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Abstract

We analyse the effect of mean-reverting cash flows on the costs of shareholder-bondholder con-
flicts arising from partially debt-financed investments. Ina partial equilibrium setting we find that
such agency costs are significantly lower under mean-reverting (MR) dynamics, when compared
to the ubiquitous geometric Brownian motion (GBM). The difference is attributed to the stationar-
ity of the MR process. In addition, through the application of a novel agency cost decomposition,
we show that for a larger speed of mean reversion, agency costs are driven mainly by suboptimal
timing decisions, as opposed to suboptimalfinancingdecisions. In contrast, under the standard
GBM assumption the agency costs are driven mainly by suboptimal financing decisions for large
growth rates and by suboptimal timing decisions for smalleror negative growth rates.

Keywords: investment, real option, mean reversion, agency conflicts
JEL classification:G13, G32, G33, G38.

1. Introduction

The bulk of the existing real options literature assumes uncertain output or input prices to fol-
low geometric Brownian motion (GBM) (Dixit and Pindyck, 1994). While this modelling choice
often provides tractable solutions it has been criticised in relation to its suitability for describing
equilibrium price processes (Lund, 1993). It has also been suggested that such price dynam-
ics, particularly in commodity markets, can be more accurately modelled using a mean-reverting
(MR) process (Schwartz, 1997). Crucially, it has also been argued that the failure to account
for the effects of mean reversion can lead to “systematic biases in capital budgeting decisions”
(Bessembinder, Coughenour, Seguin, and Smoller, 1995).

Motivated by the above, an important line of research, initiated by Metcalf and Hassett (1995),
has attempted to assess the appropriateness of using GBM as asubstitute for more realistic mean-
reverting dynamics when considering firms’ optimal investment decisions. The present paper con-
tinues this line of research by considering the effect of mean reversion onleveragedinvestment
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projects. Considering leverage extends the previous analysis to a more realistic and economically
meaningful setting, however it requires the explicit consideration of the shareholders’ default op-
tion and the rational response of the debt providers to this default; thus introducing strategic inter-
action into the model. Because of this, the effect of MR on optimal investment in this setting is,
unsurprisingly, more complex.

However, the inclusion of leverage into this framework allows us to evaluate the additional
effects of mean reversion on the optimalfinancingdecisions of firms and to investigate thein-
teractionof the financing and investment timing decisions.1 To our knowledge the effect of mean
reversion on this interaction has not previously been studied. This research therefore contributes to
the literature on real options and stochastic price modelling as well as to the literature on corporate
financial policy and related agency conflicts.

To date, three effects of mean reversion on investments (when compared to GBM)have been
identified. Metcalf and Hassett (1995) expounded thevariance effect in which mean reversion
reduces the long-run variance of a project’s cash flow, resulting in a lower investment price thresh-
old. However, these authors also noted a second, competing,realised price effect, in which the
stationarity of the mean-reverting process implies that the probability of reaching a given level is
also reduced. This additional effect could potentially offset the variance effect and subsequently
Metcalf and Hassett (1995) concluded that GBMcould be considered as an appropriate substi-
tute for MR since the probability of investment under GBM andMR dynamics are comparable,
resulting in no significant difference in cumulative investment. Sarkar (2003) extended Metcalf
and Hassett’s arguments by incorporating a thirdrisk-discounting effect. Under mean reversion, a
lower cash-flow variance also affects the project’s risk-adjusted required rate of return and hence
the discount rate used for valuation; affecting both the project value and the value of the real option
to invest in the project. In contrast to Metcalf and Hassett (1995), Sarkar (2003) concluded that
mean reversiondoeshave a significant impact on investment when all three effects are correctly
accounted for.

In two recent contributions to this literature, Tsekrekos examined the effect of mean reversion
on irreversible exit decisions of firms (Tsekrekos, 2013) and on reversible entryandexit decisions
of firms (Tsekrekos, 2010); thus incorporating the possibility of reversibility and disinvestment
into the analysis. Similar to Sarkar (2003), Tsekrekos (2010, 2013) also reached the conclusion
that it would be erroneous to use the more tractable GBM process as an approximation for a mean-
reverting process in models of aggregate industry investment and disinvestment. We note that
neither Tsekrekos (2010, 2013), nor the previous papers, considered a setting in which leverage
was present.

Leverage introduces the potential for conflicting interests of shareholders (borrowers) and
bondholders (lenders).2 This introducesagency costsas a fundamental quantity in our invest-
ment and financing problem (Jensen and Meckling, 1976).3 Existing literature has analysed the

1Since Modigliani and Miller’s ground-breaking work on optimal capital structure (Modigliani and Miller, 1959,
Baxter, 1967) investment valuation has been closely linkedto questions of optimal corporate financial policy. Finan-
cial structure is important for the valuation itself because it influences the policy that governs cash flow control, which
in turn affects cash flows and the project value (Brennan and Trigeorgis, 2000).

2In the following, we use the termsequityholders anddebtholders to maintain generality.
3The investment decision-makers (managers) are assumed to be the shareholders and hence agency conflicts are
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direction and magnitude of the agency costs resulting from over- or underinvestment. When new
projects are financed solely by equity, some researchers have concluded that equityholders tend
to underinvest, because they bear all the cost of the investment while sharing the benefits with
debtholders (Mauer and Ott, 2000, Moyen, 2007, Titman and Tsyplakov, 2007). In contrast to
this, when projects are at least partially financed by new debt, equityholders tend tooverinvest due
to the incentive to transfer wealth from the debtholders to themselves (Leland, 1998, Mauer and
Sarkar, 2005).4

In the context of leveraged investments, the model of Mauer and Sarkar (2005) is particularly
appealing as it presents agency conflicts using a two-layered real option framework; the project
investment option and the default option after investment.This setup allows the rational debthold-
ers to incorporate the equityholders’ strategy of equity-value maximisation when deciding on how
much debt to provide and at what price. Therefore, in light ofthe significance of the effects of
mean reversion on investment timing decisions, we extend the (GBM based) model of Mauer
and Sarkar (2005) to a more general analysis, incorporatingthe risk-discounting effect of Sarkar
(2003), and allowing for the consideration of mean-reverting dynamics; thus providing insights
into their effects on both investmentandfinancing decisions.

The GBM based results of Mauer and Sarkar (2005) find that equityholders’ incentive to over-
invest significantly decreases firm value and optimal leverage, reporting a 9.4%lossin firm value
and a reduction in optimal leverage from 66% to 39% for their base-case parameters. Our analysis
reveals similar results under GBM—8.5% loss in firm value anda reduction in leverage from 60%
to 45%—but that under mean-reverting dynamics the reductions in firm value and optimal leverage
are much smaller, finding only a 1.0% loss in firm value and a reduction of optimal leverage from
48% to 44% for our base-case parameters. These results indicate that the growth rate and station-
arity assumptions of future cash-flow expectations have a significant impact on the equilibrium
effects of the agency conflict.

In sum, this research extends the current literature in the following ways. Firstly, we generalise
the model of Mauer and Sarkar (2005) to a wider class of diffusion processes and incorporate the
risk-discounting effect as proposed by Sarkar (2003). Secondly, when considering the agency costs
of overinvestment, we propose a novel agency cost decomposition into the costs due to suboptimal
financingdecisions and those due to suboptimal (default and investment) timingdecisions. Finally,
we also parameterise our model using real (commodity) assetprice data to provide a concrete
example of our findings.

The remainder of the paper is structured as follows. Our model is developed and solved under
a general MR uncertainty process in Section 2, results are provided and discussed in Section 3,
and conclusions drawn in Section 4. The more technical details are presented in the appendices.

between shareholders and bondholders. If the decision makers are not shareholders, there could be additional conflicts
of interests between shareholders and managers (cf. Cadenillas, Cvitanic, and Zapatero, 2004, Morellec, 2004).

4Note that, like Mauer and Sarkar (2005), this paper considers the agency cost of overinvestment since we have
partially debt financed investments and the assumption of noexisting debt prior to investment.
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2. A mean-reverting model

In the following we develop an extension of the Mauer and Sarkar (2005) model under MR
dynamics.5 In the model, equityholders have the option to invest in a project at any time and
further to finance the cost of the project with a level of debt of their choosing. After investment,
the equityholders have the subsequent option to abandon theproject and default on any existing
debt.

The investment project is assumed to yield a mean-revertingprofit (EBIT) equal toXt − C.
This could represent, for example, the per unit profit of producing a mean-reverting commodity—
sold at the uncertain price (Xt)t≥0—at a constant costC. Alternatively, we could interpretX as
thevariable contribution margin(i.e., revenue minus variable costs) of a project in a more general
industry. With this interpretation, we need not restrict ourselves to the commodity industry and our
results would hold for any firm facing mean-reverting earnings. Indeed, we note that Bhattacharya
(1978) provided some theoretical rationale for mean-reverting earnings and many empirical studies
have revealed a tendency of corporate earnings to mean revert (see, for example, Freeman, Ohlson,
and Penman, 1982, Kormendi and Lipe, 1987, Raymar, 1991, Fama and French, 2000, Sarkar and
Zapatero, 2003). To remain consistent with Mauer and Sarkar(2005), however, we retain their
uncertain output price formulation in the following.6

The per period profitsXt − C are taxed at the constant effective tax rateτ. The project is
subject to initial investment costsI and both the underlying project and the option to invest are
assumed to have infinite time-horizons. Financing of the project is assumed to be undertaken by
a mixture of both equity and perpetual debt, where the latteris denotedK. In exchange for the
financing amountK, equityholders are required to pay a periodic coupon payment R. The debt
amountK and coupon paymentR are pre-negotiated from a ‘revolving line of credit’ type ofloan
commitment, which equity- and debtholders have agreed uponat t = 0, before the investment
decision is taken.7 Debtholders are assumed to be rational and set the equityholders’ coupon
paymentR not only based on the level of debt providedK, but also on their expectation of the
equityholders’ behaviour regarding default and investment. In the case of default the equity value
is assumed to be zero and the bankruptcy costs amount to a fraction b of the value of the unlevered
project at time of default, with debtholders receiving the remainder.

Since optimal timing decisions are usually determined using backward induction we begin
by modelling theinner option, representing the value of the projectafter investment. Given the
investor’s ability to abandon the project the valuation of the inner option requires determining the
optimal abandonment strategy. In the case of the levered project, such abandonment is labelled as
default. Next, we evaluate theouter option, which represents the value of the investment project
to the investorbeforeinvestment. This option must account for uncertain future output prices, the
investor’s optimal timing decisions, and the lender’s optimal decision on providing debt. As such,

5The model can be generalized to a fairly large class of time-homogeneous diffusions which encompasses many
well known processes used in modern finance, such as the GBM, CIR and CEV models (see Black and Scholes, 1973,
Cox, Ingersoll, and Ross, 1985, Cox, 1975, respectively). More details are available from the authors upon request.

6The interested reader may refer to Glover and Hambusch (2014) where the alternative interpretation is made.
7This type of commitment allows the equityholders to borrow,on pre-negotiated terms, at any time during the life

of the commitment. For more details see Kashyap, Rajan, and Stein (2002).
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a strategic equilibrium (under complete information) between investor (equityholders) and lender
(debtholders) is determined.

2.1. Uncertainty assumption
To incorporate mean reversion into the price dynamics we model the price process (Xt)t≥0 as

the following arithmetic mean-reverting (AMR) process living on the filtered probability space
(Ω,P, {Ft}t≥0,F ):

dXt = η(x− Xt)dt+ σXtdWt, X0 = x, (1)

wheredWt denotes the increment of a Wiener process under the measure P, σ (> 0) denotes the
volatility of the process, andη the speed of mean reversion which determines the rate at which
X returns tox (≥ 0), the expected long-run price level. The parameterη is assumed to be non-
negative except in the scenario whenx = 0, in which caseη can take any real value. The process
(1) is known asinhomogeneous geometric Brownian motion(IGBM)8 due to the inhomogeneity of
its expected return in the state variableX. In comparison to Mauer and Sarkar (2005) the process
in Eq. (1) is a stationary process as opposed to the non-stationary GBM process employed by those
and many other authors.

The use of the process (1) in real option analysis dates back to Bhattacharya (1978) and has
been applied more recently by Insley (2002), Abadie and Chamorro (2008), Hong and Sarkar
(2008) and Tsekrekos (2010, 2013) amongst others. Whilst this process is only one of many
potential mean-reverting processes that could be used, ourreasons for choosing this particular
process are manyfold. First, like GBM, the IGBM mean-reverting model guarantees positive pro-
cess values. Second, Zhao (2009) showed that IGBM has many appealing closed-form properties
despite not being of the more tractable affine class. Thirdly, and perhaps most importantly, it can
be seen that geometric Brownian motion (GBM) can be obtainedas a special case of IGBM by
settingη = 0 (for driftless GBM) orx = 0 andη = −α, whereα denotes the drift of the result-
ing GBM dynamics. This reduction allows for a direct comparison of both the IGBM and GBM
processes. Finally, the IGBM process was also employed by Sarkar (2003) and Tsekrekos (2010,
2013) and so our results can be directly compared to these important papers.

2.2. Valuation principle
The project and firm valuations derived in this paper are doneso via equilibrium arguments

similar to those found in Bhattacharya (1978), Sarkar (2003) and Tsekrekos (2010), amongst
other.9 To explicitly take into account the risk-discounting effect, outlined by Sarkar (2003), we
appeal to the intertemporal capital asset pricing model (CAPM) of Merton (1973), which incorpo-
rates the relationship between systematic risk and the discount rate used for valuation. Inclusion

8In the existing literature, this process has been called, amongst other things, ‘inhomogeneous geometric Brownian
motion’ (IGBM) (see Abadie and Chamorro, 2008, Zhao, 2009),‘Geometric Ornstein-Uhlenbeck’ (GOU) (see Insley,
2002) or ‘geometric Brownian motion with affine drift’ (see Linetsky, 2004). To be consistent with the more recent
literature we refer to this process as IGBM.

9Alternatively, if an argument could be made for market completeness,risk-neutral valuationcould be employed;
see, for example, Duffie (1998), Section 17 or Huang and Litzenberger (1990), Chapter 8. However, since the under-
lying project cash-flows may not be tradable or fully replicable in the market, we choose to employ a more general
equilibrium valuation approach.
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of this feature is important in the present setting since mean reversion reduces systematic risk
and hence the discount rate used for valuation should not be treated as a constant across different
process assumptions. The use of CAPM is a convenient mechanism in which to incorporate this
intuition and is consistent with the papers upon which our research builds.

2.3. Unlevered project value

To start, we consider theinneroption determining the unlevered project value after investment.
We denote byVu the equilibrium value of the unlevered project and furthermore we assume that the
project manager will act optimally in exercising their option to abandon the project should output
prices (earnings) become too low. Given the project’s assumed infinite horizon, its value will not
depend on calender timet and the optimal abandonment policy will be to abandon the project the
first time the processX reaches a constant levelx∗a (to be determined). Hence, the project will
continue to operate provided the processX remains in the interval (x∗a,∞). In this interval we
can exploit Itô’s formula and the intertemporal CAPM to determine the differential equation that
Vu must satisfy. To do so, we note that the total return on an investment in the unlevered project
(denotedRu) is derived from two sources: (1) the expected capital gainE[dVu]/dt, and (2) the cash
inflow per unit timeπu, defined as

πu(x) = (1− τ)(x−C), (2)

i.e. the after-tax profit of the project. Applying Itô’s formula we thus observe that the expected
return and standard deviation of return of the active project are given by

E[Ru|Xt = x] = lim
dt↓0

(E[dVu(Xt+dt) + πu(Xt+dt)dt|Xt = x])/dt
Vu(x)

=

1
2σ

2x2V′′u (x) + η(x̄− x)V′u(x) + πu(x)

Vu(x)
, (3)

σ(Ru|Xt = x) =
σxV′u(x)

Vu(x)
, (4)

where primes denote derivatives. Next, from the continuous-time CAPM of Merton (1973), we
require that the relationship between risk and return satisfies

E[Ru] = r + λρσ(Ru), (5)

wherer denotes the risk-free rate of return,ρ the correlation of changes inX with the return of
the market portfolio,Rm, andλ = (E[Rm] − r)/σ(Rm) represents the market price of risk; with
E[Rm] andσ(Rm) denoting the expected value and standard deviation, respectively, of the return
on the market portfolio. We assume that both the market priceof risk λ and the correlationρ
remain constant. Substitution of Eqs. (3) and (4) into Eq. (5) thus results in the following ordinary
differential equation (ODE):

1
2
σ2x2V′′u (x) +

(

η(x̄− x) − λρσx
)

V′u(x) − rVu(x) + πu(x) = 0. (6)
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This ODE must be solved subject to the following boundary conditions:

Vu(x
∗
a) = 0, (7)

V′u(x)|x=x∗a = 0, (8)

lim
x↑∞

Vu(x) = fu(x), (9)

where fu is to be defined shortly. Condition (7) ensures that the valuation of the unlevered project
is zero upon abandonment (atx = x∗a). Condition (8) is the so-calledsmooth-pasting condition
(Dixit and Pindyck, 1994) that ensures optimality of the abandonment thresholdx∗a—being that
which maximises the project value over all possible abandonment thresholds. The final condition
(9) implies that for extremely high profit levels (i.e., highx) the likelihood of abandonment is
negligible and hence the project valuation would correspond to the valuation of a project that was
operated in perpetuity (from an initial value ofx). We denote such a value byfu and note that an
expression for its value can be derived from the arguments ofBhattacharya (1978), yielding10

fu(x) = (1− τ)

(

x
r + η + λρσ

+
ηx

r(r + η + λρσ)
−

C
r

)

. (10)

Interestingly, it can be seen (via direct substitution) that fu is also aparticular solution to the ODE
in (6). Therefore, the general theory of linear second orderdifferential equations (Coddington and
Levinson, 1955) allows us to express thegeneralsolution to (6) as

Vu(x) = fu(x) + Aφ(x) + Bψ(x), (11)

whereA andB are constants to be determined andφ andψ denote the two positive independent
solutions (decreasing and increasing, respectively) of the associated second-order homogeneous
ODE

1
2
σ2x2u′′(x) +

(

η(x− x) − λρσx
)

u′(x) − ru(x) = 0. (12)

These solutions are found to be

φ(x) = xγM

(

−γ, 2(1− γ) +
2(η + λρσ)

σ2
;
a
x

)

, (13)

ψ(x) = xγU

(

−γ, 2(1− γ) +
2(η + λρσ)

σ2
;
a
x

)

, (14)

whereM andU are confluent hypergeometric functions,a := 2ηx/σ2, andγ is the negative root of
the quadratic12σ

2γ(γ − 1)− (η+ λρσ)γ− r = 0. The solution methodology relies on the reduction

10Identifying A = η, B = ηx̄, a = λρ, and V = σ in Eq. (14) of Bhattacharya (1978), we can see that the
transformationVu = (1 − τ)(F − C/r) establishes the link betweenF in (14) andVu in Eq. (6) above. Setting the
maturity in Eq. (15) of Bhattacharya (1978) to be infinite thus yields the required result (after a little rearranging).
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of Eq. (12) to the standard form of the so-called Kummer’s equation.11

Applying boundary condition (9) we must conclude thatB = 0 (sinceψ is unbounded in
this limit) and application of boundary condition (7) reveals thatA = − fu(x∗a)/φ(x∗a). Hence the
unlevered firm value can be expressed as

Vu(x) =

{

fu(x) − fu(x∗a)
φ(x)
φ(x∗a) , for x ≥ x∗a,

0, for x < x∗a,
(15)

where the optimal abandonment thresholdx∗a solves

φ′(x∗a)

φ(x∗a)
=

f ′u(x∗a)

fu(x∗a)
, (16)

which is obtained from application of the final, smooth-pasting, boundary condition (8). Note that
Eq. (16) does not allow us to solve forx∗a analytically, howeverx∗a can be found numerically very
easily using standard root-finding algorithms. From Eq. (15) we observe that the valuation of the
unlevered project can be decomposed into the value of a project that isneverabandoned,fu(x),
and the value of the ‘option’ to abandon the project,− fu(x∗a)φ(x)/φ(x∗a).

12

Remark1. Settingx→ 0 (andη→ −α) in Eq. (13) the well known expression for GBM dynamics,
xγ, can be recovered. This can be seen clearly by noting that lima→0 M(·, ·; a/x) = 1. We also note
that in this limiting case, Eq. (16) can be solved explicitlyto yield

x∗a =
γC(α − r − λρσ)

r(1− γ)
, (17)

which is consistent with the results of Mauer and Sarkar (2005).

2.4. Levered project value
Next, we consider the availability of debt financing, where interest payments are assumed to

be tax deductible. Due to the resulting tax-shield, equityholders have the incentive to take on debt
to increase the total equity value of the investment. In the presence of coupon paymentsR≥ 0, the
profit function of the levered project changes Eq. (2) to

πℓ(x) = (1− τ)(x−C − R). (18)

Furthermore, the levered project valueVℓ(x) after investment is defined as simply the sum of the
values of equity and debt

Vℓ(x) := E(x) + D(x). (19)

To determine the equity value of the levered project,E(x), analogous arguments to those outlined
above for the unlevered project can be made, but with the cash-flow streamπu replaced byπℓ; i.e.

11For further details see Appendix A. Ewald and Wang (2010) also provide detail of the solution methodology in
the context of a similar real option problem under a similar,CIR-type, mean-reverting process.

12Despite the negative sign this option value is indeed positive, since the project manager would only abandon when
fu(x) < 0, i.e. when the associated no-abandonment project had a negative value at the current profit level.
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with the fixed operating costsC replaced by the sum of the operating and financing costs,C + R.
Recall that in the case of the levered project, we term the abandonment of the project asdefault.
Furthermore, the optimal default policy of the equityholders will be the first hitting time of the
optimal default thresholdx∗d (analogous tox∗a). Hence the equity value is found to be13

E(x) =






fℓ(x) − fℓ(x∗d)
φ(x)
φ(x∗d) , for x ≥ x∗d,

0, for x < x∗d,
(20)

where

fℓ(x) = fu(x) −
R(1− τ)

r
, (21)

andx∗d solves the equation
φ′(x∗d)

φ(x∗d)
=

f ′
ℓ
(x∗d)

fℓ(x∗d)
. (22)

Remark2. Given the additional cash-flow burden of the amountR, it is expected that rational
equityholders abandon the project sooner (at a higher output price) due to the lower overall cash
inflows. Indeed, it can be shown thatx∗d ≥ x∗a, for all R≥ 0.14

Remark3. Noting that equityholders would only default on the projectwhen fℓ < 0, if parameters
were such thatfℓ(x) ≥ 0, ∀x ≥ 0, the optimal default trigger pricex∗d would not exist (since the
left-hand-side of Eq. (22) is negative and the right-hand-side would always be positive). Hence it
would never be optimal to default on the levered project. Inspection of Eq. (21) reveals that no
default is indeed optimal when

x− (C + R) >
r + λρσ

η
(C + R), (23)

i.e. when the project’s long-run profit margin is sufficiently large. Furthermore, if Eq. (23) is
satisfied, the equity valueE(x) remains finite and is given simply byfℓ(x).15 Finally, settingx = 0
andη = −α, condition (23) can be used to conclude that under geometricBrownian motion with
drift α, it is never optimal to default (forC + R > 0) if α ≥ r + λρσ. However, in this case
(α ≥ r + λρσ), the equity value becomes infinite.

The above observations demonstrate clear qualitative differences in investors’ behaviour be-
tween the GBM and IGBM case. Under the assumption of a GBM uncertainty process the con-
dition α < r + λρσ is required to ensure that the equity value is finite and investors will always
optimally default on the project if subjected to positive costs. Otherwise, ifα ≥ r + λρσ, equity
has an infinite value and trivially the project should never be stopped.16 This condition effectively

13Details are identical to those in Section 2.3 and are therefore omitted in the interests of brevity.
14Details are available from the authors upon request.
15The same intuition also holds for the optimal abandonment trigger pricex∗a and the value of the unlevered project

Vu(x) whenR= 0.
16This condition is reminiscent of the popular (Gordon) constant growth model for equity valuation (see Gordon,

1959) in which equity cannot be valued if the expected futuregrowth rate of dividends exceeds the risk-adjusted
required rate of return.
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restricts the region of applicability of the GBM model. Under the assumption of mean-reversion
on the other hand, the equity valueE(x) can be seen to remain finitefor all parameter regimes,
even when it is optimal to never default on the project.

Next, to value the debt,D(x), we observe that the debtholders’ periodic cash flow is equal
to the coupon paymentR, provided that the equityholders do not default. In the caseof default,
debtholders receive the value of the unlevered project lessbankruptcy costs. Therefore, applying
similar valuation arguments to those outlined above, we observe that the debt value must satisfy
the following ODE

1
2
σ2x2D′′(x) +

(

η(x̄− x) − λρσx
)

D′(x) − rD(x) + R= 0 (24)

subject to the boundary conditions

D(x∗d) = (1− b)Vu(x
∗
d), (25)

lim
x↑∞

D(x) = R/r, (26)

where we recall thatx∗d denotes the equityholders’ optimal default threshold andb the fractional
bankruptcy cost. Note that there is no longer a third optimality (smooth-pasting) condition required
for this ODE since debtholders do not have any direct influence on the time of default. The
condition in (25) specifies the residual value (net of bankruptcy costs) to be transferred to the
debtbholders after the equityholder’s default. The condition in (26) implies that for extremely
high profit levels (i.e., highx) the likelihood of abandonment is negligible and hence the debt
value corresponds to the valuation of a simple perpetuity with a constant payment ofR per time
period. In addition, since this cash-flow is risk free, the appropriate discount rate for valuation is
simply the risk-free rater, yielding a debt value ofR/r.

Once more the limiting valueR/r turns out to be a particular solution of (24) and application
of conditions (25) and (26) to the general solution of (24) yields

D(x) =






R
r +

(

(1− b)Vu(x∗d) − R
r

)
φ(x)
φ(x∗d) , for x ≥ x∗d,

(1− b)Vu(x), for x < x∗d.
(27)

Next, substitution of Eqs. (20) and (27) into Eq. (19) and judicious rearranging provides the
following, particularly insightful, representation of the value of the levered project (forx ≥ x∗d)

17

Vℓ(x) = Vu(x) +
τR
r

(

1−
φ(x)
φ(x∗d)

)

− bVu(x
∗
d)
φ(x)
φ(x∗d)

. (28)

In other words, the value of the levered project can be expressed as the sum of three components:
the value of the unlevered project, the expected additionalbenefit provided by debt in the form
of a tax shield, and the expected cost of bankruptcy. This representation forms the basis for the
trade-off theory of optimal capital structure (Kraus and Litzenberger, 1973).

17See Appendix B for the derivation of Eq. (28). Note that forx < x∗d, we haveVℓ(x) = D(x) = (1− b)Vu(x).
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2.5. Second-best investment policy

The outer option to invest in the project, orfirm value, is considered next.18 We begin with
the case of thesecond-bestinvestment policy based on the equityholders’ desire to maximise
equity/shareholder value (as opposed to afirst-bestpolicy maximising total firm value). This
policy provides the optimal time to undertake the investment from the equityholders’ point of
view.

In order to value the second-best option to invest we once again appeal to equilibrium argu-
ments and recognize that the investment opportunity held bythe firm is analogous to a perpetual
American call option—with the payoff at exercise being equal the equity value of the levered
project net of the total investment cost to the equityholders (i.e.,I − K). We assume that the eq-
uityholders optimally exercise this option, which would occur when the cash flows (X) are high
enough. Again, since it is a perpetual option, its value willbe independent of calendar time and
the optimal investment policy will be to invest in the levered project the first time the processX
reaches a constant levelx∗2 (to be determined). Letting the second-best firm value be denoted by
F2(x) we observe that this value must satisfy the ODE

1
2
σ2x2F′′2 (x) +

(

η(x̄− x) − λρσx
)

F′2(x) − rF2(x) = 0, (29)

subject to the boundary conditions

F2(x
∗
2) = E(x∗2) − (I − K), (30)

F′2(x)|x=x∗2
= E′(x)|x=x∗2

, (31)

lim
x↓0

F2(x) < ∞. (32)

Condition (30) indicates that the second-best firm value upon investment is simply the equity value
of the levered project in excess of the net investment cost tothe equityholders. Condition (31) is
another smooth-pasting condition that ensures optimalityof the investment thresholdx∗2—being
that which maximises the second-best firm value over all possible investment thresholds. Finally,
Eq. (32) ensures that the firm value remains finite asx approaches zero.19 Noting that Eq. (29) is
homogeneous, and hence requires no particular solution, application of the boundary conditions
(30), (31) and (32) to the general solution of (29) yields thefollowing representation of the second-
best firm value:

F2(x) =






(

E(x∗2) − (I − K)
) ψ(x)
ψ(x∗2) , for x < x∗2,

E(x) − (I − K), for x ≥ x∗2,
(33)

18Note that, like Mauer and Sarkar (2005), we assume the firm undertaking this investment decision has no other
existing operations or debt. Hence the investment option value is equivalent to thepurefirm value, since there are no
additional operations from which to derive value.

19Since zero is anentrance-not-exitboundary point for the IGBM process (see Karlin and Taylor, 1999) the usual
zero-value condition, limx↓0 F2(x) = 0 (which is appropriate under GBM dynamics) cannot be applied here since there
is a positive value of starting the process at zero under IGBM.
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wherex∗2 solves the equation
E′(x∗2)

E(x∗2) − (I − K)
=
ψ′(x∗2)

ψ(x∗2)
, (34)

which is determined via application of the smooth-pasting condition in Eq. (31).
Next, note that Eqs. (33) and (34) provide the second-best firm value and investment threshold

conditionalon the equityholders and debtholders agreeing on the periodic coupon paymentR in
exchange for an initial loan of amountK. However, recall that debtholders rationally anticipate
that equityholders will maximise equity value and will therefore charge appropriately high interest
payments. In other words, the debtholders have no control over the equityholders’ default and
investment decisions but they can determine, given the coupon paymentR, how much debt will be
provided upon investment. Consequently, thefair value of debt, denoted asK∗ and representing
the amount of debt provided at the time of investment, shouldbe equal to Eq. (27) evaluated at the
second-best investment thresholdx∗2, which yields20

K∗ = D(x∗2) =
R
r
+

(

(1− b)Vu(x
∗
d) −

R
r

) ψ(x∗2)

ψ(x∗d)
. (35)

Eq. (35) governs the equilibrium relationship between the coupon paymentR and the amount of
debt provided.21 Given this relationship we can now determine the second-best firm value and
threshold pricein equilibrium. Substituting Eqs. (35) and (19) into Eqs. (33) and (34) yields

F2(x) =






(

Vℓ(x∗2) − I
)
ψ(x)
ψ(x∗2) , for x < x∗2,

Vℓ(x) − I , for x ≥ x∗2,
(36)

and furthermore
E′(x∗2)

Vℓ(x∗2) − I
=
ψ′(x∗2)

ψ(x∗2)
. (37)

2.6. First-best investment policy

The comparison of the results derived from Eqs. (36) and (37)to the first-best firm value and
investment trigger price allows for a quantitative analysis of agency costs. We derive the first-best
firm value and investment policy based on the setting in whichthe overall firm value, as opposed
to equity value, is maximised. In this case, and analogous tothe second-best value, the first-best
firm value,F1(x), must satisfy the ODE

1
2
σ2x2F′′1 (x) +

(

η(x̄− x) − λρσx
)

F′1(x) − rF1(x) = 0, (38)

20The rational debtholders could provide less debt for a givencoupon paymentR, however we assume that compe-
tition amongst debt providers will enforce the stated equality.

21Equivalently, one could solve (implicitly) forRand determine the fair coupon payment debtholders would expect
for a given amount of debtK promised to equityholders at time of investment.
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subject to the boundary conditions

F1(x
∗
1) = Vℓ(x

∗
1) − I , (39)

F′1(x)|x=x∗1
= V′ℓ(x)|x=x∗1

, (40)

lim
x↓0

F1(x) < ∞, (41)

wherex∗1 denotes the first-best investment threshold. Condition (39) indicates that the first-best
firm value upon investment is now the total levered project value in excess of the total investment
cost to the firm (I ). Once more, condition (40) is a smooth-pasting condition ensuring optimality of
the investment thresholdx∗1 and Eq. (41) ensures that the firm value remains finite asx approaches
zero. Application of boundary conditions (39), (40) and (41) to the general solution of (38) yields
the following first-best firm value:

F1(x) =






(

Vℓ(x∗1) − I
)
ψ(x)
ψ(x∗1) , for x < x∗1,

Vℓ(x) − I , for x ≥ x∗1,
(42)

wherex∗1 solves the equation
V′
ℓ
(x∗1)

Vℓ(x∗1) − I
=
ψ′(x∗1)

ψ(x∗1)
, (43)

as determined by application of the smooth-pasting condition (39).

Remark4. We note that the representation of the two firm values given byEqs. (36) and (42)
differ only by the critical levelx∗i employed. Therefore, since the value ofF1(x) was determined
by maximisation of (Vℓ(xi) − I )ψ(x)/ψ(xi ) over all such investment triggersxi, it must follow that,
for a fixed coupon paymentR, the second-best firm valueF2(x) is always lower than (or equal to)
the first-best valueF1(x), i.e. F2(x) ≤ F1(x), for all x. Furthermore, sinceF2(x) ≤ F1(x) for all
x, and bothF1 andF2 dominateVℓ − I , it is evident that the second-best investment trigger price
always lies below the first-best investment trigger price, i.e. x∗2 ≤ x∗1, resulting in earlier (or over-)
investment by levered firms (for a fixed coupon).

2.7. Optimal financing

The above analysis confirms the overinvestment of equityholders, however it is important to
note that the above results only hold true for a couponR fixed across first- and second-best out-
comes. In reality, equityholders are free to choose their financing strategy too, and hence the
coupon paymentR which maximises equity value will not necessarily be the same as that which
maximises total firm value. We thus define the optimal coupon payment which maximises the
first- and second-best firm value as

R∗i = arg max
R

Fi(x; R), for i = 1, 2. (44)

From the problem formulation it seems clear that an optimal coupon payment exists due to the
tradeoff between the expected benefits of the tax shields and the expected costs of financial distress,
see Eq. (28).
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2.8. Agency costs

To quantify the agency cost of overinvestment by equityholders we follow Mauer and Sarkar
(2005) and define the agency cost as the difference between first- and second-best firm values
(evaluated at their respective optimal coupon payments) inpercent of the second-best firm value;

AC :=
F1(x; R∗1) − F2(x; R∗2)

F2(x; R∗2)
. (45)

Mauer and Sarkar (2005) decompose agency cost into two components: the loss of pure operating
value due to agency conflicts and the loss in the net benefit of debt financing. In contrast, and in
order to quantify the agency costs due to differences intiming decisions (x∗1 vs. x∗2) and those due
to differences infinancingdecisions (R∗1 vs. R∗2), we choose to define:

AC =

[
F1(x; R∗1) − F1(x; R∗2)

F2(x; R∗2)

]

+

[
F1(x; R∗2) − F2(x; R∗2)

F2(x; R∗2)

]

=: ACf in + ACtim. (46)

This novel decomposition provides additional insights andhighlights important results when com-
paring GBM and mean reversion in Section 3.

Remark5. It can easily be shown thatF1(x; R∗1) ≥ F1(x; R∗2) ≥ F2(x; R∗2), where the first inequality
must be true from the definition ofR∗1 and the second inequality is due to the dominance ofF1 over
F2 for any fixed couponR. Hence it is clear that bothACf in andACtim are positive. Thus, for a
fixed coupon paymentR, the overinvestment of equityholders (i.e., their optimaltiming decisions)
results in a decrease in firm value. However, with the inclusion of the optimal financing policy
(i.e., the choice of couponR) the equityholders’ optimal leverage decision results in an even further
reduction in firm value. The absolute and relative size of these two agency cost components will
be of primary interest in our results below.

3. Results

In this section we present results based on the IGBM process and, for comparison, a standard
GBM process (obtained by settingx = 0 andη = −α). After identifying our base-case parameters,
we first briefly discuss the effects of mean reversion on the firm’s optimal timing decisionsfor a
fixed coupon rateR. Since the investment timing and financing decisions are intimately linked
this partial analysis allows us to first isolate the effect of mean reversion on the firm’s optimal
timing decisions. We then consider the optimal coupon payment and the additional effect of mean
reversion on the firm’s optimal financing decisions. Finallywe quantify the agency costs of debt
financing (and its components) and perform extensive equilibrium comparative statics analysis
for all model parameters, focusing in particular on the speed of mean reversionη, which plays a
crucial role for our model results.

3.1. Base-case parameters

To illustrate the model we consider the investment into an oil production facility (such as an oil
rig). Oil continues to be a key energy resource in the 21st century and therefore has received much
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attention in the the real options literature (see, for example, Paddock, Siegel, and Smith, 1988).
Furthermore, many studies indicate that oil price dynamicsexhibit mean-reverting behaviour, at
least over longer time periods (see Bessembinder et al., 1995).

We estimated the parameters of the IGBM model using approximately 15 years (January 2000–
October 2014) of monthly West Texas Intermediate (WTI) oil price data (U.S. Dollars per Bar-
rel).22 We employed the estimation method of Longstaff and Schwartz (1995) (see also Insley,
2002, Sarkar and Zapatero, 2003, Hong and Sarkar, 2008) and the estimation yielded the follow-
ing base-case uncertainty parameters:x = $97.00,η = 0.1703 andσ = 0.265.

The other (non-process specific) parameters are taken to be:r = 0.04, λρ = 0.32, τ = 0.30,
b = 0.35, C = $60, R = $13.50, I = $180 andX0 = $100, where all costs are in units ofper
barrel. The production cost of $60 is set to be the average production cost (per barrel) for several
oil production technologies (see International Energy Agency, 2008, p. 218). Note that these costs
are less than the long-run price levelx and so, in the absence of debt, the project is expected to
make a profit in the long run. However, the parameters are suchthat it will be optimal to default
for sufficiently low oil prices; see condition (23). The base-case coupon paymentR is derived
as the optimal second-best coupon for the base-case parameters (in which 65.8% of the project
is financed by debt). This choice is consistent with the procedure adopted in Mauer and Sarkar
(2005) for choosing their base case. Since the cost of various oil production facilities vary so
greatly we simply take the investment costI to be three times the production cost (per barrel).
The effective tax rateτ of 30% and bankruptcy costsb of 35% follow Mauer and Sarkar (2005).
Since the parametersλ andρ only appear together asλρ in the model, and furthermore since this
quantity can be identified as the Sharpe ratio,23 we assume the value ofλρ to be 0.32, taken from
Henriques and Sadorsky (2008), who report the Sharpe ratio for oil prices over a similar sample
period to ours. Finally, we take the initial oil price,X0, to be $100 which approximately reflects
WTI oil prices during 2014, the final year of our estimation period. We note, however, that our
optimal abandonment, default and investment trigger prices, as well as our leverage and credit-
spread results, are all independent of the chosen value ofX0. Furthermore, providedX0 < x∗2, our
valuation formulae (36) and (42) also imply that agency costs are independent ofX0.

3.2. Comparative statics for a fixed coupon R
In the following we fix the couponR to analyse the isolated effect of mean reversion on eq-

uityholders’ optimal abandonment/default and the corresponding equilibrium debt provision.In
Section 3.3 we extend this analysis to include the additional effect of the firm’s optimal financing
decisions and present the full equilibrium comparative statics of the model.

Project and firm values
Fig. 1 illustrates the unlevered and levered project valuesalong with the project abandonment

and default threshold prices for the base case. The unlevered project is optimally abandoned

22The oil price data was obtained from theU.S. Energy Information Administrationand the prices were converted
to real (October 2014) prices using theProducers Price Index(PPI) from theU.S. Bureau of Labor Statistics. The
process was estimated using real prices since it is the real price (not the nominal) that is assumed to mean revert.

23Given the CAPM relationship used, i.e.E[RX] = r + λρσ(RX), whereRX denotes the return on the output price
X, we observe thatλρ = (E[RX] − r)/σ(RX), which can be identified as the Sharpe ratio of the assetX.
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at an oil price of $25.75, whereas the addition of leverage increases this threshold to $50.18,
thereby confirming thatx∗a ≤ x∗d. We note thatx∗a is very low compared to the prices observed
during the data sample period, indicating that reaching this level would be highly unlikely if the
price dynamics continued as in the sample period. On the other hand,x∗d is almost twice as large,
indicating a much higher probability of default due to the effect of debt on the project cash flows.24

We also note that for the base-case parametersVℓ(X0) = $177.98 andVu(X0) = $168.325, hence
debt financing adds $9.65 (or 5.73%) to the total project value, reflecting the expected value of the
tax shield in excess of bankruptcy costs.

*** Insert Figures 1 and 2 about here ***

Fig. 2 illustrates the first- and second-best firm values. Thefirst-best firm valueF1(x) is clearly
greater than the second-best firm valueF2(x), with the difference reflecting the agency cost of debt
financing. Overinvestment is also observed sincex∗2 ≤ x∗1.

Abandonment and default thresholds
The threshold price of the equityholders’ abandonment/default option is of utmost importance

in the model since it governs the investor’s optimal behaviour after investment which, in turn,
influences the rational debtholders’ behaviour and hence the magnitude of agency costs. Key
drivers for these threshold prices are the parameters of themean-reverting process employed (i.e.,
x, η andσ). Comparative statics for the threshold levelsx∗a and x∗d are presented in Fig. 3. In
addition, the non-process-dependent discount parametersr, λ andρ, and the cost parameterC
are also presented. We note that Eqs. (16) and (22) indicate that the abandonment and default
threshold prices are independent of the parametersb andτ.

*** Insert Figure 3 about here ***

Once more, Fig. 3 demonstrates thatx∗a ≤ x∗d for all parameter values. In addition, for higherx,
lower costsC, or a lower discount rate (due to a lowerr, λ orρ), abandonment and default occurs at
a lower price because the valuation of the project increasesin these cases. Project owners therefore
tolerate much lower output prices in light of this increasedvaluation.

From Fig. 3(b) we also observe that a higher speed of mean reversion results in a lower aban-
donment or default threshold. This result can be understoodby recalling that the long-run prof-
itability of the production facility is positive (i.e.,x > C+R) and so higher levels ofη indicate that
price departures fromx (and hence from a profitable region) are corrected more quickly through a

24Subsequent to our estimation and the preparation of this paper, the precipitous fall in world oil prices (to below
$30 at the time of writing) suggests the realistic possibility of abandonment and default on oil production facilities.
In fact, this appears to be exactly what is happening, see, for example,http://money.cnn.com/2016/01/22/
investing/oil-crisis-defaults-rise/.
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stronger mean-reversion force. This reduces the price variance and the equityholders’ are willing
to tolerate lower output prices. We note that thisη dependence, however, is qualitatively different
when the project is not expected to be profitable in the long-run (i.e., whenx < C + R). In this
case we find that an increase in the speed of mean reversion actually increases the abandonment
and default thresholds, and hence increases the probability of such default (which in turn would
impact debt provision and the equilibrium outcome).25 This result emphasises the importance of
the long-run profitability on the model outcomes which will be discussed further in Section 3.4
(see Result 2).

Fig. 3 also reveals that for certain parameter regimes it is optimal to never abandon or default
on the project (i.e.,x∗a = 0 or x∗d = 0, respectively), see Remark 3. No-default regions occur for
very profitable projects, when eitherx is high or costsC are low. No default or abandonment also
becomes optimal for sufficiently low volatility σ, market price of riskλ, or correlationρ, or for
sufficiently high speeds of mean reversionη, since these scenarios describe an increased certainty
in price and hence an increase in valuation.

Remark7. The critical parameter values which separate the default versus no-default regions can
be determined by rearranging the equality in Eq. (23) for therequired parameter. For example,
the critical value ofη above which the investor would never default on the project in Fig. 3(b) can
be calculated asη∗ := (r + λρσ)(C + R)/(x − C − R) ≃ 0.39 with the associated critical value for
abandonment obtained by settingR= 0 to yieldη∗ ≃ 0.2.

Finally, when considering the effects ofσ on equityholders’ timing, it is well understood that
(in the absence of risk discounting) an increase in volatility (σ) would result in an increase in
the value of the default and abandonment options, with an associated decrease in the default and
abandonment threshold prices. However, the inclusion of the risk-discounting effect results in the
additional impact of volatility on the required rate of return which has a competing effect on the
default and abandonment thresholds. An increase inσ results in a higher risk-adjusted discount
rate and hence a lower option/project value and a higher threshold price. These two competing
forces explain the observedσ comparative statics shown in Fig. 3(c), which indicates that the
risk-discounting effect dominates for low volatilities.

Equilibrium debt provision
Next, we briefly discuss the equilibrium provision of debt when cash flows are mean reverting.

Fig. 4 shows the equilibrium amount of debt financing for a given coupon paymentR. Whilst it is
not surprising that more debt is provided as the coupon payment R increases, the concavity of the
relationship reveals the impact of the increased credit risk to the debt providers asR, and therefore
the amount of debt, increases. Higher coupon payments put the firm in a worse financial position,
burdened with a higher financing cost, which increases the probability of equityholders’ default.

*** Insert Figure 4 about here ***

25Specifically, it can be shown that
∂x∗d
∂η
= −

(1−τ)(x−C−R)φ′(x∗d)
r(r+η+λρσ)φ′′(x∗d) fℓ(x∗d) , hencex∗d is decreasing inη for x > C + R and

increasing forx < C + R.
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In equilibrium the debtholders are very reluctant to provide debt in excess of the investment
amountI (i.e., K∗ > I ). This result differs from the results of Mauer and Sarkar (2005), since for
their base case a particularly high value of debt financing inequilibrium is observed (equal to an
amount exceeding 2.75 times the investment cost). Our modelgenerates perhaps more realistic
equilibrium debt levels for economically reasonable annual coupon payments, where the first- and
second-best optimal coupons,R∗1 = $16.31 andR∗2 = $13.50 correspond to an equilibrium debt
financing of 74.2% and 65.8% of the project cost, respectively.

3.3. Full comparative statics

We now proceed to investigate the influence of mean reversionwhen the additional flexibility
of equityholders to select the optimal coupon paymentR∗ is taken into account.

Investment thresholds
Fig. 5 plots the investment threshold pricesx∗i (i = 1, 2) for varying model parameters, along

with the abandonment and default threshold pricesx∗a andx∗d for comparison.

*** Insert Figure 5 about here ***

We observe thatx∗2 < x∗1 for all model parameters indicating that overinvestment ismaintained
by equityholders when they are also allowed to optimally choose the level of debt financing (see
Remark 4). Fig. 5 also shows that the investment thresholds decrease for higher long-run price
levelsx and a higher speed of mean reversionη. The opposite relationship holds when considering
the optimal investment thresholds andσ, r, λ, ρ, C, τ, b or I .

Perhaps the most striking observation from Fig. 5 is that forsome parameter regimes (highx
andη, as well as lowσ, λ, ρ andC) the first- and second-best investment threshold prices appear
to converge, resulting in very similar first- and second-best outcomes.26 This indicates that the
agency cost is very low in these regimes. Indeed, inspectionof Eqs. (37) and (43), reveals that
threshold pricesx∗1 andx∗2 are equal whenV′

ℓ
(x) = E′(x), i.e. if D′(x) = 0 and hence the value of

debt is insensitive to the cash flow level. We thus infer that in these parameter regimes debtholders
are not concerned with equityholders’ default since the project’s cash flows are such that it is
optimal for equityholders to default at very low output prices.

To better understand the two apparent regimes of equilibrium behaviour we choose to focus on
the speed of mean reversion parameterη. Furthermore, recall thatη = 0 corresponds to (driftless)
GBM dynamics and so considering theη dependence also allows us to compare the results under
mean reversion with standard GBM. Fig. 6 shows the full comparative statics (allowing for the
change in optimal coupon) of several equilibrium outputs asη is varied. Fig. 6(a) shows the equi-
librium outcome for the optimal coupon rate, Figs. 6(b), 6(c), and 6(d) show the equilibrium debt
level, equity level and leverage ratio27 at time of investment, and Fig. 6(e) shows the equilibrium

26Upon closer inspection these values are not identically equal. However the percentage difference in values are
much less than 1% in this regime.

27Defined asL∗i = K∗i /Vℓ(x∗i ; R∗i ) for i = 1, 2.
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credit spreads, defined asCSi = R∗i /K
∗
i − r for i = 1, 2, which acts as a proxy for the willingness

of the debtholders to provide debt in equilibrium. In addition, Table 1 reports comparative statics
results for these equilibrium outcomes (plus agency costs)for all model parameters.

*** Insert Figure 6 and Table 1 about here ***

Firstly, from Fig. 6(a) we observe that the equilibrium first-best coupon,R∗1, is higher than the
second-best outcome,R∗2. Therefore, equityholders maximising equity value investsooner and also
pick a lower coupon than a manager maximising total firm value; the overall effect is to increase
agency costs (over that with a fixed coupon rate across first- and second-best optimisers). The
lower second-best coupon rate also results in a lower amountof debt and leverage ratio at the time
of investment—see Figs. 6(b) and 6(d). Economically, the incentive for the first-best optimiser to
take on more debt is a result of the substantial benefits of thetax shield in increasing total firm
value.

Secondly, recall that for the base-case parameters we havex − C = $37, hence the project is
profitable in the long-run in the absence of any debt. Consequently, the firm can take on a coupon
payment of up to $37 and still remain profitable in the long-run. Inspection of Fig. 6(a) indi-
cates that the coupon payment for the second-best outcome isindeed always below this maximum
value.28

Finally, Fig. 6 clearly demonstrates the existence of two distinct regimes of equilibrium be-
haviour. The first regime, forη smaller than a critical valueηc, exhibits decreasing coupon pay-
ments and debt levels, decreasing and then increasing equity levels, and high (but decreasing)
credit spreads. In the second regime, forη > ηc, coupon payments and debt levels are now both in-
creasing, equity levels are decreasing, and credit spreadsare now extremely low. For the base-case
parameters we observe thatηc ≃ 0.184.

Result 1. There are two distinct regimes of equilibrium (financing andtiming) behaviour as the
speed of mean reversionη varies.

The non-monotonicity of the model outcomes with respect toη can be seen as a consequence
of the strategic interaction between equity- and debtholders. Firstly we note that asη increases
the variance of the project cash-flows will decrease; since departures from the long-run meanx
become less likely. All else being equal, this reduced variance increases the perceived safety of
the project and hence the credit spreads offered by debtholders are lowered asη becomes larger—
see Fig. 6(e). Cheaper debt provides a clear incentive for equityholders to increase the amount of
debt used to finance the project. However, whilst this is exactly what we observe in the highη
regime (where credit spreads are extremely low), in the lowη regime the amount of debt actually
decreases asη is increased above zero—see Fig. 6(b).

28The first-best outcome does optimally make the project loss-making in the long run for very low speeds of mean
reversion. However asη→ 0 convergence to the long-run level is very slow and the effect ofx essentially disappears.
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In order to shed some light onto this initial decrease, we observe that the equity valuation at
the time of investment—Fig. 6(c)—also decreases asη is increased above zero, providing equi-
tyholders with an incentive to reduce the amount of debt taken on board. The initial decrease
in equity value is due to a reduction in value of the equityholders’ option to default on the lev-
ered project; since a reduced variance is well known to reduce option values (see, for example,
Bergman, Grundy, and Wiener, 1996). Asη continues to increase, however, the cash-flow variance
decreases to a point where the value of the default option is very small and cannot be reduced any
further. Given that the credit spreads are also very small here, an increase inη now has the overall
effect of increasing the optimal debt level (and leverage ratio) in equilibrium, utilizing the more
valuable tax shield.

Finally, it is also interesting to note that the optimal coupon payment never reduces to zero in
equilibrium, since there always remains some tax-shield benefits to the equityholders. A surpris-
ing implication of this being that it isalwaysoptimal for equityholders to default on the project in
equilibrium, even for very high values ofη. As η increases to the region in which it would be op-
timal to never default for a fixed coupon payment—see Fig. 3(b)—the equityholders dramatically
increase their coupon payment so that default still remainsoptimal at sufficiently low prices. Eco-
nomically this implies that there is always some incentive for the equityholders to transfer wealth
from the debtholders.

3.4. Agency costs and decomposition

This section analyses the magnitude of agency costs and its components. Table 1 reveals that
our comparative statics results for the financing parameters (b andτ) and the discount parameters
(r, λ andρ) are consistent with Mauer and Sarkar (2005). However, the consideration of mean-
reverting dynamics provides us with new results in regards to the effect of the process parameters
(x, η, andσ) on the magnitude of agency costs.

Firstly, when consideringx we previously observed that a key driver for the qualitativebe-
haviour of the model’s output is the long-run profit margin ofthe projectx − C, which increases
when eitherx increases or costsC decrease. Accordingly, inspection of Table 1 provides the
following result:

Result 2. As the long-run profitability of the project increases, agency costs are reduced. Further-
more, agency costs become negligible above a critical profitmargin.

Secondly, when considering the agency cost as a function of the speed of mean reversionη,
we also observe that the agency costs decrease asη increases and further that the agency costs are
negligible above the critical valueηc.29 This result is consistent with the apparent convergence
of the first- and second-best investment threshold prices observed in Fig. 5(b). Perhaps more
importantly, the dependence of agency costs onη also allows us to compare the magnitude of
such costs under mean-reverting dynamics (i.e.,η > 0) with those under GBM dynamics (i.e.,

29Note, however, that since it remains optimal for equityholders’ to default for sufficiently low prices for allη (see
the final paragraph of Section 3.3) a small amount of agency cost still remains above the critical value ofη. However,
the optimal default prices are so small that the probabilityof default, and hence the magnitude of the agency cost, is
negligible in this regime (< 0.001%).
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η = 0). We observe that under mean reversion the total agency cost is 1.02% (for our base-case
parameters). In comparison, the (driftless) GBM case has a total agency cost of 8.46%. Therefore,
we now state our main result:

Result 3. Agency costs are lower under mean-reverting output cash flows when compared to
geometric Brownian motion for the sameσ.

In fact, the above result also remains valid when we considerthe agency costs for GBM pro-
cesses with non-zero drift; obtained by settingx = 0 andη = −α, whereα denotes the drift of
the GBM process. Comparative statics results for varyingα can be found at the bottom of Table 1
and reveal that the total agency cost under GBM dynamics is remarkably insensitive to the drift of
the GBM process employed; with agency costs only varying from 8.3% to 8.5% for a wide range
of α. We note that this magnitude of agency cost is comparable to the value found by Mauer and
Sarkar (2005) who report a 9.5% cost for their base-case results.30 Our conclusion from Result 3
is that the magnitude of the agency costs in our model appearsto be significantly affected by the
stationarity of the cash flow dynamics, with a higher cost associated with non-stationarity.

Thirdly, in regards to the effect of the volatility parameter, we observe that agency costs are
reduced asσ is decreased. The interpretation of this result is similar to above as the variance of
the project cash-flows decreases as eitherη is increased orσ is decreased.

Finally, we consider the decomposition of the total agency cost into the two components, as
defined by Eq. (46). Fig. 7 plots these components of agency cost as a function of the speed of
mean reversionη. In addition, Table 2 also shows the agency cost decomposition as other model
parameters are varied.

*** Insert Figure 7 and Table 2 about here ***

Consistent with Result 3, we see that the total agency cost decreases (approximately linearly)
as the speed of mean reversion increases. However this totalcost is not evenly distributed be-
tween those due to timing decisions and those due to financingdecisions, yielding the following
important result:

Result 4. For high speeds of mean reversion,η, agency costs are driven mainly by suboptimal
timing decisions as opposed to suboptimal financing decisions.

Consistent with Remark 5, we observe that the agency cost dueto both financing and timing
decisions are positive. Forη = 0, corresponding to GBM dynamics, the total agency cost is
roughly split between the financing and timing components. However asη increases—resulting
in the process becoming stationary—the impact of (suboptimal) timing decisions start to become
more important relative to (suboptimal) financing decisions.

30We note that Leland (1998) only found around a 1% loss in firm value due to overinvestment for his base-case
parameters under GBM. However, Leland (1998) did not account for the effect of capital structure on firm valuation
whereas Mauer and Sarkar (2005) and our analysis do.
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*** Insert Figure 8 about here ***

Finally, given the stability of the total agency cost under GBM dynamics as the drift parameter
α is varied, it is interesting to perform the agency decomposition for the GBM results for various
values ofα. The results of this decomposition can be found in Fig. 8 and from which we conclude:

Result 5. Under GBM dynamics, the agency cost due to suboptimal financing decisionsincreases
as the growth rateα increases whereas the agency cost due to suboptimal timing decisionsde-
creases, resulting in a fairly constant total agency cost.

Results 4 and 5 suggest that the expected long-run growth prospects of the project have a
significant impact on thenatureof the agency cost, whereas the totalmagnitudeof this cost is
related to the stationarity of the project’s cash flow. More specifically, for low or no growth projects
(i.e., GBM dynamics with small or negative drifts, or MR dynamics with positiveη) the agency
conflicts over investment timing appear more important thanthose over financing. Conversely,
for high growth projects (i.e., GBM dynamics with large positive drifts) conflicting views on the
project’s financing appear to be the dominant source of the agency cost.

4. Conclusions

This paper documents that the choice of the uncertainty process used to model investment
project cash flows can have a significant impact on investmenttiming and related project financ-
ing decisions. The application of a mean-reverting (MR) process to our proposed model reveals
important equilibrium results with respect to the investment, default, and financing strategies of
equityholders, as well as the optimal debt provision of rational debtholders.

Under MR dynamics debtholders are very reluctant to providemore funding than the purchase
price of the project, a result more consistent with observedinvestment practice than the existing
geometric Brownian motion (GBM) based results. Furthermore, we observe two distinct regimes
of equilibrium behaviour (dependent on parameters) demonstrating the increased complexity of
the equilibrium financing and investment outcomes in the presence of MR dynamics.

In regards to the reduction in firm value due to agency conflicts (the agency costs), our results
indicate that total agency costs are lower for a higher speedof mean reversion and also for a
higher long-run profitability of the debt-financed project.Moreover, due to a novel agency cost
decomposition, we show that under low-growth cash flows (modelled using MR dynamics or GBM
with small or negative drifts) agency costs are driven mainly by equityholders’timing decisions
rather than due to their financing decisions. On the other hand, for high-growth projects (modelled
using GBM with large positive drifts) it is the equityholders’ financingdecisions that contribute
the greatest to agency costs. Assuming a desire to decrease agency costs in an economy, the above
information about the underlying components and drivers ofsuch agency costs would be valuable
to both policy makers and regulators alike.

Future work in this area can include the extension of the current analysis to firms that have
existing operations financed with pre-existing debt, therefore analysing the effect of mean rever-
sion on possibleunderinvestment and the relateddebt overhangproblem (see Moyen, 2007). The
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inclusion of some information asymmetry between equityholders and debtholders could also be
another direction for future research and more technical extensions could include accounting for
jumps in the underlying price dynamics.

5. Acknowledgements

We thank Dirk Baur, Mingliang Cheng, Carl Chiarella, Geoff Evatt, Tony He, Hardy Hulley,
Susan Thorp, Sherrill Shaffer, Frederic Sterbenz, Elizabeth Whalley, and the conference partic-
ipants at the 2011 IFABS conference in Rome, the 2011 QMF conference in Sydney, the 2013
EFMA conference in Reading, and the 2014 SIAM conference on Financial Mathematics and En-
gineering in Chicago for their many useful and insightful comments. The comments from two
anonymous referees and an Associate Editor are also gratefully acknowledged. Finally, research
funding from the UTS Business School is kindly noted.

References

Abadie, L., Chamorro, J., 2008. Valuing flexibility: The case of an integrated gasification combined cycle power plant.
Energy Economics 30, 1850–1881.

Abramowitz, M., Stegun, I. A., 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. National Bureau of Standards Applied Mathematics Series 55, New York.

Baxter, N. D., 1967. Leverage, risk of ruin and the cost of capital. Journal of Finance 22, 395–403.
Bergman, Y. Z., Grundy, B. D., Wiener, Z., 1996. General properties of option prices. Journal of Finance 51, 1573–

1610.
Bessembinder, H., Coughenour, J. F., Seguin, P. J., Smoller, M. M., 1995. Mean reversion in equilibrium asset prices:

Evidence from the futures term structure. Journal of Finance 50, 361–375.
Bhattacharya, S., 1978. Project valuation with mean-reverting cash flow streams. Journal of Finance 33, 1317–1331.
Black, F., Scholes, M., 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–

654.
Brennan, M. J., Trigeorgis, L., 2000. Real options: Development and contributions. In: Brennan MJ & Trigeorgis L

(eds.) Project flexibility, agency, and competition: New developments in the theory and application of real options,
1–10.

Cadenillas, A., Cvitanic, J., Zapatero, F., 2004. Leveragedecision and manager compensation with choice of effort
and volatility. Journal of Financial Economics 73, 71–92.

Coddington, E. A., Levinson, N., 1955. Theory of ordinary differential equations. Tata McGraw-Hill Education.
Cox, J., 1975. Notes on option pricing I: Constant elasticity of diffusions. Working paper, Stanford University.
Cox, J. C., Ingersoll, J. E., Ross, S. A., 1985. A theory of theterm structure of interest rates. Econometrica 53,

385–407.
Dixit, A. K., Pindyck, R. S., 1994. Investment Under Uncertainty. Princeton University Press, Princeton, NJ.
Duffie, D., 1998. Securities Markets: Stochastic Models. Academic Press, San Diego, CA.
Ewald, C. O., Wang, W. K., 2010. Irreversible investment with Cox-Ingersoll-Ross type mean reversion. Mathematical

Social Sciences 59, 314–318.
Fama, E. F., French, K. R., 2000. Forecasting profitability and earnings. Journal of Business 73, 161–176.
Freeman, R., Ohlson, J., Penman, S., 1982. Book rate of return and prediction of earnings changes: An empirical

investigation. Journal of Accounting Research 2, 639–653.
Glover, K. J., Hambusch, G., 2014. The trade-off theory revisited: On the effect of operating leverage. International

Journal of Managerial Finance 10, 2–22.
Gordon, M. J., 1959. Dividends, earnings, and stock prices.The Review of Economics and Statistics 41, 99–105.
Henriques, I., Sadorsky, P., 2008. Oil prices and the stock prices of alternative energy companies. Energy Economics

30, 998–1010.

23



Hong, G., Sarkar, S., 2008. Commodity betas with mean reverting output prices. Journal of Banking and Finance 32,
1286–1296.

Huang, C.-F., Litzenberger, R. H., 1990. Foundations for Financial Economics. Elsevier Science Publishers, New
York, NY.

Insley, M., 2002. A real option approach to the valuation of aforestry investment. Journal of Environmental Economics
and Management 44, 471–492.

International Energy Agency, 2008. World Energy Outlook 2008. Available from http://www.worldenergyoutlook.org.
Jensen, M. C., Meckling, W. H., 1976. Theory of the firm: Managerial behavior, agency costs and ownership structure.

Journal of Financial Economics 3, 305–360.
Karlin, S., Taylor, H., 1999. A Second Course in Stochastic Processes. Academic press.
Kashyap, A., Rajan, R., Stein, J., 2002. Banks as liquidity providers: An explanation for the co-existence of lending

and deposit-taking. Journal of Finance 57, 33–73.
Kormendi, R., Lipe, R., 1987. Earnings innovations, earnings persistence, and stock returns. Journal of Business 60,

323–346.
Kraus, A., Litzenberger, R. H., 1973. A state-preference model of optimal financial leverage. Journal of Finance 28,

911–922.
Leland, H. E., 1998. Agency costs, risk management, and capital structure. The Journal of Finance 53, 1213–1243.
Linetsky, V., 2004. The spectoral decomposition of the option value. International Journal of Theoretical and Applied

Finance 7, 337–384.
Longstaff, F., Schwartz, E., 1995. Valuing credit derivatives. Journal of Fixed Income 5, 6–12.
Lund, D., 1993. The lognormal diffusion is hardly an equilibrium price process for exhaustible resources. Journal of

Environmental Economics and Management 25, 235–241.
Mauer, D. C., Ott, S. H., 2000. Agency costs, underinvestment, and optimal capital structure: The effect of growth

options to expand. In: Brennan MJ & Trigeorgis L (eds.) Project flexibility, agency, and competition: New devel-
opments in the theory and application of real options, 151–180.

Mauer, D. C., Sarkar, S., 2005. Real options, agency conflicts, and optimal capital structure. Journal of Banking and
Finance 29, 1405–1428.

Merton, R. C., 1973. An intertemporal capital asset pricingmodel. Econometrica 41, 867–887.
Metcalf, G. E., Hassett, K. A., 1995. Investment under alternative return assumptions: Comparing random walks and

mean reversion. Journal of Economic Dynamics and Control 19, 1471–1488.
Modigliani, F., Miller, M. H., 1959. The cost of capital, corporation finance, and the theory of investment: Reply.

American Economic Review 49, 655–669.
Morellec, E., 2004. Can managerial discretion explain observed leverage ratios? Review of Financial Studies 17,

257–294.
Moyen, N., 2007. How big is the debt overhang problem? Journal of Economic Dynamics and Control 31, 433–472.
Paddock, J. L., Siegel, D. R., Smith, J. L., 1988. Option valuation of claims on real assets: The case of offshore

petroleum leases. Quarterly Journal of Economics 103, 479–508.
Raymar, S., 1991. A model of capital structure when earningsare mean reverting. Journal of Financial and Quantitative

Analysis, 327–344.
Sarkar, S., 2003. The effect of mean reversion on investment under uncertainty. Journal of Economic Dynamics and

Control 28, 377–396.
Sarkar, S., Zapatero, F., 2003. The trade-off model with mean reverting earning: Theory and empirical tests. The

Economic Journal 113, 834–860.
Schwartz, E. S., 1997. The stochastic behavior of commodityprices: Implications for valuation and hedging. Journal

of Finance 52, 923–973.
Titman, S., Tsyplakov, S., 2007. A dynamic model of optimal capital structure. Review of Finance 11, 401–451.
Tsekrekos, A. E., 2010. The effect of mean reversion on entry and exit decision under uncertainty. Journal of Economic

Dynamics and Control 34, 725–742.
Tsekrekos, A. E., 2013. Irreversible exit decisions under mean-reverting uncertainty. Journal of Economics 110, 5–23.
Zhao, B., 2009. Inhomogeneous geometric Brownain motions.Working paper, City University, London.

24



Appendix A. Derivation of the solution to Eq. (12)

We transform Eq. (12) to the standard form of the so-called Kummer’s equation for which the
solutions are well understood (Abramowitz and Stegun, 1972, Chapter 13). To do this we first let
u(x) = xγv(x), whereγ is to be determined, and then letz= 2ηx/σ2x to yield

zv′′(z) +

(

2− 2γ +
2(η + λρσ)

σ2
− z

)

v′(z) +

(

γ +
1
z

(

(γ − 1)γ −
2γ(η + λρσ) − 2r

σ2

))

v(z) = 0.

The next step is to chooseγ such that

1
2
σ2γ(γ − 1)− γ(η + λρσ) − r = 0 (A.1)

to obtain
zv′′(z) + (n− z)v′(z) −mv(z) = 0, (A.2)

which we identify as Kummer’s equation withn = 2 − 2γ + 2(η+λρσ)
σ2 and m = −γ. It is well

known that Eq. (A.2) has two independent solutionsv(z) = U(m, n; z) andv(z) = M(m, n; z) which
are called, respectively, Tricomi’s and Kummer’s confluenthypergeometric functions. Ifm > 0
(henceγ < 0) then it can be shown thatU andM are positive withU(m, n; z) strictly decreasing,
andM(m, n; z) strictly increasing, inz. It can furthermore be verified thatφ(x) andψ(x) are strictly
decreasing and increasing inx, respectively (details are available from the authors uponrequest).
Therefore we takeγ to be the negative root of Eq. (A.1).

Appendix B. Derivation of Eq. (28)

To derive Eq. (28) we first substitute Eqs. (20) and (27) into Eq. (19) and rearrange to yield

Vℓ(x) = E(x) + D(x)

= fℓ(x) − fℓ(x
∗
d)
φ(x)
φ(x∗d)

+
R
r
+

(

(1− b)Vu(x
∗
d) −

R
r

)
φ(x)
φ(x∗d)

= − bVu(x
∗
d)
φ(x)
φ(x∗d)

︸          ︷︷          ︸

PV of bankruptcy cost

+ fℓ(x) − fℓ(x
∗
d)
φ(x)
φ(x∗d)

+
R
r
+

(

Vu(x
∗
d) −

R
r

)
φ(x)
φ(x∗d)

.

Using fℓ(x) = fu(x) − R(1− τ)/r yields

Vℓ(x) = −bVu(x
∗
d)
φ(x)
φ(x∗d)

+ fu(x) − fu(x
∗
d)
φ(x)
φ(x∗d)

+
τR
r

(

1−
φ(x)
φ(x∗d)

)

︸             ︷︷             ︸

PV of tax shield

+Vu(x
∗
d)
φ(x)
φ(x∗d)

. (B.1)
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Finally we recall from Eq. (15) thatVu(x∗d) = fu(x∗d) − fu(x∗a)
φ(x∗d)

φ(x∗a) and substituting into (B.1) yields

Vℓ(x) = fu(x) − fu(x
∗
a)
φ(x)
φ(x∗a)

+
τR
r

(

1−
φ(x)
φ(x∗d)

)

− bVu(x
∗
d)
φ(x)
φ(x∗d)

= Vu(x) +
τR
r

(

1−
φ(x)
φ(x∗d)

)

− bVu(x
∗
d)
φ(x)
φ(x∗d)

as stated.
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Figure 1: Unlevered and levered project valuesVu(x) andVℓ(x) as a function of the initial output pricex (solid line=
Vℓ(x), dashed line= Vu(x), dotted line= D(x), dot-dashed line= E(x); for base-case parameters).
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Figure 2: Value of the first- and second-best investment option (F1 andF2) as a function of the initial output pricex
(solid line= second-best optionF2, dashed line= first-best optionF1, dotted line is the value of the levered firmVℓ(x)
less investment costI ; for base-case parameters – except we useR = $50 for emphasis). Note the smooth pasting
of the first-best outcome but not the second best, demonstrating optimally of the first-best timing decision and the
suboptimality of the second-best.
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Figure 3: Default and abandonment threshold pricesx∗d andx∗a as a function of (a) long-run mean price levelx, (b)
speed of mean reversionη, (c) process volatilityσ, (d) risk-free (real) interest rater, (e) Sharpe ratio of oilλρ, (f)
variable costsC, and (g) debt coupon paymentR (solid line= x∗d, dashed line= x∗a; for base-case parameters:x = $97,
η = 0.1703,σ = 0.265,r = 0.04,λρ = 0.32,C = $60,R= $13.50,τ = 0.3 andb = 0.35). Note that these comparative
statics are produced for fixed couponR.
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Figure 4: The equilibrium debt financing ratioK∗/I as a function of the annual debt coupon paymentR (solid line
= second-best outcome, dashed line= first-best outcome; for base-case parameters). Note the debtholders are very
reluctant to give any debt over the required investment for the project (dotted line:K∗ = I ).
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Figure 5: The first- and second-best investment threshold prices as a function of (a) long-run mean price levelx, (b)
speed of mean reversionη, (c) process volatilityσ, (d) risk-free (real) interest rater, (e) Sharpe ratio of oilλρ, (f)
variable costsC, (g) effective tax rateτ, (h) bankruptcy fractionb, and finally (i) investment costI (upper solid line
= x∗2, upper dashed line= x∗1, lower solid line= x∗d, lower dashed line= x∗a; for base-case parameters:x = $97,
η = 0.1703,σ = 0.265,λρ = 0.32, r = 0.04,τ = 0.3, b = 0.35,C = $60 andI = $180). Note that the coupon rateR
is optimally chosen as each parameter is varied.
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Figure 6: Full comparative statics (in equilibrium) withη of the (a) coupon payment, (b) debt amount at time of
investment, (c) equity value at time of investment, (d) leverage ratio at time of investment, and (e) credit spreads
(solid line= second-best outcome, dashed line= first-best outcome; for base-case parameters:x = $97,η = 0.1703,
σ = 0.265,r = 0.04,λρ = 0.32,C = $60,τ = 0.3, b = 0.35 andX0 = $100).
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Figure 7: Full comparative statics (in equilibrium) of total agency cost (solid line) and its decomposition intoACf in

(dashed line) andACtim (dot-dashed line)—see Eq. (46)—under IGBM dynamics; for base-case parameters:x = $97,
η = 0.1703,σ = 0.265,r = 0.04,λρ = 0.32,C = $60,τ = 0.3, b = 0.35 andX0 = $100.
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Figure 8: Full comparative statics (in equilibrium) of total agency cost (solid line) and its decomposition intoACf in

(dashed line) andACtim (dot-dashed line)—see Eq. (46)—under GBM dynamics; for base-case parameters:x = $0,
η = −α, σ = 0.265,r = 0.04,λρ = 0.32,C = $60,τ = 0.3, b = 0.35 andX0 = $100.
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Table 1: Comparative statics of the first-best and second-best optimal financing and investment decisions in equilibrium; for base-case parameters:x = $97,
η = 0.1703,σ = 0.265,r = 0.04,λρ = 0.32,C = $60,τ = 0.3, b = 0.35 andX0 = $100.

Optimal Investment Firm value Agency Optimal Default Credit spread

coupon threshold cost (%) leverage threshold (basis points)

R∗1 R∗2 x∗1 x∗2 F1(X0) F2(X0) AC L∗1 L∗2 x∗d(R
∗
1) x∗d(R∗2) CS1 CS2

Base Case 16.31 13.50 139.99 135.27 41.69 41.26 1.02 47.78 44.28 53.46 50.18 820.94 739.62
Base Case (η = 0) 42.75 24.56 148.31 134.84 46.29 42.69 8.46 60.15 45.48 75.14 61.84 1,467.14 1,343.09

x =60 34.98 28.00 173.10 165.37 3.05 2.89 5.59 56.28 50.88 78.5972.27 2,150.55 2,043.86
x =80 28.00 22.51 158.62 151.62 11.69 11.26 3.79 54.04 49.16 69.33 64.10 1,630.40 1,530.44
x =120 12.81 12.81 88.78 88.63 313.07 313.07 0.00 68.19 68.24 24.46 24.46 2.82 2.82
x =140 24.67 24.67 72.46 72.07 604.34 604.34 0.00 85.53 85.64 26.87 26.87 1.38 1.38

η =0.10 29.03 21.59 148.32 139.18 36.56 35.15 4.01 55.23 48.51 66.48 59.73 1,322.95 1,219.24
η =0.15 21.30 17.15 144.52 138.08 37.88 37.15 1.97 51.05 46.71 59.13 54.82 1,062.60 972.59
η =0.20 3.21 3.21 122.54 122.45 66.01 66.01 0.00 27.40 27.41 25.61 25.61 18.59 18.58
η =0.25 7.59 7.59 99.37 99.31 216.12 216.12 0.00 58.19 58.21 25.32 25.32 3.62 3.62

σ =0.20 5.09 5.09 100.23 100.10 113.58 113.58 0.00 41.87 41.92 30.66 30.66 13.20 13.20
σ =0.25 11.61 9.78 131.77 128.73 47.49 47.27 0.46 43.67 40.61 48.18 45.68 560.09 494.46
σ =0.30 23.52 18.72 155.77 148.47 36.00 35.32 1.91 50.53 45.98 59.51 54.65 1,214.04 1,105.92
σ =0.35 31.70 24.09 175.06 164.59 34.44 33.55 2.66 51.96 46.23 64.58 57.63 1,608.70 1,466.71

r =0.01 3.01 3.01 108.98 108.97 337.84 337.84 0.00 55.62 55.63 17.44 17.44 0.46 0.46
r =0.03 11.18 8.90 135.58 132.40 60.00 59.76 0.00 42.78 38.77 46.69 43.56 583.71 498.97
r =0.05 19.46 16.18 143.42 138.05 31.22 30.77 1.49 50.02 46.46 57.35 53.75 942.61 858.33
r =0.07 24.32 20.35 149.71 143.63 19.34 18.93 2.18 52.84 49.23 63.07 58.98 1,086.55 998.34

λρ =0.20 6.65 6.65 106.76 106.63 181.84 181.84 0.00 43.00 43.04 23.47 23.46 8.43 8.43
λρ =0.30 13.16 10.90 135.37 131.66 53.20 52.91 0.55 44.86 41.49 48.72 45.81 616.11 541.16
λρ =0.40 22.81 18.82 153.08 147.11 16.78 16.38 2.43 51.45 47.48 63.33 59.23 1,343.10 1,250.79
λρ =0.50 27.68 23.09 166.23 160.02 5.32 5.14 3.58 53.21 49.21 70.73 66.25 1,794.15 1,698.02
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Table 1: (continued).

Optimal Investment Firm value Agency Optimal Default Credit spread

coupon threshold cost (%) leverage threshold (basis points)

R∗1 R∗2 x∗1 x∗2 F1(X0) F2(X0) AC L∗1 L∗2 x∗d(R
∗
1) x∗d(R∗2) CS1 CS2

Base Case 16.31 13.50 139.99 135.27 41.69 41.26 1.02 47.78 44.28 53.46 50.18 820.94 739.62
Base Case (η = 0) 42.75 24.56 148.31 134.84 46.29 42.69 8.46 60.15 45.48 75.14 61.84 1,467.14 1,343.09

τ =0.10 1.51 1.51 129.63 129.43 69.13 69.13 0.00 8.55 8.54 30.9730.95 175.38 175.12
τ =0.20 6.30 5.87 134.52 133.08 53.60 53.55 0.08 25.86 24.93 40.51 39.82 435.07 417.67
τ =0.40 24.83 19.43 145.80 137.64 32.31 31.24 3.40 60.71 56.27 62.64 56.93 1,116.87 979.51
τ =0.50 32.16 24.28 152.33 140.68 24.54 22.77 7.76 69.45 64.97 70.05 62.08 1,375.38 1,187.81

C =50 8.92 8.92 82.63 82.54 226.93 226.93 0.00 60.46 60.50 20.1720.17 3.53 3.53
C =55 4.31 4.31 108.12 108.04 106.10 106.10 0.00 34.53 34.55 22.37 22.37 11.65 11.65
C =65 23.76 19.18 157.13 150.27 25.07 24.49 2.40 51.81 47.38 66.66 61.98 1,274.95 1,179.58
C =70 28.28 22.44 170.06 162.12 17.10 16.56 3.33 53.57 48.50 76.03 70.33 1,548.47 1,444.49

b =0.20 24.32 18.25 138.45 131.51 45.06 43.96 2.50 60.89 54.77 62.12 55.64 1,008.56 856.88
b =0.30 18.78 15.09 139.55 134.11 42.66 42.07 1.41 52.15 47.87 56.21 52.05 882.36 781.39
b =0.40 14.03 11.94 140.37 136.32 40.85 40.55 0.73 43.44 40.62 50.82 48.28 760.00 695.39
b =0.50 10.05 9.00 140.93 138.10 39.52 39.40 0.34 34.95 33.31 45.86 44.45 639.18 601.22

I =100 11.28 9.22 115.83 111.79 87.59 87.04 0.63 46.02 42.46 47.45 44.75 720.41 640.93
I =140 13.60 11.18 127.23 122.88 61.43 60.93 0.81 46.92 43.36 50.31 47.32 771.53 690.44
I =220 19.37 16.16 153.98 148.85 27.60 27.26 1.25 48.55 45.13 56.86 53.29 866.69 786.20
I =260 22.71 19.10 168.99 163.44 18.02 17.76 1.46 49.20 45.89 60.44 56.57 907.58 828.60

α =–0.06 42.69 29.60 168.08 157.46 6.52 6.02 8.30 59.54 49.78 83.45 72.81 2,122.76 1,998.24
α =–0.03 41.15 27.00 158.07 146.27 17.57 16.21 8.39 59.83 47.9879.55 67.76 1,806.56 1,681.07
α =0.03 46.00 22.66 139.37 123.30 122.33 112.75 8.49 60.52 42.05 70.03 54.61 1,103.79 985.24
α =0.06 56.62 22.58 132.65 111.88 343.03 316.11 8.51 61.03 37.77 64.08 45.37 728.42 620.83
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Table 2: Comparative statics of agency costs (in %) and its timing and financing components; for base-case parame-
ters:x = $97,η = 0.1703,σ = 0.265,r = 0.04,λρ = 0.32,C = $60,τ = 0.3, b = 0.35 andX0 = $100.

AC ACf in ACtim

Base Case 1.02 0.21 0.81
Base Case (η = 0) 8.46 3.94 4.51

x =60 5.59 1.23 4.37
x =80 3.79 0.82 2.97
x =120 0.00 0.00 0.00
x =140 0.00 0.00 0.00

η =0.10 4.01 1.14 2.86
η =0.15 1.97 0.44 1.54
η =0.20 0.00 0.00 0.00
η =0.25 0.00 0.00 0.00

σ =0.20 0.00 0.00 0.00
σ =0.25 0.46 0.09 0.36
σ =0.30 1.91 0.44 1.47
σ =0.35 2.66 0.70 1.96

r =0.01 0.00 0.00 0.00
r =0.03 0.39 0.10 0.29
r =0.05 1.49 0.30 1.19
r =0.07 2.18 0.44 1.74

λρ =0.2 0.00 0.00 0.00
λρ =0.3 0.55 0.12 0.43
λρ =0.4 2.43 0.48 1.96
λρ =0.5 3.58 0.65 2.93

AC ACf in ACtim

Base Case 1.02 0.21 0.81
Base Case (η = 0) 8.46 3.94 4.51

τ =0.10 0.00 0.00 0.00
τ =0.20 0.08 0.01 0.08
τ =0.40 3.40 0.85 2.55
τ =0.50 7.76 2.13 5.63

C =50 0.00 0.00 0.00
C =55 0.00 0.00 0.00
C =65 2.40 0.52 1.88
C =70 3.33 0.76 2.57

b =0.20 2.50 0.73 1.77
b =0.30 1.41 0.33 1.08
b =0.40 0.73 0.13 0.60
b =0.50 0.34 0.04 0.29

I =100 0.63 0.14 0.49
I =140 0.81 0.17 0.64
I =220 1.25 0.24 1.00
I =260 1.46 0.27 1.19

α =–0.06 8.30 2.79 5.51
α =–0.03 8.39 3.30 5.08
α =0.03 8.49 4.72 3.77
α =0.06 8.51 5.63 2.88
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