Fundamental agents trade based on

the expectation of mean-reversion of market price to the fundamental price; while

momentum and contrarian agents trade respectively based on the continuation and

reverse of the past price trends over different time horizons. The market price is

determined via a market maker mechanism. The model, characterized by a sto-

chastic delay integro-differential system, provides a unified approach to examine the

impact of different time horizons of momentum and contrarian strategies on market

stability and profitability of these strategies. We show that profitability is closely

related to the activity of momentum traders and market stability. In particular, we

show that: (i) momentum trading destabilizes the market, while contrarian trad-

ing stabilizes the market; (ii) the profitability of momentum strategies is related

positively to the activity of momentum traders and negatively to the time horizon

used for estimating the price trend; (iii) when momentum traders are more active in

the market, the market price under-reacts in short-run and over-reacts in long-run,
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leading to profitability of momentum strategies with short horizons and loss with

longer horizons. The analysis provides an insight into the profitability of time series

momentum documented in Moskowitz et al. (2012).

The size and apparent persistence of momentum profits have attracted consider-

able attention. De Bondt and Thaler (1985) and Lakonishok, Shleifer and Vishny

(1994) find supporting evidence on the profitability of contrarian strategies for a

holding period of 3-5 years based on the past 3 to 5 year returns. In contrast,

Jegadeesh and Titman (1993, 2001) among many others, find supporting evidence

on the profitability of momentum strategies for a holding period of 3-12 months

based on the returns over past 3-12 months.1 It is clearly that the time horizons

and holding periods play crucial roles in the performance of contrarian and mo-

mentum strategies. Many theoretical studies have tried to explain the momentum,2

however, as argued in Griffin, Ji and Martin (2003), “the comparison is in some

sense unfair since no time horizon is specified in most behavioral models”. This pa-

per provides a uniform treatment on various time horizons used in momentum and

contrarian trading strategies and develops an intuitive and parsimonious financial

market model of heterogeneous agents in a continuous-time framework to study the

impact of different time horizons on the market. To our knowledge, this is the first

1In addition to individual stock momentum, Moskowitz and Grinblatt (1999) show industry

momentum for a holding period of 1 to 12 months based on past 1 to 12 months and long-run

reversals. George and Hwang (2004) find the momentum in price levels by investigating 52-week

high. Recently, Novy-Marx (2012) find the term-structure momentum that is primarily driven by

firm’s performance 12 to 7 months prior to portfolio formation. The evidence has been extended

to commodity futures markets (Miffre and Rallis 2007), international markets (Antoniou, Lam and

Paudyal 2007) and different asset classes (Asness, Moskowitz and Pedersen 2013).
2Among which, the three-factor model of Fama and French (1996) can explain long-run reversal

but not short-run momentum. Daniel, Hirshleifer and Subrahmanyam (1998)’s model with single

representative agent and Hong and Stein (1999)’s model with different trader types attribute the

under- and overreaction to overconfidence and biased self-attribution. Sagi and Seasholes (2007)

present a growth option model to identify observable firm-specific attributes that drive momentum.

Recently, Vayanos and Woolley (2013) show the slow-moving capital can also generate momentum.
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paper to analyze a financial market model with all three types of fundamental, mo-

mentum, and contrarian strategies with specified time horizons in a continuous-time

framework.

The state of the market is also a critically important factor that affects the prof-

itability as shown in Griffin et al. (2003) and Lou and Polk (2013).3 Different

investment strategies play different roles in market stability and have different im-

plications on market states. Intuitively, momentum strategies are based on the hy-

pothesis of under-reaction with the expectation that the future price will follow the

price trend. Consequently the strategies tend to destabilise the market price when

momentum traders are more active in the market. While contrarian strategies are

based on the hypothesis of overreaction with the expectation that the future price

will go against the price trend. Therefore the strategies can stabilize the market

when contrarian traders are more active in the market. However, the joint impact

of both strategies on market stability can be complicated, depending on their ac-

tivities in the market. We show that (i) when market is dominated by fundamental

and contrarian traders, the market is stabilizing and momentum strategies do not

generate profit; (ii) when the activity of momentum traders is “balanced” by the

activities of fundamental and contrarian traders, there is a significant overreaction

in short horizons and hence momentum trading is not profitable; (iii) when market

is dominated by momentum traders, the market is destabilized and can under-react

in short-run but over-react in long-run. The results are consistent with the “crowded

trading” proposed by Lou and Polk (2013) that “the underreaction or overreaction

characteristic of momentum is time-varying, crucially depending on the size of the

3Cooper, Gutierrez and Hameed (2004) find that short-run (6 months) momentum strategies

make profits in up market and lose in down market, but the up-market momentum profits reverse

in the long-run (13-60 months). Hou, Peng and Xiong (2009) find momentum strategies with short

time horizon (1 year) are not profitable in down market, but return significant profits in up market.

Similar results of profitability are also reported in Chordia and Shivakumar (2002) that commonly

using macroeconomic instruments related to the business cycle can generate positive returns to

momentum strategies during expansionary periods and negative returns during recessions.
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momentum crowd”. In addition, we find that, with momentum crowd, the momen-

tum trading leads to gain for the strategies with short horizons and loss for the

strategies with longer horizons.

This paper is closely related to the literature on the use of technical trading rules.

Despite the efficient market hypothesis of financial markets in the academic finance

literature (Fama 1970), the use of technical trading rules based on past returns,

in particular momentum and contrarian strategies, still seems to be widespread

amongst financial market practitioners (Allen and Taylor 1990). The profitability

of these strategies and their consistency with the efficient market hypothesis have

been investigated extensively in the literature.4 Recently, Zhu and Zhou (2009)

demonstrate that technical analysis, especially the moving average rules, can be a

valuable learning tool in general under model or parameter uncertainty. Different

from the above studies, which examine profitability by directly applying technical

trading rules to the financial data without impacting market price; this paper how-

ever shows profitability can also come from the impact of technical trading strategies

on market price. Therefore, the momentum strategies can be self-fulfilling.

The modeling approach used in this paper is different from the traditional ap-

proach. In the traditional continuous-time asset pricing literature, the underlying

processes are Markov. The market price determined by market equilibrium is con-

sistent with the Markov processes. However, when modelling time series momentum

that depends on history prices, the underlying processes become non-Markov. This

makes it difficult to have consistence between the optimal demands driven by util-

ity maximization and the equilibrium price process. Therefore this paper follows

the literature of heterogeneous agent models (HAMs) and focuses on behavior as-

pects of investors. Over the last three decades, empirical evidence, unconvincing

justifications of the assumption of unbounded rationality and the recognition of the

relevance of investor psychology have led to the incorporation of heterogeneous and

boundedly rational behaviors of investors, such as trend chasing and switching, into

asset pricing and financial market modelling. HAMs consider financial markets as

4See for example, Frankel and Froot (1986), Neftci (1991), Brock, Lakonishok and LeBaron

(1992), Neely, Weller and Dittmar (1997) and Allen and Karjalainen (1999).
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expectation feedback systems where asset price fluctuations can be driven by an

endogenous mechanism with heterogeneity and bounded rationality. By considering

two types of traders, typically fundamentalists and trend followers, Beja and Gold-

man (1980) and Chiarella (1992) among many others have shown that interaction

of agents with heterogeneous expectations may lead to market instability. More

significantly, Brock and Hommes (1997, 1998) introduce the concept of an adap-

tively rational equilibrium in a discrete-time framework. Agents adapt their beliefs

over time by choosing from different predictors or expectation functions based upon

their past performance (such as realized profits). Such boundedly rational behavior

of agents can lead to chaotic market price. HAMs have also been extended to explain

the excessive and asymmetric volatility by incorporating the reflection effect of the

prospect theory (Park 2014). Most of the HAMs are in discrete-time rather than

continuous-time setup. Continuous-time HAMs on asset price dynamics have been

developed recently (see Di Guilmi, He and Li 2014). We refer readers to Li (2014)

for a discussion on the advantages of the continuous-time models. Overall, these

models have successfully explained several market features (such as market booms

and crashes, deviations of the market price from the fundamental price), the stylized

facts (such as skewness, kurtosis, volatility clustering and fat tails of returns) and

the power-law behavior. Different from the extant HAMs, the focus of this paper is

on the mechanism of generating the momentum profitability.

This paper is organized as follows. We first present some empirical evidence

on the time series momentum in financial market index in Section 2. Section 3

proposes a stochastic HAM in continuous time with time delays to incorporate

fundamental, momentum and contrarian traders. To better understand the model,

Section 4 follows the standard approach in HAMs and focuses on the dynamics

of the underlying deterministic model to examine the impact of these strategies,

in particular the different time horizons, on market stability. Section 5 examines

the stochastic model numerically and investigates the connection between market

stability and profitability. Section 6 concludes. All the proofs and extensions of the

model are included in Appendices.
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2. Time Series Momentum of the S&P 500

We first provide some evidence on time series momentum in the S&P 500. Most

momentum literature is cross-sectional. The time series momentum is explored

recently in Moskowitz et al. (2012) who show that a security’s own past returns

have strong positive predictability for its future return among almost five dozen

diverse futures and forward contracts. Similar to Moskowitz et al. (2012), we apply

the momentum strategy based on the standard moving average rules (MA) to the

monthly data of the total return index of the S&P 500 from Jan. 1988 to Dec. 2012

obtained from Datastream.

We first define the trading signal for momentum trading. Let P (t) be the log

(cum dividend) price of a stock index at time t. The trading signal can be defined

by

S
(1)
t :=sign

(

Pt −
Pt−1 + · · ·+ Pt−m

m

)

=sign
( 1

m

[

m∆Pt−1 + (m− 1)∆Pt−2 + · · ·+∆Pt−m

]

)

, (2.1)

which is a decaying weighted average of past return over a horizon of m-month.

The mean profit of a momentum strategy with m-month horizon and n-month

holding period (m,n = 1, 2, · · · , 60) is calculated as follows. The strategy is to long

(short) one unit of index for n months when the trading signal is positive (negative).

Hence, at each time t (except for t < n− 1), we have n long/short positions in the

index. The average (log) excess return of the momentum strategy at time t is

calculated by the average excess monthly returns of the n positions in the index,
[

1

n

n
∑

k=1

S
(i)
t−k

]

×
(

∆Pt − rf,t
)

, i = 1, 2, (2.2)

where rf,t is the 1 month Treasury bill rate.

With the trading signal defined by (2.1), Table 2.1 reports the annualized (log)

excess returns of the momentum strategies for the S&P 500 with horizon (m) and

holding (n) periods from 1 to 60 months. It shows that the momentum strategies

are profitable for time horizons and holding periods up to 3 years. In particular, the

profits become significant (up to about 7% p.a.) for time horizons from 6 months

to 3 years and holding periods from 1 to 12 months. Fig. 2.1 reports the t-statistic
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Table 2.1. The annualized percentage (log) excess returns of the

momentum strategies (2.1) for the S&P 500 with horizon (m) and

holding (n) from 1 to 60 months period. Note: ∗, ∗∗, ∗∗∗ denote the

significance at 10%, 5% and 1% levels, respectively.

m \ n 1 3 6 12 24 36 48 60

1 2.63 3.77∗∗ 1.99 3.43∗∗∗ 2.28∗∗ 1.96∗∗ 1.68∗ 1.34

3 1.38 2.91 3.36∗ 3.80∗∗ 3.40∗∗ 2.92∗∗ 2.50∗ 2.29∗

6 6.03∗∗ 5.01∗ 4.62∗∗ 4.39∗∗ 3.25∗ 2.45 2.21 2.02

12 7.52∗∗ 6.54∗∗ 5.93∗∗ 5.00∗∗ 2.95 2.23 2.18 2.25

24 6.57∗∗ 7.87∗∗∗ 6.16∗∗ 5.03∗ 3.08 2.37 2.30 2.55

36 6.72∗∗ 6.76∗∗ 5.55∗ 3.47 2.38 2.08 2.21 2.76

48 4.34 2.07 1.52 1.22 0.67 1.15 1.47 2.30

60 1.05 0.66 -0.56 -0.44 0.06 0.72 1.17 2.27

0 10 20 30 40 50 60
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Horizon
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Figure 2.1. The t-statistic of the average excess return of the mo-

mentum strategies the S&P 500 based on (2.1) for time horizon from

1 to 60 months periods and holding periods equal to horizon (n = m),

1 month (n = 1) and 6 month periods (n = 6) respectively.

of the excess return of the momentum strategies investing in the S&P 500 for time

horizons from 1 to 60 months and holding period equals to the time horizon (n = m),

1 month (n = 1) and 6 months (n = 6) respectively. It shows that the momentum

strategies are significantly profitable for short holding periods from 1 to 6 months
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and time horizons from 6 to 30 months with the corresponding t-statistics being

above 1.96, the critical value at 95% confidence level.

Table 2.2. The Sharpe ratio of the momentum strategies (2.1) for

the S&P 500 with horizon (m) and holding (n) from 1 to 60 months

period.

m \ n 1 3 6 12 24 36 48 60

1 0.050 0.128 0.093 0.187 0.134 0.114 0.099 0.078

3 0.026 0.070 0.106 0.137 0.138 0.122 0.105 0.095

6 0.116 0.109 0.118 0.123 0.105 0.083 0.075 0.068

12 0.145 0.135 0.129 0.116 0.077 0.062 0.060 0.061

24 0.126 0.159 0.131 0.114 0.074 0.061 0.058 0.064

36 0.129 0.135 0.117 0.076 0.056 0.051 0.054 0.068

48 0.083 0.042 0.032 0.026 0.016 0.027 0.035 0.055

60 0.020 0.014 -0.012 -0.010 0.001 0.017 0.027 0.000

We also report the Sharpe ratio of the strategies to adjust for risk, which is

defined as the ratio of the mean excess return on the (managed) portfolio and the

standard deviation of the portfolio return. If a strategy’s Sharpe ratio exceeds

the market Sharpe ratio, the active portfolio dominates the market portfolio (in

an unconditional mean-variance sense). For empirical applications, the (ex post)

Sharpe ratio is usually estimated as the ratio of the sample mean of the excess

return on the portfolio and the sample standard deviation of the portfolio return.

The average monthly return on the total return index of the S&P 500 over the period

January 1988–December 2012 is 0.76% with an estimated (unconditional) standard

deviation of 4.30%. The Sharpe ratio of the market index is 0.108. The Sharpe ratio

of the strategy based on (2.1) and (2.2) is documented in Table 2.2. Tables 2.1 and

2.2 are very consistent. Specifically, when Table 2.1 shows a momentum strategy

with certain time horizon and holding period generates significantly positive excess

return, Table 2.2 shows this strategy can also outperform the market according to

the Sharpe ratio.

Alternatively, motivated by Moskowitz et al. (2012), we also consider the trading

signal defined by

S
(2)
t := sign

( 1

m

[

(∆Pt−1−rf,t−1)+(∆Pt−2−rf,t−2)+ · · ·+(∆Pt−m−rf,t−m

]

)

, (2.3)
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which is an equally weighted average of excess returns over the past m periods.

With the trading signal defined by (2.3), similar results are obtained and reported

in Table A.1 and Fig. A.1 in Appendix A.

3. The Model

In this section, we establish an asset pricing model of single risky asset to char-

acterize the time series momentum. The modelling approach follows closely to the

current HAM framework. By considering the financial market as an expectations

feedback mechanism, Chiarella (1992), Lux (1995) and Brock and Hommes (1997,

1998) were amongst the first to have shown that the interaction of agents with het-

erogeneous expectations may lead to market instability. By incorporating bounded

rationality and heterogeneity, HAMs have successfully explained the complexity of

market price behavior, market booms and crashes, and long deviations of the market

price from the fundamental price. They show great potentials in generating the styl-

ized facts (such as skewness, kurtosis, volatility clustering and fat tails in returns),

and various power laws (such as the long memory in return volatility) observed in

financial markets. We refer readers to Hommes (2006), LeBaron (2006), Lux (2009)

and Chiarella, Dieci and He (2009) for surveys of the recent developments in this

literature.

To examine the effect of time horizons, instead of using a discrete-time setup,

we consider a continuous-time setup in this paper with fundamentalists who trade

according to fundamental analysis and momentum and contrarian traders who trade

differently based on price trend calculated from moving averages of historical prices

over different time horizons. As in Beja and Goldman (1980), the market price is

arrived at via a market maker scenario.5 To focus on price dynamics, we motivate

the excess demand functions of the three different types of traders directly, rather

than deriving them from utility maximization of their portfolio investments. These

5As presented in O’Hara (1995), the Walrasian scenario, even though widely used in economic

analysis, only plays a part in one real market (the market for silver in London).
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demand functions are also consistent those in the discrete-time HAMs literature

derived from heterogeneous expectations and utility maximization.6

3.1. Fundamental Traders. Let P (t) and F (t) denote the log (cum dividend)

price and (log) fundamental value F (t), respectively of a risky asset at time t. The

fundamental traders believe that the market price7 P (t) is mean-reverting to the

fundamental price F (t), which can be estimated based on some fundamentals. They

buy (sell) the stock when the current price P (t) is below (above) the fundamental

price F (t) of the stock. For simplicity, we assume that the excess demand of the

fundamental traders, Df(t) at time t, is proportional to the deviation of the market

price P (t) from the fundamental value F (t), namely,

Df(t) = βf

(

F (t)− P (t)
)

, (3.1)

where βf > 0 is a constant, measuring the speed of mean-reversion of P (t) to F (t),

which may be weighted by the risk tolerance of the traders. For simplicity, we

assume that the fundamental return follows a pure white noise process:

dF (t) = σFdWF (t), F (0) = F̄ , (3.2)

where σF > 0 represents the volatility of the fundamental return and WF (t) is a

standard Wiener process.

3.2. Momentum and Contrarian Traders. Both momentum and contrarian

traders trade based on their estimated market price trends, although they behave

differently. Momentum traders believe that future market price follows a price trend

um(t). When the current market price is above the trend, they expect future market

price to rise and therefore they take a long position of the risky asset; otherwise, they

6In the traditional approach in the continuous-time literature, the usual way is to first specify

a price process and then derive the optimal demand functions. The parameters in the price

process are then determined by market clearing conditions. Because of the Markov property of

the underlying processes, the price process and utility maximization are consistent. However,

when modelling time series momentum, we do not have such consistency due to the non-Markov

property of the underlying process in general. Therefore, the demand functions are motivated from

behavioral aspects in the paper.

7For convenience, the price is referred to the log price in this paper, unless specified otherwise.
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take a short position. Different from the momentum traders, contrarians believe that

future market price goes opposite to a price trend uc(t). When the current market

price is above the trend, they expect future market price to decline and therefore

they take a short position of the risky asset; otherwise, they take a long position.

The price trend used for the momentum traders and contrarians can be different in

general. Among various price trends used in practice, the standard moving average

(MA) rules with different time horizons are the most popular ones,

ui(t) =
1

τi

∫ t

t−τi

P (s)ds, i = m, c, (3.3)

where the time delay τi ≥ 0 represents the time horizon of the MA.8 We therefore

assume that the excess demand of the momentum traders and contrarians are given,

respectively, by

Dm(t) = gm
(

P (t)− um(t)
)

, Dc(t) = gc
(

uc(t)− P (t)
)

, (3.4)

where the S-shaped demand function gi(x) for i = m, c satisfies

gi(0) = 0, g′i(x) > 0, g′i(0) = βi > 0, xg′′i (x) < 0, for x 6= 0, (3.5)

and parameter βi represents the extrapolation rate of the price trend when the

market price deviation from the trend is small. Notice the trading signal of the

strategy (3.4) is consistent with (2.1). In the following discussion, we take gi(x) =

tanh(βix), which satisfies condition (3.5).9

8The price trend ui(t) can be regarded as the logarithm of the geometric mean of market price

over the past τi periods. Zhu and Zhou (2009) show that little performance differences emerge

in their paper with the use of geometric MA and arithmetic MA. In particular, ui(t) → P (t) as

τi → 0, implying that the price trend is given by the current price.
9 Chiarella (1992) provides an explanation for the increasing and bounded S-shaped excess

demand function. For example, traders may seek to allocate a fixed amount of wealth between

the risky asset and a bond so as to maximize their expected utility of consumption. The demand

becomes bounded due to wealth constraints. From behaviorial point of view, traders may become

cautious when the deviation of the market price from the price trend is large. This together leads

approximately to an S-shaped increasing excess demand function. For consistence, we also study

the cases when both demand functions are linear or S-shaped. We find that adding/dropping the

S-shaped demands does not affect the local stability presented in Section 4; however imposing

S-shaped demand function to the fundamentalists leads to a more “unstable” market in the sense
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3.3. Market Price via a Market Maker. Assume net zero supply in the risky

asset and let αf , αm and αc be the market population fractions of the fundamental,

momentum, and contrarian traders, respectively, with αf +αm +αc = 1 and αi > 0

for i = f,m, c.10 Then the aggregate market excess demand for the risky asset,

weighted by the population weights, is given by αfDf (t) + αmDm(t) + αcDc(t).

Following Beja and Goldman (1980), Kyle (1985) and Farmer and Joshi (2002),

we assume that the price P (t) at time t is set via a market maker mechanism and

adjusted according to the aggregate excess demand, that is,

dP (t) = µ[αfDf (t) + αmDm(t) + αcDc(t)]dt+ σMdWM(t), (3.6)

where µ > 0 represents the speed of the price adjustment by the market maker,

WM(t) is a standard Wiener process capturing the random excess demand process

driven by either noise traders or liquidity traders, and σM ≥ 0 is constant. WM(t) is

assumed to be independent of the Wiener process for the fundamental price WF (t).
11

Based on Eqs. (3.1)-(3.6), the market price of the risky asset is determined by

dP (t) =µ

[

αfβf

(

F (t)− P (t)
)

+ αm tanh
(

βm

(

P (t)− 1

τm

∫ t

t−τm

P (s)ds
)

)

+ αc tanh
(

− βc

(

P (t)− 1

τc

∫ t

t−τc

P (s)ds
)

)

]

dt+ σMdWM(t), (3.7)

where the fundamental price F (t) is defined by (3.2). Therefore, the asset price

dynamics is determined by the stochastic delay integro-differential equation (3.7).

As argued in Lo, Mamaysky and Wang (2000), “The general goal of technical

analysis is to identify regularities in the time series of prices by extracting nonlinear

patterns from noisy data. Implicit in this goal is the recognition that some price

that the amplitude of price fluctuation becomes greater when the original system is unstable. On

the profitability, when both demand functions are either linear or nonlinear, we find that the profit

level can be different, however the conclusion on the profitability does not change.
10To simplify the analysis, we first assume that the market fractions are constant. When agents

are allowed to switch among different strategies based on some fitness measure (see He and Li 2012),

the market fractions become time-varying. An analysis of this extension is given in Appendices D

and E.
11The two Wiener processes can be correlated. We refer readers to He and Li (2012) for related

discussion on the impact of the correlation on the price behavior and the stylized facts in financial

market.
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movements are significant—they contribute to the formation of a specific pattern—

and others are merely random fluctuations to be ignored.” We are interested in

the connection between market stability and profitability of the trading strategies.

Given the complex structure of the nonlinear model, we follow the standard ap-

proach in the HAM literature and combine the stability analysis of the underlying

deterministic model with numerical simulation of the stochastic model. By ignoring

the noises, Section 4 aims to recognize the patterns of the mean values in the noisy

price system, which underlies the profitability mechanism of momentum strategies

studied in Section 5. The stability analysis provides an insight into the effect of

the interaction and activities of different types of traders on market stability. It

helps us to understand the relation between different states of market stability and

profitability of trading strategies. Note that it is the interaction of deterministic dy-

namics and noise processes that provides a complete picture of the price dynamics

of the full stochastic model. In the following section, we first examine the stability

of the corresponding deterministic delay integro-differential equation model.

4. Market Stability

By assuming a constant fundamental price F (t) ≡ F̄ and no market noise σM =

0, system (3.7) becomes a deterministic delay integro-differential equation, which

represents the process of the mean value of the market return:

dP (t)

dt
=µ

[

αfβf

(

F̄ − P (t)
)

+ αm tanh
(

βm

(

P (t)− 1

τm

∫ t

t−τm

P (s)ds
)

)

+ αc tanh
(

− βc

(

P (t)− 1

τc

∫ t

t−τc

P (s)ds
)

)

]

. (4.1)

It is easy to see that P (t) = F̄ is the unique steady state price of the system (4.1).

We therefore call P = F̄ the fundamental steady state.

In this section, we study the dynamics of the deterministic model (4.1) by focusing

on the local stability of the fundamental steady state. Denote γi = µαiβi (i =

f,m, c), which characterize the activity of type-i traders.12 In general, the dynamics

12Intuitively, the speed of the price adjustment µ of the market maker measures the activity

across the market. Both the population size αi and behaviour activity βi qualify the trading

behaviour of type-i traders. Therefore, γi measures the activity or dominance of type i traders.
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depend on the behavior of fundamental, momentum, contrarian traders, market

maker, and time horizons. To understand the impact, we first consider two special

cases where only momentum traders or contrarians are involved.

4.1. The Stabilizing Role of the Contrarians. Contrarian trading strategies

are based on the hypothesis of market overreaction. Intuitively, contrarians can

induce market stability. To support the intuition, we consider a market with the

fundamental and contrarian traders only, that is, αm = 0. In this case the system

(4.1) reduces to

dP (t)

dt
= µ

[

αfβf

(

F̄ − P (t)
)

+ αc tanh
(

− βc

(

P (t)− 1

τc

∫ t

t−τc

P (s)ds
)

)

]

. (4.2)

The following proposition confirms the stabilizing role of the contrarians.13

Proposition 4.1. The fundamental steady state price P = F̄ of the system (4.2) is

asymptotically stable for all τc ≥ 0.

Proposition 4.1 shows that the market consisting of fundamental and contrarian

investors is always stable, and the result is independent of the time horizon and

extrapolation of the contrarians.14

4.2. The Destabilizing Role of the Momentum Traders. Momentum trading

strategies based on the hypothesis of market under-reaction are aimed to explore the

opportunities of market price continuity. Intuitively, when the market is dominated

by fundamental traders, the market is expected to reflect the fundamental price and

then the impact of the momentum traders on market stability can be very limited.

However, when the market is dominated by the momentum traders, the extrapola-

tion of the market price continuity can have significant impact on market stability.

13All the proofs can be found in Appendix B.
14Note that this result is different from that in discrete-time HAMs, in which market can become

unstable when activity of contrarians is strong, see for example, Chiarella and He (2002). This

difference is due to the continuous adjustment of the market price. The impact of any strong

activity from the contrarians becomes insignificant over a small time increment. Hence the time

horizon used to form the MA becomes more irrelevant in this case.
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To explore the impact, we now consider a market consisting of the fundamentalists

and momentum traders only, that is αc = 0. In this case, system (4.1) reduces to

dP (t)

dt
= µ

[

αfβf

(

F̄ − P (t)
)

+ αm tanh
(

βm

(

P (t)− 1

τm

∫ t

t−τm

P (s)ds
)

)

]

, (4.3)

and the price dynamics can be described by the following proposition.

Proposition 4.2. The fundamental steady state price P = F̄ of the system (4.3) is

(i) asymptotically stable for all τm ≥ 0 when γm <
γf
1+a

;

(ii) asymptotically stable for either 0 ≤ τm < τ ∗m,l or τm > τ ∗m,h and unstable for

τ ∗m,l < τm < τ ∗m,h when
γf
1+a

≤ γm ≤ γf ; and

(iii) asymptotically stable for τm < τ ∗m,l and unstable for τm > τ ∗m,l when γm > γf .

Here a = max{− sin x/x; x > 0}(≈ 0.2172), τ ∗m,1 = 2γm/(γf − γm)
2, τ ∗m,l(< τ ∗m,1) is

the minimum positive root of equation

f(τm) :=
τm
γm

(γf − γm)
2 − cos

[

√

2γmτm − (γf − γm)2τ 2m

]

− 1 = 0, (4.4)

and τ ∗m,h(∈ (τ ∗m,l, τ
∗
m,1)) is the maximum among all the roots of (4.4) which are less

than τ ∗m,1.

Proposition 4.2 shows that the impact of the time horizon used in forming the

MA for the momentum traders depends on γm and γf , which measure the activ-

ity or dominance of the momentum and fundamental traders, respectively. On

the one hand, when the fundamental traders dominate momentum traders (so that

γm < γf/(1+a)), the market is always stable and time horizon plays no role in mar-

ket stability. On the other hand, when momentum traders dominate fundamental

traders (so that γm > γf), the market is stable when time horizon is small (so that

τm < τ ∗m,l), but becomes unstable when the time horizon is large (so that τm > τ ∗m,l).

In fact, the difference between price and the price trend based on the MA becomes

insignificant when the time horizon is small and a strong activity from the momen-

tum traders has very limited impact on market stability, yielding the stability for

small time horizon. However, due to the smoothness of the MA when the time hori-

zon is longer, the difference can become significant, which, together with a strong

activity from the momentum traders, makes the market unstable. When the activ-

ity of the trend followers is balanced by that of the fundamental traders (so that
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γf/(1+a) ≤ γm ≤ γf), the market is stable when the time horizon is either short (so

that τm < τ ∗m,l) or longer (so that τm > τ ∗m,h), but becomes unstable with medium

time horizon (so that τ ∗m,l < τm < τ ∗m,h). This is an unexpected result. Intuitively,

when time horizon is short, the price trend follows the price closely, which limits

the trading opportunity for the momentum traders. When horizon is longer, the

price trend becomes insensitive to the price changes. However, due to the balanced

activity from the fundamental traders, the extrapolation activity of the momentum

traders is limited. Therefore, in both cases, the market becomes stable.

4.3. The Joint Impact of Momentum and Contrarian Trading. The previous

analysis shows the different role of the time horizon used in the MA by either the

contrarians or momentum traders. We analyze the market stability when both

strategies are employed in the market. For simplicity, we consider τm ≡ τc := τ

in the rest of the paper and leave the general case with different τm and τc in

Appendix C. It is found that this special case can well reflect the impact of different

types of traders’ activities on the stability and further on their profitability. Let

τ ∗1 = 2(γm − γc)/(γf − γm + γc)
2, and τ ∗l (< τ ∗1 ) and τ ∗h(∈ (τ ∗l , τ

∗
1 )) be the minimum

and maximum positive roots which are less than τ ∗1 , respectively, of the equation

h(τ) :=
τ

γm − γc
(γf − γm + γc)

2 − cos

[

√

2(γm − γc)τ − (γf − γm + γc)2τ 2
]

− 1 = 0.

In this case, the market stability of the system (4.1) can be characterized by the

following proposition.15

Proposition 4.3. If τm ≡ τc := τ , then the fundamental steady state price P = F̄

of the system (4.1) is

(1) asymptotically stable for all τ ≥ 0 when γm < γc +
γf
1+a

;

15Notice time horizon plays an important role in the asset price dynamics. Only very few models

have addressed this important issue. One related paper is Chiarella, He and Hommes (2006), who

study a discrete-time HAM and show that an increase of the time horizon used by momentum

traders can destabilize the market. Proposition 4.3 verifies this argument in continuous time. We

refer readers to He and Li (2012) and Di Guilmi, He and Li (2014) for more comparisons on the

role of time horizon between continuous-time and discrete-time HAMs, including local stability,

distribution of market fraction, the comovements of market fraction and market price, and some

financial stylized facts.
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(2) asymptotically stable for either 0 ≤ τ < τ ∗l or τ > τ ∗h and unstable for

τ ∗l < τ < τ ∗h when γc +
γf
1+a

≤ γm ≤ γc + γf ; and

(3) asymptotically stable for τ < τ ∗l and unstable for τ > τ ∗l when γm > γc + γf .

Despite the activity of both momentum and contrarian traders, Proposition 4.3

shares the same message to Proposition 4.2 with respect to the joint impact of the

time horizons and the activity of the momentum traders on market stability, except

that the activity of the fundamental traders in Proposition 4.2 is measured jointly by

the activities of the fundamental and contrarian traders in Proposition 4.3. Given

the stabilizing nature of the contrarian strategy indicated in Proposition 4.1, this is

not unexpected. The three conditions

(1) : γm < γc +
γf

1 + a
, (2) : γc +

γf
1 + a

≤ γm ≤ γc + γf , (3) : γm > γc + γf

in Proposition 4.3 characterize three different states of market stability, which have

different implications to the profitability of momentum trading strategy. For con-

venience, market state k is referred to condition (k) for k = 1, 2, 3 in the following

analysis.

To illustrate the price dynamics in different market state, we now conduct nu-

merical analysis.16 For market state 1, the fundamental price is stable, independent

of the time horizon. For market state 2, Fig. 4.1 (a) illustrates the three values17

τ ∗l ≈ 0.23, τ ∗3 ≈ 0.41, and τ ∗h ≈ 5.10. Correspondingly, Fig. 4.1 (b) shows that

the fundamental steady state price P = F̄ is stable when τ ∈ [0, τ ∗l ) ∪ (τ ∗h ,∞) and

unstable when τ ∈ (τ ∗l , τ
∗
h). The stability switches twice.18 For market state 3, Fig.

4.2 (a) illustrates the first (Hopf bifurcation) value τ ∗l ≈ 0.22, which leads to stable

16The numerical results in this paper (except for the Appendices D and E) are based on αf = 0.3,

αm = 0.4, αc = 0.3, µ = 5 and F̄ = 1, unless specified otherwise.
17These values are called Hopf bifurcation values in stability theory (see Hale 1997), meaning

that the steady state loses the stability at these values and bifurcates to periodic cycles around

the steady state, as illustrated by the price bifurcation plot with respect to the time horizon τ .
18Simulations (not reported here) show that the speed of the convergence when the fundamental

steady state becomes stable after switching from instability as τ increases is very slow, although

F̄ is stable. The properties on the number of bifurcations and the stability switching are further

illustrated in Fig. B.1 in Appendix B.4. There are some interesting properties on the nature of

bifurcations related to Proposition 4.3, including the number of bifurcations, stability switching
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limit cycles for τ > τ ∗l , as shown in Fig. 4.2 (b). The stability switches only once

at τ ∗l .
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Figure 4.1. (a) The function h(τ); (b) the corresponding bifurcation

diagram for market state 2. Here γf = 20, γm = 22.6 and γc = 5.
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Figure 4.2. (a) The function h(τ); (b) the bifurcation diagram of

the market price for market state 3. Here γf = 2, γm = 20 and

γc = 10.

The above numerical analysis clearly illustrates that dependence of the market

price dynamics on the time horizon is different in different market states. We show

in the following section that the market states also have different implications on

the underreaction/overreaction and momentum profitability. We complete the dis-

cussion of this section by considering a very special case when αm = αc, βm = βc

and the dependence of the bifurcation values on the parameters. We provide a detailed analysis in

Appendix B.4.



PROFITABILITY OF TIME SERIES MOMENTUM 21

and τm = τc, that is the momentum and the contrarian traders have the same pop-

ulation, extrapolation rate and time horizon. In this case, system (4.1) reduces to

dP (t)/dt = γf(F̄ − P (t)). The destabilizing effect of momentum traders is com-

pletely offset by contrarians, which leads to the global stability of the fundamental

price.

5. Momentum Profitability

This section numerically examines the profitability of the time series momentum

trading strategies. We show that the profitability is closely related to the market

states defined according to the stability analysis in Section 4. In particular, we show

that, in market state 3, the momentum strategy is profitable when the time horizon

is short and unprofitable when the time horizon is long. In other market states, the

strategy is not profitable for any time horizon. We also provide some explanation

to the profitability mechanism through autocorrelation and time series analysis.

As in Section 4, we focus on the special case when momentum and contrarian

traders use the same time horizon and holding period τ . The profit is calculated us-

ing a buy-and-hold strategy on the number and position determined by the demand

function of the trading strategy.19 It follows from Eq. (3.4) that the excess demands

of momentum and contrarian traders with time horizon τ are given, respectively, by

Dm(t) = tanh
(

βm

(

P (t)− 1

τ

∫ t

t−τ

P (s)ds
)

)

,

Dc(t) = tanh
(

− βc

(

P (t)− 1

τ

∫ t

t−τ

P (s)ds
)

)

.

(5.1)

Based on buy and hold strategy, the realized spot profits of fundamental, momen-

tum, contrarian traders, and the market maker at time t can be calculated by

Ui(t) = Di(t)
(

P (t+ τ)− P (t)
)

, i = f,m, c,M, (5.2)

where the excess demand of the fundamental strategy Df(t) is defined by Eq. (3.1)

and the excess demand of the market maker is given by DM(t) = −
(

αfDf(t) +

αmDm(t) + αcDc(t)
)

, which is based on the liquidity provided to clean the market.

19Alternatively, the profit can be calculated based on buy-and-hold strategy on one unit of

position taking, as in Section 2. We find that this does not affect the profitability results obtained

in this section.
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In addition, we also calculate the average accumulated profit yielded over a time

interval [t0, t] by

Ūi(t) =
1

t− t0

∫ t

t0

Di(s)
(

P (s+ τ)− P (s)
)

ds, i = f,m, c,M. (5.3)

We now examine the profitability in different market states. In the rest of the

paper, the time unit is one year and the time step ∆t is one month. Given 14.9%

annually standard deviation of the log return for the S&P 500 index used in Section

2, we choose σM = 0.15 for the annual market volatility and σF = 0.1 for the annual

volatility of the fundamental price.
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Figure 5.1. (a) The average spot profits of trading strategies based

on 1000 simulations; (b) the average accumulated profits based on a

typical simulation for market state 1. Here γf = 15, γm = 15 and

γc = 3 and τ = 0.5.

5.1. State 1. In market state 1, the market is dominated jointly by the fundamental

and contrarian traders (so that γm < γc+γf/(1+a)). In this case, the stability of the

fundamental price of the underlying deterministic model is independent of the time

horizon. Based on 1,000 simulations, Fig. 5.1 (a) reports the average spot profits of

different strategies and Fig. 5.1 (b) illustrates the average accumulated profits based

on a typical simulation. They show that the contrarian and fundamental strategies
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Figure 5.2. The average ACs of market return based on 1000 sim-

ulations for market state 1 with (a) τ = 0.5 and (b) τ = 3. Here

γf = 15, γm = 15 and γc = 3.

are profitable, but not the momentum strategy and the market maker.20 Note that

the amounts of profit/loss are small, which is underlined by the stable market price.

To understand the mechanism of the profitability, we present the average return

autocorrelations (ACs) based on 1000 simulations in Fig. 5.2 for τ = 0.5 in (a)

and τ = 3 in (b).21 It shows some significant and negative ACs for small lags and

insignificant ACs for large lags. This indicates market overreaction in short-run

and hence the fundamental and contrarian trading can generate significant profits.

There is no significant and positive ACs, indicating no market under-reaction, and

hence the momentum trading is not profitable.

5.2. State 2. In market state 2, the momentum traders are active, but their activi-

ties are balanced by the fundamental and contrarian traders (so that γc+γf/(1+a) ≤
γm ≤ γc + γf). In this case, the stability of the underlying deterministic model is

20Notice the profits of market maker is slightly negative by providing liquidity. But in reality,

market maker can make profits on the transaction costs and bid-ask spread. We also examine

two scenarios with medium and high transaction costs of 0.5% and 1% of the value of the trade

respectively. We find that market maker can make significant profits in these cases (not reported

here). We would like to thank a referee for this remark.
21Recently, Zhou and Zhu (2014) show that the moving average rules can explain the time series

momentum in an equilibrium model by examining the autocovariance of return for different time

horizons.
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illustrated in Fig. 4.1, showing that the fundamental price is stable for either short

or longer time horizons, but unstable for medium time horizons. With the same

parameters used in Fig. 4.1, we illustrate the profitability of the different trading

strategies in Fig. 5.3. It shows that the fundamental and contrarian trading strate-

gies are profitable, but not the momentum traders and the market maker. Further

simulations (not reported here) show the same result with different time horizons,

although the losses/profits increase as time horizon increases.
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Figure 5.3. (a) The average spot profits based on 1,000 simulations;

(b) the average accumulated profits based on a typical simulation for

market state 2. Here γf = 20, γm = 22.6, γc = 5 and τ = 0.5.
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Figure 5.4. The average ACs of market return based on 1000 sim-

ulations for market state 2 with (a) τ = 0.5 and (b) τ = 3.

As in market state 1, we also calculate the return ACs with the same set of

parameters as Fig. 4.1. Fig. 5.4 presents the average ACs based on 1000 simulations
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for time horizon τ = 0.5 in (a) and τ = 3 in (b), showing some significantly negative

ACs, in particular for τ = 0.5, over short lags. This indicates the profitability of

the fundamental and contrarian trading due to market overreaction, but not for the

momentum trading. Therefore, both states 1 and 2 lead to the same conclusion on

the profitability, although the amount of profit/loss in state 2 is higher than in state

1.
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(b) Average accumulated profits for τ = 0.5
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(c) Average spot profits for τ = 3

0 10 20 30 40 50 60
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

t

Profits

 

 
Fundamentalists
Momentum Traders
Contrarians
Market Maker

(d) Average accumulated profits for τ = 3

Figure 5.5. The average spot profits based on 1000 simulations for

(a) τ = 0.5 and (c) τ = 3 and the average accumulated profits based

on a typical simulation for (b) τ = 0.5 and (d) τ = 3 for market state

3. Here γf = 2, γm = 20 and γc = 10.

5.3. State 3. In market state 3, the market is dominated by the momentum traders

(so that γm > γc + γf). The stability of the underlying deterministic model is illus-

trated in Fig. 4.2, showing that the fundamental price is stable for short horizons,

but unstable for longer horizons. With the same set of parameters in Fig. 4.2, we
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report the profitability of the different trading in Fig. 5.5. It shows clearly that,

for short horizon τ = 0.5, the fundamental and momentum trading strategies are

profitable, but not the contrarians, as illustrated in Figs. 5.5 (a) and (b). However,

for longer horizon τ = 3, the fundamental and contrarian strategies are profitable,

but not the momentum traders, see Figs. 5.5 (c) and (d).
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Figure 5.6. Time series of price P (t) and price trend u(t) for (a)

τ = 0.5 and (b) τ = 3.

To explore the profit opportunity of the momentum trading with different time

horizons, we plot the time series of the price and price trend in Fig. 5.6 (a) for

τ = 0.5 and Fig. 5.6 (b) for τ = 3, based on the same simulation in Fig. 5.5

(b) and (d), respectively. There are two interesting observations. (i) For short

horizon τ = 0.5, the market price fluctuates due to the unstable steady state of

the underlying deterministic system. When the market price increases, the price

trend follows the market price closely and increases too, as illustrated in Fig. 5.6

(a). This implies that, with short holding period, the momentum trading strategy

is profitable by taking long positions. Similarly, when the market price declines,

the price trend follows. Hence the momentum trading is profitable by taking short

positions. Therefore, the momentum trading is profitable (except for the starting

periods of sudden changes in the price tendency). (ii) For longer horizon τ = 3,

the market price fluctuates widely due to the unstable fundamental value of the

underlying deterministic system. The relation between market price and price trend

is similar to the case for the short horizon, as illustrated in Fig. 5.6 (b). However,
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a longer horizon makes the price trend less sensitive to the changes in price. Also,

since the holding period is also longer, the momentum trading mis-matches the

profitability opportunity. For example, when the market price reaches a peak at

t ≈ 50 (months), which is higher than the trend, the momentum traders take a long

position in the stock. After holding the stocks for 3 years, they sell at a much lower

price at t ≈ 86, implying a loss from the momentum strategy. This illustrates that,

with longer horizon, the momentum trading is not profitable.
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Figure 5.7. The average ACs of market return based on 1000 sim-

ulations for market state 3 with (a) τ = 0.5 and (b) τ = 3.
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Figure 5.8. (a) The average spot profits based on 1,000 simulations;

(b) the average accumulated profits based on a typical simulation for

market state 3 with 3 years horizon and 0.5 year holding period.
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To provide further insight into the profitability mechanism, we calculate the return

ACs and present the results in Fig. 5.7. It shows clearly the market under-reaction in

short run and overreaction in long run, characterized by significantly positive ACs

for short lags and negative ACs for long lags for both short and longer horizons.

With the short horizon and holding period, the momentum trading is profitable

due to the under-reaction in short-run (Fig. 5.7 (a)). However with the long time

horizon, the momentum trading is no longer profitable for long holding period due

to the overreaction in long-run (Fig. 5.7 (b)), although it can be profitable with

short holding period due to the under-reaction illustrated in Fig. 5.7 (b), which is

verified in Fig. 5.8 with 3 years horizon and 6 month holding period. This result is

consistent with Lou and Polk (2013).

Table 5.1. The annualized percentage (log) excess returns of mo-

mentum strategy (2.1) for the time series generated from the model

in market state 3 with horizon (m) and holding (n) from 1 to 60

months period. Note: ∗, ∗∗, ∗∗∗ denote the significance at 10%, 5%

and 1% levels, respectively.

m \ n 1 3 6 12 24 36 48 60

1 1.23 3.30 3.05∗∗ 3.09∗∗∗ 1.71∗∗ 0.44 -0.17 -0.42

3 2.78 3.21 4.73∗∗ 4.16∗∗ 2.68∗∗ 0.25 -0.42 -0.55

6 2.48 3.85 5.74∗∗ 5.09∗∗ 2.29 -0.37 -1.41 -1.15

12 6.89∗∗ 7.87∗∗ 8.12∗∗∗ 5.91∗∗ 1.48 -1.78 -2.50∗ -1.99

24 9.92∗∗∗ 9.89∗∗∗ 7.40∗∗ 2.89 -2.71 -4.82∗∗ -3.82∗ -2.14

36 8.84∗∗ 5.43 2.16 -1.79 -6.22∗∗ -7.57∗∗∗ -5.44∗∗ -3.34∗

48 5.00 2.41 -0.01 -3.66 -7.76∗∗∗ -8.52∗∗∗ -5.91∗∗∗ -3.57∗

60 2.50 -0.03 -2.01 -5.25 -9.00∗∗∗ -9.19∗∗∗ -6.15∗∗∗ -3.63∗

It would be interesting to see if the model is able to replicate the time series

momentum profit explored for the S&P 500 in Section 2 based on the momentum

strategies (2.1) and (2.3). Table 5.1 reports the annual excess returns of various

momentum trading strategies based on (2.1) investing in the model generated data

in market state 3 for time horizon and holding period from 1 to 60 months. Fig. 5.9

reports the corresponding t-statistic of the average excess return of the momentum

strategies for time horizon from 1 to 60 months periods and holding period equals to

horizon, 1 month and 6 month periods respectively. Similar results based on trading
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Figure 5.9. The t-Statistic of the average excess return of the mo-

mentum strategy (2.1) investing in the model generated data in market

state 3 for time horizon from 1 to 60 months periods and holding equal

to horizon (n = m), 1 month (n = 1) and 6 month periods (n = 6)

respectively.

strategy (2.3) are reported in Table A.2 and Fig. A.2 in Appendix A. We see that

both the profit and t-statistic patterns generated from the model are very similar to

the S&P 500 reported in Section 2. The results are consistent with Moskowitz et al.

(2012) who find that the time series momentum strategy with 12 months horizon

and 1 month holding is the most profitable among others.

To complete this section, we add the following remarks. (i) The analysis of this

paper focuses on the same time horizon and holding period. An extension to dif-

ferent time horizon and holding period is presented in Appendix C. (ii) Simulations

(not reported here) show that the level of profitability of momentum (contrarian)

strategy is positively (negatively) related to βm and negatively (positively) related

to βc. Also, the level of profitability of both momentum and contrarian strategies

is positive related to the price adjustment speed µ. (iii) The time horizon τ can

affect the profitability greatly. Recall that the stability of the system depends on

γi = µαiβi (i = f,m, c) and τ completely and the profitability is closely related

to the market states. (iv) When investors switch their trading strategies based on
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some fitness functions, we extend the model in Appendices D and E and show that

the profits/losses can be enhanced due to the switching among different trading

strategies.

6. Conclusion

Based on market underreaction and overreaction hypotheses, momentum and con-

trarian strategies are widely used by financial market practitioners and their prof-

itability has been extensively investigated by academics. However, most behavioral

models do not specify the time horizon, which plays a crucial role in the perfor-

mance of momentum and contrarian strategies. Following the recent development

in the heterogeneous agent models literature, this paper proposes a continuous-time

heterogeneous agent model of investor behavior consisting of fundamental, contrar-

ian, and momentum strategies. The underlying stochastic delay integro-differential

equation of the model provides a unified approach to deal with different time hori-

zons of momentum and contrarian strategies. By examining their impact on market

stability explicitly and analyzing the profitability numerically, this paper examines

the profitability of the time series momentum trading strategies. We show that the

profitability is closely related to the market states defined by the stability of the un-

derlying deterministic model. In particular, we show that, in market state 3 where

the momentum traders dominate the market, the momentum strategy is profitable

when the time horizon is short and unprofitable when the time horizon is long. In

other market states, the strategy is not profitable for any time horizon. We also

provide some explanation to the profitability mechanism through autocorrelation

patterns and the under-reaction and overreaction hypotheses. In addition, we show

that the momentum strategy works in the stock index.

Although the model proposed in this paper is very simple, it provides an insight

into the time series momentum documented in recent empirical literature. As we

discussed in the introduction, the time series momentum plays a very important

role in explaining cross-sectional momentum, which had been widely researched in

the literature. Motivated by the results obtained in this paper, one can extend the

market of one risky asset to one with many risky assets so that the profitability
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of portfolios constructed from momentum and contrarian strategies can be exam-

ined. We would expect the same mechanism can be used to explain cross-sectional

momentum. In addition, it has been shown that volatility can affect the autocorre-

lations in returns and hence affect profitability and even trading volume. This could

be examined by using the setup in this paper. We leave these for future research.
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Appendix A. Time Series Momentum Profit

Table A.1. The annualized percentage (log) excess returns of the

momentum strategies (2.3) for the S&P 500 with horizon (m) and

holding (n) from 1 to 60 months period. Note: ∗, ∗∗, ∗∗∗ denote the

significance at 10%, 5% and 1% levels, respectively.

m \ n 1 3 6 12 24 36 48 60

1 1.64 3.61∗∗ 1.61 3.00∗∗∗ 2.01∗∗ 2.01∗∗ 1.55∗ 1.12

3 1.15 2.15 2.88 3.34∗∗ 2.67∗ 1.88 1.57 1.25

6 4.21 4.39∗ 5.47∗∗ 4.67∗∗ 2.74 1.77 1.67 1.37

12 9.24∗∗∗ 7.81∗∗∗ 6.72∗∗ 5.22∗∗ 2.83 1.82 1.70 1.82

24 7.20∗∗ 6.92∗∗ 5.47∗ 3.81 2.28 1.68 8 1.83 2.68

36 3.98 4.50 2.80 1.58 0.72 0.93 1.55 2.97

48 1.76 0.14 -1.19 -1.94 -1.59 -0.43 1.30 2.51

60 -2.55 -4.24 -4.84 -3.86 -2.11 0.07 1.80 2.74
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Figure A.1. The t-Statistic of the average excess return of the mo-

mentum strategies (2.3) investing the S&P 500 for time horizon from 1

to 60 months periods and holding equal to horizon (n = m), 1 month

(n = 1) and 6 month periods (n = 6) respectively.
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Table A.2. The annualized percentage (log) excess returns of the

momentum strategies (2.3) for the time series generated from the

model in market state 3 with horizon (m) and holding (n) from 1

to 60 months period. Note: ∗, ∗∗, ∗∗∗ denote the significance at 10%,

5% and 1% levels, respectively.

m \ n 1 3 6 12 24 36 48 60

1 1.81 3.53 3.28∗∗ 3.20∗∗∗ 1.78∗∗ 0.44 -0.17 -0.42

3 3.38 3.28 4.93∗∗ 4.56∗∗∗ 2.46∗ 0.33 -0.28 -0.32

6 6.35∗ 6.57∗∗ 6.02∗∗ 5.46∗∗ 1.75 -0.72 -1.63 -1.20

12 6.86∗∗ 7.29∗∗ 7.09∗∗ 4.74∗ 0.58 -2.50 -2.95∗∗ -2.64∗∗

24 5.22 5.28 3.94 0.82 -3.02 -4.85∗∗ -3.97∗ -2.46

36 1.32 0.24 -1.61 -4.91 -7.96∗∗∗ -7.81∗∗∗ -5.39∗∗ -3.23

48 -1.46 -2.69 -4.30 -6.57∗∗ -8.66∗∗∗ -7.61∗∗∗ -4.99∗∗ -3.28

60 -2.42 -5.80 -6.47∗ -6.31∗ -6.97∗∗ -5.83∗ -4.14 -2.71
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Figure A.2. The t-Statistic of the average excess return of the mo-

mentum strategy (2.3) investing in the model generated data in market

state 3 for time horizon from 1 to 60 months periods and holding equal

to horizon (n = m), 1 month (n = 1) and 6 month periods (n = 6)

respectively.
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Appendix B. Proofs and Remarks of the Deterministic Model

The characteristic equation of the system (4.1) at the fundamental steady state

P = F̄ is given by22

λ+ γf − γm + γc +
γm
λτm

(1− e−λτm)− γc
λτc

(1− e−λτc) = 0. (B.1)

For delay integro-differential equation, the eigenvalue analysis can be complicated.

B.1. Proof of Proposition 4.1. The characteristic equation (B.1) reduces to

λ+ γf + γc −
γc
λτc

(1− e−λτc) = 0, (B.2)

which has no zero eigenvalue. The root of (B.2) has negative real part −γf when

τc → 0. Let λ = iω(ω > 0) be a root of Eq. (B.2). Substituting it into Eq. (B.2)

and separating the real and imaginary parts yield

ω2τc − γc(cosωτc − 1) = 0, ωτc(γf + γc)− γc sinωτc = 0,

which lead to

ω2τ 2c + 2τcγc + τ 2c (γf + γc)
2 = 0, (B.3)

However equation (B.3) cannot be true for τc > 0, hence λ 6= iω.

It is known that, as τc varies, the sum of the multiplicities of roots of Eq. (B.2)

in the open right half-plane can change only if a root appears on or crosses the

imaginary axis (see Ruan and Wei 2003 and Li and Wei 2009). Therefore, all roots

of Eq. (B.2) have negative real parts for all τc ≥ 0. This implies the local stability

of the system (4.2).

B.2. Proof of Proposition 4.2. The characteristic equation (B.1) collapses to

λ+ γf − γm +
γm
λτm

(1− e−λτm) = 0, (B.4)

which has no zero eigenvalue. Substituting λ = iω(ω > 0) into Eq. (B.4) and

separating the real and imaginary parts yield

ω2τm + γm(cosωτm − 1) = 0, ωτm(γf − γm) + γm sinωτm = 0. (B.5)

22It is known (see Hale 1997) that the stability is characterised by the eigenvalues of the char-

acteristic equation of the system at the steady state.
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Let a = max{− sin x/x; x > 0}(≈ 0.2172). When γm < γf/(1 + a), the two func-

tions y1 :=
γm−γf
γm

x and y2 := sin x have no intersection for x > 0, hence the second

equation in (B.5) cannot hold and Eq. (B.4) has no pure imaginary root. Corre-

spondingly, Eq. (B.4) has no root appearing on the imaginary axis. In addition,

Eq. (B.4) has only one negative eigenvalue when τm → 0. Therefore, all roots of

Eq. (B.4) have negative real parts for all τm ≥ 0 when γm < γf/(1+a), which leads

to the local stability of the system (4.3).

Next, we consider the case of γm ≥ γf/(1 + a). If follows from Eq. (B.5) that

ω2 + (γf − γm)
2 − 2γm

τm
= 0. (B.6)

When τm > τ ∗m,1 := 2γm
(γf−γm)2

, Eq. (B.6) has no solution, implying that λ = iω is

not an eigenvalue. Hence there is no stability switching for τm > τ ∗m,1. Substituting

λ = ℜ{λ}+ iℑ{λ} into Eq. (B.4) and separating the real and imaginary parts yield

ℜ2{λ}+ ℑ2{λ}+ (γf − γm)ℜ{λ}+
γm
τm

(1− e−ℜ{λ}τm cosℑ{λ}) = 0,

2ℜ{λ}ℑ{λ}+ (γf − γm)ℑ{λ}+
γm
τm

e−ℜ{λ}τm sinℑ{λ}τm = 0.
(B.7)

When τm → ∞, if there exists a root λ with ℜ{λ} > 0, then (B.7) reduces to

ℜ2{λ}+ ℑ2{λ}+ (γf − γm)ℜ{λ} = 0,

2ℜ{λ}ℑ{λ}+ (γf − γm)ℑ{λ} = 0,
(B.8)

which hold only when γm > γf . Note that (B.8) cannot hold with ℜ{λ} = 0 since

(B.4) has no zero eigenvalue. Therefore, (B.4) has at least one root with positive real

part for γm > γf and all roots with negative real parts for γm ≤ γf when τm → ∞.

So the fundamental steady state of system (4.3) is asymptotically stable for γm ≤ γf

and unstable for γm > γf when τm > τ ∗m,1. However, if τm < τ ∗m,1, by substituting

Eq. (B.6) into the first equation of (B.5) we have

τm
γm

(γf − γm)
2 − cos

[

√

2γmτm − (γf − γm)2τ 2m

]

− 1 = 0. (B.9)

Let τ ∗m,l be the minimum positive root of (B.9). Then all the eigenvalues of Eq.

(B.4) have negative real parts when 0 ≤ τm < τ ∗m,l and Eq. (B.4) has a pair of

pure imaginary roots when τm = τ ∗m,l. In addition, it can be verified that ∆(τ ∗m,l) :=

dℜ{λ(τm)}
dτm

|τm=τ∗
m,l

6= 0. So P = F̄ undergoes a Hopf bifurcation at τm = τ ∗m,l.
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Furthermore, the stability switching happens only once when γm > γf and only

twice when γf/(1 + a) ≤ γm ≤ γf . In fact, the stability switching23 at a bi-

furcation value τ ∗m depends on the sign of ∆(τ ∗m) := dℜ{λ(τm)}
dτm

|τm=τ∗m
. An in-

crease in τm near the bifurcation value τ ∗m may result in a switching of the steady

state from stable to unstable when ∆(τ ∗m) > 0 and from unstable to stable when

∆(τ ∗m) < 0. For a Hopf bifurcation value τ ∗m, we have ∆(τ ∗m) := dℜ{λ}
dτm

|τm=τ∗m
=

ℑ2{λ}
(

2γm−γf−τ∗m(γf−γm)2
)

τ∗m

(

(

γf−γm+γm cosℑ{λ}τ∗m

)2

+
(

2ℑ{λ}−γm sinℑ{λ}τ∗m

)2
) . Let τ ∗m,2 :=

2γm−γf
(γf−γm)2

(< τ ∗m,1). Then

sign(∆(τ ∗m)) > 0 for τ ∗m < τ ∗m,2 and sign(∆(τ ∗m)) < 0 for τ ∗m > τ ∗m,2, implying that

an unstable fundamental steady state cannot become stable as τm varies within

(τ ∗m,l, τ
∗
m,2) and a stable fundamental steady state cannot become unstable as τm

varies within (τ ∗m,2,∞). When γm > γf , it has been proved that P = F̄ is stable for

τm < τ ∗m,l and unstable for either τm in some right neighborhood of τ ∗m,l or τm > τ ∗m,1.

Hence the stability switches only once at τ ∗m,l, implying that P = F̄ is unstable for

τm > τ ∗m,l. Let τ ∗m,h be the largest of the roots of Eq. (B.9) that are less than τ ∗m,1.

When γf/(1 + a) ≤ γm ≤ γf , P = F̄ is stable for either τm < τ ∗m,l or τm > τ ∗m,1.

Due to τ ∗m,h is a Hopf bifurcation and ∆(τ ∗m,h) < 0, P = F̄ is unstable for τ in some

left neighborhood of τ ∗m,h. Hence the stability switches only twice at τ ∗m,l and τ ∗m,h,

implying that P = F̄ is unstable for τ ∗m,l < τm < τ ∗m,h and stable for either τm < τ ∗m,l

or τm > τ ∗m,h. This completes the proof.

B.3. Proof of Proposition 4.3. The characteristic equation (B.1) becomes

λ+ γf − γm + γc +
γm − γc

λτ
(1− e−λτ ) = 0. (B.10)

Substituting λ = iω(ω > 0) into Eq. (B.10) and separating the real and imaginary

parts yield

ω2τ + (γm − γc)(cosωτ − 1) = 0,

ωτ(γf − γm + γc) + (γm − γc) sinωτ = 0.
(B.11)

23For simplicity, we arbitrarily assume that the bifurcating periodic solutions are stable and can

be globally extended, which can be observed in the numerical simulations. We refer to He et al

(2009) for the computation of stability and the proof of global existence for the periodic solutions.
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We first consider the case of γm ≤ γc. In this case, the first equation of (B.11)

cannot hold, meaning that equation (B.10) has no pure imaginary root. Note that

(B.10) has no zero eigenvalue and the root of (B.10) is negative when τ → 0. Hence

all the roots of (B.10) have negative real parts for τ ≥ 0, leading to the local stability

of the steady state.

Second, we consider the case of γm > γc. In this case, if γc < γm < γc+γf/(1+a)

then the second equation of (B.11) cannot hold, implying that λ 6= iω. However, if

γm ≥ γc+ γf/(1+ a), similar discussion to Appendix A2, we have the local stability

for γm ≤ γf + γc and instability for γm > γf + γc when τ > τ ∗1 := 2(γm−γc)
(γf−γm+γc)2

.

When τ < τ ∗l , where τ ∗l is the minimum positive roof of the following equation

τ
γm−γc

(γf − γm + γc)
2 − cos

[

√

2(γm − γc)τ − (γf − γm + γc)2τ 2
]

− 1 = 0, all the

eigenvalues of Eq. (B.10) have negative real parts. When τ = τ ∗l , Eq. (B.10) has a

pair of purely imaginary roots.

Therefore, the stability switching happens only once when γm > γc+ γf and only

twice when γc + γf/(1 + a) ≤ γm < γc + γf , and consequently completes the proof.

B.4. Some Remarks on Proposition 4.3. These remarks provide some prop-

erties on the nature of bifurcations related to Proposition 4.3, including the number

of bifurcations, stability switching and the dependence of the bifurcation values on

the parameters of the model.

First, it follows from the proof in Appendix A3 that all the roots of h(τ) except

τ = τ ∗1 are Hopf bifurcation values. Note that h(τ ∗1 ) = 0. However, we know that

ω = 0 if and only if τ = τ ∗1 . Hence τ ∗1 is not a bifurcation value.

Second, when γc + γf/(1 + a) ≤ γm < γc + γf , the number of bifurcations de-

fined by h(τ ∗) = 0 is odd. Indeed, it follows from h′(τ ∗1 ) =
−γf [2(γm−γc)−γf ]

γm−γc
< 0

that h(τ ∗1 − 0) > 0. Note that h(0) < 0, h(τ) is continuous and y = h(τ) is

not tangent to y = 0 when | γf
γm−γc

− 1 |6= 2
(1+2k)π

, k = 0, 1, 2, · · · . Therefore

if | γf
γm−γc

− 1 |6= 2
(1+2k)π

, then h(τ) has odd roots when τ ∈ (0, τ ∗1 ), that is, the

number of the Hopf bifurcation that the fundamental steady state price P = F̄

undergoes in the interval (0, τ ∗1 ) must be odd. Furthermore, the number of the

Hopf bifurcation that the fundamental steady state price P = F̄ can undergo

in the interval (0, τ ∗1 ) increases when γf + γc → γm. In fact, we have h′(τ) =
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γm−γc−(γf−γm+γc)2τ√
2(γm−γc)τ−(γf−γm+γc)2τ2

sin
√

2(γm − γc)τ − (γf − γm + γc)2τ 2. When γf+γc → γm,

maxτ
{√

2(γm − γc)τ − (γf − γm + γc)2τ 2
}

→ ∞, hence the sign of h′(τ) can change

many times. This implies that the number of roots of h(τ) increases in this case.

Despite the facts that the number of bifurcations defined by h(τ ∗) = 0 is odd and

the number of the Hopf bifurcation increases when γf + γc → γm, Proposition 4.3

shows that the stability switches only twice. This is verified numerically in Fig. 4.1

and Fig. B.1. In Fig. 4.1 (a), there are three Hopf bifurcation values, while in Fig.

B.1 (a), there are five bifurcation values. However, the stability switches only twice

in Fig. 4.1 (b) and Fig. B.1 (b).
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Figure B.1. (a) The function h(τ); (b) the bifurcation diagram of

the market price. Here γf = 20, γm = 22.8 and γc = 5.

Finally, the first bifurcation value τ ∗l depends on the population fractions, the

extrapolation rates and the speed of the price adjustment. It increases as γf or γc

increase, or γm decreases, however it is always bounded away from zero and infinity.

In fact, when γm ≥ γc + γf/(1 + a), let x =
√

2(γm − γc)τ − (γf − γm + γc)2τ 2.

Solving τ then leads to τ(x) = γm−γc
(γf−γm+γc)2

−
√

(γm−γc)2

(γf−γm+γc)4
− x2

(γf−γm+γc)2
. Note that

τ = 0 implies x = 0 and x(τ) is an increasing function of τ . Hence the first

bifurcation value τ ∗l corresponds the minimum positive root x∗
l of the following

function h(x) = −
√

1− (γf−γm+γc)2x2

(γm−γc)2
− cosx = 0. It can be shown that π

2
< x∗

l < π

and while | γf−γm+γc

γm−γc
| decreases, x∗

l increases, implying that τ ∗l increases. Therefore,

when γc + γf/(1 + a) ≤ γm ≤ γc + γf , the first bifurcation value τ ∗l increases as

either γf or γc decrease, or γm increases. When γm > γc + γf , the first bifurcation
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value τ ∗l increases as either γf or γc increase, or γm decreases. Furthermore, let

xmin = {
√
1− ax2 + cosx = 0 | π

2
< x < π}(≈ 2.5536). Because of

γf−γm+γc

γm−γc
< a,

we have xmin < x∗
l < π, implying τ(xmin) < τ ∗l < τ(π), where

τ(xmin) =
γm − γc

(γf − γm + γc)2
−

√

(γm − γc)2

(γf − γm + γc)4
− x2

min

(γf − γm + γc)2
,

τ(π) =
γm − γc

(γf − γm + γc)2
−

√

(γm − γc)2

(γf − γm + γc)4
− π2

(γf − γm + γc)2
.
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Appendix C. The General Case with Any Positive τm and τc

In the general case, the market stability of the system (4.1) can be characterized

by the following proposition.

Proposition C.1. The fundamental steady state price of the system (4.1) is

(i) asymptotically stable for all τm, τc ≥ 0 when γm < γc +
γf
1+a

;

(ii) asymptotically stable for either 0 ≤ τm, τc < τ ∗l or τm, τc > τ ∗h when γc+
γf
1+a

≤
γm ≤ γc + γf ; and

(iii) asymptotically stable for τm, τc < τ ∗l when γm > γc + γf .

Proof. We first consider the case of γm ≤ γc + γf/(1 + a).24 Suppose there exist

τ
(1)
m ≥ 0 and τ

(1)
c ≥ 0 such that the fundamental steady state P = F̄ of system (4.1) is

unstable for the delay pair (τm, τc) =
(

τ
(1)
m , τ

(1)
c

)

. Without loss of generality, assume

τ
(1)
m > τ

(1)
c . Proposition 4.3 implies P = F̄ is stable when (τm, τc) =

(

τ
(1)
c , τ

(1)
c

)

. If

P = F̄ is stable when (τm, τc) =
(

τ
(1)
m +τ

(1)
c

2
, τ

(1)
c

)

, then let (τ
(2)
m , τ

(2)
c ) =

(

τ
(1)
m , τ

(1)
m +τ

(1)
c

2

)

.

Otherwise, let (τ
(2)
m , τ

(2)
c ) =

(

τ
(1)
m +τ

(1)
c

2
, τ

(1)
c

)

. So P = F̄ is stable when (τm, τc) =
(

τ
(2)
c , τ

(2)
c

)

and unstable when (τm, τc) =
(

τ
(2)
m , τ

(2)
c

)

. Repeating the above process, we

have a sequence of nested closed intervals [τ
(1)
c , τ

(1)
m ] ⊃ [τ

(2)
c , τ

(2)
m ] ⊃ [τ

(3)
c , τ

(3)
m ] ⊃ · · ·

and limn→∞(τ
(n)
m − τ

(n)
c ) = 0.25 By the nested interval theorem, there exists a

τ (∞) ∈ [τ
(n)
c , τ

(n)
m ] such that τ

(n)
m → τ (∞) as n → ∞. So P = F̄ is unstable when

(τm, τc) =
(

τ (∞), τ (∞)
)

, which contradicts Proposition 4.3. Therefore, P = F̄ is

stable for all τm, τc ≥ 0 when γm ≤ γc + γf/(1 + a).

Similarly, items (ii) and (iii) can be proved.

�

Simulations (not reported here) show that if momentum traders do not dominate

the market (γm ≤ γc+ γf), then momentum traders always lose no matter how long

time horizons are used, and contrarians can make profits when τm and τc are large,

24Assume arbitrarily again that the stable periodic solutions bifurcating from the Hopf bifurca-

tion can be extended with respect to the time horizons.

25If
τ (n)
m

+τ (n)
c

2 is a bifurcation value, then by the definition of bifurcation, we can choose a proper

value close to it as τ
(n+1)
m (or τ

(n+1)
c ) such that P = F̄ is stable when (τc, τm) =

(

τ
(n+1)
c , τ

(n+1)
c

)

and unstable when (τc, τm) =
(

τ
(n+1)
c , τ

(n+1)
m

)

.
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and lose when τc is small and τm is large. If momentum traders dominate the market

(γm > γc + γf), then, for any given τc > 0, momentum strategy is profitable when

τm is small and unprofitable when τm is big; and the profitabilities for contrarians

are opposite for any given τm > 0. These results are consistent with the analysis in

Section 5.

Appendix D. Population Evolution between Momentum and

Contrarian Traders

To focus on the impact of time horizons, we consider a special case of fixed market

fractions in previous sections, which have shown that the time horizons and the joint

impact of different traders play very important roles in the stability of market price

and profitability. In this section we investigate the impact of population evolution on

the market price and profitability. The switching mechanism follows the modelling

in He and Li (2012).

Let qf (t), qm(t) and qc(t) be the market fractions of fundamentalists, momentum

traders and contrarians respectively. We first suppose there is no switching between

fundamentalists and chartists and choose constant market fraction of fundamental-

ists qf(t) = αf . Assume the market fractions of the two kinds of chartists have a

fixed component and a time varying component. Letmm andmc be the fixed propor-

tions of momentum and contrarian traders who stay with their strategy over time,

respectively. Then 1−αf −mm −mc is the proportion of chartists who may switch

from one strategy to the other: we denote them as switching or adaptively rational

chartists. Among switching chartists, denote by nm(t) and nc(t) = 1 − nm(t) the

proportions of momentum and contrarian traders at time t, respectively. Therefore,

qm(t) = mm + (1−αf −mm −mc)nm(t) and qc(t) = mc + (1−αf −mm −mc)nc(t).

The net profits of the momentum and contrarian strategies over a short time inter-

val [t − dt, t] can be measured respectively by πm(t)dt = Dm(t)dP (t) − Cmdt and

πc(t)dt = Dc(t)dP (t)− Ccdt, where Cm, Cc ≥ 0 are constant costs of the strategies

per unit time. To measure performance of the strategies, we introduce a cumulated

profits by Ui(t) = η
∫ t

−∞
e−η(t−s)πi(s)ds, i = m, c, where η > 0 represents a decay pa-

rameter of the historical profits. That is the performance is defined by a cumulated
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net profit of the strategy decaying exponentially over all past time.26 Consequently,

dUi(t) = η
[

πi(t) − Ui(t)
]

dt, i = m, c. Following Hofbauer and Sigmund (1998)

(Chapter 7), the evolution dynamics of the market populations are governed by

dni(t) = βni(t)[dUi(t)− dŪ(t)], i = m, c, where dŪ(t) = nm(t)dUm(t) + nc(t)dUc(t)

is the average performance of the two strategies and the switching intensity β > 0

is a constant, measuring the intensity of choice. In particular, if β = 0, there is no

switching between strategies, while for β → ∞ all agents switch immediately to the

better strategy.

To sum up, by letting U(t) = Um(t)−Uc(t), π(t) = πm(t)−πc(t) and C = Cm−Cc,

the market price of the risky asset is determined according to the following stochastic

delay integro-differential system











dP (t) = µ
[

qf(t)Df (t) + qm(t)Dm(t) + qc(t)Dc(t)
]

dt+ σMdWM(t),

dU(t) = η
[

π(t)− U(t)
]

dt,
(D.1)

where

qf(t) = αf , qm(t) = mm + (1− αf −mm −mc)nm(t),

qc(t) = mc + (1− αf −mm −mc)
(

1− nm(t)
)

, nm(t) =
1

1 + e−βU(t)
,

Df(t) = βf

(

F (t)− P (t)
)

, Dm(t) = tanh
(

βm

(

P (t)− 1

τm

∫ t

t−τm

P (s)ds
)

)

,

Dc(t) = tanh
(

− βc

(

P (t)− 1

τc

∫ t

t−τc

P (s)ds
)

)

,

π(t) = µ
[

qf (t)Df(t) + qm(t)Dm(t) + qc(t)Dc(t)
][

Dm(t)−Dc(t)
]

− C.

26Hommes, Kiseleva, Kuznetsov and Verbic (2012) investigate the impact of time horizons in the

fitness measure for switching on market stability. Different from the discrete-time HAMs, the time

horizons do not affect the local stability and bifurcation analysis in the continuous-time HAMs.

This is due to the fact that they are in higher order terms and they affect the nonlinear dynamics,

rather than the dynamics of the linearized system.
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D.1. Dynamics of the Deterministic Model. The deterministic skeleton of

(D.1) is given by















dP

dt
= µ

[

qf(t)Df (t) + qm(t)Dm(t) + qc(t)Dc(t)
]

dt,

dU

dt
= η

[

π(t)− U(t)
]

,

(D.2)

whose steady state is (P, U) = (F̄ ,−C), consisting of the constant fundamental

price and the strategy cost disparity.

If there is no intensity of choice, that is β = 0, then the system (D.2) reduces to the

constant population model (4.1) with the constant market population fractions of the

three kinds of agents (αf , αm, αc) = (αf ,
1−αf+mm−mc

2
,
1−αf−mm+mc

2
). For the case of

β > 0, at the fundamental steady state, the proportions of the switching momentum

and contrarian traders are 1
1+eβC := n∗

m and 1
1+e−βC := n∗

c respectively, and hence

the market fractions of momentum and contrarian traders become qm(t) = mm +
1−αf−mm−mc

1+eβC := α∗
m and qc(t) = mc +

1−αf−mm−mc

1+e−βC := α∗
c respectively. Obviously,

when C = 0, n∗
m = n∗

c = 1
2
for any β. This makes sense because the difference in

profits is zero at the fundamental steady state. However, if C > 0, that is costs

for momentum strategy exceed the costs for contrarian trading rules, then there

are more contrarians than momentum traders among the switching chartists at the

fundamental steady state, i.e., n∗
c ≥ n∗

m. (If C < 0, then n∗
c ≤ n∗

m.) Furthermore,

when C > 0, an increase in β leads to a decrease in n∗
m, the fraction using the

expensive momentum strategy. This makes economic sense. There is no point in

paying any cost at a fundamental steady state for a trading strategy that yields no

extra profit at that fundamental steady state. As intensity of choice β increases, the

mass on the most profitable strategy in net terms increases.

We still use γi, i = f,m, c to characterize the activity of type-i agent, where

γf = µαfβf , γm = µα∗
mβm and γc = µα∗

cβc. Then the characteristic equation of the

system (D.2) at the fundamental steady state (P, U) = (F̄ ,−C) is given by

(λ+ η)
(

λ+ γf − γm + γc +
γm
λτm

(1− e−λτm)− γc
λτc

(1− e−λτc)
)

= 0. (D.3)
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Notice η > 0 and the second multiplication factor of Eq. (D.3) shares the same

form as the characteristic equation (B.1) except for the expression of γm and γc. So

the price dynamics of the system (D.2) can be characterized by Proposition C.1.

(a) βf = 4.7, βm = 7.5, βc = 6.7 and C = −2 (b) βf = 3.33, βm = 7.5, βc = 6.67 and C = 2

Figure D.1. Price bifurcation with respect to β for (a) C < 0 and

(b) C > 0.

Simulations show that the population evolution can enlarge the period and os-

cillation amplitude of the market price (not reported here). We choose αf = 0.3,

mm = 0.3, mc = 0.2, µ = 10, η = 0.5, τm = 1.2, τc = 1.2 and F̄ = 1. When

β = 0, we have γm < γc + γf/(1 + a) and Proposition C.1 (i) shows that the steady

state of the system (D.2) is stable for all τm, τc ≥ 0. However, one can verify that

γm > γc+γf/(1+a) when the intensity of choice β is greater than 0.11. Proposition

C.1 (ii) and (iii) demonstrate that the steady state is unstable when τm, τc ∈ (τ ∗l , τ
∗
h).

The results are illustrated in Fig. D.1 (a). On the other hand, when C > 0, an

increase in the intensity of choice β may stabilize the unstable market price as shown

in Fig. D.1 (b). When the intensity of choice is small (β < 0.12), the market price

is unstable. With the increase in β, the market price becomes stable. Therefore,

the population evolution has a conditional impact on the market stability.

D.2. Profitability. For small switching intensity β, numerical simulations (not re-

ported here) on the profitability in this case coincide with the profitability results of

the no switching model (3.7) that (i) the fundamentalists profit and market maker

loses in general. (ii) When momentum traders dominate the market, they profit for

small time horizon but lose for big time horizon; contrarians with long time horizon
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can profit but lose with short time horizon. (iii) When momentum traders do not

dominate the market, contrarian strategy can always profit but momentum strategy

always loses. But simulations also show that the switching can enlarge the profits

and losses by choosing the same parameters (the market fraction parameters being

chosen to satisfy αj = α∗
j , j = m, c) for the no switching model (3.7) and switching

model (D.1).
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Appendix E. Population Evolution among Fundamentalist,

Momentum and Contrarian Traders

Let qf (t) = mf + (1 −mf −mm −mc)nf (t) where mf is the fixed proportion of

fundamentalists who stay with their strategy over time and nf (t) is the proportion

of fundamentalists among the switching traders. The technique of modelling pop-

ulation evolution among fundamentalist, momentum and contrarian traders in this

section is the same as previous section. Then the market price of the risky asset is

determined according to the following stochastic delay integro-differential system



























dP (t) = µ
[

qf (t)Df(t) + qm(t)Dm(t) + qc(t)Dc(t)
]

dt+ σMdWM(t),

dU1(t) = η
[

π1(t)− U1(t)
]

dt,

dU2(t) = η
[

π2(t)− U2(t)
]

dt,

(E.1)

where

qf (t) = 1− qm(t)− qc(t), qm(t) = mm + (1−mf −mm −mc)nm(t),

qc(t) = mc + (1−mf −mm −mc)nc(t), nm(t) =
1

1 + eβU1(t) + eβ(U1(t)−U2(t))
,

nc(t) =
1

1 + eβU2(t) + eβ(U2(t)−U1(t))
,

π1(t) = µ
[

qf(t)Df (t) + qm(t)Dm(t) + qc(t)Dc(t)
][

Df(t)−Dm(t)
]

− C1,

π2(t) = µ
[

qf(t)Df (t) + qm(t)Dm(t) + qc(t)Dc(t)
][

Df(t)−Dc(t)
]

− C2.

The steady state of the deterministic part of the system (E.1) is (P, U1, U2) =

(F̄ ,−C1,−C2) and the dynamics can be also characterized by Proposition C.1.

The profitability property is consistent with that in Appendix D.
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