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with herding and trend chasing based on long time horizon. However an increase

in switching intensity reduces the return volatility and in particular low switching
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effect becomes opposite when the switching intensity is high. We also show that

market noise plays a more important role than fundamental noise on the power-law

behavior of returns.
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1. Introduction

Trend chasing, switching among different trading strategies and herding are the

most commonly observed boundedly rational behaviors of investors in financial mar-

kets and this paper studies their impact on market volatility. Large fluctuations

in market price, excess volatility in return, and volatility clustering are the most

common stylized facts in financial markets. The question is how differently these

boundedly rational behaviors of investors contribute to market volatility. This paper

introduces a heterogeneous agent asset pricing model in a continuous-time frame-

work to address this question. We show that herding and trend chasing based on

long time horizon increase market volatility in price and return. However, the effect

of switching is different for price volatility and becomes opposite for return volatil-

ity. We also show that these boundedly rational behavior of investors contribute

to the power-law behavior, characterized by insignificant level of autocorrelations

(ACs) in the returns and significant and decaying ACs in the absolute and squared

returns; however, their effects are different. More precisely, the levels of the signifi-

cant ACs in return volatility increase with the herding and trend chasing based on

long time horizon, but increase initially and then decrease as the switching intensity

increases. In general, it is the interaction of nonlinear dynamics and noises that gen-

erates realistic market price dynamics. We show that the market noise plays a more

important role than the fundamental noise in generating the power-law behavior.

To our knowledge, this is the first paper showing that the herding and switching

have opposite effect on the return volatility and different impact on the power-law

behavior.

Over the last three decades, empirical evidence, unconvincing justifications of the

assumption of unbounded rationality and the recognition of the relevance of investor

psychology have led to the incorporation of heterogeneous and boundedly rational

behavior of investors, such as trend chasing, switching and herding, into asset price

and financial market modeling. Cross-sectional and time series momentums based

on trend chasing behavior have been well documented in empirical literature (see

Moskowitz et al. 2012 and the reference cited there), in which the time horizon used
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to calculate the trend plays a very important role in the mechanism generating mo-

mentum profitability (He and Li 2014 and He, Li and Li 2014). Adaptive switching

of agents to better performed strategy can lead to market price fluctuations, bub-

bles and crashes (see for example, Brock and Hommes, 1997, 1998 in discrete-time

and He and Li, 2012 in continuous-time). Herding refers broadly to the tendency of

many different agents to take similar actions at roughly the same time. Scharfstein

and Stein (1990) attribute it to the reputational concerns and the unpredictable

components to investment outcomes. Banerjee (1992) shows that herd behavior is

rational in term of obtaining others’ information.

This paper is closely related to the recent development of heterogeneous agent

models (HAMs) in considering financial markets as expectation feedback systems

where asset price fluctuations can be caused by an endogenous mechanism with

heterogeneity and bounded rationality. Various agent-based financial market mod-

els have been developed to incorporate trend chasing, switching and herding. For

instance, by considering two types of traders, typically fundamentalists and trend

followers, Beja and Goldman (1980) and Chiarella (1992) among many others have

shown that interaction of agents with heterogeneous expectations may lead to mar-

ket instability. More significantly, Brock and Hommes (1997, 1998) introduce the

concept of an adaptively rational equilibrium in a discrete-time framework. Agents

adapt their beliefs over time by choosing from different predictors or expectation

functions based upon their past performance (such as realized profits). Such bound-

edly rational behavior of agents can also lead to market instability. More recently,

these models have been extended to a continuous-time framework (see He et al.

(2009), He and Zheng (2010) and He and Li (2012)), which provides an uniformed

approach in dealing with the effect of time horizon used for trend chasing. Within

a continuous-time framework, Lux (1995) and Alfarano et al. (2008) model the

herding behavior through the master equation and show that herding can give rise

to realistic time series. Within a discrete-time framework, Hohnisch and Westerhoff

(2008) find that herding behavior at the level of individual economic sentiment may

lead to enduring business cycles, while Franke and Westerhoff (2012) show a strong

role for the herding component in generating realistic moments in financial time
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series. Overall, these models have successfully explained several market features

(such as market booms and crashes, deviations of the market price from the funda-

mental price), the stylized facts (such as skewness, kurtosis, volatility clustering and

fat tails of returns) and the power-law behavior. We refer the reader to Hommes

(2006), LeBaron (2006), Chiarella et al. (2009), Lux (2009), and Chen et al. (2012)

for surveys of the recent development in this literature.

This paper provides a unified framework in a continuous-time model to examine

the joint impact of trend chasing, switching and herding on the market price dynam-

ics and to compare different roles they play in generating market volatility in price

and return and the power-law behavior of stock return volatility. We consider a

continuous-time financial market with two types of agents: the fundamentalists who

trade on the fundamental value and the trend followers who extrapolate the market

price trend based on a weighted moving average price over a finite time horizon.

The herding behavior among the agents is characterized by the master equation.

The market price is determined by a market maker who adjusts the market price

to the excess demand from the fundamentalists and trend followers, together with a

noisy demand. The continuous-time setup chosen in the paper not only mathemat-

ically facilitates modeling the time horizon of the historical price information used

by the trend followers, but also easily accommodates the herding behavior through

the master equation with endogenously determined volatility.

We first examine the dynamics of the underlying deterministic model. Differently

from the adaptive switching model in He and Li (2012), we find that the herding

mechanism does not affect the local stability of the steady state fundamental price,

although it does affect the nonlinear behavior. Based on the analysis of the deter-

ministic dynamics, we then study the joint impact of trend chasing, herding and

switching on the volatility of the market price and returns of the stochastic model.

We find that the trend chasing based on historical prices over a long time horizon

always leads to high volatility in both market prices and stock returns, which is

characterized by the destabilizing effect of the trend chasing. Also, herding and

switching have very different effect on the market volatility. A strong herding con-

tributes to high fluctuation in market fractions and market price and hence generates
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high volatilities in prices and returns, while a more intense switching reduces the re-

turn volatility and has a non-monotonic effect on the volatilities of market fractions

and prices. More interestingly, we observe a “hump” shaped volatility in the market

fraction and an “U”-shaped price volatility as the switching intensity increases.

We explore further the potential of the model to generate the power-law be-

havior in volatility by examining the impact of the different noises (including the

fundamental noise, the market noise and the market fraction noise), time horizon,

switching and herding on the level of ACs of the returns, absolute returns, and

squared returns. We find that market noise is the main driving force in generating

the power-law behavior. The levels of the AC patterns become more significant as

the time horizon and herding increase, but non-monotonically with the switching.

Specifically, an initial increase in the switching intensity leads to an increase in the

significant levels of ACs, but the ACs decrease as the switching increases further.

In general, it is the combination of switching and herding, together with the market

noise, that generates realistic power-law behavior.

The paper is organized as follows. We first introduce a stochastic HAM of asset

pricing in continuous-time with trend chasing, herding, switching and heterogeneous

beliefs in Section 2. In Section 3, we apply stability and bifurcation theory of delay

differential equations, together with numerical analysis of the nonlinear system,

to examine the impact of herding, switching and time horizon used by the trend

followers on market stability. The effect of and different roles played by trend

chasing, herding and switching on the market volatility and power-law behavior

are then discussed in Sections 4 and 5, respectively. Section 6 concludes. All proofs

and some additional results are given in the Appendices.

2. The Model

Consider a financial market with a risky asset (such as stock market index) and

let P (t) be the (cum dividend) price of the risky asset at time t. Following the

standard approach of HAMs (see, for example, Brock and Hommes (1998)), we

assume that the market consists of fundamentalists, who trade according to the

fundamental value of the risky asset, trend followers, who trade based on price
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trend of a weighted moving averages of historical prices over a time horizon, and a

market maker, who clears the market by providing liquidity. The behavior of the

fundamentalists and trend followers is modeled as usual. Different from the discrete-

time HAMs in the literature (for example, Chiarella and He, 2002 and 2003), we

consider a continuous-time setup to accommodate different time horizon used by

the trend followers and the stochastic master equation characterizing the herding

behavior of agents. For completeness, we introduce the demand functions of the

fundamentalists and the trend followers briefly and refer the reader to He and Li

(2012) (HL model hereafter) for details.

The fundamentalists believe that the market price P (t) is mean-reverting to the

fundamental value F (t) that can be estimated based on fundamental analysis. They

buy (sell) the stock when the current price P (t) is below (above) the fundamental

value F (t). For simplicity, we assume that the demand of the fundamentalists,

Zf(t) at time t, is proportional to the deviation of the market price P (t) from the

fundamental value F (t), namely,

Zf(t) = βf [F (t)− P (t)], (2.1)

where βf > 0 is a constant, measuring the speed of mean-reversion of the market

price to the fundamental value, weighted by the risk tolerance of the fundamentalists.

To focus on the price dynamics, we simply assume that the fundamental value follows

a stochastic process1

dF (t) =
1

2
σ2
FF (t)dt+ σFF (t)dWF (t), F (0) = F̄ , (2.2)

1It follows from Eq. (2.2) that the fundamental return defined by d
(
ln(F (t))

)
= σF dWF (t) is

a pure white noise process following a normal distribution with mean of 0 and standard deviation

of σF

√
dt. This implies that any non-normality and volatility clustering of market returns that

generated by the model are not carried from the fundamental returns. In the present treatment

we use the zero-mean fundamental return process (2.2). Suggested by the referee, we have also

investigated the case of positive drift in the fundamental return process: d(lnF (t)) = µFdt +

σFdWF (t) with µF = cσ2

F > 0 for a constant c. Numerical simulations show this does not alter the

effects of time horizon, herding and switching on the volatilities and autocorrelations documented

in Sections 4 and 5, although an increase in µF reduces the level of return volatility and makes the

autocorrelations decay slower.
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where σF > 0 represents the volatility of the fundamental return and WF (t) is a

standard Wiener process.

The trend followers believe that the future market price follows a price trend u(t).

When the current price is above (below) the trend, the trend followers believe that

the price will rise (fall) and hold a long (short) position of the risky asset. We

assume that the demand of the trend followers is given by

Zc(t) = tanh
[
βc(P (t)− u(t))

]
. (2.3)

The S-shaped hyperbolic demand function capturing the trend following behavior

is well documented in the HAM literature (see, for example, Chiarella et al. 2009),

where the parameter βc represents the extrapolation rate of the trend followers

on the future price trend. The limited position may reflect the wealth constraint

or the cautiousness of the trend followers when the price deviates from the trend

significantly2. Among various estimators of the price trend used in practice, we

assume that the price trend u(t) at time t is calculated by an exponentially decaying

weighted average of historical prices over a time horizon [t− τ, t],

u(t) =
k

1− e−kτ

∫ t

t−τ

e−k(t−s)P (s)ds, (2.4)

where time delay τ ∈ [0,∞) represents a time horizon used to calculate the price

trend and k > 0 is a decay rate. Equation (2.4) implies that, when forming the

price trend, the trend followers believe that the more recent prices contain more

information about the future price movement so that the weights associated to the

historical prices decay exponentially. In particular, when k → 0, the price trend

u(t) in equation (2.4) is simply given by the standard moving average with equal

weights,

u(t) =
1

τ

∫ t

t−τ

P (s)ds. (2.5)

2Alternative to (2.1), one can assume that the fundamentalists also take limited positions as

the trend followers, Zf (t) = tanh
[
βf (F (t) − P (t))

]
. Clearly this assumption does not affect

the local stability of the fundamental price. Intuitively, because of the stabilizing role of the

fundamentalists, this limited position will make the market price less stable. This is supported by

numerical simulations (not reported here) showing that the fluctuations are amplified when the

system become unstable.
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When k → ∞, all the weights go to the current price so that u(t) → P (t). For the

time delay, when τ → 0, the trend followers regard the current price as the price

trend. When τ → ∞, they use all the historical prices to form the price trend

u(t) =
1

k

∫ t

−∞

e−k(t−s)P (s)ds. (2.6)

In general, for 0 < k, τ < ∞, equation (2.4) can be expressed as a delay differential

equation with time delay τ ,

du(t) =
k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ )u(t)

]
dt. (2.7)

Let Nf(t) and Nc(t) be the numbers of the fundamentalists and trend followers,

respectively, at time t, satisfying Nf(t)+Nc(t) = N , a constant. Denote by nf(t) =

Nf(t)/N and nc(t) = Nc(t)/N the market fractions of the fundamentalists and

trend followers, respectively. The net profits of the fundamental and trend following

strategies over a small time interval [t, t+ dt] are then measured by, respectively,

πf (t)dt = Zf(t)dP (t)− Cfdt, πc(t)dt = Zc(t)dP (t)− Ccdt, (2.8)

where Cf , Cc ≥ 0 are constant costs of the strategies per time unit. The perfor-

mances of the strategies are measured by the cumulated and weighted net profits

over time horizons [t− τi, t]
3,

Ui(t) =
ηi

1− e−ηiτi

∫ t

t−τi

e−ηi(t−s)πi(s)ds, i = f, c, (2.9)

where ηi > 0 and τi > 0 for i = f, c represent the decay parameter and time horizon

used, respectively, to measure the performance of the fundamentalists and trend

followers. Consequently,

dUi(t) = ηi

[
πi(t)− e−ηiτiπi(t− τi)

1− e−ηiτi
− Ui(t)

]
dt, i = f, c. (2.10)

Denote by a(t) the transition probability of an agent switching from trend follower

to fundamentalist and by b(t) the probability of the inverse transition. Following

Lux (1995), the probabilities can be quantified by

a(t) = veβ(Uf (t)−Uc(t)), b(t) = veβ(Uc(t)−Uf (t)), (2.11)

3The investment time horizon can be different for the fundamentalists and trend followers and

therefore they may use different time horizon when evaluating the performance of their strategies.
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where β measures the switching intensity and v > 0 captures the intensity of herding

(explained in the following). Let ζ(t) denote the transition rate of observing a change

of an agent from trend follower to fundamentalist and ξ(t) denote the transition

rate of recording the opposite transition. Both ζ(t) and ξ(t) are assumed to be

proportional to the transition probability of the switching and the corresponding

market fractions to capture the herding behavior. Then the transition rates can be

expressed as

ζ(t) = (1− nf (t))a(t) = v(1− nf (t))e
β(Uf (t)−Uc(t)), (2.12)

ξ(t) = nf(t)b(t) = vnf(t)e
β(Uc(t)−Uf (t)). (2.13)

Note that, when β = 0, a large v means a strong herding among the agents. Here-

after, we use β and v to measure the (performance based) switching and herding, re-

spectively, among the agents. Following Lux (1995), the master equation measuring

the variation of probability in a unit of time by taking the number of fundamentalists

as a state variable follows

dp(Nf , t)

dt
= ζ(t)p(Nf − 1, t) + ξ(t)p(Nf + 1, t)− [ζ(t) + ξ(t)]p(Nf , t), (2.14)

where p(Nf , t) is the probability of recording a number of Nf fundamentalists at

time t. Following Chiarella and Di Guilmi (2011b), the dynamics of the population

evolution can be characterized by4

dnf(t) = nf (t)[−(ζ(t) + ξ(t))nf(t) + ζ(t)]dt+ σnf
dWnf

(t), (2.15)

where

σnf
(t) =

√
ζ(t)ξ(t)

ζ(t) + ξ(t)
, (2.16)

andWnf
(t) is the stochastic fluctuation component in the market population fraction

of fundamentalists, which is assumed to be independent from the fundamental noises

WF (t).

Finally, the price P (t) at time t is adjusted by the market maker according to the

aggregate market excess demand, that is,

dP (t) = µ
[
nf(t)Zf (t) + nc(t)Zc(t)

]
dt+ σMdWM(t),

4The derivation is given in Appendix A.
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where µ > 0 represents the speed of the price adjustment by the market maker,

σM > 0 is a constant and WM(t) is a standard Wiener process capturing the random

excess demand process either driven by unexpected market news or noise traders,5

which is independent of WF (t) and Wnf
(t).

To sum up, the market price of the risky asset is determined according to the

following stochastic delay differential system with three different time delays and

three noise processes






dP (t) = µ
[
nf (t)Zf(t) +

(
1− nf (t)

)
Zc(t)

]
dt+ σMdWM(t),

du(t) =
k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ)u(t)

]
dt,

dnf(t) = vnf (t)
[(
1− nf (t)

)2
eβ(Uf (t)−Uc(t)) − n2

f(t)e
β(Uc(t)−Uf (t))

]
dt

+ σnf
dWnf

(t),

dUf(t) =
ηf

1− e−ηf τf

[
πf (t)− e−ηf τfπf(t− τf )− (1− e−ηf τf )Uf(t)

]
dt,

dUc(t) =
ηc

1− e−ηcτc

[
πc(t)− e−ηcτcπc(t− τc)− (1− e−ηcτc)Uc(t)

]
dt,

dF (t) =
1

2
σ2
FF (t)dt+ σFF (t)dWF (t),

(2.17)

where Zf (t) and Zc(t) are defined by (2.1) and (2.3), respectively, and πi(t) is de-

fined by (2.8) for i = f, c. The stochastic differential system (2.17) characterizes

the market price dynamics with heterogeneity in trading strategies, trend chasing,

switching and herding. The main difference between the system (2.17) and the HL

model is that the population evolution is characterized through the replicator dy-

namics in the HL model, instead of the master equation on herding in system (2.17)

and therefore the dynamics of market fraction nf is specified with endogenously

determined volatility. The other processes (P, u, Uf , Uc, F ) are the same for the two

systems.

In the following sections, we first conduct a stability analysis of the underlying

deterministic model. Then we examine the impact of the interaction of the de-

terministic dynamics with the noises on the fluctuations of the market population

5The additive noise comes naturally when a demand from noise traders is introduced into the

aggregated excess demand function.
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fractions (of using different strategies) and market volatility in both prices and re-

turn. Furthermore, we explore the power-law behavior in volatility.

3. The Stability Analysis of the Deterministic Model

To understand the interaction of the nonlinear deterministic dynamics and the

noise processes, we first study the local stability of the corresponding deterministic

system. By assuming σM = 0 and hence F (t) = F̄ and considering the mean process

of the market fraction of the fundamentalists, system (2.17) reduces to






dP (t)

dt
= µ

[
nf (t)βf [F (t)− P (t)] +

(
1− nf(t)

)
tanh

[
βc(P (t)− u(t))

]]
,

du(t)

dt
=

k

1− e−kτ

[
P (t)− e−kτP (t− τ)− (1− e−kτ)u(t)

]
,

dnf(t)

dt
= vnf (t)

[(
1− nf (t)

)2
eβ(Uf (t)−Uc(t)) − n2

f(t)e
β(Uc(t)−Uf (t))

]
,

dUf(t)

dt
=

ηf
1− e−ηf τf

[
πf (t)− e−ηf τfπf (t− τf )− (1− e−ηf τf )Uf(t)

]
,

dUc(t)

dt
=

ηc
1− e−ηcτc

[
πc(t)− e−ηcτcπc(t− τc)− (1− e−ηcτc)Uc(t)

]
,

(3.1)

where

πi(t) = µZi(t)
[
nf (t)Zf(t) +

(
1− nf(t)

)
Zc(t)

]
− Ci, i = f, c.

The system has a steady state6

Q := (P, u, nf , Uf , Uc) = (F̄ , F̄ ,
1

1 + eβ(Cf−Cc)
,−Cf ,−Cc),

in which the market price is given by the fundamental value. We call Q the fun-

damental steady state of the system (3.1). At the fundamental steady state, the

market fraction of fundamentalists becomes n∗

f = 1

1+e
β(Cf−Cc)

. When Cf = Cc,

n∗

f = n∗

c = 0.5, meaning that the market fractions at the fundamental steady state

is independent from the switching intensity β and the herding parameter v. However,

when the fundamental strategy costs more, that is Cf > Cc, then n∗

c > n∗

f , meaning

6In addition, the line P = u, nf = 0, Uf = −Cf , Uc = −Cc is a steady state line of the

system. This means that the system has infinite many steady states. Near the line, the solution

with different initial values converge to different steady states on the line. Hence the line is locally

attractive. A similar result is found in He et al. (2009) and He and Zheng (2010).



12 DI GUILMI, HE AND LI

that there are more trend followers than fundamentalists at the fundamental steady

state.

Denote γf = µn∗

fβf and γc = µ(1 − n∗

f )βc. The local stability and bifurcation

of the fundamental steady state with respect to the time delay of system (3.1) are

summarized in the following proposition7.

Proposition 3.1. There exist τ0 and τ̃ with 0 < τ0 < τ̃ such that the fundamental

steady state Q of system (3.1) is

(i) asymptotically stable for τ ∈ [0, τ0);

(ii) asymptotically stable for τ > τ̃ when γf + k > γc;

(iii) unstable for τ > τ̃ when γf + k < γc.

In addition, system (3.1) undergoes Hopf bifurcations at the zero solutions of func-

tions S±

n (τ).

Note that the conditions in (ii) and (iii) of Proposition 3.1 are sufficient but not

necessary. Specifically, the stability for the case τ0 < τ < τ̃ is completely determined

by the functions S±

n (τ) and the system may switch between stability and instabil-

ity for many times for τ ∈ (τ0, τ̃). We refer to Theorem 3.3 in He et al. (2009)

for the properties of functions S±

n (τ). Proposition 3.1 implies that the fundamen-

tal steady state is stable for either small or large time delay when the market is

dominated by the fundamentalists (in the sense of γf + k > γc). Otherwise, when

the trend followers become more active comparing to the fundamentalists (in the

sense of γc > γf + k), the fundamental steady state becomes unstable through Hopf

bifurcations as the time delay increases. However, the effect of an increase in k, cor-

risponding to a larger weight of the most recent historical prices for trend followers,

the fundamental price is stabilized. In the extreme case of k → ∞, the price trend is

given by current price. In this case, the demand of the trend followers (2.3) becomes

zero and hence the system (3.1) becomes globally stable. This is consistent with the

discrete-time HAMs, as the one by Chiarella, Dieci, He and Li (2013), which demon-

strate that a decrease in the decay rate destabilizes the system. In line with the

7The definitions of parameters τ0, τ̃ , functions S
±
n (τ) and the proof of Proposition 3.1 are given

in Appendix B.
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discrete-time HAMs, when the time horizon is small, the insignificant price trend,

resulting in weak trading signals for the trend followers, limits the destabilizing ac-

tivity of the chartists. Consequently, the fundamentalists dominate the market and

the market price is stabilized to the fundamental value. However, Proposition 3.1

also indicates a very interesting phenomenon of the continuous-time model that is

not easy to obtain in discrete-time models, which is the stability switching when the

fundamentalists dominate the market8. That is, the system becomes unstable as

the time delay increases initially, but the stability can be recovered when the time

delay becomes large enough. Intuitively, when time horizon is small, the price trend

becomes less significant, which limits the destabilizing effort of the trend followers.

As the time horizon increases, the price trend becomes more sensitive to the changes

in market price and consequently the trend followers become more active and desta-

bilize the market. However, as the time horizon becomes very large, the price trend

becomes smooth and less sensitive to price changes. Therefore the trend followers

become less active and then, because of the dominance of the fundamentalists, the

market becomes stable.

(a) Price bifurcation in τ (b) Price bifurcation in β

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0.49

0.495

0.5

0.505

U
f

n
f

(c) Phase plot of Uf and nf

Figure 3.1. (a) The bifurcation of the market prices with respect

to τ with β = 1; (b) The bifurcation of market price with respect to

β with τ = 8.3; (c) The phase plot of the relationship between the

fitness Uf and the market fraction nf with τ = 16 and β = 1.

8This phenomenon is also observed in the continuous-time model in He et al. (2009), He and

Zheng (2010), and He and Li (2012).



14 DI GUILMI, HE AND LI

The simulation results of the nonlinear model (3.1) in Fig. 3.1 verify the stability

results in Proposition 3.19. Fig. 3.1 (a) plots the bifurcation diagram of the market

price with respect to τ , showing that the fundamental steady state is stable for τ ∈
[0, τ0) ∪ (τ1,∞) and Hopf bifurcations occur at τ = τ0 ≈ 8.5 and τ = τ1 ≈ 27. This

refers to the case that the market is dominated by fundamentalists. Fig. 3.1 (b) plots

the price bifurcation diagram with respect to the switching intensity parameter β. It

shows that the steady state fundamental price is stable when the switching intensity

β is low, but becomes unstable as the switching intensity increases, bifurcating to

stable periodic price with increasing fluctuations. This result shares the same spirit

of the rational routes to complicated price dynamics in the discrete-time framework

by Brock and Hommes (1997, 1998). Fig. 3.1 (c) illustrates the phase plot of

(Uf , nf), showing the positive relation between the fitness Uf and the market fraction

nf .

We also examine the impact of the different parameters on the stability. Propo-

sition 3.1 shows that the decay rate k plays a stabilizing role and simulations (not

reported here) show that an increasing in k narrows the instability interval by in-

creasing the first bifurcation value and decreasing the second bifurcation value. Sim-

ulations also show that the system is always stable for all time horizons when µ is

small but becomes unstable as µ increases. However, once the system becomes un-

stable, the stability seems insensitive to any further increase in µ. The system can

be stabilized by increasing βf and Cc, or decreasing βc, Cf and β. Proposition 3.1

shows that ηf , ηc, τf , τc cannot affect the local stability and simulations show that

their impact on the nonlinear system is very limited.

Fig. 3.2 provides further insights into the nonlinear dynamics of the market price

and market fraction of the fundamentalists for τ = 16 when the fundamental steady

state is unstable. Fig. 3.2 (a) illustrates the time series of the market prices P (t)

and the market fraction nf(t) of fundamentalists. It shows that the market fractions

9Unless specified otherwise, the following set of parameters are used in all the simulations in

this paper: k = 0.05, µ = 1, βf = 1.4, βc = 1.4, β = 1, Cf = 0.05, Cc = 0.03, ηf = 0.5, ηc = 0.6, τ =

16, τf = 10, τc = 5, v = 0.5 and F̄ = 1. Note that the fundamentalists generally focus on long-run

performance but the trend followers focus on short-run performance. So we choose τf > τc and

correspondingly ηf < ηc.
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(a) Time series of P and nf
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Figure 3.2. (a) The time series of the market prices P (t) (the blue

solid line) and the market fraction nf (t) of fundamentalists (the green

dash dot line) and (b) the phase plot of (P (t), nf(t)). Here τ = 16.

fluctuate with the market price. Fig. 3.2 (b) presents the phase plot of (P (t), nf(t))

showing that the price and fraction converge to a figure-eight shaped attractor, a

phenomenon also observed in the discrete-time model by Chiarella et al (2006).

Interestingly, the herding parameter v does not affect the local stability of the

fundamental price and the deterministic price dynamics are very similar to the

results in HL model without herding. For illustration, we compare this model with

the HL model. In Appendix C, corresponding to Figs. 3.1 and 3.2, we present

Figs. C.1 and C.2, respectively, for the HL model. It is observed that both models

exhibit similar deterministic dynamics in price and market fraction. However, the

nonlinear dynamics can be affected by the herding parameter v. Comparing Fig.

3.2 with v = 0.5 and Fig. C.3 with v = 0.1 in Appendix C, we observe that, when

the herding behavior among agents is not very strong (as indicated by a decrease

in the parameter v), the fluctuations of market price and, in particular, the market

fractions of the fundamentalists are reduced. In other words, a strong herding among

agents contributes to high fluctuations in market fractions, which then result in high

volatility in market prices. This effect is further examined for the stochastic model

in the next section.
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4. Price Behavior of the Stochastic Model

In this section, through numerical simulations, we examine the price dynamics

of the stochastic model by focusing on the impact of three parameters: the time

horizon τ , the intensity of herding v, the switching intensity β and the two noisy

processes characterized by σF and σM , on market volatility in both price and return.

The analysis provides further insights into the different roles played by herding and

switching in financial markets.
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(a) Prices for τ = 3
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(b) Prices for τ = 16
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(c) Price deviation density for τ = 3
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(d) Price deviation density for τ = 16

Figure 4.1. The time series of the fundamental price F (t) (the blue

dotted line) and the market prices P (t) (the red solid line) with (a)

τ = 3 and (b) τ = 16, and the distributions of the deviations of the

market prices from the fundamental prices P (t)−F (t) with (c) τ = 3

and (d) τ = 16. Here σF = 0.12 and σM = 0.15.

We first explore the interaction between the underlying deterministic dynamics

and the two noisy processes by choosing two different values of the time horizon. For
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the deterministic model (3.1), Fig. 3.1 (a) shows that the time horizon can affect

the stability of the fundamental price. In particular, the fundamental steady state

is stable for τ = 3 and unstable for τ = 16, leading to periodic fluctuations of the

market price. For the stochastic model, we choose the volatility of the fundamental

price σF = 0.12 and the volatility of the market noise σM = 0.1510. With the same

random draws of the fundamental price and market noise processes, we plot the

fundamental price (the blue dotted line) and the market prices (the red solid line) in

Fig. 4.1 for the two different values of τ under the same set of parameters for Fig. 3.1

(a). For τ = 3 and τ = 16, Figs. 4.1 (a) and (b) show that the market prices fluctuate

around the fundamental prices and the fluctuations for τ = 16 are significantly larger

than that for τ = 3. This observation is further supported by the distribution plots

of the deviations of the market prices from the fundamental prices P (t) − F (t) in

Fig. 4.1 (c) for τ = 3 and in Fig. 4.1 (d) for τ = 16. With the standard deviations

of 0.8158 for τ = 3 and 1.2091 for τ = 16, the deviations are more spread for

τ = 16. This is partially underlined by the change in the stability of the underlying

deterministic dynamics. Further simulations (not reported here) show that when

the time horizon increases further to the stabilizing range indicated by Fig. 3.1 (a),

the fluctuations of the market price deviations from the fundamental price become

even more significant. This result illustrates that, when the underlying deterministic

dynamics are stable, the stochastic dynamics can become very unstable with large

fluctuations in price deviations due to a slow convergence of the market price to the

fundamental price of the underlying deterministic model and its interaction with the

fundamental and market noises. Therefore, an increase in time horizon increases the

deviations of the market price from the fundamental price and the fluctuations of

the market price.

To examine the effect of herding, with the same parameters and random draws,

Fig. D.1 in Appendix D illustrates the corresponding results of the HL model

without herding. It displays similar price patterns but with less significant deviations

10The constraint nf (t) ∈ [0, 1] is imposed when simulating the stochastic system. In all the

simulations, the time unit is one year and the time step corresponds to one day. Unless specified

otherwise, an annual volatility of σF = 0.12 and a market noise volatility of σM = 0.15 are used

in the paper.
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in prices (with the standard deviations of 0.2477 for τ = 3 and 0.4703 for τ = 16).

The comparison implies that the herding behavior contributes to the excess volatility

of the market price, a higher acceleration to market highs and lows, and a quicker

mean reversion to the fundamental price.
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(a) Market fraction for τ = 3
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(b) Market fraction for τ = 16
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Figure 4.2. The time series of the fractions of the fundamentalists

with (a) τ = 3 and (b) τ = 16 and the corresponding distributions

with (c) τ = 3 and (d) τ = 16. Here σF = 0.12 and σM = 0.15.

We also plot the corresponding time series and distributions of the market frac-

tions of the fundamentalists in Fig. 4.2 for both τ = 3 (the left panel) and τ = 16

(the right panel). Comparing to Fig. D.2 in Appendix D for the HL model (with

switching but without herding), we have two observations. (i) In the presence of

herding, the market fractions fluctuate wildly between 0 and 1 and are almost uni-

formly distributed except for the spike near 0, as shown in Fig. 4.2. However, with-

out herding, the market fractions fluctuate around the steady state (nf = 0.495) in a

small range (from 35% to 75%), illustrated by both the time series and distribution
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plots in Fig. D.2. This implies that the herding effect dominates the switching effect

in generating high fluctuations in the market fractions. (ii) For the market fraction,

by comparing the time series and distributions in Fig. 4.2 for τ = 3 (the left panel)

and τ = 16 (the right panel), the effect of the time horizon is not highly significant.

However, as indicated by the small peak near 1 for τ = 16 in Fig. 4.2 (d), the time

horizon does affect the market fractions. In general we observe that herding leads

to the dominance of the trend followers in the market, while an increase in the time

horizon reduces the dominance of the trend followers and increases the dominance

of the fundamentalists.

One of the innovative features of the model is that the market fraction is deter-

mined by the master equation (2.15) with endogenous volatility (2.16). Because of

the dependence of the transition rates on the time horizon τ , the switching β and

herding v, the volatility also depends on τ, β and v. Therefore the variations in the

market fractions can affect the deviation of the market price from the fundamental

price and return volatility. In general, the impact on market volatility can be differ-

ent for price and return. In order to provide further insights into the different roles

of herding, switching and time horizon on the fluctuations of the market fractions

and the market volatility, we perform a separate sensitivity analysis for each of the

three parameters τ, v and β by keeping the others at their benchmark values. In

each case, we examine the impact on the endogenously determined volatility of the

market fractions (of the fundamentalists), σnf
, the volatility of the price deviations,

σ(P − F ), and the volatility of the market returns, σ(r). Based on the common

set of the parameters, we run 100 simulations for each parameter combination and

plot the averages of σnf
, σ(P −F ) and σ(r) and denote by σ̄nf

, σ̄(P −F ) and σ̄(r),

respectively.

4.1. The effect of the time horizon. For τ ∈ [0, 20], we conduct Monte Carlo

simulations and plot σ̄nf
, σ̄(P − F ) and σ̄(r) in the upper panel for β = 0.1, 1, 2

and the lower panel for v = 0.01, 0.1, 0.5 in Fig. 4.3, from which we can draw two

observations about the volatility.
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(i) All the volatilities, in terms of σ̄nf
, σ̄(P − F ) and σ̄(r), increase as the time

horizon and herding increase11. For τ = 0, the trend followers are not participating

in the market and the lower volatilities simply reflect the resulting volatilities of the

market noise and fundamental noise. In this case, herding plays no role in market

volatility in both the price and return (as indicated by the constant volatility for

various β and v when τ = 0 in the middle and right panels). As τ increases, all the

volatilities increase significantly. This effect becomes less significant for the market

fraction volatility σ̄nf
after an initial increase in τ (from 0 to about 5). The increase

of the price deviation volatility in the time horizon is underlined by the destabilizing

effect of τ on the underlying deterministic dynamics. Because of the fluctuations in

the market fractions, we observe an increase in the return volatility as well. We also

observe the same effect as the herding parameter v increases in the low panel of Fig.

4.3. Due to the independence of the local stability from the intensity of herding,

this result is more a consequence of the interaction of nonlinearity and noises.

(ii) Switching has a non-monotonic impact on the volatilities of market fraction

and market price, but reduces the return volatility as the switching intensity in-

creases. Figs. 4.3 (a) and (b) show that the volatilities of market fraction and

market price deviations are non-monotonic as β increases. An initial increase in β

leads to an increase in the volatility of market fraction but the effect reverses as

β increases further, implying a “hump” shaped effect on the volatilities of market

fraction. However, we also observe an “U”-shaped effect on the volatility of the price

deviations. This non-monotonic feature is explored further in the discussion below.

Furthermore, Fig. 4.3 (c) shows that the volatilities of market return decrease in β,

an opposite effect to herding. Such different impact of the switching and herding

on volatility of price and return has not been explored in the literature. This pro-

vides some insights into the distinct role played by switching and herding in market

volatility. If one argues that the switching behavior is more rational than the herd-

ing one, this result then indicates that herding can increase the return volatility,

while switching can reduce the return volatility.

11Except σ̄nf
for large β that the volatility seems to decrease as time horizon increases. This is

related to the non-monotonic impact of β on the volatilities illustrated in Fig. 4.5.
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(c) σ̄(r) in τ and β
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(e) σ̄(P − F ) in τ and v
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Figure 4.3. The average variations of market fraction volatility σ̄nf

(a) and (d), price deviation volatility σ̄(P−F ) (b) and (e), and return

volatility σ̄(r) (c) and (f) with β = 0.1, 1, 2 (and v = 0.5) in the

upper panel and v = 0.01, 0.1, 0.5 (and β = 1) in the lower panel,

respectively, with respect to time horizon τ ∈ [0, 20].

4.2. The effect of the herding. For v ∈ [0, 1], we plot σ̄nf
, σ̄(P − F ) and σ̄(r)

for τ = 0, 3, 16 in the upper panel and for β = 0.1, 1, 2 in the lower panel in Fig.

4.4 based on Monte Carlo simulations. It provides consistent observations as in the

previous case. When the herding parameter v and the time horizon τ increase, all

the volatilities increase. However an increase in the switching parameter reduces

the average volatility of return, as illustrated in Fig. 4.4 (f). Also Figs. 4.4 (d)

and (e) show that the switching has a non-monotonic impact on the volatilities of

market fraction and price. Consistently with the previous observations, the herding

increases the fluctuations of the market price from the fundamental price and return.
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(c) σ̄(r) in v and τ
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Figure 4.4. The average variations of market fraction volatility σ̄nf

(a) and (d), price deviation volatility σ̄(P−F ) (b) and (e), and return

volatility σ̄(r) (c) and (f) with τ = 0, 3, 16 (and β = 1) in the upper

panel and β = 0.1, 1, 2 (and τ = 16) in the lower panel, respectively,

with respect to v ∈ [0, 1].

4.3. The effect of switching. For β ∈ [0, 2], we plot σ̄nf
, σ̄(P − F ) and σ̄(r) for

τ = 0, 3, 8, 16 in the upper panel and for v = 0.01, 0.1, 0.5 in the lower panel in Fig.

4.5 based on Monte Carlo simulations. When β = 0, the market fractions are driven

purely by the herding behavior. In general, we observe consistent results in terms of

the impact of time horizon and herding obtained in the previous two cases. However,

there is a significantly non-monotonic relationship between the volatilities and the

switching intensity β. We observe a “hump” shaped volatility in the market fraction

(in Figs. 4.5 (a) and (d)), an “U”-shaped price volatility (in Figs. 4.5 (b) and (e)),

and a decreasing volatility in returns (in Figs. 4.5 (c) and (f)) as the switching

parameter β increases. Interestingly, an initial increase in the switching leads to
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(c) σ̄(r) in β and τ
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Figure 4.5. The average variations of market fraction volatility σ̄nf

(a) and (d), price deviation volatility σ̄(P−F ) (b) and (e), and return

volatility σ̄(r) (c) and (f) with τ = 0, 3, 16 (and v = 0.5) in the

upper panel and v = 0.01, 0.1, 0.5 (and τ = 16) in the lower panel,

respectively, with respect to β ∈ [0, 1].

higher market fraction volatility and lower market price volatility, following by the

decreasing volatility in fractions and the increasing volatility in price deviations when

β increases beyond certain threshold value. This result explains the phenomenon in

Fig. 4.3 (a) that for large β, an increase in the time horizon τ leads to an initial

increase in the market fraction volatility, but a dramatic decline when τ increases

further. It also implies that large fluctuations in the market fractions reduce the

market price deviation from the fundamental price when the switching intensity is

low, but the effect becomes opposite when the switching intensity is high. However,

a large intensity of switching always reduces return volatility. Therefore, we can
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have a market with high fluctuations in the market price and low volatility in the

returns at the same time.

In summary, the impact on the volatility can be very different for price and

returns. The trend chasing over a long time horizon and herding always lead to high

volatility. However the switching and herding behaviors have an opposite effect

on the market returns volatility. Although the switching has significant and non-

monotonic impact on the market volatility, it can actually reduce return volatility.

This analysis explains the different effect of herding and switching mechanisms on

the volatilities in price and returns.

5. Power-law Behavior in Volatility

After exploring the impact of the time horizon, herding, and switching on market

volatility in the previous section, we are now interested in their impact on the power-

law behavior in volatility. It has been well explored in the HAM literature that it is

the interaction of the nonlinear dynamics of the underlying deterministic model and

the noises that generate the power-law behavior. Both the switching and the herding

mechanisms have been explored, but a comparison of different mechanism is missing

in the literature. This section is devoted to such a comparison. We first examine

the impact of the noises and then of the time horizon, switching and herding on the

ACs of the returns, absolute returns, and squared returns with the two noises.

To motivate the analysis, we first present the ACs of the returns, absolute re-

turns, and squared returns for market daily closing price indices of the DAX 30,

the FTSE 100, the NIKKEI 225, and the S&P 500 from 01/02/1984 to 31/07/2013

from Datastream in Fig. 5.1. Note that the levels of all the ACs for the returns are

not significant, but they are significant and decaying for the absolute and squared

returns. This phenomenon is referred as the power-law behavior or long memory in

market volatility in empirical literature, see He and Li (2007) and references cited

there.
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(b) FTSE 100
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(c) NIKKEI 225
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Figure 5.1. The ACs of the returns (the bottom lines), the squared

returns (the middle lines) and the absolute returns (the upper lines)

for (a) the DAX 30, (b) the FTSE 100, (c) the NIKKEI 225, and (d)

the S&P 500.

5.1. The effect of the noises. For the two exogenously given fundamental and

market noises, we examine the impact of the noises by considering three combina-

tions of (i) both the fundamental and market noises; (ii) the market noise only; and

(iii) the fundamental noise only.

We first consider the effect of the fundamental and market noises with σF = 0.12

and σM = 0.15. Fig. E.1 in Appendix E represents the results of a typical simulation

based on the same set of parameters in Fig. 4.1 with τ = 16. The results demonstrate

that the stochastic model established in this paper is able to generate market price

deviations from the fundamental value (in Fig. E.1 (a)), most of the stylized facts

observed in financial markets (including volatility clustering in Fig. E.1 (b), high

kurtosis in in Fig. E.1 (c)), and the power-law behavior in volatility (insignificant
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autocorrelation (AC) levels for returns in Fig. E.1 (d), but significant decaying AC

levels for the absolute returns and the squared returns in Figs. E.1 (e) and (f)).

Next we consider the effect of the market noise. With the same parameters and

random seeds, Fig. E.2 in Appendix E shows that the model is able to generate a

similar result to the previous case with the two noises, although the levels of the

significant ACs are lower. This implies that, even with a constant fundamental

value, the model has a great potential in generating the power-law behavior. This

result is significantly different from the switching HL model, in which the model is

not able to generate the power-law behavior without fundamental noise.

Finally, we consider the effect of the fundamental noise. Fig. E.3 in Appendix

E shows that the model is not able to generate the volatility clustering and the

power-law behavior, which is consistent with the HL model. Meanwhile the market

returns, absolute returns and squared returns exhibit highly significant ACs with

strong decaying patterns, which is mainly due to the strong effect of the deterministic

dynamics of the price process.
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Figure 5.2. The effect of the fundamental noise: the ACs of (a) the

absolute returns and (b) the squared returns based on 100 simulations

with τ = 16, v = 0.5 for σF = 0.12 (the red solid line) and σF = 0

(the blue dash-dotted line).

To further investigate the effect of the fundamental noise on the AC patterns, Fig.

5.2 compares the ACs of the absolute returns and the squared returns for σF = 0.12

(the red solid line) and σF = 0 (the blue dash-dotted line) based on 100 simulations.
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The ACs of the absolute returns and squared returns are significant and decaying.

However, with the market noise σF = 0.12, the ACs decay quickly than those for

σF = 0. This indicates that the market noise plays a key role in generating the

power-law behavior, though it is not the only factor, as argued in He and Li (2007).

The previous analysis on the effect of the time horizon, switching, and herding

shows that they play different roles in generating volatility in market price and

return. We now further investigate their effect on the power-law behavior. Similarly,

we consider three cases, each focuses on one of the three parameters τ, v and β. For

each case, we examine the impact on the AC patterns of the absolute and squared

returns. Based on the common set of the parameters, we run 100 simulations for

each parameter combination and plot the average ACs for the absolute and squared

returns.12
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Figure 5.3. The effect of the time horizon: the ACs of (a) the ab-

solute returns and (b) the squared returns based on 100 simulations

with v = 0.5, β = 1, σF = 0.12, σM = 0.15 for τ = 0, τ = 3 and

τ = 16.

5.2. The effect of the time horizon. First, we present in Fig. 5.3 the effect of

the time horizon on the AC patterns for the absolute returns (the left panel) and

the squared returns (the right panel). We observe that the trend chasing based on

different time horizons contributes to the significant decaying AC patters for both

the absolute and squared returns. Also the significant levels of the ACs increase

12The average AC levels for the returns are insignificant in all three cases reported.
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as the time horizon increases, in particular, when the time horizon is large. This

suggests that a commonly observed slow decaying AC patterns in the discrete-time

HAM literature (see for example He and Li (2007)) might be due to the long time

horizons used for modeling the trend chasing. In other words, trend chasing based

on short time horizons contributes to more realistic power-law behavior in volatil-

ity. Intuitively, technical analysis such as trend following strategy is mainly used

for short-term investment comparing to the fundamental analysis for long-term in-

vestment. Therefore the trend chasing based on short-time horizon contributes to

volatility in financial markets.
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Figure 5.4. The effect of the herding: the ACs of (a) the absolute

returns and (b) the squared returns based on 100 simulations with

τ = 16, β = 1, σF = 0.12, σM = 0.15 for v = 0.01, v = 0.1 and

v = 0.5.

5.3. The effect of the herding intensity. Secondly, we present in Fig. 5.4 the

effect of the herding on the AC patterns for the absolute returns (the left panel)

and the squared returns (the right panel), showing the contribution of the herding

to the power-law behavior in volatility. Similar to the effect of the time horizon, an

increase in the herding increases the level of the significant ACs for both the absolute

and squared returns. However, differently from the effect of the time horizon, the

ACs decay quickly under the herding.

5.4. The effect of the switching intensity. Thirdly, we present in Fig. 5.5 the

effect of the switching on the AC patterns for the absolute and squared returns. It
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Figure 5.5. The effect of the switching: the ACs of (a) the absolute

returns and (b) the squared returns based on 100 simulations with

v = 0.5, τ = 16, σF = 0.12, σM = 0.15 for β = 0.1, β = 0.5, β = 1

and β = 2.

shows that the switching contributes to the power-law behavior. Interestingly, and

differently from the effect of the time horizon and herding, the level of the significant

ACs for both the absolute and squared returns is not monotonic with respect to the

switching intensity β. The level increases significantly when β increases from 0.1

to 0.5, and then less significantly when β increases to 1, but decreases when β

increases further to 2. In particular, the ACs for the absolute returns decay very

quickly, comparing to the effect of the herding. This observation, together with

the discussion in Section 4.3, suggests that an increase in the switching can reduce

the return volatility and generate the power-law behavior at the same time. This

provides further support on the explanatory power of the adaptive switching in

financial markets initiated in Brock and Hommes (1998).

In summary, we have explored different mechanisms for the switching and the

herding behavior of agents on the market volatility and power-law behavior in par-

ticular. We show that both contribute to the power-law behavior, however the effect

is monotonically increasing with the herding, but not monotonic for the switching.

Finally, we investigate the question if pure herding is sufficient to explain the

power-law behavior by considering the case with σF = 0 and τ = 0. In this case, the

fundamental value becomes constant and the trend followers become naive traders

who take the current price as the expected future market price and hence do not
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Figure 5.6. The ACs of (a) the absolute returns and (b) the squared

returns based on 100 simulations with v = 0.5, τ = 0, σF = 0, σM =

0.15 for β = 0 and β = 1.
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Figure 5.7. The ACs of (a) the market returns; (b) the absolute

returns and (c) the squared returns based on 100 simulations with

τ = 0, β = 0, σF = 0, σM = 0.15 for v = 0.01, v = 0.1 and v = 0.5.

trade in the market anymore. Thus the market is driven by a pure herding mech-

anism. Fig. 5.6 illustrates the significant and decaying AC patterns in both the

absolute and squared returns, although the AC level for the squared returns is sig-

nificantly lower comparing to the cases discussed previously. Interestingly, there is

no significant difference in the AC patters of the absolute return between no switch-

ing (β = 0) and the switching (β = 1). This result is consistent with Alfarano et al.

(2005) who show that a pure herding model with fundamentalists and noise traders

can generate the power-law behavior. As a robustness check, we present Fig. 5.7
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with three different values of v. Similar to Fig. 5.4, we observe more significant AC

patterns as the herding parameter v increases.

Comparing to the AC patterns of the market indices in Fig. 5.1, we may argue

that the switching generates similar AC patterns to the NIKKEI 225 and the S&P

500 with quickly decaying AC patterns, while the herding generates similar AC

patterns to the DAX 30 and FTSE 300 with relatively slow decaying AC patterns.

This observation may suggest different market behaviors in different markets and

we leave this challenging empirical question to further stages of our research.

6. Conclusion

Market volatility is one of the most important features in financial markets and

the question is what drives it. To answer this question, the most obvious way is

to consider how agents behave in financial markets. Among various agents’ be-

haviors in financial markets, trend chasing, adaptive switching and herding are the

most important, well documented and studied in the empirical literature. This pa-

per incorporates these three behavioral elements into an asset pricing model in a

continuous-time framework and shows that they all contribute to market volatility

in different manners.

Most of the asset pricing models with heterogeneous agents are in discrete-time

framework focusing on trend chasing over short time horizon and adaptive switching.

Herding is commonly modelled by the master equation in a continuous-time setting.

Therefore the roles of trend chasing, switching and herding in market volatility have

been studied in separate frameworks. Within a continuous-time framework, this is

the first paper, to our knowledge, to combine trend chasing based on different time

horizon, switching and herding together to examine their roles on market volatility

in price and return. We show that both the herding and the trend chasing based on

long time horizon increase the fluctuations of the market price deviation from the

fundamental price and volatility of the market return. With respect to the switching,

they reduce the volatility in returns but leads to a “U”-shaped price volatility as

the switching intensity increases. Therefore herding and switching have an opposite

effect on return volatility.
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We also examine the explanatory power of the model in generating the power-law

behavior in return volatility. We show that, although the trend chasing, switching

and herding all contribute to the power-law behavior, the significant levels for the

ACs increase in the time horizon and herding, but an initial increase and then

decrease when the switching intensity increases. In addition, with herding, the

market noise plays an essential role in generating the power-law behavior.

The model proposed in this paper provides a unified framework to deal with trend

chasing, switching and herding in financial markets. The results provide some fur-

ther insights into possible different mechanisms for generating bubbles and crashes,

excess volatility and power-law behavior in volatility. Whether a particular market

is dominated by herding or switching is an empirical question that is left for future

research.
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Appendix A. Analytical solution for the master equation

We solve the master equation using the approximation method introduced by Aoki

(2002). Assume the fraction of fundamentalists in a given moment is determined by

its expected mean (m), the drift, and, an additive fluctuation component s of order

1/N1/2 around this value. Thus we can write

Nf

N
= m+

1√
N
s, (A.1)

where s is a standard white noise. The asymptotically approximate solution of the

master equation is given by the system of coupled differential equations

dm

dt
= ζ(t)m− [ζ(t) + ξ(t)]m2,

∂Q

∂t
= [2(ζ(t) + ξ(t))m− ζ(t)]

∂

∂s
(sQ(s, t))

+
m[ζ(t) +m(ξ(t)− 1)]

2

∂2

∂s2
Q(s, t),

(A.2)

where Q(s, t) is the transition density function of the spread s at time t. The first

equation of (A.2) is a deterministic ordinary differential equation which displays

logistic dynamics for the trend. The second equation is a second order stochastic

partial differential equation, known as the Fokker-Planck equation that drives the

spread component (i.e. the fluctuations around the trend) of the probability flow.

By letting m equal to its steady state m∗ = ζ
ζ+ξ

, we have the distribution function

θ for the spread s, which is given by

θ(s) = Ce−
s2

2σ2 with σ2 =
ζξ

(ζ + ξ)2
, (A.3)

which is a Gaussian density. Therefore, the two components of the dynamics of the

proportion of fundamentalists as represented by (A.1) are quantified. Accordingly

the evolution of the proportion of fundamentalists is given by the trend, described

by (A.2), plus a stochastic noise distributed according to (A.3). So we have (2.15).

For more details, we refer to Chiarella and Di Guilmi (2011a).
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Appendix B. Definitions of the Parameters and Functions Used in

Proposition 3.1

The characteristic equation of the system (3.1) at the fundamental steady state

is given by13 ∆(λ) := (λ+ 2vn∗

f)∆̃(λ) = 0, where

∆̃(λ) = (λ+ηf )(λ+ηc)
[
λ2+(k+γf−γc)λ+kγf−kγc+

kγc
1− e−kτ

−kγce
−(λ+k)τ

1− e−kτ

]
. (B.1)

Note that equation (B.1) has the same form as the characteristic equation of the

model studied in He and Li (2012). Hence we can apply Proposition 3.1 in He and

Li (2012) to system (3.1). It follows that the stability of the steady state does not

change for time delay τ > τ̃ with

τ̃ =
1

k
ln

[
1 +

2kγc

(k + γf − γc)2 + 2 | k + γf − γc |
√

kγf

]
.

That is, there is an upper bound on the time delay for stability change. The change

in stability happens only for τ ∈ [0, τ̃ ] if there exists a non-negative integer n such

that S+
n (τ) = 0 or S−

n (τ) = 0. Here14

S±

n (τ) = τ − θ±(τ) + 2nπ

ω±(τ)
, τ ∈ (0, τ̃ ], n = 0, 1, 2, · · · ,

ω± =

(−a1 ±
√
a21 − 4a2
2

) 1
2

, θ±(τ) =






arccos(a4±), for a3± ≥ 0;

2π + arcsin(a3±), for a3± < 0, a4± ≥ 0;

2π − arccos(a4±), for a3± < 0, a4± < 0

and

a1 = k2 + γ2
f + γ2

c − 2γfγc −
2kγc

1− e−kτ
, a2 = k2γ2

f +
2k2γfγce

−kτ

1− e−kτ
,

a3± =
−ω±(τ)(1− e−kτ)(k + γf − γc)

kγce−kτ
, a4± = 1− (1− e−kτ )(ω2

±
(τ)− kγf)

kγce−kτ
.

Denote

τ0 = inf
{{

τ̃
}⋃{

τ ∈ (0, τ̃ ] | ∃n ∈ {0, 1, 2, · · · }, S+
n (τ) = 0 or S−

n (τ) = 0
}}

.

13Interestingly, the time delays τf , τc introduced in the performance measures in (2.9) do not

appear in the characteristic equation, hence they do not affect the local stability and bifurcation

analysis. This is due to the fact that they are in higher order terms and they affect the nonlinear

dynamics, rather than the dynamics of the linearized system.

14We refer to Theorem 3.3 in He et al. (2009) for the properties of functions S±
n (τ).
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Appendix C. Comparison to the HL model and Nonlinear Effect of

Herding

To examine the effect of herding, we present the corresponding results of no-

herding model in He and Li (2012), the HL model. Unless specified otherwise, we

choose the parameter values k = 0.05, µ = 1, βf = 1.4, βc = 1.4, Cf = 0.05,

Cc = 0.03, ηf = 0.5, ηc = 0.6, τf = 10, τc = 5, and F̄ = 1.

(a) Price bifurcation in τ (b) Price bifurcation in β
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Figure C.1. (a) The bifurcation of the market prices with respect

to τ with β = 1; (b) The bifurcation of market price with respect to β

with τ = 8; (c) The phase plot of the relationship between the fitness

Uf and the market fraction nf with τ = 16 and β = 1 for HL model.
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Figure C.2. (a) The time series of the market prices P (t) (the blue

solid line) and the market fraction nf (t) of fundamentalists (the green

dash dot line) and (b) the phase plot of (P (t), nf(t)).
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(a) Price bifurcation
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Figure C.3. (a) The bifurcation diagram of the market prices with

respect to τ for model (3.1) and (b) the corresponding phase plot of

(P (t), nf(t)). Here v = 0.1 and τ = 16.
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Appendix D. Price Volatility Comparison to the HL Model

This appendix presents some results from the HL model and price volatility of

the herding model.
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(c) Price deviation density for τ = 3
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(d) Price deviation density for τ = 16

Figure D.1. The time series of the fundamental price F (t) (the blue

dotted line) and the market prices P (t) (the red solid line) with (a)

τ = 3 and (b) τ = 16, and the distributions of the deviations of the

market prices from the fundamental prices P (t)−F (t) with (c) τ = 3

and (d) τ = 16 for the HL model. Here σF = 0.12 and σM = 0.15.
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Figure D.2. The time series of the fractions of the fundamentalists

with (a) τ = 3 and (b) τ = 16 and the corresponding distributions

with (c) τ = 3 and (d) τ = 16 for the HL model. Here σF = 0.12 and

σM = 0.15.
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Appendix E. Noises and the Stylized Facts

This appendix presents the time series properties and AC patterns of the return,

absolute return, and squared return of the model with both the market and funda-

mental noises in Fig. E.1, the market noise only in Fig. E.2, and the fundamental

noise only in Fig. E.3.
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Figure E.1. The effect of the two noises: the time series of (a) the

market price (red solid line) and the fundamental price (blue dotted

line) and (b) the market returns; (c) the return distribution; the ACs

of (d) the returns; (e) the absolute returns, and (f) the squared returns.

Here σF = 0.12 and σM = 0.15.
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Figure E.2. The effect of the market noise only: the time series

of (a) the market price (red solid line) and the fundamental price

(blue dotted line) and (b) the market returns; (c) the return distribu-

tion; the ACs of (d) the returns; (e) the absolute returns, and (f) the

squared returns. Here σF = 0 and σM = 0.15.
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Figure E.3. The effect of the fundamental noise only: the time se-

ries of (a) the market price (red solid line) and the fundamental price

(blue dotted line) and (b) the market returns; (c) the return distribu-

tion; the ACs of (d) the returns; (e) the absolute returns, and (f) the

squared returns. Here σF = 0.12 and σM = 0.
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