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1 Introduction

The global financial crisis has called for a better understanding of the vulnerabilities

and risks of financial markets. Connections between different segments of the market

play an important role in determining the extent and patterns of these risks. These

interconnections can be studied using the tools of network theory. Network modeling is

a novel and rapidly developing field in social sciences, economics, and finance (see e.g.,

Jackson, 2008; Allen and Babus, 2009).

This paper brings together ideas from network theory, the financial econometric lit-

erature on variance-covariance modeling, and statistical literature on Gaussian graphical

models (GGM). The GGM are widely used for the reconstruction of networks when the

actual network structure is unobservable. A prominent example of this use is the biological

literature on networks of genes, proteins, etc. (e.g., Rice et al., 2005). These methods are

relatively new in economics and finance. We apply the GGM to reconstruct the network

of partial correlations between different Australian banks, domestic economic sectors and,

international markets. We use network theory to study this network and interpret its

properties.

GGM are developed to visualize the conditional dependencies between different el-

ements of a multivariate random variable through a graph of partial correlations (see

Whittaker, 2009, for detailed treatment). Partial correlations capture bi-variate linear

dependencies between any two elements of the random variable, conditional on a set of all

remaining elements. As we show, this feature is useful to separate a direct dependence,

between a pair of economic sectors or entities, from indirect effects coming through the

remaining part of the network. For this reason, the partial correlations are well suited

for network representation. The standard GGM literature focuses on the reduction of

complexity of the conditioning set from the constructed graph (so-called Markov prop-

erties). However, our primary focus is on the adaptation and interpretation of popular

network-based measures in the context of the graph of partial correlations.

Recent economic literature provides many examples of how financial data can be de-

scribed from the network perspective.1 The studies illustrate the complexity of relation-

ships between financial entities and discover certain network properties which may be

1See Iori et al. (2008), who study the interbank overnight market; Vitali et al. (2011), who analyze the
ownership of transnational corporations; and Sokolov et al. (2012), who investigate Australian interbank
transactions, among many others.
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important for the aggregate properties of the financial system. An intuitive, but not al-

ways formalized, idea is that interdependencies between the entities represent a channel

of transmission of a shock. Thus, discovering these interdependencies with the network

approach is useful for studying systemic risk, see review of early contributions in Chinazzi

and Fagiolo (2013) and recent studies of Acemoglu et al. (2015), Glasserman and Young

(2015) and Elliott et al. (2014). Battiston et al. (2012) introduce the DebtRank which is

an example of a centrality measure of nodes within the network of financial entities. High

centrality of a node would reflect an importance of the node in the shock transmission.

This paper is closely related to the recent work on reconstructing networks from time-

series data by Billio et al. (2012), Dungey et al. (2013), Barigozzi and Brownlees (2013),

Diebold and Yilmaz (2014), and, in the Australian context, Dungey et al. (2015). The

distinguishing feature of our study is that we are establishing the links between the sta-

tistical concepts of correlations, partial correlations, principal components and various

centrality measures from the network theory. Moreover, this is the first work mapping

the network of perceived financial dependencies between Australian banks, other domestic

sectors, and international markets. We use publicly available information on the share

prices and indices of the corresponding entities to reconstruct the network of partial cor-

relations between their returns. The returns generally represent market-perceived changes

in the value of these entities. The reconstructed networks may be a useful tool for better

understanding the market and the dynamic spreading of shocks, and, hence, may be used

for policy and regulatory analysis.

We find that there are strong direct links between the big four Australian banks, which

are connected to the real economy, real estate, and financial groups. The Australian market

is also seen to be strongly connected to the Asian market. The reconstructed network can

be partly explained by the network of technological input requirements for the considered

sectors.

The rest of this paper is organized as follows. Section 2 defines the network of par-

tial correlations. Section 3 discusses key network measures and interprets them for the

network of partial correlations. In particular, we highlight a connection between the eigen-

value centrality and the principal component analysis. Section 4 details the estimation

procedure. Section 5 applies the network methods to uncover a perceived network of

the Australian banks including connections to local financial and real sectors, and global
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markets, and demonstrate relevant policy examples. We also compare the reconstructed

perceived networks with the actual networks of direct input requirements based on the

input-output tables. Section 6 concludes the paper.

2 Networks of partial correlations

Formally, a graph G = (V,E) is a structure consisting of a set of nodes, V, and a set of

edges, E. Every two nodes may or may not be connected by an edge, edges may be directed

or undirected, and weighted or unweighted. Our focus here is on undirected graphs and,

hence, elements of an edge set E are unordered pairs (i, j) of distinct nodes i, j ∈ V. We

are working with weighted graphs where each edge has a non-zero weight wij assigned to

it.

Following the literature on Gaussian graphical models (e.g., Whittaker, 2009), we

define the network of partial correlations. Let X denote an n-dimensional multivariate

random variable and the nodes of the graph G correspond to each element of X, i.e.,

V = {X1, X2, . . . , Xn}. Let X∗i|V\{Xi,Xj} denote the best linear approximation of variable

Xi based on all the variables except for Xi and Xj for any pair i, j.

Definition. The partial correlation coefficient between Xi and Xj, ρXi,Xj

∣∣ V\{Xi,Xj}
, is de-

fined as the ordinary correlation coefficient between Xi−X∗i|V\{Xi,Xj} and Xj−X∗j|V\{Xi,Xj}.

In other words, the partial correlation between Xi and Xj is equal to the correlation

between the residuals of the two linear regressions: (1) Xi on a constant and a set of

control variables, which includes all variables in X except for Xi and Xj , and (2) Xj on

a constant and the same set of control variables as in the first regression. Hence, the

partial correlation measures linear dependence between any two elements of X, Xi and

Xj , for i 6= j, after controlling for linear dependence with all other remaining elements

in V\{Xi, Xj}. For the sake of brevity, we will use a shorter notation ρij|· for the partial

correlation between Xi and Xj .

The edges of the network of partial correlations correspond to the pairs of random

variables with non-zero partial correlations, E = {(i, j) ∈ V× V | ρi,j|· 6= 0}, and the edge

weights to the corresponding partial correlations, wij = ρij|·. Intuitively, the network of

partial correlations visualizes linear dependence between any two random variables con-

ditional on all other variables. When the random variable X is multivariate normal, zero

4



partial correlation implies conditional independence of the corresponding elements. This

statement holds for a more general case of an arbitrary continuous marginal distribution

for each element of X when the dependence between the elements is characterized by the

Gaussian copula (see, e.g., Diks et al., 2010, 2014).

For better intuition behind the concept of partial correlations, it is useful to show

connections with linear regression. Project each Xi, 1 ≤ i ≤ n on the space spanned by

the rest of the variables in X as

Xi −mi =
∑
j 6=i

βij(Xj −mj) + εi, (1)

where mi is the unconditional mean of Xi and εi is a zero-mean residual. Denote the

variance-covariance matrix of vector of the residuals, ε, as Σ. This matrix is not neces-

sarily diagonal as ε’s may be correlated. The diagonal elements of Σ are the conditional

variances of the elements of X, Var(εi) = Var(Xi

∣∣V\{Xi}). The orthogonality condi-

tion, E(εiXj) = 0, ∀j 6= i, 1 ≤ i, j ≤ n, implies that regression coefficients are given by

βij = ρij|·
√

Var(εi)/Var(εj) (see Appendix A.1). It follows that ρij|· = sign(βij)
√
βijβji.

Partial correlations are also related to the (unconditional) variance-covariance matrix

of X, Ω = Cov(X). Define a concentration or precision matrix as the inverse of a non-

singular variance-covariance matrix, K ≡ Ω−1. The partial correlations can be expressed

as

ρij|· =
−kij√
kiikjj

, (2)

where kij is the (i, j) entry of K (see Appendix A.2). Furthermore, each diagonal element

of K is the reciprocal of a conditional variance, i.e., kii = 1/Var(εi), where εi is defined in

Eq. (1).

Finally, the partial correlation can also be computed using the inverse of R, the regular

correlation matrix of X, by replacing the kij , kii, and kjj entries in Eq. (2) with the

corresponding entries of R−1 (see Appendix A.3). The ith diagonal element of R−1 is

the ratio of unconditional variance of Xi, Var(Xi), to conditional variance of Xi, Var(εi).

The proportion of variation in Xi as explained by all the other elements can be defined,

similarly to the regression’s coefficient of determination, as

R2
i = 1− Var(εi)

Var(Xi)
, (3)

5



and deduced from the diagonal elements of R−1. This measure can be thought of as an

endogenous network-induced variation of Xi.

A graph with n nodes can be represented by the adjacency matrix of size n×n. When

the graph is undirected and weighted, as in our case, the adjacency matrix is a symmetric

matrix whose (i, j)-entry is non-zero only if there is an edge connecting nodes i and j, and

the entry is given by the weight. As we will see in the next Section, adjacency matrix is

a basis for other network-based measures.

Let P denote the adjacency matrix of the graph of partial correlations. The elements

of this matrix are Pi,j = ρij|· for i 6= j and zeros on the diagonal. From (2) we have

P = I−D
−1/2
K KD

−1/2
K , (4)

where I is the identity matrix of size n, K is the concentration matrix, and DK is the

diagonal matrix composed of the diagonal elements of K. The diagonal elements of K are

the inverse of the conditional variances of the elements of X. Therefore,

DK = diag
{
k11, . . . , knn

}
= diag

{
1

Var(ε1)
, . . . ,

1

Var(εn)

}
= D−1Σ ,

where DΣ is the diagonal matrix composed of the diagonal elements of Σ.

Next, we show how the adjacency matrix P relates to the system of linear equa-

tions (1). Introduce the matrix B with zeros on the diagonal and βij in the (i, j) off-

diagonal entry. Exploring the relationship between ρij|· and βij defined above, we find

that B = D
1/2
Σ PD

−1/2
Σ . Then Eq. (1) can be rewritten in a matrix form as follows

X −m = B(X −m) + ε = D
1/2
Σ PD

−1/2
Σ (X −m) + ε ,

where m and ε are the vectors of the means of X and the residuals, respectively. While we

should be careful about causal interpretation of this equation, it is useful to think about

ε’s as external shocks influencing the system. Because Xi’s may have different conditional

variances, to compare the effects of the shocks we rescale the residuals in such a way that

all of them would have unit conditional variance, e = D
−1/2
Σ ε. It is important to emphasize

that e’s are not independent (neither are the entries of ε).

We multiply both sides of the previous equation by D
−1/2
Σ from the left and introduce
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a rescaled variable x = D
−1/2
Σ (X −m). The equation becomes

x = Px+ e . (5)

Note that the rescaling for X is in terms of the conditional variance as opposed to a

more usual rescaling by the unconditional variance. Intuitively, by using the conditional

variance we remove the effect of the variables endogenous to the network.

In the next section, we will use the eigenvalues and eigenvectors of matrix P. Note

that P is the real symmetric matrix. Therefore, it has a set of n linearly independent

eigenvectors corresponding to the real eigenvalues.2 We order the eigenvalues by their

absolute values as |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. The spectral radius of the matrix P is defined

as ρ(P) = |λ1|, the largest absolute eigenvalue. It is important to make the following

assumption for further exposition.

Assumption 1. The spectral radius of the adjacency matrix of the graph of partial cor-

relations, P, is less than 1.

This Assumption is satisfied when all entries of P are non-negative. Moreover, it holds

more generally, when all the row sums of the absolute values of the elements of P are

less than 1. In other words, Assumption 1 holds when partial correlation matrices exhibit

moderate dependence. In particular, this turned out to be true in all our applications.

Finally, we note that Assumption 1 is equivalent to the condition where the smallest

eigenvalue of P is larger than −1. Formal proofs of these statements can be found in

Appendix A.4.

We now demonstrate the usefulness of the network of partial correlations for the sys-

temic risk analysis, and its connection with the network of correlations.

2.1 Interpretation of Partial Correlation Network

In Section 5 we reconstruct the perceived financial networks of the Australian banks, other

sectors of the economy, and international markets using publicly available information on

the returns of the corresponding bank shares and indexes. The returns reflect market

perception about the percentage change in the present value of a company, sector, or

2Note that the eigenvalues have different signs. It immediately follows from the fact that the sum of all
eigenvalues of P is equal to the trace of P, which is zero. As a consequence, matrix P is indefinite. This
is an important difference from the correlation matrices, which are always positive definite.
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marker overall. By looking at the correlations of the returns for some entities, we may

uncover how the market perceives joint changes in the value of these entities, including any

intermediate effects. The use of correlations in this sense has been widely used in finance

for optimal portfolio selection (Markowitz, 1952). However, if one wants to understand the

structure of the market and use it for, say, financial stability analysis or optimal policy

design, it is important to turn to partial correlation analysis. Partial correlations can

single out the direct co-movements in the relative change of values between the pairs of

entities, while controlling for all other entities. By reconstructing the network of partial

correlations, we may observe how a unit variance shock may spread through the network.

From the perspective of the regulator, this allows identifying the most important relations

and focusing policy on these relations or mitigating possible consequences of any large

shocks to these entities.

It is important to emphasize at this point that with partial correlations, it is not pos-

sible to establish the direction of causation. The concept of Granger causality (Granger,

1969) can be used to establish directional relationships within the VAR framework (see,

e.g., Billio et al., 2012). However, the presence of Granger causality would imply pre-

dictability in returns which the market should incorporate. Therefore, unless we turn to

high frequencies, it is hardly possible to detect substantial and stable linear Granger causal-

ity in financial returns. Lower frequency cross-sectional dependencies include Granger

causalities accumulated at higher frequencies (see, e.g., Barigozzi and Brownlees, 2013).

With this caution about causality in mind, we propose an observational interpretation

of system (5). The expected steady state value of x is 0. Suppose that we observe a

deviation in x. We will now decompose the total observed deviation into a direct effect

given by unit-variance shock e and an indirect (endogenous to the network) effect. An

initial shock ei which directly hits node Xi will also affect the immediate neighbors of Xi.

For the network as a whole, the expected effect of shock e on the immediate neighbors is

measured by Pe. The ith element of this vector, given by
∑n

j=1 ρij|·ej , accumulates the

effect of the initial shocks to all other nodes reaching node Xi in one step. We call this a

first-order effect. The expected effect on the neighbors of the neighbors can be computed

as P(Pe) = P2e, which we call a second-order effect. Generally, we define a kth-order

effect as Pke. It gives the effect of the initial shock after traveling k steps along the edges
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of the network of partial correlations, summed over all possible walks.3 The total effect of

the shock on x will now be

e+ Pe+ P2e+ · · · =
∞∑
k=0

Pke , (6)

when this sum converges. Assumption 1 is necessary and sufficient for convergence,4 in

which case
∑

k Pk = (I−P)−1. Using Eq. (4), one can see that (I−P)−1, denoted by T,

is equal to

T = D
−1/2
Σ ΩD

−1/2
Σ , (7)

so that the total effect of the shock is given by Te. The matrix T is a variance-covariance

matrix of x, the rescaled X. Eq. (7) shows that it is also the rescaled variance-covariance

matrix Ω. It looks similar to an ordinary correlation matrix, but, instead of using uncon-

ditional variances of X for rescaling, conditional variances of X are used.

We have established that T transforms the initial shock into its total effect on X.

Instead, the matrix of partial correlations P defines how shocks spill over on the immediate

neighbors.

3 Network-based Measures of Centrality

The previous interpretation shows that the network of partial correlations can be used

to separate the direct and higher order spillover effects of shocks. Understanding and

measuring spillovers by means of the partial correlation matrix, as opposed to limiting

attention to the variance-covariance matrix relevant for the total effect of the shock, is

important for a policy aiming to reduce systemic risk. Some edges of the partial correlation

network (intuitively, those with high weights) and, as a consequence, some nodes (namely,

those with many edges with high weights), may play a higher role in these spillover effects.

3A walk in a graph is a sequence of (possibly repeated) nodes and edges that begins and ends with
nodes. A walk of length k has k edges. Thus, the kth order impact of the initial shock ej on Xi is the sum
over all possible walks of length k starting in node j and finishing in node i of the products of all partial
correlations along the walk times ej . The ith element of the vector Pke is then a sum of these kth order
impacts over all nodes (including i).

4Note that this Assumption is equivalent to limk→∞Pk = 0. The (i, j) element of matrix Pk sums,
over all possible walks of length k from i to j, the products of partial correlations of the edges of this
graph along the walks. All these products converge to 1, but the number of walks explodes. Assumption 1
guarantees that the former effect dominates the latter. It shows that our interpretation works whenever
the values of partial correlations are moderate, so that traveling over the network will sufficiently dampen
the shocks.
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Network theory uses various measures of centrality to measure the relative importance of

nodes in the graph.

There exist several different centrality measures that attempt to evaluate the nodes’

positions on the graph. One of the simplest centrality measures for a graph is degree

centrality. For a weighted graph, degree centrality is defined for each node by adding all

weights of the edges connected to the given node. In our case, for the adjacency matrix

P = (Pi,j)
n
i,j=1 in the partial correlation network, the node’s degree is computed as

cDi = P · 1 =
n∑

j=1

Pi,j =
n∑

j=1

ρij|· ,

where 1 is an n×1 vector of ones, and cD is a vector of degree centralities. Intuitively, the

nodes with high degree centrality (in absolute value) are important for the transmission of

the shock to/from5 the immediate neighbors because they have many edges and/or edges

with high weights.6

To analyze the higher order impacts of the initial shock, we need to use self-referential

centrality measures, i.e., when high centrality is assigned to the nodes connected to other

central nodes. One such measure is eigenvector centrality, for which every element cEi is

proportional to
∑n

j=1 ρij|·c
E
j , or, formally, vector cE is an eigenvector of matrix P. Which

of the n eigenvectors is taken as the eigenvector centrality ultimately depends on the nature

of the network and resulting interpretation.7 We will argue now that for the network of

partial correlations, when the largest absolute eigenvalue of P is unique, the corresponding

eigenvector can be taken as the eigenvector centrality.

Let us apply operator P iteratively to an arbitrary non-zero initial vector e0 ∈ Rn.

The symmetric real matrix P has the orthonormal basis {u1, . . . , un} of the eigenvectors

corresponding to the eigenvalues |λ1| > |λ2| ≥ · · · ≥ |λn|. Writing e0 in this basis with

5The direction of the shock is not explicitly observed because the network of partial correlations is
undirected.

6Note that some entries of P may have a negative value, indicating that the sign of the shock will be
reversed for the corresponding nodes. If the node has some edges with positive weights and some edges
with negative weights, the effects will cancel each other out, resulting in a small overall impact of the node.
In this case, it is useful also to consider P̄, the element-wise absolute value of matrix P. For this matrix,
the degree centrality will indicate the importance of the node in the transmission of both positive and
negative shocks. In our application we find that the number of edges with negative partial correlations
is small and the numerical values of the negative partial correlations are negligible. Therefore, we do not
focus on centrality measures for P̄.

7The network literature typically works with non-negative matrices (i.e., having non-negative entries).
Non-negative matrices have a unique non-negative eigenvector and this vector is taken as the eigenvector
centrality. As P is not necessarily non-negative, such a criterion is not sufficient for us.
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coordinates {b1, . . . , bn} and then applying Pk, we obtain

Pke0 = Pk
n∑

`=1

b`u` =
n∑

`=1

b`P
ku` =

n∑
`=1

b`λ
k
`u` = b1λ

k
1u1 +

n∑
`=2

b`

(
λ`
λ1

)k

u` . (8)

Since |λ`/λ1| < 1 for all ` ≥ 2, the last sum converges to 0 as k → ∞. Therefore, the

eigenvector u1 gives the asymptotic direction for Pke0 when k → ∞ for any e0 which is

not orthogonal to u1. If we interpret e0 as a vector of shocks affecting the values of nodes

in the graph, then the eigenvector u1 corresponding to the largest absolute eigenvalue λ1

characterizes the asymptotic impact (k-th order when k → ∞) of an initial shock on the

nodes. This property allows us to consider vector u1 as the eigenvector centrality measure,

cE. As any eigenvector is defined up to a multiplicative constant, the nominal values of

the elements of cE are not important by themselves. The relative values of elements of

this vector reflect the relative asymptotic impact of the initial shock on the corresponding

nodes.

In case of multiple largest absolute eigenvalues, the last sum in Eq. (8) will not converge

to zero. In such situations, the shock will asymptotically belong to the space spanned by

all the eigenvectors corresponding to the largest absolute eigenvalues. Moreover, even

when there is a unique largest absolute eigenvalue, the convergence of the last sum in (8)

may be slow when the second largest absolute eigenvalue is close to the first (see Section

11.1.1 in Newman, 2010). It motivates the introduction of the p-eigenvector centrality

space of dimension p < n as the space spanned by the p eigenvectors corresponding to the

p largest absolute eigenvalues. When the largest p absolute eigenvalues are large relative

to the remaining eigenvalues, but close to each other, this space will provide a better

asymptotic approximation for convergence of the initial shock.

This approach resembles the principle component analysis (PCA), and the following

proposition allow us to establish the link between p-centrality space for the matrix P and

the PCA applied to the matrix T defined in (7).

Proposition 1. Let λ be an eigenvalue of the adjacency matrix P of the graph of partial

correlations with corresponding eigenvector u. Then 1/(1 − λ) is the eigenvalue of ma-

trix T, the variance-covariance matrix of x, defined in (7), with the same corresponding

eigenvector u.
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Proof. The statement follows from the following chain of equivalence relations:

Pu = λu ⇔ u−D
−1/2
K KD

−1/2
K u = λu ⇔

⇔ D
−1/2
K KD

−1/2
K u = (1− λ)u ⇔ D

1/2
Σ Ω−1D

1/2
Σ u = (1− λ)u ⇔

⇔ T−1u = (1− λ)u ⇔ 1

1− λ
u = Tu .

The last Proposition asserts that the matrix P has the same eigenvectors as the rescaled

variance-covariance matrix T, and even if their eigenvalues differ, their ordering does not.

If p largest absolute eigenvalues are positive, the space to which the first p principle

components of T belong will coincide with the p-eigenvector centrality space of P.

Finally, we discuss another centrality measure which is often found relevant in the

economic literature: the so-called Bonacich centrality.8 As the eigenvector centrality, it

is defined in a self-referential manner but also reflects the degree centrality. Specifically,

cBi = α
∑n

j=1 ρij|·c
B
j + cDi . The weight α measures the importance of the centrality of the

neighbors with respect to one’s own degree centrality. In matrix form, this definition reads

cB = αPcB + P · 1 ⇔ cB = (I− αP)−1P · 1 ,

where, as before, 1 is an n× 1 vector of ones and I is the identity matrix of size n. When

α = 0 the Bonacich centrality is simply the degree centrality, i.e, the first-order effect of

the unit shock e = 1. For any α ≤ 1, Assumption 1 allows us to rewrite the Bonacich

centrality as cB = P ·1+αP2 ·1+α2P3 ·1+ . . . . However, intermediate values of α ∈ (0, 1)

are not particularly important in our application.9 When α = 1, the Bonacich centrality

is equal to the cumulative of the first-, second-, and all higher order effects of the unit

8Acemoglu et al. (2012) derive the expression for Bonacich centrality in the context of intersectoral
(input-output) network. Ballester et al. (2006) relate the Bonacich centrality to the actions in the Nash
equilibrium of noncooperative game. The definition given here is a special case of the measure pro-
posed in Bonacich (1987). There, for the network with adjacency matrix A, the centrality is defined as
cB(α, β) = β(I− αA)−1A · 1. The constant β scales the centralities of all the modes and here we assume
β = 1.

9The Bonacich centrality measure was introduced for social networks where the edges are directly
observed and the cumulative effect of the interactions is of interest. Dampening is a reasonable assumption
for this setup. In our case, the network of partial correlations is obtained from the variance-covariance
matrix, which already gives us the cumulative effect. The dampening is already accounted for in matrix P.
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shock e = 1, as

cB = (I−P)−1P · 1 = P · 1 + P2 · 1 + P3 · 1 + . . . = T · 1− 1 , (9)

where the latter equality stems from Eq. (6). In this way we establish a direct link between

Bonacich centrality and the initial variance-covariance matrix, Ω, via its rescaling T.

To summarize, in this section we introduced three measures of centrality. Each measure

highlights a particular aspect of shock propagation. Degree centrality identifies the nodes

relevant for transmission of shocks to the immediate neighbors and for the first-order

effects of unit shock. Eigenvector centrality (and, more generally, p-eigenvector centrality

space) is relevant for describing the asymptotic distribution of shocks. Bonacich centrality

identifies the nodes hit by a cumulated shock.

4 Estimation procedure for time series

In Section 2 we have defined the network of partial correlations for an n-variate random

variable. Now we show how to construct partial correlations from an n-variate time series

process. This is done by modeling serial dependence possibly present in time series data

so that after filtering it out we obtain a serially independent n-variate random variable.

In our application we will use the financial return series. A well-known stylized fact

of the financial time series is volatility clustering. GARCH-type specifications (see, e.g.,

Bollerslev et al., 1992) are typically used to model conditional volatility.10 There are

many multivariate GARCH specifications available (see a survey of Bauwens et al., 2006),

but the most flexible multivariate models require estimating an infeasibly large number

of parameters. We select a parsimonious specification, the constant conditional correla-

tions (CCC) model by Bollerslev (1990).11 In the CCC model, the conditional means and

conditional variances are modeled separately for each dimension using univariate models,

and then correlations are estimated from the filtered series. Denote an n-variate time

10There are other models for conditional volatility, e.g., stochastic volatility models (Kim et al., 1998)
or recently introduced GAS models (Creal et al., 2013). Even within the class of ARCH models one may
choose a number of different volatility specifications and make various distributional assumptions (see, e.g.,
Bao et al., 2007). These choices are important in risk management and conditional volatility forecasting
(Diks et al., 2011), but not in our context.

11Another popular and more flexible specification is the dynamical conditional correlations (DCC) model
of Engle (2002). We have implemented this specification as well, but the daily changes in partial correlations
were very small relative to the overall average level. The estimates of the partial correlations we obtained
with the DCC model were similar to those obtained with the CCC model.
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series as Yt = (Y1,t, . . . , Yn,t)
′. Formally the model is specified as

Yt = µt +
√
Htεt, (10)

where µt = (µ1,t, . . . , µn,t)
′ is a specification of the conditional mean, Ht = diag(h1,t, . . . , hn,t)

is the conditional variance, and εt = (ε1,t, . . . , εn,t)
′ are the standardized innovations, as-

sumed to be serially independent, and identically normally distributed with each element

having zero mean and unit variance, but cross-sectionally dependent, with a constant cor-

relation matrix R. For simplicity, we assume ARMA(1,1) and GARCH(1,1) specifications

for the conditional means and variances, respectively,12 so that

µi,t = ci + φiYi,t−1 + θi(Yi,t−1 − µi,t−1) ,

hi,t = ωi + αi(Yi,t − µi,t)2 + γihi,t−1 .

The correlation matrix can now be estimated from the estimates of the standardized

innovations as R̂ = 1
T

∑T
t=1 ε̂tε̂

′
t, where ε̂i,t = (Yi,t − µ̂i,t)ĥ−1/2i,t and T is a sample size.

From the correlation matrix R̂, the matrix of partial correlations, P̂, is obtained using

Eq. (2). If T is small and the number of considered variables n is large, this procedure

may become unstable as R̂ may be ill-conditioned.13 In this case shrinkage or penalized

maximum likelihood estimators are handy. Given that our sample size is sufficiently large

relative to the matrix dimension, we do not experience this problem. However, as a

robustness check we implement a shrinkage-based glasso estimator by Peng et al. (2009)

and report these results in Appendix E.

5 Empirical application

The network setup described above may be applied in many different contexts. In this

section we use this setup to uncover the perceived network of the Australian banks and in-

12Formal model selection criteria, e.g., AIC, can be used to choose an optimal order for ARMA and
GARCH processes. Typically, parsimonious low-order models are selected. Normality of the standardized
innovations may also be relaxed (Lee and Long, 2009). Note that in our specific application, conditional
mean and volatility filtering are not important in the sense that the partial correlations obtained from the
raw returns are similar to those obtained after ARMA(1,1)-GARCH(1,1) filtering in the CCC model.

13The conditioning number for a symmetric positive definite matrix is defined as the ratio of its maximum
and minimum eigenvalues, k = λmax/λmin. In case of the large conditioning number, the matrix is said
to be ill-conditioned and the computation of its inverse is subject to large numerical errors (Belsey et al.,
1980).
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dustries. We use the term “perceived” to emphasize that our analysis is based solemnly on

the returns of publicly traded banks and sectors, and can reveal the network of connections

implied only by the market-driven return co-movements.

Our sample spans the period from 6 November 2000 to 22 August 2014 and was ob-

tained from Datastream with 3, 600 daily observations in total. We have identified 8

publicly traded banks in the most recent period: the “big four” (ANZ, CBA, NAB, West-

pac), two regional banks (Bank of Queensland, and Bendigo and Adelaide Bank) and two

large financial groups providing banking services among others (Suncorp and Macquarie

group). We also look at the index returns of two major financial sub-sectors other than

banking: Insurance and Real Estate. Additionally, we include 9 major sectors of the Aus-

tralian economy, i.e., Basic materials, Industrials and others. The sectoral classification

is based on the Industry Classification Benchmark and is provided by Datastream (see

Appendix B for details). Finally, we include the Datastream Asian market index, which

includes major Asian companies, given the region’s close links to the Australian economy.

Initially the CCC model was estimated using the full 2000-2014 sample of 3, 600 days.

Later we divided the sample into two subsamples of roughly equal lengths: “pre-2008” cov-

ering 2000-2007 with 1, 868 observations and “post-2008” covering 2008-2014 with 1, 732

observations. These may be thought of as pre-crisis and post-crisis subsamples, respec-

tively.

Appendix C reports the matrices of correlations, R̂, and partial correlations, P̂, for the

full sample. There are multiple instances when two entities with relatively high correlation

exhibit low partial correlation. For example, the correlation between NAB and Westpac

is 0.65, whereas the partial correlation is only 0.1, indicating that NAB and Westpac have

relatively strong indirect connections.

Figure 1 shows the reconstructed network of partial correlations. The thickness of the

edges corresponds to the strength of the partial correlations. For improved visibility, we

omit edges corresponding to partial correlations smaller than 0.075 by absolute value.14

The banks and other financial institutions are collected in the lower part of the graph. We

notice strong partial correlations between the big four banks and their links with other

banks, and with the financial and real economy sectors. Interestingly, the Macquarie group

acts as a link between the banking sector and the real economy and Asia. This is likely

14All negative entries were far below this threshold, so that all shown edges have positive weights.
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Figure 1: Network of partial correlations of the Australian banks and other sectors. Full
sample of 3, 600 days was used for estimation.
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due to the fact that Macquarie is the largest Australian investment bank, which provides

M&A advisory services and has a large presence in the Asian region. ANZ and Bank of

Queensland have strong direct links with the Real Estate subsector. Bank of Queensland

consistently reported large exposures concentrated in Real Estate.15 The regional banks,

Bank of Queensland and the Bendigo and Adelaide Bank, have a strong direct link. The

former is directly linked with NAB, while the latter is directly linked with the Macquarie

group and Suncorp.16 Suncorp operates both insurance and banking businesses, which

explains its links with the Insurance sector and other banks. The Industrials and Consumer

Services sectors seem to be in the center of the Australian economy. The Asian market

influences the Australian economy primarily through Basic materials, Oil & Gas, and

Consumer Services.17

The two upper panels in Figure 2 show the networks of partial correlations for pre-2008

and post-2008 subsamples. We notice that some connections have changed substantially

pre- and post-2008. Note that the estimates for subsamples are subject to a higher esti-

mation noise due to a smaller sample size compared to the full sample. Interestingly, the

interbank connections and connections between the banks and other sectors have increased

post-2008. At the same time we note a decrease in the central role of Basic Materials and

an increase in the central role of Industrials post-2008.

We suggested reasons for several strong links between the financial entities in the

network of partial correlations. The observed connections between sectors may also arise

from interdependencies induced by technological processes. For illustration purposes we

provide an example of an economic network capturing these interdependencies, namely

the network based on the flows of goods and services between the sectors. The two

lower panels of Figure 2 show the IO networks, which reflect the direct technological

requirements and are derived from the Input-Output tables for the tax years 2006–2007

and 2009–2010, respectively.18 These periods roughly correspond to the pre-2008 and

15BoQ large exposures to Property and Construction sectors were around 80% in 2011-2008 as reported
in their presentations to investors. Source: http://www.boq.com.au/shareholder_investor.htm

16Possible explanations for some of these links may stem from a proposed, but not realized, merger be-
tween the Bendigo and Adelaide Bank and BoQ in 2007 (source: http://www.boq.com.au/uploadedFiles/
BOQ_merger_proposal_Investor_Presentation.pdf) and the fact that the Bendigo and Adelaide Bank
acquired Macquarie Group’s margin lending portfolio in 2009 (source: https://www.macquarie.com/mgl/

com/news/2009/20090108a.htm).
17We also considered other major international markets such as the European and North American

markets. However, the trading hours of the Australian market and these international markets do not
overlap. As a result, in our network the international markets were strongly linked with the Asian market
and had negligible links with all the nodes of Australian economy.

18Source: Australian Bureau of Statistics, cat. no. 5209.0.55.001 - Australian National Accounts: Input-
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Figure 2: Evolution of the network of partial correlations (upper panels) and of the
Input-Output network (lower panels) of the Australian economy.

post-2008 subsamples of our primary data. The nodes in the networks are sectors of the

Australian economy that we matched closely to the Datastream sectoral classification used

for the partial correlation network. All banks are included in the Financials sector. The

IO network is directed and weighted, with an edge from sector A to sector B carrying the

weight equal to the dollar amount of sector A production required to produce a one dollar

output of sector B. Industrials is at the center of the IO network, as in the network of

perceived correlations based on the sector returns. The Financials sector is connected to

Output Tables, for the tax years 2006–2007, 2009–2010.
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Table 1: Centrality Measures for the Network of Partial Correlations.

R2 Degree Eigenvector Bonacich Bonacich Bonacich
full full full full pre 2008 post 2008

ANZ 0.660 1 1.074 4 1.000 1 23.481 1 13.212 2 32.294 3
Westpac 0.646 2 1.056 6 0.968 2 22.759 3 12.454 4 31.993 4
Industrials 0.621 4 1.363 1 0.967 3 23.478 2 12.111 7 40.957 1
NAB 0.618 5 1.063 5 0.932 4 21.993 4 11.319 10 31.947 5
CBA 0.609 6 0.995 8 0.906 5 21.333 5 12.362 6 29.240 6
Basic Materials 0.623 3 1.121 3 0.877 6 21.189 6 15.276 1 28.138 8
Consumer Svs 0.557 8 1.221 2 0.831 7 20.258 7 11.858 8 34.707 2
Oil & Gas 0.578 7 0.971 9 0.795 8 19.204 8 11.484 9 28.156 7
Insurance 0.490 9 1.010 7 0.743 9 17.975 9 12.494 3 23.976 10
Macquarie 0.469 10 0.851 10 0.713 10 17.031 10 10.238 11 23.117 11
Asia Market 0.451 11 0.793 13 0.665 11 15.993 11 9.161 13 24.890 9
Real Estate 0.395 12 0.813 11 0.615 12 14.818 12 9.679 12 19.196 15
Suncorp 0.377 13 0.740 17 0.591 13 14.135 13 8.888 14 18.485 16
Bank of Qlnd. 0.365 14 0.741 16 0.570 14 13.676 14 7.164 15 19.419 14
Bend&Ad.Bank 0.365 15 0.799 12 0.564 15 13.597 15 6.801 16 20.748 13
Utilities 0.350 17 0.766 15 0.543 16 13.210 16 6.680 17 21.128 12
Health Care 0.351 16 0.787 14 0.526 17 12.874 17 12.373 5 14.632 18
Consumer Gds 0.217 18 0.504 18 0.363 18 8.888 18 6.168 18 17.513 17
Technology 0.159 20 0.432 20 0.306 19 7.472 19 4.711 20 11.205 19
Telecom 0.167 19 0.464 19 0.304 20 7.453 20 5.472 19 9.764 20

Real estate, Industrials and Insurance. On both networks the Basic Materials sector is

linked with Oil & Gas and Industrials.19

In addition to graphical representations of the network of partial correlations, we com-

pute network-based centrality measures which help to identify the most important nodes.

Table 1 reports these measures for all economic entities. The first measure is R2 as de-

fined in (3), which is the proportion of variation in the returns explained by the returns

of all other entities in the network. The remaining measures are the degree centrality, the

eigenvector centrality,20 and the Bonacich centrality with α = 1, discussed in Section 3.

Next to each measure we report its ranking in the descending order. The rows are ordered

according to the eigenvector centrality for the full sample. All measures are reported for

the full sample, and for Bonacich centrality we additionally report the values for pre- and

19The input-output analysis has a long history in economics (see Leontief, 1987). There has been a recent
surge of interest in looking at an economy as a linked web of production units (see e.g., Acemoglu et al.,
2012; Carvalho, 2014) with an obvious connection to the input-output analysis and the network theory.
As our paper is focused on the network of partial correlations, we do not go beyond a simple illustration
of the IO network.

20The largest absolute eigenvalue is distant from the rest of the eigenvalues. (The three largest absolute
eigenvalues are λ1 = 0.95, λ2 = 0.68 and λ3 = −0.60.) Therefore, we focus only on the eigenvector
centrality as opposed to the p-eigenvector centrality space with p > 1. We normalize the eigenvector
corresponding to the largest absolute eigenvalue by fixing its largest component to 1.
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post-2008 samples (the other measures for these periods are reported in Appendix D).

We notice that the ranking for the full sample is similar for all the considered measures.

The eigenvector centrality and the Bonacich centrality measures have the closest ranking

similarity with only one different entry.

Using all four measures, ANZ seems to have the most central position. The big four

banks together with Industrials have the highest centrality using the full sample. This

indicates the importance of the banking sector in shock transmission. Interestingly, Mac-

quarie, which seems to be rather central visually on the full sample and especially post-2008

(Figures 1 and 2b), has moderate centrality measures. This is due to the relatively small

weights of its edges, i.e., relatively small partial correlations.

When we compare the pre- and post-2008 periods overall, we notice a significant in-

crease in the network effects. Indeed, the average R2 of all entities increases from 0.34

pre-2008 to 0.54 post-2008. Similarly, the average Bonacich centrality increases from 10

to 24. Interestingly, Basic Materials shows the highest centrality pre-2008, and Indus-

trials becomes the most central post-2008. The big four banks remain highly central in

both periods. Moreover, their levels of Bonacich centrality increase dramatically post-2008

indicating higher network effects of the banks.

Finally, let us briefly discuss the results based on the Peng et al. (2009) glasso method

reported in Appendix E. Due to shrinkage we notice substantially lower values of cor-

relations and somewhat reduced partial correlations in comparison to the baseline case.

However, the centrality-based ranking is very similar.

5.1 Policy examples

Suppose a policy-maker wishes to lower the total effect of a shock to the economic system in

the most effective way. We can measure the total effect of a unit exogenous shock affecting

all entities to any specific entity in the system with the Bonacich centrality measure. Using

the centrality measures in Table 1, it is easy to identify that ANZ is the most central in

the system (based on the full sample).

Let us assume that a policy-maker implements a set of measures reducing the partial

correlations of all entities connected with ANZ by 10 percent. We compute that, in this

case, the Bonacich centrality measure of ANZ will be reduced by 33 percent from about

23 to 15.3. Moreover, the average Bonacich centrality of all big four banks will be reduced
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by 31 percent from 22.4 to 15.4, while the average Bonacich centrality of the system will

be reduced by 24 percent from 16.5 to 12.5.

Now, let us check what will happen if a policy-maker were to focus on an important,

but less central entity, say the Macquarie group, and reduced its partial correlations by 10

percent. The Bonacich centrality of the Macquarie group would reduce by 23 percent, the

average Bonacich centrality of the big four banks would be reduced by 15 percent and the

average Bonacich centrality of the whole system would be reduced by 15 percent, which

is smaller compared to the optimal policy targeting the most central entity. Focusing on

the least central entity such as the Telecom sector and reducing all its connections by 10

percent would reduce the average Bonacich centrality of the system by only 3.5 percent.

It is important to mention that the policy examples considered above are rather stylized

and are given merely as an illustration of possible use for the discussed centrality measures.

We have only considered the benefits of the policy. However, the costs of reducing the

connections of a highly central entity may be substantially higher than the cost of reducing

the connections of a less central entity. The centrality measures along with the networks

of partial correlations may be used as complementary indicators guiding policy-makers.

6 Concluding remarks

In this paper we linked various methods for reconstructing the partial correlation networks,

established the connections between the theoretical network measures and principal com-

ponent analysis, and applied the methodology to reconstruct the implied networks of

partial correlations between the relative change in value of the Australian banks, other

domestic sectors, and international markets. We investigated the evolution of the networks

over time and computed network-based measures for the considered entities.

We found strong direct links between the big four Australian banks and their connec-

tion to the real economy via financial services. We demonstrated that the reconstructed

network may be somewhat explained by the IO network. A more formal comparison of

the perceived partial correlation network and directly observed networks (such as the IO

network or the network of interbank exposures) can be an interesting direction for further

research.
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APPENDIX

A Properties of Partial Correlations

This Appendix collects the results on partial correlations which are used in this paper;
most of them are mentioned in Section 2. Many results about partial correlations can be
found in Chapter 13 of Bühlmann and Van De Geer (2011), Chapter 17 of Hastie et al.
(2009) and Chapter 5 of Whittaker (2009). We selected here the results we need in this
paper and adopted them to our notation.

First, we reproduce the definition. Let X be the multivariate random variable with
elements X1, . . . , Xn. Let X∗ij|· denote the best linear approximation of variable Xi based
on all the variables except for Xi and Xj for any pair i, j.

Definition. The partial correlation coefficient between Xi and Xj denoted by ρij|· is de-
fined as the ordinary correlation coefficient between Xi −X∗ij|· and Xj −X∗ji|·.

Without loss of generality we can assume that all the elements of X have zero mean.
For the sake of notation simplicity, the proofs will be focused on random vectors X1

and X2. We denote ε12 = X1 − X∗12|· and ε21 = X2 − X∗21|· the elements of X1 and
X2 orthogonal to the space spanned by the remaining random variables X3, . . . , Xn. By
definition the partial correlation coefficient between X1 and X2 is

ρ12|· =
E(ε12ε21)√
E ε212

√
E ε221

.

A.1 Connection with Linear Regression

To get representation (1) we project X1 on all the remaining elements of X and also
project X2 on all the remaining elements of X (recall that in this appendix the variables
are already transformed to have zero mean):

X1 = β12X2 + β13X3 + · · ·+ β1nXn + ε1

X2 = β21X1 + β23X3 + · · ·+ β2nXn + ε2 .
(11)

We will assume that the elements of X are linearly independent and so the projection
errors ε1 and ε2 are not constant. The next result establishes the link between E ε212, the
variance of the projection error when X1 is projected on the space spanned by X3, . . . , Xn,
and E ε21, the variance of the projection error when X1 is projected on the space spanned
by X2, X3, . . . , Xn. The latter is called the conditional variance of X1 in the main text.

Lemma. Assume the orthogonality conditions E(ε1Xi) = 0 for all i 6= 1 and E(ε2Xi) = 0
for all i 6= 2. Then

E ε212 =
E ε21

1− β12β21
.

Proof. Using several times the orthogonality of ε12 to the space spanned by X3, . . . , Xn

and substituting X1 and X2 from (11), we obtain that

E ε212 = E(X1ε12) = E
(
(β12X2 + ε1)ε12

)
= β12 E(X2ε12) + E ε21 =

= β12 E
(
(β21X1 + ε2)ε12

)
+ E ε21 = β12β21 E ε212 + E ε21 .

At the last step we used E(ε2ε12) = 0 which holds due to the orthogonality conditions for
ε2. Note that ε12 = X1 −X∗12|· is a linear combination of X1, X3, . . . , Xn.
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The required result follows now from the equality derived above. Note that β12β21 6= 1,
as otherwise E ε21 = 0. But this would contradict the assumption of linear independence
of X1, . . . , Xn.

Proposition 2. Assume the orthogonality conditions E(ε1Xi) = 0 for all i 6= 1 and
E(ε2Xi) = 0 for all i 6= 2 in (11). Then

β12 = ρ12|·

√
E ε21
E ε21

= ρ12|·

√
Var(ε1)

Var(ε2)

Proof. Let’s compute E(ε1ε21). On the one hand, we can express ε1 from (11) and due to
orthogonality of ε21 to X3, . . . , Xn we get

E(ε1ε21) = E(X1ε21)− β12 E(X2ε21) .

On the other hand, ε21 = X2 − X∗21|· is a linear combination of X2, . . . , Xn and ε1 is

orthogonal to all these vectors. Hence, E(ε1ε21) = 0 and therefore

β12 =
E(X1ε21)

E(X2ε21)
=

E
(
(X∗12|· + ε12)ε21

)
E
(
(X∗21|· + ε21)ε21

) =
E(ε12ε21)

E ε221
= ρ12|·

√
E ε212
E ε221

,

where at the last step we used the definition of the partial correlation. The previous lemma
implies that the ratio of variances of ε12 and ε21 is the same as the ratio of variances of ε1
and ε2. It completes the proof.

From the last Proposition by symmetry we derive that

β12β21 = ρ212|· ⇔ ρ12|· = sign(β12)
√
β12β21

Since correlation coefficient is always between −1 and 1, it follows (see the previous
Lemma) that β12β21 < 1 and that E ε21 < E ε212.

These results hold for any i and j and allow us to establish a link between the ma-
trix of partial correlations, P, and the matrix of linear coefficients in system (1), B.
(Both matrices have zeros on the diagonal.) In the main text we defined the diago-
nal matrix DΣ = diag

{
Var(ε1), . . . ,Var(εn)

}
. The result of Proposition 2 implies that

B = D
1/2
Σ PD

−1/2
Σ . With this result we can directly obtain system (5) which played a

crucial role in our separation of the first-order effect of the shock from the total effect of
the shock.

A.2 Connection with Concentration Matrix

To obtain a useful characterization of partial correlation, we investigate the elements of
the concentration matrix K = Ω−1. Without loss of generality, we will focus only on the
first row and the first column of this matrix.

Let X denote the matrix corresponding to the multivariate random variable X. The
columns of X are the random vectors X1, . . . , Xn. Let X−1 denote the matrix whose
columns are the random vectors X2, . . . , Xn. Consider the first equality in (11), and write
it as X1 = X−1β + ε1, where β = (β12 · · · β1n)T . Using the orthogonality condition, we
obtain from the normal equations that

β = (E(XT
−1X−1))

−1 E(XT
−1X1) . (12)

The next result exploits the block structure of the variance-covariance matrix of X.
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Lemma. Variance-covariance matrix of X can be represented as follows

Ω = E(XTX) =

(
1 βT

0 I

)(
Var(ε1) 0

0 E(XT
−1X−1)

)(
1 0
β I

)
Proof. This can be checked by direct computation. For example, variance of X1 is

E(XT
1 X1) = E

(
(βTXT

−1 + εT1 )(X−1β + ε1)
)

= βT E(XT
−1X−1)β + Var(ε1)

which is exactly the upper left element from the right-hand side of the equality. Also, the
row vector of covariances of X1 with the remaining vectors is

E(XT
1 X−1) = E

(
(βTXT

−1 + εT1 )X−1
)

= E(βTXT
−1X−1)

which coincides with the upper right element of the right-hand side.

Using the decomposition of Ω derived in the previous Lemma we can express the
concentration matrix, K = Ω−1 in the block form as well:

Ω−1 =

(
1 0
β I

)−1( 1
Var(ε1)

0

0
(

E(XT
−1X−1)

)−1
)(

1 βT

0 I

)−1
=

=

(
1 0
−β I

)( 1
Var(ε1)

0

0
(

E(XT
−1X−1)

)−1
)(

1 −βT

0 I

)
=

=

(
1

Var(ε1)
− 1

Var(ε1)
βT

− 1
Var(ε1)

β 1
Var(ε1)

ββT +
(

E(XT
−1X−1)

)−1)

Studying the elements in the first row of this matrix we obtain the following results for
the concentration matrix. The upper left element, k11 = 1/Var(ε1). The second element
in the first row k12 = −β12k11 which using Proposition 2 can be rewritten as

k12 = −β12k11 = −ρ12|·

√
Var(ε1)

Var(ε2)
k11 = −ρ12|·

√
k11k22 .

Expressing the partial correlation from the equation we obtain an instance of (2). In
general, the following holds.

Proposition 3. The on-diagonal elements of the concentration matrix K are given by

kii =
1

Var(εi)
. (13)

The off-diagonal elements of the concentration matrix K are proportional to the negative
of the corresponding partial correlations. Namely, Eq. (2) holds

ρij|· =
−kij√
kiikjj

.

The last result in the matrix form is Eq. (4).

A.3 Connection with the Inverse of Correlation Matrix

We use the matrix notation. Let DΩ be the diagonal matrix composed of the diagonal
elements of Ω. Then, by definition, the correlation matrix of X, denoted as R can be
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written as R = D
−1/2
Ω ΩD

−1/2
Ω . Therefore,

R−1 = D
1/2
Ω KD

1/2
Ω .

Thus, (i, j) element of matrix R−1 is kij
√

Var(Xi)
√

Var(Xj). With such proportionality
to the elements of K, the partial correlations can also be computed if in Eq. (2) the
elements of K are substituted by the elements of R−1. Using (13) we find that the
diagonal elements of R−1 are Var(Xi)/Var(εi).

A.4 Spectrum of Matrix of Partial Correlations.

Interpretation of the network of partial correlations given in section 2.1 and discussion in
section 3 relies on Assumption 1. This Assumption says that, ρ(P), the spectral radius
(i.e., the largest absolute eigenvalue) of matrix P is less than 1.

It is well known (see, e.g., Meyer, 2000, page 618) that this Assumption is equivalent
to each of the following:

• the convergence of a so-called Neumann series,

I + P + P2 + . . . ,

which then is equal to (I−P)−1.

• limk→∞Pk = 0, which is a zero-matrix.

The former fact is used in deriving Eq. (6), and thus this Assumption is crucial for our
interpretation. The latter fact is mentioned in footnote 4.

While Assumption 1 is often made in the literature on partial correlations (see e.g.,
Malioutov et al., 2006), it is important to ask when is this Assumption 1 satisfied. The
following general result can be used to derive sufficient conditions.

Proposition 4. For square matrix A it holds that ρ(A) ≤ ‖A‖ for every matrix norm.

The elementary proof of this result can be found in page 497 of Meyer (2000). Since
the largest absolute row sum, maxi

∑
j |aij |, is a matrix norm, we can conclude that when

all the absolute row sums in P are less than 1, Assumption 1 is satisfied.
Other sufficient conditions can be found, using the fact that P is the matrix of partial

correlations.

Lemma. All eigenvalues of the matrix of partial correlations are less than 1.

Proof. In Proposition 1 we establish a one-to-one relation between eigenvalues of P and
the eigenvalues of a certain variance-covariance matrix. Namely, if λ is the eigenvalue
of the former matrix, 1/(1 − λ) is the eigenvalue of the latter matrix. Since variance-
covariance matrices are positive-definite, all their eigenvalues are positive. It then follows
that all eigenvalues of P are less than 1.

With this Lemma we see that Assumption 1 is equivalent to the fact that all the
eigenvalues of P are larger than −1, i.e., λi > −1 for every i. In other words, whenever
the smallest eigenvalue of P is larger than −1, Assumption 1 holds. Moreover, we can also
derive the following result.

Proposition 5. When P is non-negative matrix (i.e., all partial correlations are non-
negative), its spectral radius is less than 1.

Indeed, for the non-negative matrices the Perron-Frobenius theory can be applied. It
contains the result (page 670 in Meyer, 2000) that the spectrum of P is reached on one of
the eigenvalues of P. Therefore, the leading absolute eigenvalue of P is positive.
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B Industry Classification Benchmark

We adopt the following sectoral classification from Datastream which is based on the In-
dustry Classification Benchmark:

• Oil & Gas
– Oil and Gas Producers
– Oil Equipment, Services and Distribution

• Basic Materials
– Chemicals
– Basic Resources including Mining and Industries Metals

• Industrials
– Construction and Materials
– Industrial Goods and Services including transportation and business support

• Consumer Goods
– Food and Beverages
– Personal and Household Goods including Home Construction

• Health Care
– Health Care Equipment and Services
– Pharmaceuticals and Biotechnology

• Consumer Services
– Retail
– Media
– Travel and Leisure

• Telecommunications
• Utilities

– Electricity
– Gas, Water and Multi-Utilities

• Technology
– Software and Computer Services

• Financials
– Banks
– Insurance
– Real estate including real estate investment and services and trusts
– Financial services including financial groups

The Financials sector is considered in more details on the network of partial correla-
tions. In particular, we separately consider Insurance and Real estate sub-sectors. The
Banks and Financial services are zoomed in even further and are represented by big-four
banks (ANZ, CBA, NAB, Westpac) and two regional banks (Bank of Queensland, and
Bendigo and Adelaide Bank), by two large financial groups (Suncorp and Macquarie),
respectively.
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C Correlations and partial correlations

Tables 2 and 3 report matrices of correlations and partial correlations, respectively, for the
full sample. For better readability, the matrix is divided into several blocks corresponding
to correlations and cross-correlations between the banks, other sectors of the Australian
economy, and the Asian market.

Table 2: Matrix of correlations.
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NAB 1 .65 .71 .68 .55 .47 .48 .46 .49 .48 .43 .44 .53 .25 .36 .50 .26 .39 .23 .45
Westpac .65 1 .73 .70 .49 .49 .46 .45 .49 .44 .41 .44 .52 .27 .40 .50 .25 .40 .21 .42
ANZ .71 .73 1 .68 .53 .47 .47 .46 .50 .49 .44 .45 .52 .25 .36 .49 .24 .38 .22 .44
CBA .68 .70 .68 1 .49 .47 .45 .46 .50 .45 .41 .42 .54 .27 .37 .49 .25 .38 .23 .42
Macquarie .55 .49 .53 .49 1 .47 .42 .44 .50 .45 .45 .50 .55 .25 .36 .47 .21 .36 .25 .48
Suncorp .47 .49 .47 .47 .47 1 .37 .40 .48 .37 .39 .39 .48 .27 .34 .44 .22 .33 .21 .38
Bank of Qlnd. .48 .46 .47 .45 .42 .37 1 .46 .42 .42 .37 .39 .46 .25 .31 .42 .19 .34 .23 .36
Bend&Ad.Bank .46 .45 .46 .46 .44 .40 .46 1 .44 .38 .35 .39 .46 .26 .31 .39 .23 .36 .21 .36
Insurance .49 .49 .50 .50 .50 .48 .42 .44 1 .46 .46 .47 .58 .34 .44 .57 .27 .41 .25 .46
Real Estate .48 .44 .49 .45 .45 .37 .42 .38 .46 1 .39 .44 .52 .27 .38 .46 .24 .39 .26 .40
Oil & Gas .43 .41 .44 .41 .45 .39 .37 .35 .46 .39 1 .72 .58 .31 .39 .54 .24 .45 .31 .54
Basic Materials .44 .44 .45 .42 .50 .39 .39 .39 .47 .44 .72 1 .63 .31 .38 .53 .23 .46 .34 .58
Industrials .53 .52 .52 .54 .55 .48 .46 .46 .58 .52 .58 .63 1 .39 .49 .63 .29 .50 .33 .53
Consumer Gds .25 .27 .25 .27 .25 .27 .25 .26 .34 .27 .31 .31 .39 1 .31 .41 .20 .28 .19 .27
Health Care .36 .40 .36 .37 .36 .34 .31 .31 .44 .38 .39 .38 .49 .31 1 .49 .30 .40 .25 .34
Consumer Svs .50 .50 .49 .49 .47 .44 .42 .39 .57 .46 .54 .53 .63 .41 .49 1 .36 .44 .30 .52
Telecom .26 .25 .24 .25 .21 .22 .19 .23 .27 .24 .24 .23 .29 .20 .30 .36 1 .26 .16 .26
Utilities .39 .40 .38 .38 .36 .33 .34 .36 .41 .39 .45 .46 .50 .28 .40 .44 .26 1 .26 .37
Technology .23 .21 .22 .23 .25 .21 .23 .21 .25 .26 .31 .34 .33 .19 .25 .30 .16 .26 1 .26
Asia Market .45 .42 .44 .42 .48 .38 .36 .36 .46 .40 .54 .58 .53 .27 .34 .52 .26 .37 .26 1
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Table 3: Matrix of partial correlations.
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NAB 0 .10 .27 .24 .14 .04 .08 .04 -.01 .06 .02 -.02 .02 -.03 -.01 .04 .03 .02 .00 .04
Westpac .10 0 .37 .29 -.01 .11 .05 .02 .00 -.03 -.04 .05 .00 .00 .08 .05 -.01 .05 -.04 .00
ANZ .27 .37 0 .15 .07 .01 .05 .04 .04 .11 .04 .00 .00 -.02 -.03 .00 -.01 -.02 -.01 .03
CBA .24 .29 .15 0 .01 .03 .02 .06 .07 .01 .00 -.03 .07 .01 .00 .03 .02 .01 .01 .00
Macquarie .14 -.01 .07 .01 0 .12 .04 .08 .08 .07 .00 .09 .10 -.02 .02 .01 -.04 -.02 .01 .10
Suncorp .04 .11 .01 .03 .12 0 .02 .08 .12 .01 .04 -.02 .06 .04 .01 .02 .02 .00 .00 .01
Bank of Qlnd. .08 .05 .05 .02 .04 .02 0 .18 .04 .09 .01 .01 .05 .02 -.01 .04 -.02 .02 .04 .00
Bend&Ad.Bank .04 .02 .04 .06 .08 .08 .18 0 .07 .02 -.02 .02 .06 .04 -.01 -.04 .04 .07 .01 .02
Insurance -.01 .00 .04 .07 .08 .12 .04 .07 0 .07 .03 .00 .10 .05 .09 .15 .01 .04 -.01 .06
Real Estate .06 -.03 .11 .01 .07 .01 .09 .02 .07 0 -.03 .05 .10 .01 .07 .04 .03 .07 .04 .03
Oil & Gas .02 -.04 .04 .00 .00 .04 .01 -.02 .03 -.03 0 .46 .07 .01 .05 .09 .00 .08 .03 .12
Basic Materials -.02 .05 .00 -.03 .09 -.02 .01 .02 .00 .05 .46 0 .17 .02 -.03 .03 -.04 .09 .09 .20
Industrials .02 .00 .00 .07 .10 .06 .05 .06 .10 .10 .07 .17 0 .10 .10 .16 .00 .10 .06 .05
Consumer Gds -.03 .00 -.02 .01 -.02 .04 .02 .04 .05 .01 .01 .02 .10 0 .07 .15 .03 .04 .02 -.01
Health Care -.01 .08 -.03 .00 .02 .01 -.01 -.01 .09 .07 .05 -.03 .10 .07 0 .13 .11 .11 .05 -.02
Consumer Svs .04 .05 .00 .03 .01 .02 .04 -.04 .15 .04 .09 .03 .16 .15 .13 0 .14 .02 .04 .13
Telecom .03 -.01 -.01 .02 -.04 .02 -.02 .04 .01 .03 .00 -.04 .00 .03 .11 .14 0 .06 .02 .05
Utilities .02 .05 -.02 .01 -.02 .00 .02 .07 .04 .07 .08 .09 .10 .04 .11 .02 .06 0 .04 -.01
Technology .00 -.04 -.01 .01 .01 .00 .04 .01 -.01 .04 .03 .09 .06 .02 .05 .04 .02 .04 0 .01
Asia Market .04 .00 .03 .00 .10 .01 .00 .02 .06 .03 .12 .20 .05 -.01 -.02 .13 .05 -.01 .01 0
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D Centrality measures of pre and post 2008 samples

Tables 4 and 5 show centrality measures of pre and post 2008 samples, respectively. Next to
each measure we report the ranking of the corresponding entity according to this measure.

Table 4: Centrality Measures for the Network of Partial Correlations based on pre 2008
sample.

R2 Degree Eigenvector Bonacich

Basic Materials 0.553 1 1.377 1 1.000 1 15.276 1
ANZ 0.532 2 1.015 7 0.889 2 13.212 2
Westpac 0.510 3 0.955 8 0.839 3 12.454 4
CBA 0.474 4 1.041 6 0.824 4 12.362 6
Insurance 0.427 8 1.098 3 0.819 5 12.494 3
Health Care 0.431 6 1.109 2 0.807 6 12.373 5
Industrials 0.417 10 1.068 4 0.790 7 12.111 7
Consumer Svs 0.421 9 1.063 5 0.776 8 11.858 8
Oil & Gas 0.435 5 0.849 11 0.761 9 11.484 9
NAB 0.429 7 0.888 9 0.758 10 11.319 10
Macquarie 0.344 11 0.811 12 0.676 11 10.238 11
Real Estate 0.315 12 0.857 10 0.633 12 9.679 12
Asia Market 0.309 13 0.712 14 0.607 13 9.161 13
Suncorp 0.274 14 0.784 13 0.584 14 8.888 14
Bank of Qlnd. 0.203 15 0.661 15 0.467 15 7.164 15
Bend&Ad.Bank 0.193 17 0.639 16 0.442 16 6.801 16
Utilities 0.194 16 0.593 17 0.435 17 6.680 17
Consumer Gds 0.172 18 0.506 18 0.404 18 6.168 18
Telecom 0.151 19 0.505 19 0.357 19 5.472 19
Technology 0.111 20 0.415 20 0.306 20 4.711 20
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Table 5: Centrality Measures for the Network of Partial Correlations based on post 2008
sample.

R2 Degree Eigenvector Bonacich

Industrials 0.776 1 1.618 1 1.000 1 40.957 1
Consumer Svs 0.719 2 1.442 2 0.844 2 34.707 2
ANZ 0.714 3 1.092 4 0.801 3 32.294 3
Westpac 0.709 4 1.059 5 0.793 4 31.993 4
NAB 0.702 5 1.126 3 0.790 5 31.947 5
CBA 0.669 8 0.911 7 0.725 6 29.240 6
Basic Materials 0.685 6 0.886 8 0.693 7 28.138 8
Oil & Gas 0.677 7 0.992 6 0.692 8 28.156 7
Asia Market 0.581 9 0.848 11 0.613 9 24.890 9
Insurance 0.548 10 0.882 9 0.587 10 23.976 10
Macquarie 0.542 11 0.748 13 0.571 11 23.117 11
Utilities 0.502 12 0.822 12 0.514 12 21.128 12
Bend.&Ad.Bank 0.488 13 0.855 10 0.508 13 20.748 13
Bank of Qlnd. 0.450 14 0.691 15 0.477 14 19.419 14
Real Estate 0.436 15 0.714 14 0.470 15 19.196 15
Suncorp 0.425 17 0.658 16 0.455 16 18.485 16
Consumer Gds 0.433 16 0.652 17 0.425 17 17.513 17
Health Care 0.344 18 0.602 18 0.354 18 14.632 18
Technology 0.235 19 0.433 19 0.272 19 11.205 19
Telecom 0.198 20 0.421 20 0.235 20 9.764 20
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E Glasso-based estimates and centrality measures

As a robustness check we estimated the matrices of correlations and partial correlations
using the glasso method of Peng et al. (2009). The glasso method exploits the relationship
between partial correlations and the system of regression equations in Eq. (1) shrinking
the parameters towards zero. The methods relies heavily on the choice of regularization
parameter. We use rotation information criterion to choose of the latter. The estimation
was implemented in R using package ‘huge’.

Tables 6 and 7 report matrices of correlations and partial correlations, respectively,
for the full sample. In addition we also report the centrality measures based on the glasso
method in Table 8.

Table 6: Matrix of correlations using glasso method.
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NAB 1 .54 .59 .56 .45 .37 .38 .36 .39 .38 .34 .35 .43 .19 .28 .40 .17 .29 .16 .35
Westpac .54 1 .62 .58 .39 .39 .36 .35 .39 .34 .33 .34 .42 .19 .31 .40 .16 .30 .15 .32
ANZ .59 .62 1 .56 .42 .37 .37 .36 .40 .39 .34 .35 .42 .19 .28 .39 .16 .29 .16 .34
CBA .56 .58 .56 1 .39 .37 .35 .36 .40 .35 .32 .33 .43 .19 .28 .39 .17 .29 .15 .32
Macquarie .45 .39 .42 .39 1 .37 .32 .34 .39 .35 .35 .39 .44 .19 .26 .37 .15 .27 .16 .37
Suncorp .37 .39 .37 .37 .37 1 .27 .31 .38 .28 .29 .30 .38 .18 .24 .34 .14 .24 .13 .28
Bank of Qlnd. .38 .36 .37 .35 .32 .27 1 .36 .33 .32 .27 .29 .36 .16 .22 .33 .13 .25 .15 .27
Bend&Ad.Bank .36 .35 .36 .36 .34 .31 .36 1 .34 .28 .27 .29 .36 .17 .22 .30 .14 .27 .13 .27
Insurance .39 .39 .40 .40 .39 .38 .33 .34 1 .36 .36 .37 .47 .24 .34 .46 .19 .32 .17 .36
Real Estate .38 .34 .39 .35 .35 .28 .32 .28 .36 1 .31 .34 .42 .18 .29 .36 .16 .30 .17 .31
Oil & Gas .34 .33 .34 .32 .35 .29 .27 .27 .36 .31 1 .60 .47 .22 .30 .43 .16 .35 .22 .44
Basic Materials .35 .34 .35 .33 .39 .30 .29 .29 .37 .34 .60 1 .51 .22 .29 .43 .17 .36 .24 .47
Industrials .43 .42 .42 .43 .44 .38 .36 .36 .47 .42 .47 .51 1 .30 .38 .52 .20 .40 .24 .43
Consumer Gds .19 .19 .19 .19 .19 .18 .16 .17 .24 .18 .22 .22 .30 1 .22 .31 .12 .20 .11 .19
Health Care .28 .31 .28 .28 .26 .24 .22 .22 .34 .29 .30 .29 .38 .22 1 .39 .21 .30 .16 .26
Consumer Svs .40 .40 .39 .39 .37 .34 .33 .30 .46 .36 .43 .43 .52 .31 .39 1 .26 .34 .21 .42
Telecom .17 .16 .16 .17 .15 .14 .13 .14 .19 .16 .16 .17 .20 .12 .21 .26 1 .17 .08 .17
Utilities .29 .30 .29 .29 .27 .24 .25 .27 .32 .30 .35 .36 .40 .20 .30 .34 .17 1 .17 .27
Technology .16 .15 .16 .15 .16 .13 .15 .13 .17 .17 .22 .24 .24 .11 .16 .21 .08 .17 1 .17
Asia Market .35 .32 .34 .32 .37 .28 .27 .27 .36 .31 .44 .47 .43 .19 .26 .42 .17 .27 .17 1
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Table 7: Matrix of partial correlations using glasso method.
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NAB 0 .12 .23 .20 .12 .05 .08 .04 .01 .06 .01 .00 .02 .00 .00 .04 .01 .01 .00 .04
Westpac .12 0 .30 .25 .01 .10 .05 .03 .02 .00 .00 .02 .02 .00 .06 .05 .00 .04 .00 .00
ANZ .23 .30 0 .15 .07 .03 .05 .04 .04 .09 .02 .00 .01 .00 .00 .00 .00 .00 .00 .03
CBA .20 .25 .15 0 .02 .04 .03 .06 .06 .02 .00 .00 .06 .00 .00 .03 .01 .01 .00 .00
Macquarie .12 .01 .07 .02 0 .10 .04 .07 .07 .07 .01 .08 .09 .00 .00 .02 .00 .00 .00 .09
Suncorp .05 .10 .03 .04 .10 0 .02 .07 .11 .01 .03 .00 .06 .02 .01 .03 .00 .00 .00 .02
Bank of Qlnd. .08 .05 .05 .03 .04 .02 0 .15 .04 .08 .01 .02 .05 .00 .00 .04 .00 .02 .03 .01
Bend&Ad.Bank .04 .03 .04 .06 .07 .07 .15 0 .06 .03 .00 .02 .05 .02 .00 .00 .02 .06 .00 .01
Insurance .01 .02 .04 .06 .07 .11 .04 .06 0 .07 .03 .01 .10 .04 .09 .13 .02 .04 .00 .05
Real Estate .06 .00 .09 .02 .07 .01 .08 .03 .07 0 .00 .04 .10 .00 .06 .04 .01 .06 .03 .03
Oil & Gas .01 .00 .02 .00 .01 .03 .01 .00 .03 .00 0 .37 .08 .01 .03 .09 .00 .08 .04 .12
Basic Materials .00 .02 .00 .00 .08 .00 .02 .02 .01 .04 .37 0 .15 .02 .00 .04 .00 .08 .08 .18
Industrials .02 .02 .01 .06 .09 .06 .05 .05 .10 .10 .08 .15 0 .09 .09 .14 .01 .10 .06 .06
Consumer Gds .00 .00 .00 .00 .00 .02 .00 .02 .04 .00 .01 .02 .09 0 .06 .13 .01 .03 .00 .00
Health Care .00 .06 .00 .00 .00 .01 .00 .00 .09 .06 .03 .00 .09 .06 0 .12 .09 .09 .04 .00
Consumer Svs .04 .05 .00 .03 .02 .03 .04 .00 .13 .04 .09 .04 .14 .13 .12 0 .12 .03 .04 .11
Telecom .01 .00 .00 .01 .00 .00 .00 .02 .02 .01 .00 .00 .01 .01 .09 .12 0 .04 .00 .03
Utilities .01 .04 .00 .01 .00 .00 .02 .06 .04 .06 .08 .08 .10 .03 .09 .03 .04 0 .03 .00
Technology .00 .00 .00 .00 .00 .00 .03 .00 .00 .03 .04 .08 .06 .00 .04 .04 .00 .03 0 .00
Asia Market .04 .00 .03 .00 .09 .02 .01 .01 .05 .03 .12 .18 .06 .00 .00 .11 .03 .00 .00 0
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Table 8: Centrality Measures for the Network of Partial Correlations using glasso
method.

R2 Degree Eigenvector Bonacich Bonacich Bonacich
full full full full pre 2008 post 2008

Industrials 0.496 3 1.322 1 1.000 1 14.478 1 7.953 5 21.904 1
ANZ 0.518 1 1.063 4 0.993 2 13.900 2 8.335 2 17.743 4
Westpac 0.504 2 1.034 6 0.963 3 13.490 3 7.789 7 17.587 5
NAB 0.486 4 1.042 5 0.949 4 13.329 4 7.264 10 17.795 3
CBA 0.476 6 0.966 8 0.922 5 12.907 5 7.878 6 16.549 6
Basic Materials 0.479 5 1.083 3 0.876 6 12.622 6 9.864 1 15.523 7
Consumer Svs 0.434 8 1.191 2 0.868 7 12.617 7 7.746 8 19.306 2
Oil & Gas 0.437 7 0.938 9 0.804 8 11.546 8 7.394 9 15.466 8
Insurance 0.375 9 0.986 7 0.787 9 11.317 9 8.219 3 14.250 10
Macquarie 0.355 10 0.871 10 0.756 10 10.744 10 6.689 11 13.730 11
Asia Market 0.338 11 0.783 11 0.698 11 9.978 11 5.895 13 14.558 9
Real Estate 0.289 12 0.781 12 0.652 12 9.328 12 6.264 12 11.500 15
Suncorp 0.275 13 0.709 17 0.624 13 8.862 13 5.689 14 11.105 16
Bank of Qlnd. 0.264 14 0.714 16 0.601 14 8.563 14 4.434 15 11.677 14
Bend&Ad.Bank 0.262 15 0.740 14 0.595 15 8.509 15 4.174 16 12.449 13
Utilities 0.249 16 0.733 15 0.570 16 8.250 16 4.102 17 12.544 12
Health Care 0.247 17 0.742 13 0.552 17 8.035 17 8.105 4 8.754 18
Consumer Gds 0.135 18 0.440 18 0.371 18 5.357 18 3.762 18 10.414 17
Technology 0.090 20 0.352 20 0.299 19 4.310 19 2.611 20 6.653 19
Telecom 0.094 19 0.380 19 0.295 20 4.283 20 3.232 19 5.582 20
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