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ABSTRACT. Phylogenetics has seen an steady increase in substitution model com-
plexity, which requires increasing amounts of computational power to compute
likelihoods. This model complexity motivates strategies to approximate the likeli-
hood functions for branch length optimization and Bayesian sampling. In this pa-
per, we develop an approximation to the one-dimensional likelihood function as
parametrized by a single branch length. This new method uses a four-parameter
surrogate function abstracted from the simplest phylogenetic likelihood function,
the binary symmetric model. We show that it offers a surrogate that can be fit over
a variety of branch lengths, that it is applicable to a wide variety of models and
trees, and that it can be used effectively as a proposal mechanism for Bayesian
sampling. The method is implemented as a stand-alone open-source C library
for calling from phylogenetics algorithms; it has proven essential for good perfor-
mance of our online phylogenetic algorithm sts.

1. INTRODUCTION

The increasing availability of large molecular sequence data sets poses a chal-
lenge for current phylogenetic algorithms. At the same time, phylogenetic substi-
tution models are becoming more realistic and consequently, more complex (Lar-
tillot and Philippe, 2004; Zoller and Schneider, 2012; Groussin et al., 2013; Wang
et al., 2014). The combination of a large and increasing amount of phylogenetic
likelihood calculation along with increasing complexity of models motivates re-
search into useful approximations to the phylogenetic likelihood function.

One simple opportunity for efficiency improvement is in optimization of, or
sampling from, the likelihood function as parametrized by a single branch length
while fixing other parameters. In this case the likelihood function is simply a func-
tion that takes a non-negative real input and gives out another real number. One
common approach for numerical maximization of such functions ` is to sample an
` at a number of points, fit a simple curve to those points, and then use the fit as
an approximation to `. We will call ` the original function and the fitted function
f the surrogate function. Such an approach is useful if the original function is
expensive to evaluate, but the surrogate function can be quickly fit to the sample
points and evaluated. It is already being used implicitly in phylogenetics by infer-
ence programs that use Brent’s method (Brent, 1973) for likelihood maximization,
a method which effectively uses linear interpolation via the secant method. Recent
work by Aberer et al. (2016) shows that proposals built using common probability
distribution functions (PDFs) as surrogates, in particular the Γ distribution, can
have high acceptance rates. Bayesian statistics in general has benefited from the
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use of likelihood function approximations, such as for variational analysis (Wain-
wright and Jordan, 2008).

Although known functions can provide useful surrogates in phylogenetics, one
might desire a class of surrogate functions that is specialized to the task. Indeed,
phylogenetic likelihood functions parameterized by a single branch length have
special characteristics: they asymptote as the branch length becomes long, and
sometimes achieve infinite slope as the branch length becomes short. Neither of
these features can be true for any polynomial, nor are they true for PDFs of com-
mon distribution functions.

In this paper, we show that a slight generalization of the likelihood function for
the binary symmetric model (BSM) on a two-taxon tree can serve as a useful sur-
rogate function for likelihood functions parameterized by branch lengths. We call
this surrogate the lcfit function, short for “likelihood curve fit.” With only four pa-
rameters, it can be easily and efficiently fit in a least-squares sense with standard
algorithms; even more robust fitting can be achieved using the ML branch length
and corresponding second derivative. We show via experiments with simulated
and real data that it is readily fit and does a good job of approximating even com-
plex models, making it a useful tool when those models are expensive to evaluate.
Our code to use lcfit is available as an open-source C library.

2. RESULTS

2.1. Surrogate formula and fitting.
The lcfit surrogate function f evaluated at branch length t is

(1) f(c,m, r, b; t) = c log[(1 + e−r(t+b))/2] +m log[(1− e−r(t+b))/2]

for any positive values of the lcfit coefficients c,m, r, and non-negative b. It can be
considered as an abstract surrogate function that takes a set of shapes resembling
those of phylogenetic likelihood curves (Fig. 1). However, when b is zero this
function is the log likelihood function for the binary symmetric model (BSM; see,
e.g., Semple and Steel, 2003) where c is the number of constant sites, m is the
number of substituted sites, and r is the substitution rate. The inclusion of the b
term simply serves to truncate the likelihood function on the left, which is helpful
in fitting likelihood functions for trees with more than two taxa. Indeed, without
truncation the limit of f as branch lengths go to 0 is always negative infinity; this
does not typically make for a good fit to likelihood functions parameterized by
branches of non-trivial phylogenetic trees. As the branch length becomes long, f
approaches an asymptote of −(c+m) log(2).

We will assume that r > 0 and b ≥ 0, so that e−r(t+b) as a function of non-
negative t goes from some positive value down to zero. The maximum of the log
likelihood function for this setting is

(2) t0 = −b+ log[(c+m)/(c−m)]/r.

This has a finite real solution exactly when c > m. In the BSM interpretation this
means that the number of constant sites strictly exceeds the number of substituted
sites. Other characteristics of the lcfit function f are easily derived, such as the
second derivative at the maximum, and the inflection point when it exists (see
Supplement for formulas and derivations). Using such formulas we have found it
useful in some cases to re-parameterize f in terms of the original c, m, f ’s maxi-
mum t0, and the second derivative at this maximum value f ′′(t0).
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FIGURE 1. How each of the four parameters changes the shape
of our surrogate function f defined in (1).

Briefly, our fitting methods combine two strategies to fit the parameters of the
lcfit function (details provided in the Supplement). Both use least-squares fitting
of sampled branch lengths and their likelihoods. The first strategy (lcfit2) applies
when the maximum likelihood branch length is positive, and uses the second de-
rivative at this branch length to eliminate two parameters so that only two pa-
rameters need to be fit. The second strategy (lcfit4) simply fits the lcfit parameters
using least-squares directly.

We can simply multiply an lcfit curve by a branch length prior to get an ap-
proximate (unnormalized) PDF. For sampling from this lcfit PDF we have used a
simple rejection sampling strategy with an exponential proposal distribution. Al-
though this may require many proposals for an acceptance for certain lcfit shapes,
individual lcfit evaluations are computationally cheap so we have not found this
to be a significant burden in practice.

C library code with unit tests, continuous testing, simulation framework, and
documentation is available at https://github.com/matsengrp/lcfit.

2.2. Performance. We obtain slightly better results than Aberer et al. (2016) in
terms of acceptance rate for branch length proposals using their benchmarking

https://github.com/matsengrp/lcfit
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FIGURE 2. Expected acceptance rate for maximum-likelihood fits
of gamma, Weibull, and lcfit distributions versus coefficient of
variation of sampled single-branch-length posterior distributions
for 12 datasets tested by Aberer et al. (2016). Fit parameters for
the gamma and Weibull distributions were obtained directly from
data provided by Aberer et al. (2016); those results reproduced
here for comparison to lcfit.

strategy (Fig. 2). Briefly, we re-used their acceptance rate results for their Γ and
Weibull proposals and used the same trees and likelihoods to compute the lcfit
surrogate function (see Supplementary Methods for details). In terms of compu-
tational time, both our method and the method of Aberer et al. (2016) require the
maximum of the likelihood function to be found, along with the second deriva-
tive. This computational effort dominates the required effort, and thus they are
approximately equal in terms of computational cost.

We then performed simulation to explore how well the lcfit surrogate fits a
broader range of models. To do so, we simulated data under a variety of mod-
els, and fit lcfit to the resulting likelihood curves under the same models. We
quantified the divergence between the two curves using Kullback-Leibler (KL) di-
vergence. We found that KL divergence for complex models is similar to KL di-
vergence for data simulated under binary model (Fig. 3). Surprisingly, we found
that lcfit performance by this metric was worse for variants of the binary model
(e.g. the non-symmetric binary model or a mixture of rates) than for more complex
models.

3. DISCUSSION

In this paper we present lcfit, the first surrogate function specialized to the case
of one-dimensional phylogenetic likelihood functions, and how it can be useful.
Our work shares goals with those of Aberer et al. (2016), however there are sev-
eral aspects of our framework that make it appealing. This previous work uses
several standard probability distributions as surrogate functions for posteriors. In
particular, they fit normal, lognormal, Weibull, and Γ distributions to approximate
per-branch posterior distributions in order to obtain efficient proposals. With the
best performing of these distributions (typically Γ) they obtain high acceptance
rates. However, there are inherent limitations using standard distributions. For
example, the Γ and Weibull have two different shapes, depending on if their shape
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(B) Discretized Gamma

FIGURE 3. Estimated Kullback-Leibler divergence from the orig-
inal likelihood function to the surrogate function. Simulations
done using (a) uniform rates across sites and (b) discretized
Gamma distributed rates across sites (4 categories, α = 0.2).
Branch lengths are either drawn from an exponential with mean
either µ = 0.1 or µ = 0.01. See Table S1 for a list of model name
abbreviations. Some outlier points excluded for clarity (Table S2).

parameter is greater and less than one; when the shape parameter is greater than
one, the value at zero is zero, and when it is less than one then the first derivative
at zero is negative. Neither of these need hold for phylogenetic likelihood curves
or posteriors. Indeed, likelihood curves for internal branches are typically nonzero
at zero and have a nonzero modes, for example, see Fig. 1c of Aberer et al. (2016).
The truncated normal can take this shape, but its symmetry makes it a bad choice
in this setting. In addition, lcfit matches real per-branch likelihoods by enabling
a nonzero asymptote, whereas the Aberer et al. (2016) surrogates are all zero at
infinity.

In addition to theoretical advantages of the lcfit framework, there are several
practical advantages. Aberer et al. (2016) develop a fitting procedure using a lin-
ear relationship between the second derivative of the likelihood function and the
standard deviation of the posterior density of the branch length. However, to use
this relationship the parameters of this linear relationship must be inferred. Be-
cause it is inefficient to infer these parameters on the fly, Aberer et al. (2016) use
consensus values and a somewhat complex tuning procedure, whereas in most
cases we simply fit two coefficients using standard least-squares methods. We
also note that lcfit is implemented as a stand-alone library for incorporation into
other software, whereas the independence sampler of Aberer et al. (2016) is baked
into ExaBayes (Aberer et al., 2014).

We have found lcfit to be essential for an efficient implementation (Fourment
et al., 2017) of Online Phylogenetic Sequential Monte Carlo (Dinh et al., 2016); this
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work also points the way to needed extensions. Here we have focused on approx-
imating phylogenetic likelihood as a function of a single branch length at a time,
but one could similarly concoct surrogate functions for other low-dimensional set-
tings. For example, one could maximize three branches around an internal node
by using a surrogate function based on the BSM likelihood function for a three
taxon tree, or consider branch length changes and nearest-neighbor interchange
moves simultaneously by using a surrogate function based on the BSM likelihood
function for a four taxon tree.
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5. SUPPLEMENTARY METHODS

5.1. Parameter regimes for the surrogate function. For brevity, we define

θ = exp(r(t+ b)).

We will assume that r > 0 and b ≥ 0, so that θ as a function of non-negative t goes
from some value greater than or equal to 1 up to infinity. Also note that dθ/dt = rθ
and dθ−1/dt = −rθ−1.

The surrogate function is defined as

f(c,m, r, b; t) = c log((1 + θ−1)/2) +m log((1− θ−1)/2)

= c log(1 + θ−1) +m log(1− θ−1)− (c+m) log 2.

As t goes to infinity, this has limit −(c+m) log 2.
Taking the derivative,

df/dt = −crθ−1/(1 + θ−1) +mrθ−1/(1− θ−1)

=
−cr
θ + 1

+
mr

θ − 1

= r(−cθ + c+mθ +m)/(θ2 − 1)

= r((m− c)θ +m+ c)/(θ2 − 1).

So the first derivative is zero when (using subscript zero to denote maximum)
θ0 = (c + m)/(c − m); this gives a finite real solution for t when c > m. This is
equivalent to

(3) t0 = −b+ log[(c+m)/(c−m)]/r.

For a more complete characterization of f , we also take the second derivative:

d2f

dt2
= r2θ

(c−m)(θ2 + 1)− 2(c+m)θ

(θ2 − 1)2

This is zero when

exp(r(t+ b)) = θ =
(
√
c±
√
m)

2

c−m
;

or

(4) t = −b+
1

r
log

(
(
√
c±
√
m)

2

c−m

)
;

We also note that c > m implies c −m > (
√
c −
√
m)2, meaning that there can

never be two positive solutions. With this we distinguish between four regimes:
1. one negative and one positive root of (4), f(t) diverges at t = 0: b = 0, c > m

and exp(br) ≤ (
√
c+
√
m)2)/(c−m)

2. one negative and one positive root of (4), f(t) finite for all t ≥ 0: b > 0, c > m
and exp(br) ≤ (

√
c+
√
m)2)/(c−m)

3. two negative solutions of (4): c > m and exp(br) > (
√
c+
√
m)2/(c−m)

4. no real solutions of (4): c < m.
This determines the shape of the likelihood curve up to the sign of the second

derivative (Fig. S1) for positive t. Only in cases (1) and (2) are there inflection
points. Only in cases (1) and (4) is the limit as t goes to zero infinite. In (3) and
(4) the ML t is zero and infinity, respectively. Assuming a tree with finite branch
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FIGURE S1. The various regimes of a likelihood function for the
BSM parameterized by branch length.

lengths, note that the probability of having something in (4) goes to zero as se-
quences become long.

5.2. lcfit2 parameterization. It can be useful to use an alternative parameteriza-
tion to 1. The “lcfit2” parameterization is in terms of c, m, the branch length t0
giving the maximum value of the surrogate, and the second derivative at t0. We
assume that we are in parameter regime 1 or 2, so c > m.

We can re-express everything in terms of the difference from the ML branch
length t0 and eliminate b. Let t̃ be t− t0 and θ̃ = exp(r(t− t0)). Note that θ = θ̃θ0,
so we can re-express f in these terms, recalling that θ0 = (c+m)/(c−m):

f(c,m, r, t0; t̃)

= c log
(

1 + (θ̃θ0)−1
)

+m log
(

1− (θ̃θ0)−1
)
− (c+m) log 2

= c log

(
1 +

c−m
θ̃(c+m)

)
+m log

(
1− c−m

θ̃(c+m)

)
− (c+m) log 2

= c log

(
c+m+

c−m
θ̃

)
+m log

(
c+m− c−m

θ̃

)
− (c+m) log(c+m)− (c+m) log 2

= c log

(
c+m+

c−m
θ̃

)
+m log

(
c+m− c−m

θ̃

)
− (c+m) log(2(c+m))
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Also recall

f ′(t) =
d

dt
f(c,m, r, b; t) =

−cr
θ + 1

+
mr

θ − 1

f ′′(t) =
d2

dt2
f(c,m, r, b; t) =

cr2θ

(θ + 1)2
+
−mr2θ
(θ − 1)2

.

At the ML point t0, note

θ0 + 1 =
2c

c−m
θ0 − 1 =

2m

c−m
so

θ0
(θ0 + 1)2

=
(c−m)(c+m)

4c2
θ0

(θ0 − 1)2
=

(c−m)(c+m)

4m2

and

f ′′(t0) = r2
(

(c−m)(c+m)

4c
− (c−m)(c+m)

4m

)
= r2

(c−m)(c+m)

4

(
1

c
− 1

m

)
= r2

(c−m)(c+m)

4

(
m− c
cm

)
= −r2 (c−m)2(c+m)

4cm
.

So

r =
2

c−m

√
−f ′′(t0)cm

c+m
.

5.3. Sampling from the PDF corresponding to the surrogate function. In the
context of a Bayesian Monte Carlo algorithm, we can use the fit likelihood curve
to quickly draw proposals from an approximate unnormalized posterior, which
is simply the lcfit likelihood function times a prior. For example, we have found
this useful in the context of online-sts. To draw such proposals, we can first use
the procedure detailed above to fit an approximate likelihood curve and then use
rejection sampling to draw from the approximate posterior.

Rejection sampling generates samples from an arbitrary distribution h(x) us-
ing a proposal distribution g(x) subject only to the constraint that h(x) ≤ cg(x)
for some constant c > 0. For an exponential prior, let h(t) be the unnormalized
posterior on branch lengths

h(t) = λe−λtF (t)

where F (t) = ef(t) is the surrogate likelihood function for some set of fit parame-
ters. Let g(t) be the PDF of the exponential distribution with rate λ,

g(t) = λe−λt.

Clearly the ratio h(t)/g(t) = F (t), so we choose c to be the maximum likelihood
value

c = F (t0)

where t0 is the mode of the surrogate function and can be computed directly using
(2).
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The procedure for generating a sample from the distribution begins by drawing
a branch length t from the exponential distribution with rate λ and a value u from
the uniform distribution over (0, 1]. If

u ≤ h(t)

cg(t)
=

F (t)

F (t0)

the sample is accepted; otherwise, the sample is rejected and the procedure is re-
peated. We note that eliminating the prior g(t) from the acceptance calculation al-
lows sampling from the distribution even when the maximum lcfit branch length
is infinite (i.e., regime 4), since the asymptotic maximum likelihood can still be
calculated.

5.4. Fitting methods. We have found it useful to use a combination of two meth-
ods for fitting. The first, which we call lcfit4, simply applies standard nonlinear
least-squares optimization to find parameters for f using a sample of true values
from the original likelihood function. The second, which we call lcfit2, uses the pa-
rameterization in terms of c, m, t0, and f ′′(t0). In this case we simply set the t0 and
f ′′(t0) values to their values in the original function, then use least-squares fitting
for c and m with a useful set of sampled points (inspired by Aberer et al. (2016);
see below for details). For lcfit4, we first try unconstrained optimization using the
Levenberg-Marquardt (L-M) algorithm (Levenberg, 1944; Marquardt, 1963) imple-
mented in the GNU Scientific Library version 1.16 (Galassi and Gough, 2003). If
the L-M algorithm fails to converge to a valid model, we fall back on constrained
optimization using the SLSQP algorithm (Kraft, 1994) implemented in NLopt ver-
sion 2.4.2 (Johnson, 2014). We have found that trying the L-M algorithm first yields
better results in the case of four-parameter optimization than using SLSQP alone.
For lcfit2, we use only the SLSQP algorithm, as we did not find the L-M step nec-
essary to achieve good results. These two methods are used together as described
below.

Next we describe the fitting process for these two methods in more detail. If one
only wants a rough estimate of the likelihood curve, one can simply take a num-
ber of pre-chosen points, such as 0.05, 0.1, 0.5, and 1, calculate the corresponding
likelihoods, and fit parameters of the curve using least squares as previously de-
scribed. On the other hand, if a more accurate likelihood curve is desired, one
can use an iterative algorithm to obtain an improved estimate of the likelihood
curve around the maximum likelihood branch length. The idea of this process is
to sample until the points enclose the maximum likelihood point. We will call this
method “lcfit4 fitting”.

First, we fit the initial model:
(1) Initialize with four values of t, and corresponding log likelihoods `.
(2) If the ` values are monotonically increasing, add a point: t = 2 max(t),

with corresponding log likelihood.
(3) If the ` values are monotonically decreasing, add a point: t = min(t)/10

with corresponding log-likelihood.
(4) Repeat until the points enclose a maximum.

lcfit expects a minimum branch length tmin and maximum branch length tmax to
consider. Some phylogenetic libraries and applications enforce their own values.
When such values are not available, we have found that a small but nonzero value
for tmin (such as 10−6) works well. For tmax, choose a significantly large value



A SURROGATE FUNCTION FOR ONE-DIMENSIONAL PHYLOGENETIC LIKELIHOODS 13

at which the log-likelihood function can be expected to be nearly flat; we used
20. Note that excessively large values of tmax can affect numerical stability. The
current implementation uses 0.1, 0.5, 1.0, and tmax as the first four starting points
for t. tmax is included in these points to ensure that the fitted model exhibits good
asymptotic performance. The procedure from the previous section is then used to
find a starting point of BSM parameters for the optimization algorithm.

We then enter the second phase, which is repeated until the estimate of the
ML branch length changes less than some fixed number. The first step is to find
the maximum-likelihood branch length using (2) for the current BSM parameter
estimates, and add it to the set of sampled values. The model is then re-fit using
the optimization algorithm.

When the ML branch length is non-zero, we have found this method to be less
robust to corner cases than we desired. Thus we have developed an alternative
means of fitting, which we call “lcfit2 fitting”, that requires finding the ML value
and the second derivative. As described in the main text and derived below, one
can re-express the surrogate function in terms of the c and m parameters from
before, along with the ML branch length t0 of the surrogate function and its second
derivative there. Then, one can simply set the t0 and f ′′(t0) values of the surrogate
function equal to the values found on the original function.

The procedure to find c and m for the lcfit2 surrogate after plugging in t0 and
f ′′(t0) is as follows. Starting with a default c and m,

(1) calculate the inflection point ti for the model.
(2) define ∆ = |t0 − ti|.
(3) let our four t values for fitting be {t0−∆, t0, t0 +∆, tmax}; if either of t0±∆

are outside the interval (tmin, tmax) then replace them with half the distance
from t0 to the interval boundary.

(4) fit c and m using these four points.
(5) repeat steps 1–4 once more to refine the model.

Our complete fitting routine, using both lcfit2 and lcfit4, is as follows. First,
maximize the original function on the set of non-negative t values. The maximum
is found using Brent’s method (Brent, 1973). Next, estimate the first and second
derivatives at the maximum using fourth-order finite difference approximations
(Davis and Polonsky, 1964, Table 25.2). If the first derivative is nonzero, use lcfit4
fitting, which we have found converges quickly in this case. If not, then use lcfit2
fitting. All least-squares fitting is done using the following gradient of f :

df/dc = log

(
1

2
(1 + θ−1)

)
df/dm = log

(
1

2
(1− θ−1)

)
df/dr = (b+ t)

m(θ + 1)− c(θ − 1)

θ2 − 1

df/db = r
(m− c)θ + c+m

θ2 − 1

We have also found it very advantageous to standardize the height of the surro-
gate function by subtracting the peak of the original function, so that we are fitting
a curve that has maximum value zero. This leaves the asymptote free to vary.
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5.5. Extended methods: benchmarking. We evaluated the performance of lcfit
on both real and simulated data.

We used nestly (McCoy et al., 2012) and the Bio++ 2.2.0 suite (Dutheil et al.,
2006; Dutheil and Boussau, 2008) of C++ libraries and binaries to perform simula-
tion. We began by generating random 10-leaf bifurcating trees using the function
rtree from the R package ape (Paradis et al., 2004), with branch lengths sam-
pled from an exponential distribution. We generated one set of trees with the
exponential mean µ = 0.1, and another set with µ = 0.01. Each set contains 10 in-
dependent replicates. For each tree, we generated a 1000-site sequence alignment
with bppseqgen from the Bio++ suite using an evolutionary model from Table S1
and a rate distribution of either uniform or discretized gamma (n = 4, α = 0.2).
We then optimized the branch lengths of each tree with bppml. The evolution-
ary model, tree, and alignment were then fed into our lcfit-compare utility.
lcfit-compare loops over each branch of the tree and uses Bio++ to get an em-
pirical log-likelihood function parameterized by the branch length. It then fits an
lcfit model to the empirical log-likelihood function, and both the empirical and
surrogate log-likelihood functions are sampled in the neighborhood of the peak.

We estimated the Kullback-Leibler (KL) divergence from the original likelihood
function to the surrogate function by sampling these functions over 501 evenly
spaced points in the neighborhood of the peak. This neighborhood is found as the
region where the log-likelihood curve is above 10% of its peak value, bounded by
tmin and tmax. Probabilities are computed from the relative log-likelihoods as

Pi =
exp(`(ti)− `(t0))∑
j [exp(`(tj)− `(t0))]

and

Qi =
exp(f(ti)− f(t0))∑
j [exp(f(tj)− f(t0))]

where t0 is the maximum-likelihood branch length. The KL divergence from the
discretized model distributionQ to the discretized empirical distribution P is then
calculated as

DKL(P‖Q) =
∑
i

Pi log2

(
Pi
Qi

)
.

Instructions for running these simulations and the analysis can be found in the
sims subdirectory of the lcfit repository at https://github.com/matsengrp/
lcfit.

We also tested the performance of lcfit on real data, in the manner of Aberer
et al. (2016), and compared lcfit to the gamma and Weibull proposal distributions
described in their work. To accomplish this, we incorporated lcfit fitting directly
into the ExaBayes code used to generate data for their analysis. We then com-
pared these results to the ExaBayes results, which were shared with us by André
Aberer. Our fork of ExaBayes 1.3.1 used for these experiments can be found at
https://github.com/matsengrp/exabayes-1.3.1-lcfit. We tested 12
out of the 14 DNA datasets they examined. One of the datasets not included in
our analysis (dat-354) was missing gamma and Weibull distribution fit parame-
ters in the data provided for some edges of the tree. The other dataset not included
(dat-125) yielded a few invalid estimated acceptance rates (i.e., much greater than
100%). We attributed these errors to a numerical stability issue in the estimated

https://github.com/matsengrp/lcfit
https://github.com/matsengrp/lcfit
https://github.com/matsengrp/exabayes-1.3.1-lcfit
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acceptance rate calculations, and chose to omit the dataset from the analysis en-
tirely rather than present a subset of its results. The remainder of the datasets con-
tain between 24 and 500 taxa, with sequence lengths ranging from approximately
100 to 30,000 bases. We reproduced the estimated acceptance rate calculations for
gamma and Weibull proposals using the method described in their supplemen-
tal material, then applied the same method to lcfit proposals. We then used the
aggregated results to produce Fig. 2 (analogous to Fig. 2 in Aberer et al. (2016)).

5.6. Relationship to entropy. Here we establish a simple relationship between the
ML value of the surrogate function and Shannon entropy of a corresponding se-
quence alignment under the BSM model. This is not used in practice, but is simply
provided here for interest. Continuing in the setting of the lcfit2 parameterization
and with that same notation,

θ̃−1 = exp(−rt̃)
such that

f(t̃) = c log (c+m+ ν) +m log (c+m− ν)− (c+m) log(2(c+m))

where
ν :=

c−m
θ̃

.

At t = t0, θ̃ = 1, so the corresponding ν0 = c−m. Also,

f(t0) = c log(c+m+ ν0) +m log(c+m− ν0)− (c+m) log(2(c+m))

= c log(2c) +m log(2m)− (c+m) log(2(c+m))

= c log c+m logm− (c+m) log(c+m).

Shannon entropy is defined as

S := −
∑
i

pi log pi.

Since the (c + m) sites in the model are i.i.d., consider that the probability of ob-
serving a substitution at a single site is p = m/(c + m), and the probability of
observing no substitution is 1− p = c/(c+m). Then

S = − [(1− p) log(1− p) + p log p]

= −
[

c

c+m
log

(
c

c+m

)
+

m

c+m
log

(
m

c+m

)]
= − 1

c+m
[c log c+m logm− (c+m) log(c+m)]

= − 1

c+m
f(t0).

6. SUPPLEMENTARY TABLES
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Name Data Type Parameters Reference
Binary-1.0 binary κ = 1 see caption
Binary-4.0 binary κ = 4 see caption
JC DNA (Jukes and Cantor, 1969)
HKY85 DNA κ = 2.0, equal base freqs (Hasegawa et al., 1985)
JTT92 amino acid (Jones et al., 1992)
LG08 amino acid (Le and Gascuel, 2008)
YN98 codon κ = 2.0, ω = 5.0 (Yang and Nielsen, 1998)
Nonhomogeneous DNA 7 edges with T92 model,

6 edges with TN93
model, 5 edges with
GTR

Tamura (1992); Tamura
and Nei (1993); Tavaré
(1986)

TABLE S1. The models used in Fig. 3. The binary model is
parametrized as in the Bio++ documentation, such that a bi-
nary model with parameter κ has stationary distribution (1/(κ +
1), κ/(κ+ 1)).

Rate Distribution Branch Length Mean Count Plot Threshold Mean Median Maximum
1 gamma4-0.2 mu == 0.1 23 0.0415 0.0673 0.0577 0.2485
2 gamma4-0.2 mu == 0.01 5 0.0415 0.1011 0.0898 0.1235
3 uniform mu == 0.1 123 0.0005 0.0073 0.0013 0.2020
4 uniform mu == 0.01 65 0.0005 0.0629 0.0016 3.6035

TABLE S2. Outlier points excluded from Fig. 3. The counts are
out of 1370 edges evaluated for each rate distribution/branch
length mean combination.
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