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Abstract 

 

Bacterial pathogens subvert host cells by manipulating cellular pathways for survival and replication; 

in turn, host cells respond to the invading pathogen through cascading changes in gene expression. 

Deciphering these complex temporal and spatial dynamics to identify novel bacterial virulence factors 

or host response pathways is crucial for improved diagnostics and therapeutics. Dual RNA sequencing 

(dRNA-Seq) has recently been developed to simultaneously capture host and bacterial transcriptomes 

from an infected cell. This approach builds on the high sensitivity and resolution of RNA-Seq 

technology and is applicable to any bacteria that interact with eukaryotic cells, encompassing parasitic, 

commensal or mutualistic lifestyles. We pioneered dRNA-Seq to simultaneously capture prokaryotic 

and eukaryotic expression profiles of cells infected with bacteria, using in vitro Chlamydia-infected 

epithelial cells as proof of principle. Here we provide a detailed laboratory and bioinformatics protocol 

for dRNA-seq that is readily adaptable to any host-bacteria system of interest.  

 

Introduction 

 

Background 

 

Upon infection or other interactions, bacteria and their host eukaryotic cells engage in a complex 

interplay as they negotiate their respective survival and defense strategies. Unraveling these 

coordinated regulatory interactions, virulence mechanisms, and innate responses is key for our 

understanding of pathogenesis, disease and the development of therapeutics [1]. Traditional 

transcriptomic approaches such as microarrays have typically focused on either the prokaryotic or 

eukaryotic organism to investigate the host-bacteria interaction network [2]. However, this approach 

cannot decipher reciprocal changes in gene expression that contribute to the global infection system. 

Instead, an integrated approach is required that acknowledges both interaction partners, i.e. both 

bacteria and host, from the same biological sample. Due to the increasing affordability and resolution 

of next-generation sequencing, this is now achievable via dual RNA sequencing (dRNA-Seq) [1]. 
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RNA-Seq was developed for the study of transcriptomes based on the massively parallel sequencing of 

RNA [3]. In a typical experiment, total mRNA from a sample is subjected to high-throughput next-

generation sequencing and mapped to a reference genome to deduce the structure and/or expression 

state of each transcript [4]. Gene expression changes can be accurately measured between samples with 

high coverage and sensitivity, while alternative splicing analyses can be applied to identify novel 

isoforms and transcripts, RNA editing, and allele-specific expression [5]. The high sensitivity and 

dynamic range of RNA-Seq has expanded our capability for whole transcriptome analysis and enabled 

new insight into the functional elements of the genome [6].  

 

dRNA-Seq extends these capabilities to two (or potentially more) interacting organisms, allowing the 

simultaneous monitoring of gene expression changes without disturbing the complex interactions that 

define host-bacteria infection dynamics. We applied dRNA-Seq to map host and bacteria 

transcriptomes from Chlamydia-infected host epithelial cells, which highlighted a dramatic early 

response to infection and numerous altered pathways within the host cell [1]. dRNA-Seq has since been 

successfully used to study host-bacteria interactions for Salmonella enterica [7], Azospirillum 

brasilense [8], Mycobacterium tuberculosis [9], Haemophilus influenzae [10], Yersinia 

pseudotuberculosis [11] and Actinobacillus pleuropnemoniae [12].  

 

Advantages and limitations  

 

cDNA microarrays first enabled large-scale transcriptome analyses, allowing the expression pattern of 

tens of thousands of known genes to be measured. Drawbacks include (1) a high background signal 

[13]; (2) cross-hybridization between genes of similar sequence; (3) the limit of expression level 

detection to the 1,000-fold range, compared to the actual cellular 1,000,000-fold range [14] (4) 

restriction of analysis to known or predicted mRNAs [15]; and (5) the inability to detect novel 

transcripts [14]. Some of these were overcome with tiling arrays to measure antisense RNA expression 

and other non-coding RNA (ncRNA) transcripts, but the large size of eukaryotic genomes make this 

inordinately costly [16]. Tag-based sequencing does enable the enumeration of individual transcripts, 

but this method requires existing gene structure information, can only sample a small region of a 

transcript, and is incapable of capturing diverse classes of RNA and its isoforms. 
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RNA-Seq provides a wider dynamic range, higher technical reproducibility, and a better estimate of 

absolute expression levels with lower background noise [17-19], and has become the primary method 

to examine transcriptomes. By allowing an unbiased determination of gene expression, high resolution 

data on potentially transcribed regions upstream and downstream of the annotated coding region, and 

post-translational rearrangements such as splicing and different RNA isoforms can be reported [20]. As 

a result, RNA-Seq improves genome annotation, and identifies new ORFs, transcription start sites 

(TSSs), the 5’ and 3’ UTRs of known genes, non-coding RNAs such as microRNA, promoter-

associated RNA, and antisense 3’ termini-associated RNA [21]. dRNA-Seq can report these data for 

two (or potentially more) organisms from the same sample, while providing powerful insight into novel 

interaction dynamics. For example, gene expression changes in one organism can be correlated with 

the responses of the other to capture crucial events that signify the dynamic mechanisms of host 

adaption and the progression of infection  [1,4,7,10,22]. 

 

Despite these advantages, dRNA-Seq remains technically challenging. Up to 98% of total RNA is 

ribosomal (rRNA) [23], while bacterial mRNA levels are typically low compared to the host, especially 

during early infection periods, requiring mRNA depletion and/or enrichment approaches for cost-

effective sequencing. Additionally, the quantity of mRNA detected by RNA-Seq is often a poor 

indicator for protein abundance due to mRNA instability and turnover [24,25]. The wide range of 

expression levels can result in non-uniform coverage where only a few reads can be captured for genes 

subject to lower expression levels, while short isoforms and repeat sequences derived from the same 

gene may result in assembly ambiguities. These ambiguities are compounded when using de novo 

methods for genomes that are partially or fully un-sequenced [17], but can be avoided when assembling 

reads to a reference genome. Transcript length bias can distort the identification of differentially 

expressed genes in favor of longer transcripts [26], but can be standardized with appropriate 

normalization techniques. Despite these challenges, dRNA-Seq is a powerful, economical, sensitive, 

and species-independent platform for investigating the gene expression dynamics of host-bacteria 

interactions [4]. 
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Overview of the technique 

 

This protocol provides a clear and practical laboratory and a detailed bioinformatics analysis pipeline 

for a typical dRNA-Seq host-bacteria analysis. We describe an experiment based on human epithelial 

carcinoma (HeLa) cells (host) infected with Chlamydia trachomatis serovar E (bacteria), which is 

readily adaptable to any host-bacteria system of interest.  

 

C. trachomatis is an obligate intracellular bacterial bacteria that is reliant on its host cell for survival. It 

has been otherwise recalcitrant to standard genetic analyses, rendering it ideal for the development and 

application of dRNA-Seq. The protocol includes all steps for the bacterial infection of host cells, total 

RNA extraction, and rRNA depletion in preparation for sequencing (Figure 1). Bioinformatic steps are 

then included for  total RNA sequence quality control and trimming, the in silico segregation of host 

and bacteria reads, distinct sequence alignment and sorting techniques for host and bacteria data, 

alignment visualization, read quantification and normalization, the separate statistical analysis of host 

and bacteria data, and the final integration of host and bacteria transcriptomic responses (Figure 2). 

 

From here, the user may diverge toward a number of possible downstream applications, including time-

series analysis, host alternative splicing in response to the bacteria, gene set enrichment and ontology 

analysis, and elucidation of interaction and regulatory networks [27]. dRNA-Seq data may be 

integrated with other data sources to establish a more complete picture of gene regulation, including 

genotyping data to identify genetic loci responsible for gene expression variation, epigenetic 

information to highlight the influence of transcription factor binding, histone modification, and 

methylation, and miRNA-Seq data to identify the regulatory mechanisms of gene expression changes 

via non-coding RNA  [28,29]. 

 

Experimental design 

 

For RNA-Seq, a typical workflow includes experimental design, RNA extraction, library preparation, 

sequencing, and data analysis. The experiment should be designed to address the biological question(s) 

of interest and a key starting point is to determine the RNA species to be investigated (i.e. mRNA, 
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miRNA, snRNA etc). This will influence the quantity of input RNA and sequencing depth required, 

which are both crucial factors for successful dRNA-Seq experiments. To capture sufficient RNA from 

both organisms, the ratio of bacteria to host genome size is a useful starting point followed by an 

estimation of the desired fold coverage. This can be determined by considering the number of 

replicates, the expected influence of housekeeping and structural RNA (rRNA and tRNA), the 

possibility of host:bacteria sequence overlap, the number of time-points, and the multiplicity of 

infection (MOI). We suggest at least three biological replicates for each sample rather than technical 

replicates taken from the same sample to minimize Type I and II errors and ensure an adequate 

estimation of within and between sample variation. As ~95% of total RNA will be ribosomal, a method 

of rRNA depletion and/or mRNA enrichment is recommended and several options are discussed below. 

Sequence overlap between host and bacteria can be predicted by mapping the bacterial sequence reads 

to the host genome and vice versa, which is also discussed below. The time-points of interest should be 

carefully considered as the initiation and period of transcriptional response can differ between host and 

bacteria [30]. Ideally, multiple time-points should be collected to suitably capture the dynamic host-

bacteria transcriptional landscape. Finally, a suitable bacteria MOI should be selected to maximize the 

transcriptional signal from both host and bacteria, while reducing bias towards the uninfected cells that 

will flourish at the later time-points. Importantly, a high(er) MOI may also lead to a heightened and/or 

distorted host response with decreased biological relevance, depending on the system under 

investigation. Deeper sequencing may be necessary for the detection of low copy number transcripts or 

alternate isoforms, however increased sequencing depth can also increase the detection of 

transcriptional noise, spurious cDNA transcripts, or genomic DNA contamination so careful 

consideration is required [31,32]. Optionally, the addition of RNA spike-ins and unique molecular 

identifiers (UMI) can be useful for the quantitative calibration of RNA levels  [33,34]. 

 

This protocol describes the collection and analysis of protein-coding mRNA from C. trachomatis and 

Hela cells at 1 and 24 hours post-infection (hpi) time-points as they are physiologically relevant to the 

early and mid-stages of the chlamydial development cycle. An MOI of 1.0 is used to maximize 

chlamydial RNA recovery, however a limited quantity of bacterial RNA will be present at 1 hpi as 

replication would not yet have commenced. This caveat should be considered when estimating RNA 

quantities required. It is recommended that ~ 5 ´ 108 host reads and > 1 ´ 106 bacterial reads are 
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required for adequate coverage [4,35]. The Chlamydia to Hela genome size is ~1:3200 MB, indicating 

that Chlamydia’s RNA accounts for ~0.03% of total host-bacteria RNA. As ~95% of this will be 

uninformative rRNA and tRNA [4], 0.0015% and 4.9985% of total RNA will represent informative 

bacteria and host mRNA, respectively. Given this ratio, 1 ´ 1010 host reads and ~3.33 ´ 109 bacterial 

reads would be required to capture sufficient RNA from both organisms. Thus, to achieve sufficient 

coverage overall, > 1 ´ 1010 reads would be required for dRNA-Seq of Chlamydia and host.  

 

Infection 

 

Host cells are cultured in Dulbecco’s modified Eagle’s medium (DMEM) (see Materials section) and 

are infected with C. trachomatis at a multiplicity of infection (MOI) of 1 to ensure that 100% of host 

cells are infected. As cycloheximide (an inhibitor of protein synthesis used to maximize chlamydial 

yields in vitro), is not used throughout this experiment, so the host cells are seeded at ~60% confluency 

at the time of infection to ensure continued host cell viability throughout the time-course of the study. 

Given the time-sensitive nature of the experiment, it is critical to synchronize the initial infection by 

centrifugation, followed by the removal of dead or non-viable bacterial cells by washing twice with 

DPBS. HeLa and Chlamydia cells are harvested into sucrose phosphate glutamate (SPG) media, and 

frozen at -80°C prior to RNA extraction.  

 

RNA Preparation 

 

To ensure high-quality data, dRNA-Seq typically requires a relatively large amount of input RNA. 

Extreme care must be taken to prevent DNA contamination or RNA degradation, which can be 

minimized by adhering to the protocol time and temperature requirements, purchasing highly pure and 

RNase-free reagents, and using RNA-free equipment and consumables. Always conduct RNA work in 

a clean environment that is partitioned from non-RNA work. Wherever possible we routinely use 

commercially available kits due to their reliability and reproducibility, however we have carefully 

optimized the manufacturer’s instructions to suit this protocol. 
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Total nucleic acid is extracted using a MasterPureä RNA Purification Kit (Epicenter) according to the 

manufacturer’s instructions. At this stage it is critical to minimize the delay between host cell lysis and 

RNA extraction to avoid unwanted degradation. HeLa cells are lysed, host proteins digested, and total 

nucleic acid precipitated with isopropanol. It is critical to ensure the complete removal of 

contaminating DNA before proceeding. We have found that two treatments with TURBO DNA-freeÔ 

DNase (Thermo Fisher) is most effective. We perform three real-time qPCR assays for human targets 

and one endpoint PCR assay for C. trachomatis to confirm DNA removal. The qPCR assays are based 

on TaqManâ Gene Expression assays (Applied Biosystems) with primer and probe sets targeting beta 

actin, mitochondrially encoded ATP synthase 6, and eukaryotic 18S rRNA [1]. The endpoint PCR is 

based on custom-designed primer sets that are specific for C. trachomatis, which were designed using 

PrimerExpress software (Applied Biosystems). 

 

As rRNA constitutes >95% of total RNA, a method of rRNA depletion should be considered to 

maximize the recovery of mRNA and reduce the sequencing depth required. There are a number of 

commercial kits available for nuclease digestion and size-selection; this protocol utilizes both a 

hybridization-based rRNA depletion and poly(A)-depletion step. For hybridization, cDNA 

oligonucleotides attach to complementary rRNA that is immobilized on magnetic beads; always ensure 

that the oligonucleotides are compatible with your organism(s) of interest. For this, we combine an 

equivalent volume of Ribo-Zero beads from both a Human/Mouse/Rat-specific and Gram-negative 

bacteria-specific Ribo-ZeroÔ rRNA Removal Kit (Epicenter), enabling simultaneous elimination of 

both host and bacterial rRNA. It is important to note that this method will not enrich immature mRNAs 

and non-coding RNAs; specific target enrichment techniques that are outside the scope of this protocol 

should be considered if these are of experimental interest. Aliquots of rRNA-reduced samples may be 

then subjected to poly(A) depletion to further enrich host mRNA transcripts and separate mRNA from 

rRNA contaminants. Poly(A)-depleted and rRNA-depleted eluates can also be further purified before 

being combined for library construction. The remaining RNA is concentrated and purified with a RNA 

Clean & Concentratorä-5 kit (Zymo Research). A Bioanalyzer (Agilent) is used to examine the 

concentration and quality of purified RNA via a capillary electrophoresis-based system.  
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Library Preparation and Sequencing  

 

Prior to sequencing, total RNA is converted to cDNA [36]. There are a number of sequencing 

platforms currently available, including Illumina, SOLID, Ion Torrent, Roche 454, Nanopore, and 

Pacific Biosciences, and each are suited to specific purposes and should be investigated by the user 

according to their desired outcome. This stage of the (d)RNA-Seq protocol (library preparation and 

sequencing) is often outsourced to a commercial enterprise or central sequencing facility so the steps 

involved are outside the scope of this protocol. Each facility will provide detailed instructions on the 

quality and quantity of RNA required and the sample preparation guidelines. Nevertheless, here we 

provide some general guidelines based on our experience. 

 

We generally use the TruSeq Sample Prep Kit for library preparation and sequencing by the Illumina 

platform. For this, the mRNA is chemically fragmented and primed with random hexamer primers. 

First-strand cDNA synthesis occurs using reverse transcriptase, followed by second strand cDNA 

synthesis using DNA polymerase I and RNase H. The cDNA is purified and end-repaired and 3’ 

adenylated. Adapters containing six nucleotide indexes are ligated to the double-stranded cDNA, which 

is purified with AMPure XT beads (Beckman Coulter) and enriched via polymerase chain reaction 

(PCR) amplification. While we suggest that paired-end reads > 50 nucleotides will promote increased 

fragment randomization and is a good guideline, longer reads will enable greater coverage, reduced 

multi-mapping, and improved transcript identification [37]. 

 

Data preparation 

 

Sequence data from dRNA-seq comprises cDNA as input from the experiment, with the majority 

derived from the eukaryotic host (depending on the experimental conditions and system under study). 

Thus, careful attention is required to accurately segregate the reads from each organism. For paired-end 

sequencing, host and bacteria read data is generally provided as two FASTQ format files, which are 

comprised of a unique read identifier, the sequence read, an optional alternate identifier, and the quality 

scores for each read position. These are examined for possible sample contamination by screening total 

reads against a sequence database with FastQ Screen 
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(http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/) (Figure 3). The reads are then 

checked for quality using FASTQC, a Java-based software that reports several quality control statistics 

and a judgment on each metric (pass, warn, fail) (Figure 4) [36]. Short reads, low quality reads, and 

adapters are then removed with Trimmomatic [38]. Other available QC tools available include 

PRINSEQ [39] and FastX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). 

 

The organisms of interest and experimental question will dictate which mapping software is most 

appropriate; we currently use HISAT2 [40], a powerful yet efficient program capable of identifying the 

splice junctions between exons that are characteristic of eukaryotic data, while the short-read aligner, 

Bowtie2 [41], is sufficient for bacterial read mapping. Other non-splice-aware aligners for bacterial 

reads include SEAL [42] and SOAP2 [43], and alternative splice-aware aligners for host reads include 

MapSplice [44], STAR [45], and Tophat2 [46]. It is important to note that read aligners are an active 

area of research, with new tools and updates frequently appearing  [47].   

 

The combined host and bacteria reads are mapped to the host reference genome with specific settings 

to preserve unmapped (bacterial) reads, which are then mapped to the bacteria reference genome. 

Assembly to a reference transcriptome is also possible, but this relies on the accuracy of annotated gene 

models which may restrict the discovery of novel genes and isoforms; this approach is more suitable 

when there is no reference genome available. If available for the organisms of interest, reference 

genomes and the annotation file can be obtained from either NCBI [48], UCSC [49], or Ensembl [50]. 

Each repository formats these files slightly differently so it is important to obtain both files from the 

same source. This protocol utilizes the GRCh37 release of the Homo sapiens genome and annotation 

file from Ensembl and the Chlamydia trachomatis serovar D genome from NCBI (NC_000117.1).  

 

The resulting alignment files for both host and bacteria are sorted by position (i.e. chromosomal 

location) with Samtools [51] to produce alignment quality statistics, including the number of mapped 

reads, the number of mapped first mates and second mates (for reads from paired-end sequencing), 

reads with multiple hits in the genome, and host reads mapping to exonic, intronic, and intergenic 

regions. Ideally, > 70% of host reads should map to exonic regions of the genome while less than 5% 

of reads mapping to intronic regions and less than 1% of reads mapping to intergenic regions [52]. The 
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alignment file is further converted to a BigWig format for the visualization of the number of reads 

aligned to every single base position in the genome using Integrated Genome Viewer (IGV) (Figure 5) 

[53], or other visualization tools such as  UCSC Genome Browser  or JBrowse [54]. Using IGV, the 

coverage of aligned reads across the genome for both host and bacteria can be visualized to identify 

genomic regions of high/low coverage that could indicate technical or biological errors, as well as host 

exon-intron boundaries, splice sites, exon junction read counts, and read strand [55]. The alignment 

files are then sorted by read name to facilitate feature counting. 

 

Feature counting and normalization 

 

Both host and bacteria counts are generated from their respective alignment files using the python 

wrapper script htseq-count from the HTSeq package [56]. This process quantitates the number of reads 

that align to a biologically meaningful feature such as exons, transcripts, or genes [56], and is guided 

by the reference annotation file. This protocol describes the quantification of reads on a gene level, 

where a gene is considered the union of its exons. Any reads that map to several genomic locations are 

automatically discarded by HTSeq and we generally take a conservative approach to also discard reads 

that overlap with more than one gene. 

 

Sample read counts are collapsed into a single file containing a matrix of genes (rows) and samples 

(columns), with one file each for host and bacteria (Figure 6). To minimize statistical noise and enable 

better adjusted p-values, the matrix is pre-filtered so that greater than three counts remain in more than 

two of the samples [36]. Additionally, the last five lines of the matrix containing statistics for 

ambiguous counts from htseq-count are removed. Raw counts are normalized to minimize technical 

bias due to transcript length and sequencing depth; there are several normalization methods available, 

including Reads Per Kilobase Per Million (RPKM) [20], EDASeq [57], Conditional Quartile 

Normalization (CQN) [58], Upper Quartile (UQ) [59], and Transcripts Per Million (TPM) [60], and 

each have their benefits. For the host counts we use Trimmed Mean of M-Values (TMM) which 

corrects for differences in RNA composition and sample outliers, while providing better across-sample 

comparability [61].  
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Data analysis 

 

Prior to differential expression analysis, both a Multi-Dimension Scaling (MDS) plot and hierarchical 

cluster plot is constructed to visualize the distances between samples and help identify problematic and 

outlying samples (Figures 7 and 8). A metadata table is generated to list the experimental variables, 

which in turn guides the construction of design and contrast matrices, which are mathematical 

representations of the experimental design and a description of the relevant treatment comparisons, 

respectively. This protocol describes a simple design and contrast matrix that allows differential 

expression comparisons to be made between infected and uninfected cells within each time-point. 

Additional time-points and other experimental factors would lend themselves to more complex design 

matrices and may be added by the user if required. 

 

Due to the specific nature of the host and bacteria count data, distinct statistical analyses are required 

for each. For bacterial transcripts, TPM is the most appropriate measure of relative transcript 

abundance, but this approach can suffer from biases where the calculated abundance of one transcript 

can affected other transcripts in the sample. Alternatively, absolute abundance may be calculated with 

the use of spike-in controls. Whichever method is chosen, these abundances represent a descriptive 

characterization of the Chlamydia transcriptome at the 1- and 24hpi time-points, which is moderately 

informative on its own, but when analyzed in combination with the interacting host response can allow 

deeper insight into the host-bacteria interactome. 

 

For the host, differential expression analysis is performed to identify genes that have changed 

significantly in transcript abundance between infected and time-matched non-infected samples [5]. 

There are multiple differential expression packages available, each with advantages, including BaySeq 

[62], Cufflinks [63], DESeq [64], edgeR [65], Salmon [66], and Kallisto [67]. Protocols for the 

Cufflinks suite and edgeR/DESeq packages have been described previously [5,68]. The majority of 

these packages model RNA-Seq counts via a negative binomial (NB) distribution and apply various 

approaches to calculate reliable dispersion estimates. Alternatively, this protocol describes the use of 

the Limma package which uses linear modeling to describe the expression data for each gene (Limma 

stands for “Linear Modeling for Microarray Data”) [69]. In contrast to these other RNA-Seq packages, 
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Limma attempts to correctly model the mean-variance relationship between samples to achieve a more 

probabilistic distribution of the counts (Figure 9). This has proven to be the best method for analyzing 

both simple and complex experimental designs of dRNA-seq experiments that incorporate different 

sample types and time-points [70]. 

 

The output for the host is a set of differentially expressed genes, applying a False Discovery Rate 

(FDR) cutoff ≤ 0.05 (i.e. 5% false positives), and at least two-fold up/down-regulation and expression 

levels greater than 1 percentile in either condition (Table 1). These lists can then be used as input for 

downstream analysis of the enrichment of gene ontology and metabolic pathways using several tools, 

including GOSeq [71], DAVID [72], and Ingenuity Pathway Analysis (IPA) Toolkit (QIAGEN 

Redwood City, www.qiagen.com/ingenuity).  

 

Integration of host and bacterial transcriptomic data 

 

The final and most powerful stage of a dRNA-seq experiment is the integration of host and bacterial 

data to draw biological conclusions that could not have been obtained by investigating each organism 

in isolation. Following Gene Ontology and pathway analyses, interacting host-bacteria responses can 

be identified, within and between time-points, to highlight pathogenic mechanisms in the bacterium 

and the reciprocal regulatory patterns, responses, and transcriptional reprogramming of the host 

(depending on the system under investigation).  

 

Application 

 

dRNA-Seq can be used to address a number of experimental questions. Host differential mRNA and 

miRNA expression, differential exon usage, alternative splicing, and novel transcript and isoform 

discovery in response to the bacteria can be determined [5], which may be correlated with the 

transcriptomic response of the bacteria to determine interaction dynamics. These results can be further 

integrated with other sources of biological input, including genotyping data and epigenetic information 

(transcription factor binding, histone modification, methylation etc.) to contribute to a systems level 

definition of host regulatory mechanisms.  
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Procedure: Laboratory 

 

Materials 

 

Reagents 

 

HeLa 229 epithelial cells (ATCCÒ CCL-2.1Ô) CRITICAL All experiments that use human or animal 

tissues must comply with governmental and institutional guidelines and regulations. 

 

Chlamydia trachomatis serovar E CAUTION Chlamydia is a human bacteria that poses a risk of 

infection. All work with this organism should be conducted in a class II biosafety cabinet while 

wearing appropriate personal protective equipment (PPE). 

 

Dulbecco’s modified Eagle’s medium, high glucose, pyruvate (Thermo Fisher, cat. no. 11995-065) 

 

Heat-inactivated fetal bovine serum (Thermo Fisher, cat. no. 10082-147) 

 

Sucrose (Sigma-Aldrich, cat. no. S7903) 

 

Glutamic acid (Sigma-Aldrich, cat. no. 49449)  

 

Di-sodium hydrogen phosphate (Scharlau, cat. no. SO03390500) 

 

Sodium di-hydrogen phosphate (Scharlau, cat. no. SO03310500) 

 

Dulbecco’s phosphate buffered saline, no calcium, no magnesium (Thermo Fisher, cat. no. 14190-144) 
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Gentamicin (50 mg/mL) (Thermo Fisher, cat. no. 15750-060) CAUTION Harmful if swallowed or 

inhaled. Causes irritation to the skin. Wear suitable protective clothing when handling. 

 

Streptomycin (Sigma-Aldrich, cat. no. S9137) CAUTION Harmful if swallowed. Suspected of 

damaging fertility or the unborn child. Wear suitable protective clothing when handling. 

 

Ethanol (Sigma-Aldrich, cat. no. E7023) CAUTION Highly flammable. Causes skin and serious eye 

irritation. Handle using appropriate safety equipment. 

 

Isopropanol (Sigma-Aldrich, cat. no. I9516) 

 

TruSeq RNA Sample Prep Kit (Illumina, cat. no. RS-122-2101) 

 

AMPure XT beads (Beckman Coulter, cat. no. A63880) 

 

Poly(A)Purist Mag Purification Kit (Thermo Fisher, cat. no. AM1922) 

 

TURBO DNA-freeÔ kit (Thermo Fisher, cat. no. AM1907) 

 

DEPC-treated water (Thermo Fisher, cat. no. AM9915G) 

 

MasterPureÔ RNA Purification Kit (Epicenter, cat. no. MCR85102) 

 

RNA Clean & Concentratorä-5 (Zymo Research, cat. no. R1015) 

 

Ribo-ZeroÔ rRNA Removal Kit (Human/Mouse/Rat) (Epicenter, cat. no. RZH1046) 

 

Ribo-ZeroÔ rRNA Removal Kit (Gram-negative bacteria) (Epicenter, cat. no. RZNB1056) 

 

TaqManâ Gene Expression Assay (Thermo Fisher, cat. no. 4453320) 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098715doi: bioRxiv preprint first posted online Jan. 6, 2017; 

http://dx.doi.org/10.1101/098715
http://creativecommons.org/licenses/by/4.0/


Dual RNA sequencing (dRNA-Seq) of bacteria and their host cells 

 16 

TaqManâ Universal Master Mix (Thermo Fisher, cat. no. 4352042) 

 

Equipment 

 

MicroAmpâ optical 96-well reaction plates (Thermo Fisher, cat. no. 4306737) 

 

MicroAmpâ optical adhesive film (Thermo Fisher, cat. no. 4311971) 

 

MicroAmpâ optical film compression pad (Thermo Fisher, cat. no. 4312639) 

 

Flask rocker (Grant Instruments, PS-M3D) 

 

DNase and RNase-free 1.5 mL microcentrifuge tubes (Sarstedt, cat. no. 72.692.210) 

 

Refrigerated microcentrifuge (Beckman Coulter, 20R) 

 

Centrifuge (Beckman Coulter, X-12R) 

 

Vortex (Scientific Industries, G-560E) 

 

Heating block (x2) (Thermo Fisher, cat. no. 2001Q) 

 

Ice 

 

Ice bucket 

 

Timer 

 

Real-time qPCR machine (Applied Biosystems, 7900HT) 
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Temperature cycler (Bio-Rad, C1000) 

 

Incubator, 37°C, 5% CO2 (Sanyo, MCO-19AIC) 

 

Bioanalyzer 

 

6-well plates (Thermo Scientific, cat. no. 140675) 

 

Cell scrapers (Sarstedt, cat. no. 83.1830) 

 

15 mL centrifuge tubes (Thermo Scientific, cat. no. 339652) 

 

Reagent Setup 

 

SPG media 10 mM sodium phosphate, 250 mM sucrose, 5 mM glutamic acid. Make solution with 

nuclease-free water at pH 7.4. Store at 4°C for up to six months. 

 

70% ethanol Combine 350 mL ethanol with 150 mL nuclease free water. Store at room temperature 

for up to six months. 

 

Dulbecco’s modified Eagle’s medium (DMEM) Media is supplemented with 10% v/v fetal bovine 

serum, 100 µg/mL streptomycin, 50 µg/mL gentamicin. Store at 4°C for up to six months. 

 

Streptomycin Make stock concentration to 100 mg/mL with nuclease-free water. Store as single-use 

aliquots at -20°C for up to 12 months. 

 

Sodium phosphate buffer 
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Ribo-Zeroä rRNA Removal Kit The Ribo-Zero kits are composed of two parts: the magnetic core kit 

and the rRNA removal reagents. Store the magnetic core kits at 4°C and Mouse/Human/Rat and Gram-

negative bacteria rRNA removal reagents at -80°C. 

 

RNA Clean & Concentratorä-5 Add 48 mL of 100% ethanol to the 12 mL RNA Wash Buffer before 

use. 

 

Procedure: Laboratory 

 

Seeding and infection 

 

1. Seed 8 x 105 HeLa cells per well in all wells of a six-well plate. Ensure there are three plates 

per time-point (one infected plate and two non-infected control plates). Incubate plates 

overnight at 37°C, 5% CO2.  

  

Following seeding, sit plates on a bench at room temperature for 15 minutes to allow cells to 

settle, ensuring an even distribution of cells. 

 

2. The next day, infect all plates (except mock-infected control plates) at an MOI of 1.0 to ensure 

 that 100% of the host cells will be infected. 

 

3. Centrifuge plates at 500 x g for 30 minutes at room temperature. Incubate plates at 37°C, 5% 

 CO2. 

  

Centrifugation is important to synchronize the infections and time-points. 

 

4. Wash cells twice with DPBS and overlay with warm, fresh DMEM media (containing 

 streptomycin, gentamicin, 10% FBS). Incubate at 37°C, 5% CO2. 
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Harvesting cells 

 

5. At each time-point, wash cells twice with DPBS and add 1mL DPBS to each well. Harvest 

 cells with a cell scraper and dispense solution into a 15 mL centrifuge tube. Store tubes at -

 80°C until all time-points are complete. Cells can be stored for up to six weeks at -80°C. 

 

Cell lysis 

 

6. Remove centrifuge tubes from -80°C freezer and thaw at room temperature. 

 

7. Pre-set heating block to 65°C. 

 

8. Add 1 µL of 50 µg/mL Proteinase K (MasterPureÔ RNA Purification Kit; Epicenter) to 300 

 µL of Tissue and Cell Lysis Buffer (MasterPureÔ RNA Purification Kit; Epicenter) for each 

 sample. 

 

9. Pellet cells by centrifugation at 5,000 x g for 30 minutes. Discard the supernatant, leaving ~25 

 µL of liquid. 

 

10. Vortex for 10 seconds to resuspend the pellet. 

 

11. Add 300 µL of Tissue and Cell Lysis Solution (containing Proteinase K) to each 25 µL sample 

 and mix thoroughly by vortexing. 

 

12. Incubate tubes in a heating block at 65°C for 15 minutes, vortexing briefly every 5 minutes. 

13. Place samples on ice for 3-5 minutes. 
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Total nucleic acid precipitation 

 

14. Add 175 µL of MPC Protein Precipitation Reagent (MasterPureÔ RNA Purification Kit; 

 Epicenter) to each 300 µL of lysed sample and vortex vigorously for 10 seconds. 

 

15. Pellet the debris by centrifugation at 10,000 x g for 10 minutes at 4°C. 

 

16. Transfer the supernatant (containing total nucleic acid) to a clean 1.5 mL microcentrifuge tube 

 and discard the pellet. 

 

17. Add 500 µL of isopropanol to the recovered supernatant and invert the tube 30-40 times. Do 

 not vortex. 

 

18. Pellet the total nucleic acid by centrifugation at 10,000 x g for 10 minutes at 4°C. 

 

19. Carefully pour off the isopropanol without dislodging the pellet. 

 

20. Rinse the pellet twice with 70% ethanol, being careful not to dislodge the pellet. Centrifuge 

briefly if pellet is dislodged. 

 

21. Remove residual ethanol with a pipette and resuspend the pellet in 35 µL of TE Buffer 

(MasterPureÔ RNA Purification Kit; Epicenter). Samples can be stored in TE Buffer 

overnight at 4°C. 

 

DNA digestion 

 

22. Pre-set heating block to 37°C. 
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23. Add 4 µL of 10x TURBO Dnase Buffer (TURBOä DNA-freeä Kit; Thermo Fisher) to each 

35 µL sample. 

 

24. Add 1 µL of TURBOä DNase to each sample. Gently flick the tubes to mix and pulse-spin to 

 distribute liquid to the bottom of the tube. 

  

Increase DNase volume to 2-3 µL if digesting a higher amount of DNA. Alternatively, add 

half the DNase to each reaction, incubate for 30 minutes, then add the remainder of the 

enzyme and incubate for another 30 minutes. 

 

25. Incubate tubes in a heating block at 37°C for 30 minutes. 

 

26. After incubation, add 8 µL of DNase Inactivation Solution (TURBOä DNA-freeä Kit; 

Thermo  Fisher) and incubate tubes at room temperature for 5 minutes, mixing occasionally. 

  

Environments colder than 22°C can reduce the inactivation of TURBOä DNase. Move tubes 

to a heating block to control the temperature if necessary. 

 

27. Centrifuge tubes at 10,000 x g for 1.5 minutes. 

 

28. Transfer supernatant (containing the RNA) to a fresh 1.5 mL microcentrifuge tube. 

 

Validation of DNA removal by RT qPCR 

 

29. Remove 5 µL from each RNA sample and place in a clean 1.5 mL microcentrifuge tube. 

 

30. Add 95 µL of nuclease-free water (1:20 dilution). 
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31. Prepare enough RT qPCR master mix to assay each sample in triplicate, as well as non-

template controls: 

 20x TaqManâ Gene Expression Assay:  1 µL 

 2x TaqManâ Gene Expression Master Mix:  10 µL 

 RNase-free water:    5 µL 

 

32. Cap the tube and invert the tube several times to mix the reaction components. Pulse vortex. 

 

33. Aliquot 15 µL of master mix into individual wells of a 96-well reaction plate (Thermo Fisher). 

Include a triplicate reaction for each sample and non-template controls.  

 

34. Add 5 µL of each diluted template to appropriate wells and gently tap plate on benchtop to 

distribute contents to the base of the well. 

 

35. Place adhesive film (Thermo Fisher) over the plate and seal with compression pad (Thermo 

Fisher). 

 

If any bubbles are visible in the wells or liquid is present on the sides of the wells, centrifuge 

plate at 500 x g for 2 minutes. Do not touch the film with bare hands at any point. 

 

36. Place plate in RT-PCR machine and run assay according to the following cycling conditions: 

 Hold:  95°C, 10 minutes 

 Cycle (40x): 95°C, 15 seconds 

   60°C, 1 minute. 

 

rRNA depletion 

 

37. Pre-set one heating block to 68°C and one at 50°C. 
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38. Remove Ribo-Zeroä rRNA Removal Magnetic Core Kit from 4°C and allow to warm to 

room temperature. Remove Human/Mouse/Rat and Gram-negative bacteria components of the 

Ribo-Zeroä rRNA Removal kits from -80°C and thaw on ice. 

  

Do not place the Ribo-Zeroä Magnetic Core Kit on ice. 

 

39. Vigorously mix magnetic beads (Ribo-Zeroä rRNA Removal kit; Illumina) for 20 seconds by 

vortexing. 

 

40. Carefully pipette 65 µL of magnetic beads into 2 mL microsphere wash tubes (Ribo-Zeroä 

rRNA Removal kit; Illumina); two tubes per sample. 

  

Store unused beads at 4°C. Do not place the magnetic beads on ice. 

 

41. Centrifuge microspheres at 12,000 x g for 3 minutes. Carefully remove supernatant without 

dislodging the pellet. 

  

The supernatant contains sodium azide. 

 

42. Wash the microsphere wash tubes by adding 130 µL of microsphere wash solution (Ribo-

Zeroä rRNA Removal kit; Illumina) to each tube. Vortex vigorously. 

 

43. Centrifuge microsphere wash tubes at 12,000 x g for 3 minutes. Carefully remove supernatant 

without dislodging the pellet. 

 

44. Add 65 µL of microsphere resuspension solution (Ribo-Zeroä rRNA Removal kit; Illumina) 

to each tube and vortex vigorously until  a homogenous suspension is produced. 
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45. Add 1 µL of RiboGuard RNase inhibitor (Ribo-Zeroä rRNA Removal kit; Illumina) to each 

tube. Mix by vortexing for 10 seconds and set aside (at room temperature). 

  

Avoid creating air bubbles when adding RNase inhibitor. 

 

46. Treat two aliquots of each sample with Ribo-Zero rRNA removal solution (Ribo-Zeroä rRNA 

Removal kit; Illumina) according to the following preparation (two removal preps per 

sample): 

 RNase-free water (Ribo-Zeroä rRNA Removal Kit):   1 µL 

 Ribo-Zero Reaction Buffer:     4 µL 

 RNA sample:       25 µL 

 Ribo-Zero rRNA Removal Solution (Gram negative bacteria kit): 5 µL 

 Ribo-Zero rRNA Removal Solution (Human/Mouse/Rat kit):  5 µL 

 

 Fully mix the samples by pipette-mixing 10-15 times. 

 

47. Gently mix the reactions and incubate at 68°C for 10 minutes in heating block. Return the 

Ribo-Zero reaction buffer to -80°C. 

 

48. Remove the microsphere wash tubes from the heating block and incubate at room temperature 

for 15 minutes. 

 

49. Vortex the microsphere wash tubes at medium speed for 20 seconds to ensure a homogenous 

slurry. 

 

50. Pipette hybridized RNA sample to the resuspended microsphere wash tubes, pipette-mixing 

10-15 times to mix. Immediately vortex the microsphere wash tubes at medium speed for five 

seconds.  
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The washed magnetic beads must be at room temperature for use in this step. The order of the 

addition (hybridized RNA to the magnetic beads) is critical for rRNA removal efficiency. 

 

51. Incubate microsphere wash tubes at room temperature for 10 minutes. Vortex at medium 

speed for 5 seconds, every 3-4 minutes. 

 

52. Following incubation, mix samples again by vortexing at medium speed for 5 seconds.  

 

53. Incubate samples in heating block at 50°C for 10 minutes. 

 

54. Transfer the RNA-microsphere suspension to a Microsphere Removal Unit (Ribo-Zeroä 

rRNA Removal kit; Illumina) and centrifuge at 12,000 x g for 1 minute at room temperature. 

Save the eluate and discard the removal unit. 

  

At this stage, the eluate should be ~100 µL. 

 

Purification of rRNA-depleted samples 

 

55. Add 2 volumes of RNA Binding Buffer (RNA Clean & Concentratorä-5; Zymo Research) to 

each volume of RNA sample and mix well. 

 

The minimum recommended sample volume for use with this kit is 50 µL. 

 

56. Add 1 volume of 100% ethanol to the mixture and mix well. 

 

57. Transfer the mixture to a Zymo-Spin IC column (RNA Clean & Concentratorä-5; Zymo 

Research) in a collection tube and centrifuge at 12,000 x g for 1 minute. Discard the flow-

through. 
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58. Combine two reactions of the same sample to one column and spin multiple times until the 

entire mixture passes through the column. The column capacity is 5 µg of RNA. 

 

59. Add 400 µL of RNA Prep Buffer (RNA Clean & Concentratorä-5; Zymo Research) to the 

column and centrifuge at 12,000 x g for 1 minute. Discard the flow-through. 

 

60. Add 800 µL of RNA Wash Buffer (RNA Clean & Concentratorä-5; Zymo Research) to the 

column and centrifuge at 12,000 x g  for 1 minute. Discard the flow-through. 

 

61. Add 400 µL of RNA wash buffer to the column and centrifuge at 12,000 x g for 1 minute. 

Discard the flow-through. 

 

62. Centrifuge the column in an emptied collection tube at 12,000 x g for 2 minutes. Carefully 

remove the column from the collection tube and transfer to a new RNase-free microcentrifuge 

tube. 

 

63. Add 20 µL of DNase/RNase-free water directly to one column matrix and let stand for 1 

minute at room temperature. Centrifuge at 10,000 x g for 30 seconds. 

  

The eluted RNA can be used immediately or stored at -80°C. 

 

Library Preparation and Sequencing 

 

The method of library preparation is dependent on the sequencing platform used and thus is outside the 

scope of this protocol. Commercial sequencing enterprises and sequencing centers will provide detailed 

guidelines on the library preparation and sample submission guidelines that begin with the isolation of 

pure mRNA as described above. Following sequencing, the user will be provided with a series of raw 

FASTQ sequence files that serve as the input for the following bioinformatics section. 
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Procedure: Bioinformatics 

 

Materials 

 

Hardware requirements 

 

The analysis of dRNA-seq experiments is a computationally intensive process that requires the 

manipulation of gigabytes of data. Access to a computer cluster, core facility, or cloud service is 

recommended to expedite the analysis and free up resources on the local system. 

 

Operating system 

 

This protocol provides commands that are designed to run on a Unix-based operating system such as 

Linux or Mac OS. The protocol was specifically designed to run on the Ubuntu 16.04.1 operating 

system on a Linux machine. Please ensure you have administrative rights. 

 

Command line nomenclature 

 

This protocol assumes a basic understanding of both the Linux command line interface and the R 

statistical computing environment. All Linux commands are shown following a dollar sign ($), while R 

commands are shown following a greater-than sign (>): 

 

$ linux command 

> R command 

 

Software requirements 
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• FastQ Screen: Contamination screening 

(http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/) 

• FASTQC: Sequence quality control tool 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 

• Trimmomatic: FASTQ sequence file trimming 

(http://www.usadellab.org/cms/?page=trimmomatic) 

• HISAT2: Graph-based alignment of sequences to genomes 

(https://ccb.jhu.edu/software/hisat2/index.shtml) 

• Samtools: Manipulation of sequence alignments and mapped reads (http://www.htslib.org) 

• Bedtools genomecov and bedGraphToBigWig: genomic analysis tools 

(http://bedtools.readthedocs.io/en/latest/) 

• Integrated Genome Viewer (IGV): Alignment and visualization tool 

(https://www.broadinstitute.org/igv/) 

• HTSeq: read counting (http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html) 

• R statistical computing environment (https://www.r-project.org) 

• Bioconductor packages: edgeR, limma, org.Hs.eg.db, GenomicFeatures, and their dependencies 

(see below) 

• Bowtie2: Short-read aligner (http://bowtie-bio.sourceforge.net/index.shtml). 

 

Always check that you are downloading and installing the latest version of each piece of software and 

consult the official user guide for more in-depth guidelines and options for troubleshooting any errors 

that may arise.  

 

Samples and filenames 

 

The protocol is arranged so that identical naming conventions are used for each sample and condition. 

For example, “1hpi_Host_infected_rep1” indicates that the sample relates to the first replicate of host 

cells infected with Chlamydia at the 1 hpi time point and “1hpi_Host_uninfected_rep1” indicates the 

first replicate of host cells only (i.e. uninfected host cells) at the 1 hpi time point. Conversely, the 

samples relating to the bacteria are named, “1hpi_Bacteria_rep1”. While subsequent replicates for both 
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host and bacteria would have names ending in “rep2” and “rep3”, for conciseness this protocol 

describes the commands using “1hpi_Host_infected_rep1” as an example and it is expected that the 

user will repeat the process for the remaining replicates and samples. The filenames associated with 

raw FASTQ sequence files will depend on the sequencing facility pipeline and in this protocol are 

named “fastq_file_1_R1.fq”, where “R1” indicates read number one of paired end reads (the 

corresponding read file would be “fastq_file_1_R2.fq”. In some cases an output directory is required, 

which is noted as “<output_directory>” for the user to input their working directory of choice (without 

the “<>” symbols). Finally, reference, annotation, and gene info files are prefixed with the relating 

organism, i.e. “host_reference.fa” indicates a FASTA file containing the host reference genome. 

 

Equipment setup 

 

Download and install the following software. Check the developer website to ensure you are installing 

the latest version and for further information about dependencies and prerequisites. 

 

Create a directory to install program executables and add to PATH 

 

$ mkdir $HOME/bin 

$ export PATH=$HOME/bin:$PATH 

$ echo "export PATH=$HOME/bin:$PATH" >> ~/.bashrc 

 

FastQ-Screen installation 

 

$ wget 

http://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/fastq_screen_v0.9.3.tar.gz 

$ tar –zxf fastq_screen_v0.9.3.tar.gz 

$ cd fastq_screen_v0.9.3 

$ cp fastq_screen $HOME/bin 

 

FastQC installation 
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$ sudo apt-get install default-jre 

$ wget http://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.5.zip 

$ unzip fastqc_v0.11.5.zip 

$ cd FastQC/ 

$ chmod 755 fastqc 

$ cp fastqc $HOME/bin 

 

Trimmomatic installation 

 

$ wget http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/Trimmomatic-

0.36.zip 

$ unzip Trimmomatic-0.36.zip 

$ cd Trimmomatic-0.36 

$ cp trimmomatic $HOME/bin 

 

HISAT2 installation 

 

$ wget ftp://ftp.ccb.jhu.edu/pub/infphilo/hisat2/downloads/hisat2-2.0.5-Linux_x86_64.zip 

$ unzip hisat2-2.0.5-Linux_x86_64.zip 

$ cd hisat2-2.0.5 

$ cp hisat2 $HOME/bin 

$ cp hisat2-build $HOME/bin 

 

Samtools installation 

 

$ sudo apt-get install samtools 

 

Bedtools installation 

 

$ sudo apt-get install bedtools 
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bedGraphToBigWig installation 

 

$ mkdir bedGraphToBigWig 

$ cd bedGraphToBigWig 

$ wget -O bedGraphToBigWig https://github.com/ENCODE-DCC/kentUtils/blob/v302.1.0/bin/ 

 linux.x86_64/bedGraphToBigWig?raw=true 

$ chmod 755 bedGraphToBigWig 

$ cp bedGraphToBigWig $HOME/bin 

 

IGV and IGVtools installation 

 

$ wget http://data.broadinstitute.org/igv/projects/downloads/IGV_2.3.88.zip 

$ unzip IGV_2.3.88.zip 

 

$ wget http://data.broadinstitute.org/igv/projects/downloads/igvtools_2.3.88.zip 

$ unzip igvtools_2.3.88.zip 

$ cd igvtools_2.3.88 

$ cp igvtools $HOME/bin 

 

HTSeq installation 

 

$ sudo apt-get install build-essential python2.7-dev python-numpy python-matplotlib 

$ wget --no-check-certificate https://pypi.python.org/packages/source/H/HTSeq/HTSeq-

 0.6.1p1.tar.gz 

$ tar –zxvf HTSeq-0.6.1p1.tar.gz 

$ cd HTSeq-0.6.1p1 

$ python setup.py build 

$ sudo python setup.py install 

$ cd scripts 

$ cp htseq-count $HOME/bin 
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R and Bioconductor package installation 

 

$ sudo apt-get install libcurl4-openssl-dev libxml2-dev 

$ sudo apt-get update 

$ echo "deb https://cran.rstudio.com/bin/linux/ubuntu xenial/" | sudo tee -a /etc/apt/sources.list 

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E084DAB9 

$ sudo add-apt-repository ppa:marutter/rdev 

$ sudo apt-get update 

$ sudo apt-get upgrade 

$ sudo apt-get install r-base 

 

Open R and install Bioconductor packages using the BiocLite installation tool. All packages 

dependencies will automatically be installed. 

 

$ R 

>  source(“http://bioconductor.org/biocLite.R”) 

> biocLite(“BiocUpgrade”) 

> biocLite(c(“org.Hs.eg.db”, “edgeR”, “limma”, “GenomicFeatures”)) 

 

Bowtie2 installation 

 

$ wget https://sourceforge.net/projects/bowtie-bio/files/bowtie2/2.2.9/bowtie2-2.2.9-linux-

 x86_64.zip 

$ unzip bowtie2-2.2.9-linux- x86_64.zip 

$ cd bowtie2-2.2.9-linux-x86_64 

$ cp bowtie2 $HOME/bin 

$ cp bowtie2-build $HOME/bin 
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File preparation 

 

Download reference genomes and gene model annotation files 

 

For the eukaryotic host, download the Homo sapiens reference genome and GTF annotation file from 

Ensembl: http://asia.ensembl.org/info/data/ftp/index.html and rename files to “host_reference.fa” and 

“host_annotation.gtf”, respectively. Download the Homo sapiens gene info file from: 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz and 

rename file as “host_gene.info”. For C. trachomatis, download the reference genome in FASTA format 

from NCBI: http://www.ncbi.nlm.nih.gov/nuccore/NC_000117 and rename the file to 

“bacteria_reference.fa”. Download the C. trachomatis GTF (000590675) file from 

bacteria.ensembl.org/info/website/ftp/index.html and rename file to “bacteria_annotation.gtf”. Save all 

files to your working directory. Reference genomes and annotation files should be obtained from the 

same repository to ensure consistent formatting and nomenclature. 

 

Method: Host 

 

1. Examine a subset of FASTQ sequence files for contamination using FastQ Screen: 

 

$ fastq_screen –aligner bowtie2 fastq_file_1_R1.fq 

 

This command will run FastQ Screen on the chosen FASTQ file, checking against locally pre-built 

databases for possible sources of contamination. “fastq_screen” runs the software, --aligner Bowtie2 

specifies the aligner used to create the databases, and “fastq_file_1_R1.fq” is the input file. This step 

should be repeated for a random number of samples. To generate a database, the genomes of each 

species which to test against should be downloaded. Using the host and bacterial genomes already 

downloaded from the earlier steps, Bowtie2 (or other aligners) are used to build an index (See section 4 

below). Once built, the location and index should be added to the FastQ Screen configuration file. See 

Figure 3. 
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2. Check the quality of FASTQ sequences using FASTQC: 

 

$ fastqc –noextract –o <output_directory> fastq_file_1_R1.fq 

 

In this command, “-noextract” tells FASTQC to not uncompress the output file, while “-o” defines the 

output directory. “fastq_file_1_R1.fq” is the FASTQ sequencing file. These commands produce a 

quality report with results saved to the directory defined by “<output_directory>”. The results are 

reported in both illustrated form (the “fastqc_report.html” file) and text form (the “summary.txt” file). 

Repeat for all FASTQ files. As the FASTQ files are derived from total RNA sequencing, this step 

includes both host and bacterial sequences. See Figure 4. 

 

3. Remove sequencing adapters and low quality reads using Trimmomatic:  

 

$ java -jar trimmomatic-0.36.jar PE -threads 6 -phred33 fastq_file_1_R1.fq fastq_file_1_R2.fq 

fastq_file_1_R1_paired_trimmed.fq fastq_file_1_R1_unpaired_trimmed.fq 

fastq_file_1_R2_paired_trimmed.fq fastq_file_1_R2_unpaired_trimmed.fq 

ILLUMINACLIP:adapters.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 

MINLEN:36 

 

Run this command from the Trimmomatic installation directory. The command specifes PE as paired-

end data, 6 threads and the FASTQ files are encoded with Phred + 33 quality scores. 

“fastq_file_1_R1.fastq.gz” and “fastq_file_1_R2.fastq.gz” specify the input FASTQ files to use. As 

paired-end data is inputted, four output files are needed to store the reads. Two ‘paired’ files from 

which both reads survived after processing, and two ‘unpaired’ files from which a single read survived, 

but the corresponding mate did not. “ILLUMINACLIP:adapters.fa” uses the “adapters.fa” file 

containing sequences and names of commonly used adapters to remove. “2:30:10” are three parameters 

used in the ‘palindrome’ mode of Trimmomatic to identify the supplied adapters, regardless of their 

location within a read. For a detailed description of the best use of these three parameters, consult the 

Trimmomatic manual. “LEADING:3” and “TRAILING:3” removes a base from either the start or end 

position if the quality is below “3”. “SLIDINGWINDOW:4:15” performs trimming based on a sliding 
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window method. “4” is the window size and “15” is the required average quality. By examining 

multiple bases, if a single low quality base is encountered, it will not cause high quality data later in the 

read to be removed. Finally, ”MINLEN:36” removes any remaining reads that are less than 36 bases 

long. Repeat for all FASTQ files. As above, this step includes both host and bacterial sequences. 

 

4. Build host transcriptome index and align host sequence reads to reference using 

HISAT2:  

 

$ hisat2-build host_reference.fa host_reference.index 

$ hisat2 –x host_reference.index –un-conc pair1_unmapped.fastq -1 fastq_file_1_.R1.trim.fq -2 

fastq_file_1_.R2.trim.fq | samtools view –bS -  > accepted_hits.bam 

 

This “-x” specifies the path to the index previously built by Bowtie2: “host_reference.index”. The “— 

un-conc” argument tells HISAT2 to write a fastq rile containing all unmapped reads 

(“pair1_unmapped.fastq”), and “-1” and “-2” specify the paired-end fastq file mates. The “samtools 

view –bS -” argument converts to the output file from SAM to BAM format. Ensure that the HISAT2 

output files, “accepted_hits.bam” and “pair1_unmapped.fastq” are preserved in the working directory  

as these are required for bacterial read mapping. 

 

5. Sort BAM files generated by HISAT2 by both name and position using Samtools:  

 

$ samtools sort accepted_hits.bam –o 1hpi_Host_infected_rep1.sorted_position 

$ samtools sort –n accepted_hits.bam –o 1hpi_Host_infected_rep1.sorted_name 

 

The first command takes the “accepted_hits.bam” file and sorts it by position, with the output file 

called “1hpi_Host_infected_rep1.sorted_position”. In the second command, “-n” tells Samtools to sort 

the “accepted_hits.bam” file by name, with the output file called 

“1hpi_Host_infected_rep1.sorted_name”. Repeat for all BAM files. 

 

 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098715doi: bioRxiv preprint first posted online Jan. 6, 2017; 

http://dx.doi.org/10.1101/098715
http://creativecommons.org/licenses/by/4.0/


Dual RNA sequencing (dRNA-Seq) of bacteria and their host cells 

 36 

6. Convert ‘sorted by position’ BAM file to BigWig format:  

 

$ samtools faidx host_reference.fa 

$ cut –f1,2 host_reference.fa.fai > host_reference.genome 

$ bedtools genomecov –split –bg –ibam 1hpi_Host_infected_rep1.sorted_position.bam –g 

host_reference.genome > 1hpi_Host_infected_rep1.sorted_position.bedGraph 

$ bedGraphToBigWig 1hpi_Host_infected_rep1.sorted_position.bedGraph 

host_reference.genome 1hpi_Host_infected_rep1.sorted_position.bigWig 

 

The first command indexes the reference genome by creating a “host_reference.fa.fai” output file. The 

second command extracts the first two fields (sequence ID and sequence length) to generate the 

“host_reference.genome” file. The third command generates a histogram illustrating alignment 

coverage according to the reference genome. The “-split” argument tells genomecov to take into 

account spliced BAM alignments (as we used the splice-aware aligner HISAT2 for the host reads), 

while the “-bg” argument tells genomecov to report genome-wide coverage in bedGraph format. “ibam 

1hpi_Host_infected_rep1.sorted_position.bam” is the input file in BAM format, “-g 

host_reference.genome” is the reference genome in FASTA format, and 

“1hpi_Host_infected_rep1.sorted_position.bedGraph” is the output file in bedGraph format. The fourth 

command converts this bedGraph file to BigWig format for use with IGV (below). 

 

7. Index the ‘sorted by position’ BAM file for visualization in IGV:  

 

$ samtools index 1hpi_Host_infected_rep1.sorted_position.bam 

 

This command takes the “1hpi_Host_infected_rep1.sorted_position” bam file created above and creates 

an indexed “1hpi_Host_infected_rep1.sorted_position.bai” file for use with IGV.  

 

8. Index the GTF file for visualization in IGV: 

 

$ igvtools sort host_annotation.gtf host_annotation_sorted.gtf 
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$ igvtools index host_annotation_sorted.gtf 

 

The first command sorts the GTF file, specifying an input file and output file. The second command 

creates an index of the sorted GTF file. 

 

9. Visualize alignments with IGV:  

 

$ java –jar igv.jar 

 

Run this command from the IGV installation directory. Within the software, load the 

“host_reference.fa” reference genome by clicking on Genomes and then Load genome from file. Load 

the sample BAM files from step 9, the indexed GTF annotation file (step 10) and the bigwig file (step 

8) by clicking on File, then Open. Inspect the mapped reads and visualize their alignment to the 

reference genome to ensure whole genome coverage and that they align with exons as defined by the 

GTF file. The sample BAM files and index files must be in the working directory. See Figure 5. 

 

10. Create count matrix with HTSeq:  

 

$ htseq-count –s no –a 10 –r name –f bam 1hpi_Host_infected_rep1.sorted_name.bam 

Host_annotation.gtf > 1hpi_Host_infected_rep1.sorted_name.count 

 

This command calls the htseq-count python wrapper script which performs the gene-level counts. “-s 

no” indicates that the reads are unstranded and “-a 10” sets the minimum mapping quality for a read to 

be counted as 10. “-r name” indicates that the input file is sorted by name and “-f bam” indicates that 

this input file is in BAM format and named 1hpi_Host_infected_rep1.sorted_name.bam”. 

“host_annotation.gtf” is the GTF annotation file from Ensembl and 

“1hpi_Host_infected_rep1.sorted_name.count” is the output file produced. Repeat command for each 

BAM file, which will produce a series of text files counting the gene-level reads for each sample. The 

last five lines of each file contain a list of reads that were not counting due to alignment ambiguities, 

multi-mapping, or low alignment quality.  
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11. Set working directory in R:  

 

> R 

> data <- setwd(…) 

 

The first command opens R, and the second command sets the working directory to the folder location 

containing all the relevant files from step 12. Replace “…” with the complete path to this location, for 

example: setwd(“/home/username/dRNA-Seq/HTSeq_counts”). 

 

12. Create data frame in R containing experiment metadata:  

 

> group <- factor(c(rep("1hpi_mock", 3), rep("1hpi_infected", 3), rep("24hpi_mock", 3), 

rep("24hpi_infected", 3))) 

 

This creates the metadata table containing all the experimental variables, including sample name, 

treatment, and time point.  

 

13. Combine count files into a DGEList in R:  

 

> library(edgeR) 

> counts.host <- readDGE(list.files(pattern = “.count”), data, columns = c(1,2)) 

 

A DGEList is an R object from the edgeR package that efficiently compiles the count dataset and 

experimental variables that is fed into subsequent downstream analyses. The first command loads 

edgeR into the current R workspace. The second command creates a variable called counts_host, which 

is a DGEList containing all data from columns 1 and 2 from all files in the current working directory 

ending in “.count”. See Figure 6. 
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14. Remove the last five rows from the count matrix:  

 

> counts.host$counts <- counts.host$counts[1:(nrow(counts.host$counts)-5), ] 

 

This command removes the last five rows of the count matrix, which contain a summary of the 

ambiguous and non-counted reads from htseq-count. 

 

15. Filter counts to exclude low expressing genes:  

 

> counts.host$counts <- counts.host$counts[rowSums(counts.host$counts > 3) > 2, ] 

 

This command returns the count matrix so that there are greater than three reads in at least two 

replicates across all of the samples. Any non-conforming samples are removed.  

 

16. Inspect the count matrix:  

 

> head(counts.host$counts, 20) 

> dim(counts.host$counts) 

 

It is often helpful to visualize the count matrix at this point to confirm that it is formatted correctly and 

that there are no errors. The second command provides the matrix dimensions, which is useful for 

determining the number of genes remaining following independent filtering. 

 

17. Apply TMM normalization to the raw counts:  

 

> counts.host <- calcNormFactors(counts.host) 

 

TMM normalization factors are calculated and incorporated into the DGEList object. 
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18. Create the design matrix and define the contrasts of interest:  

 

> design <- model.matrix(~0 + group) 

> rownames(design) <- colnames(counts.host$counts) 

> contrasts <- makeContrasts(“Host_1hpi” = group1hpi_infected – group1hpi_mock, 

“Host_24hpi” = group24hpi_infected – group24hpi_mock, levels = design) 

 

These commands define the design matrix and the contrasts of interest to enable differential expression 

to be calculated. In this case, the contrasts we are interested are the host genes differentially expressed 

when infected versus the host genes differentially expressed when uninfected at the 1 hpi time point 

and at the 24 hpi time point. More complex experimental designs that include multiple samples, time 

points, batch effects, and treatments are possible and are explained in detail in the Limma User’s Guide 

[73]. 

 

19. Apply voom transformation to normalized counts: 

 

> library(limma) 

> png(“host_voom.png”) 

> y <- voomWithQualityWeights(counts = counts.host, design = design, plot = TRUE) 

> dev.off() 

 

This command applies a voom transformation to the counts, by converting them to log-counts per 

million with associated precision weights [70]. We generally extend this by using the 

voomWithQualityWeights function, which applies sample-specific weights to down-weight any outlier 

samples. This can be especially useful if outliers were identified in the MDS plot constructed in step 21 

(below). This function takes as input the normalized count matrix (“counts_host”) and design matrix 

(“design”) and outputs two quality control plots: an estimation of the mean variance relationship and 

the sample-specific weights that were applied. The output figure “host_voom.png” is generated 

containing the voom transformation plots. See Figure 9. 
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20. Construct an MDS plot to identify any outlier samples: 

 

> plot.colors <- c(rep("blue", 3), rep("red", 3), rep("orange", 3), rep("black", 3)) 

> png(“host_MDS.png”) 

> plotMDS(counts.host, main = "MDS Plot for Count Data", labels = 

colnames(counts.host$counts), col = plot.colors, cex = 0.9, xlim=c(-2,5)) 

> dev.off() 

 

These commands generate a Multi-Dimensional Scaling (MDS) plot by taking the host DGEList as 

input (“counts_host”). The MDS plot allows the visual inspection of sample proximities to highlight 

possible batch effects and sample outliers that may need to be addressed. The MDS plot is saved to the 

working directory as “host_MDS.png”. See Figure 7. 

 

21. Construct a hierarchical clustering plot to visualize sample groupings: 

 

> counts.host.mod <- t(cpm(counts.host)) 

> dist <- dist(counts.host.mod) 

> png(“host_HC.png”) 

> plot(hclust(dist), main="Hierarchical Clustering Dendrogram") 

> dev.off() 

 

Line 1 converts the counts into Counts Per Million (CPM) and then transposes the resulting matrix. The 

second command generates the distance matrix between each of the 12 samples, and the third 

command generates a hierarchical clustering dendrogram from the normalized counts in “counts_host” 

where the most similar samples occupy closer positions in the tree. The plot is saved to the working 

directory as “host_HC.png”. See Figure 8. 

 

22. Fit the model: 

 

> fit <- lmFit(y, design) 
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> fit <- contrasts.fit(fit, contrasts) 

> fit <- eBayes(fit) 

 

The first two commands estimate expression fold changes and standard errors by fitting a linear model 

to each gene, using the comparisons defined by the contrast matrix (“contrasts”). The third command 

applies empirical Bayes smoothing to the standard errors to further weaken any outliers. 

 

23. Print the differentially expressed transcripts for both the 1hpi and 24hpi time-points: 

 

> top_1hpi <- topTable(fit, coef = “Host_1hpi”, adjust = “fdr”, number = “Inf”, p.value = 0.05, 

sort.by = “P”) 

> top_24hpi <- topTable(fit, coef = “Host_24hpi”, adjust = “fdr”, number = “Inf”, p.value = 

0.05, sort.by = “P”) 

 

This command prints all the Differentially Expressed Genes (DEG) with a p-value of 0.05 or less after 

correcting for multiple testing using the False Discovery Rate (Benjamini & Hochberg) method. 

Additionally, a log fold change (LFC) threshold may be included by adding an “lfc = 2” argument, 

which would return all DEG with a log fold change in expression greater than two. See Table 1. 

 

24. Annotate the differentially expressed transcript tables with gene symbol, description, 

and type information: 

 

> library(org.Hs.eg.db) 

> gene.info <- select(org.Hs.eg.db, key = rownames(top_1hpi), keytype = “ENSEMBL”, 

columns = c(“ENSEMBL”, “SYMBOL”, “GENENAME”)) 

> gene.info <- gene.info[!duplicated(gene.info$ENSEMBL), ] 

> rownames(gene.info) <- gene.info$ENSEMBL 

> identical(rownames(top_1hpi), rownames(gene.info)) 

> gene.info <- gene.info[, -1] 

> host_DEG_table <- cbind(top_1hpi, gene.info) 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098715doi: bioRxiv preprint first posted online Jan. 6, 2017; 

http://dx.doi.org/10.1101/098715
http://creativecommons.org/licenses/by/4.0/


Dual RNA sequencing (dRNA-Seq) of bacteria and their host cells 

 43 

 

Often for downstream applications it is necessary to have the gene name or identifier for each DEG. 

These commands are derived from the Limma documentation [73] and extract gene annotation 

information stored in both the org.Hs.eg.db R package and the “host_gene.info” that was previously 

downloaded to the working directory to annotate the DEG list with gene symbol and gene name. 

Repeat for the “Host_24hpi” DEG list. 

 

25. Write the annotated differentially expressed transcript table to the local hard drive: 

 

> write.table(host_DEG_table, file = “Host_DEG_annotated.csv”, sep = “,”, col.names = NA) 

 

This command writes the DEG list to a comma-separated file. Repeat for the “Ct_24hpi” DEG list. 

 

Method: Bacteria 

 

26. Build bacteria reference index file and map the unmapped reads (bacterial reads) from 

HISAT2 to the bacteria reference genome with Bowtie2:  

 

$ bowtie2-build -f bacteria_reference.fa bacteria_reference_index 

$ bowtie2 -q pair1_unmapped.fastq bacteria_reference_index 

 

The first command indexes the bacteria reference genome “-f bacteria_reference.fa” and generates the 

“bacteria_reference_index” output file. The second command performs the read mapping using the 

unmapped reads from the Host mapping step (“pair1_unmapped.fastq”). 

 

27. Repeat steps 6-10 from the host-specific protocol above. 

 

Sort the BAM files by both name and position, convert the “sorted by position” BAM files to BigWig 

format and visualize with IGV. Create count matrix with HTseq.  
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28. Repeat steps 13-16 from the host-specific protocol above. 

 

Combine the count files into a DGEList, remove the last five rows from the counts, filter counts to 

remove low expression genes, and inspect the counts for errors.  

 

29. Apply TMM normalization to counts  

 

> dge.bacteria <- calcNormFactors(dge_bacteria) 

> bacteria.cpm <- cpm(dge.bacteria, normalized.lib.sizes = TRUE) 

 

The first command generates TMM normalization factors and the second command converts the raw 

counts to normalized counts. 

 

30. Calculate gene lengths 

 

> library(GenomicFeatures) 

> txdb <- makeTxDbFromGFF(“bacteria_annotation.gtf”, format = “gtf”) 

> exons <- exonsBy(txdb, by = “gene”) 

> gene.length <- sum(width(reduce(exons))) 

> gene.length <- as.data.frame(gene.length) 

 

These commands utilize the the GenomicFeatures R package to extract the gene lengths from the 

“bacteria_annotation.gtf” file, which are required for the calculation of TPM values (below). 

 

31. Define a function to calculate TPM 

 

> TPM <- function(counts, lengths){ 

   rate <- counts / lengths 

   rate / sum(rate) * 1e6 

 } 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098715doi: bioRxiv preprint first posted online Jan. 6, 2017; 

http://dx.doi.org/10.1101/098715
http://creativecommons.org/licenses/by/4.0/


Dual RNA sequencing (dRNA-Seq) of bacteria and their host cells 

 45 

32. Calculate TPM values 

 

> final.tpm <- apply(bacteria.cpm, 2, function(x) TPM(x, gene.length)) 

> final.tpm <- as.data.frame(final.tpm) 

> colnames(final.tpm) <- colnames(bacteria.cpm) 

 

This command converts the normalized counts in "bacteria.cpm" to TPM. 

 

33. Write TPM values to file: 

 

> write.table(final.tpm, file = “Ct_relativeabundance.csv”, sep = “,”, col.names = NA) 

 

Anticipated Results and Troubleshooting 

 

RNA quality and quantity 

 

The Bioanalyzer trace will provide an indication of sample quality, where large, well-defined and high 

molecular weight peaks are expected. Low molecular weight peaks with low definition are usually 

evidence of RNA degradation and the experiment should not proceed further if this is the case.  

 

Raw sequence quality checks 

 

Following the analysis of the FASTQ files with FASTQC (step 2), a HTML report is generated which 

provides a judgement on several sequence quality parameters. Of particular importance are the 

following: The per base sequence quality plot should indicate a lower quartile above 10 (corresponding 

to 90% accuracy), while the per sequence quality score should have a mean base quality of 25 or higher 

(for RNA-seq reads, it is expected that base quality will decrease in later sequencing cycles), with the 

histogram curved to the right. The per base sequence content plot should indicate an even proportion of 

each base, and the per sequence GC content plot should demonstrate a normal distribution of GC 
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content; an abnormal distribution is likely evidence of contamination. In both the per base sequence 

content plot and per sequence GC content plot, a bias will be observed at the first bases which is 

specific to Illumina sequencing. The k-mer content plot will indicate the presence of k-mers at the early 

bases (also Illumina sequencing bias), but should otherwise not be at a higher than expected frequency. 

The read length distribution plot should indicate that the read length is at least 50 nucleotides, as 

represented by a single peak. 

 

Visualize alignments in IGV 

 

IGV allows the visualization of reads mapped to the reference genome and provides an efficient way of 

identifying problematic data. The alignments should agree with the known gene structures such as 

intron placements, and the reconstructed transcripts should sufficiently represent the alignments. Verify 

that genes are roughly evenly covered with reads and if there are known differentially expressed genes, 

confirm differential coverage between sample groups. Splice junctions can also be visualized for the 

host reads. 

 

Feature counting 

 

HTseq will generate a separate tab-delimited file for all samples and replicates, containing the read 

count for every gene in the annotation file. This file is usually represented with two columns: the 

Ensembl gene identifier, and the read count: a number indicating how many reads overlap with the 

feature (gene) listed in the annotation file [5]. 

 

Multi-dimensional scaling plot and hierarchical clustering plot 

 

In the MDS plot, replicate samples from each condition should generally cluster together, although 

some biological variation is expected. High sample variation may indicate noisy data and can be 

addressed by removing outlier samples, applying sample-specific quality weights as described in step 

20, or applying additional normalization factors using specialized packages such as RUVseq [74]. 

Samples that cluster according to technical parameters, such as the time and date of sample collection, 
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usually indicates evidence of batch effects which can be corrected by incorporating the effect into the 

design matrix (step 19). See the Limma user guide for more details on this [73]. 

 

Host differential expression analysis 

 

Following gene annotation (step 25), the table of differentially expressed host genes compiles a number 

of columns containing significant information comprising the output of the host side of the experiment. 

The first column lists the Ensembl ID for each gene identified as being differentially expressed, while 

the remaining columns provide the statistical output for each gene, including (1) the log2 fold-change 

(log FC) measured between experimental conditions, (2) the average log2 expression (AveExp) for 

each gene, (3) the moderated t-statistic, which is the ratio of the log2 fold-change to its standard error, 

(4) the p-value, (5) the > 0.05 p-value adjusted for multiple testing (via the Benjamini & Hochberg 

method to control the false discovery rate), (6) the B-statistic representing the log-odds that the gene is 

differentially expressed, (7) and the gene annotation columns that were incorporated in step 25. This 

table may be sorted by any column, where the log2 fold-change and adjusted p-values are usually of 

most interest.  

 

Bacterial transcript abundance analysis 

 

The TPM values generated in step 35 are representative of the relative expression levels of the bacteria.  
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Figure 1. Flow-chart for the wet-lab protocol for dRNA-seq of bacteria and host. 
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Figure 2. Flow-chart for the bioinformatic data analysis of dRNA-Seq of host and bacteria. 
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Figure 3. FastQ-Screen processing report of raw host and bacteria FASTQ sequencing reads. As 

expected, the majority of reads map to the human genome (70%), while 30% of reads map to the 

Chlamydia genome. 
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Figure 4. FASTQC report for per base sequence quality and adapter content. a. Sequence quality 

before removal of adapters with TRIMMOMATIC; b. Sequence quality after removal of adapters with 

TRIMMOMATIC. 
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Figure 5. Screen shot of Integrated Genome Viewer (IGV) showing host mapped reads the associated 

gtf annotation file. The first bar labelled "chr1" indicates which portion of the human genome (or 

chromosome) is displayed, with the length (8,764 bp) and specific genomic region shown underneath. 

The graphs shown in blue and gray indicate read coverage and the sequence alignment tracks are 

shown below this. The bottom row is the gtf annotation file indicating which annotated transcripts the 

reads are aligning to. 
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Figure 6. The count matrix. Following read quantification with HTSeq the count files are combined to 

form the matrix of raw counts for each sample and replicate in the dataset. 
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Figure 7. Multi-dimension Scaling Plot (MDS). This is a two-dimensional plot that visualizes the 

similarity between samples and replicates across conditions. It enables the identification of problematic 

samples that may obscure the subsequent statistical analysis. In this case, all replicates cluster together 

as expected. 
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Figure 8. Hierarchical clustering dendrogram. An extension of the MDS plot, the Hierarchical 

clustering dendrogram illustrates sample similarity. As expected, all replicates for each condition 

cluster together. 
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Figure 9.  Limma voom plots. The mean variance trend plot displays the gene-wise square-root 

residual standard deviations plotted against average log-count, with the LOWESS fit represented by the 

red line. The sample-specific weights are the result of the "voomWithQualityWeights" function and 

represents the sample-specific quality weights that can be applied to down-weight outlier samples. 
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Table 1. Statistical output of the differential expression analysis of host reads in R. The first column 

contains the ENSEMBL ID for the genes, logFC indicates the log fold-change observed, AveExpr is 

the expression value for each gene, t is the moderated t-statistic, P.Value is the raw p-value, adj.P.Val 

is the false discovery rate-adjusted p-value, and B is the log odds that the gene is differentially 

expressed. 

 

 

 logFC AveExpr t P.Value adj.P.Val B 
ENSG00000003096 0.6525066 13.791554 28.40683 1.447731e-10 4.921022e-09 14.94091 
ENSG00000005483 0.6818259 14.119036 28.15577 1.574679e-10 4.921022e-09 14.85045 
ENSG00000003436 0.6141746 15.274943 28.06727 1.622315e-10 4.921022e-09 14.60957 
ENSG00000004766 0.5506978 13.234187 27.08358 2.273831e-10 5.172965e-09 14.52388 
ENSG00000003147 4.2364651 6.880526 22.53363 1.289647e-09 2.252721e-08 11.79033 
ENSG00000001630 -1.8429486 11.760177 -22.19781 1.485311e-09 2.252721e-08 12.61091 
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