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Microfoundations for Switching Behavior in

Heterogeneous Agent Models: An Experiment∗
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Abstract

We run a laboratory experiment to study how human subjects switch between several
profitable alternatives, framed as mutual funds, in order to provide a microfoundation
for so-called heterogeneous agent models. The participants in our experiment have to
choose repeatedly between two, three or four experimental funds. The time series of fund
returns are exogenously generated prior to the experiment and participants are paid for
each period according to the return of the fund they choose. For most cases participants’
decisions can be successfully described by a discrete choice switching model, often applied
in heterogeneous agent models, provided that a predisposition towards one of the funds
is included. The estimated intensity of choice parameter of the discrete choice model
depends on the structure of the fund returns. In particular, it increases with correlation
between past and future returns. This suggests human subjects do not myopically chase
past returns, but are more likely to do so when past returns are more predictive of future
returns, a feature that is absent in the standard heterogeneous agent models.
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1 Introduction

The recent financial crisis has increased interest, both from academics and policy-makers, in

agent-based models as a viable alternative to the classic rational choice model. The agent-based

model have been relatively successful in describing bubbles and crashes and other stylized

facts of financial markets, e.g., excess volatility, volatility clustering and fat tails, see Lux

(2009). One important class of agent-based models is that of so-called heterogeneous agent

models.1 In this paper we contribute to the literature on heterogeneous agent modeling by

providing microfoundations for these models through designing and running a novel laboratory

experiment with human subjects. This experiment is aimed at validating the assumptions used

in the models and calibrating their important parameters. The experimental results reported

in this paper can help researchers using heterogeneous agent models and agent-based models

by disciplining their choices in modeling and policy exercises.

Heterogeneous agents models assume that there is a large population of traders, with each

trader behaving according to one particular trading or forecasting heuristic from a small set

of available heuristics (for most applications the number of considered heuristics is only two

or three). Past performance of these heuristics then determines the fraction of the population

of traders that uses each of the heuristics. This choice process is typically modeled by the

so-called discrete choice model. Since both the evolution of asset prices and the performance of

the heuristics depend upon the distribution of traders over the heuristics, heterogeneous agent

models give rise to low-dimensional, but highly nonlinear, dynamical systems. The interaction

between heuristics typically features complex erratic dynamics, in particular when traders are

sensitive to performance differentials between heuristics, and may show a striking resemblance

with price dynamics observed on actual financial markets. Because heterogeneous agent models

only involve a limited number of variables, describing the price and the distribution of traders

over heuristics, their properties can still be studied analytically and, in comparison to other,

large-scale, agent-based models, the results are typically easier to interpret.

Although heterogeneous agent models have been quite successful in explaining stylized facts

of financial markets, they also exhibit an important drawback. The results obtained crucially

depend both upon the set of heuristics considered, and on the way the choice between the

alternative heuristics is modeled. Indeed, there are many degrees of freedom and ideally het-

erogeneous agent modeling is disciplined by empirical evidence on which heuristics are used by

human decision makers, and how human decision makers switch between those heuristics.

Extensive research on so-called ‘Learning-to-Forecast’ laboratory experiments already pro-

1Examples of heterogeneous agent models of financial markets include Brock and Hommes (1998), Brock
et al. (2005), Chiarella et al. (2007), Manzan and Westerhoff (2007), Gaunersdorfer et al. (2008), Anufriev and
Dindo (2010), Goldbaum and Panchenko (2010) and Anufriev and Tuinstra (2013). For reviews see Hommes
(2006, 2013) and LeBaron (2006). Heterogeneous agent (and agent-based) models have also been applied in
macroeconomics. The recent review of Fagiolo and Roventini (2016) discusses the issue of calibration and
over-parametrization of agent-based models at length. We address this issue using a laboratory experiment.
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vides substantial insight into the type of forecasting heuristics that are used by human sub-

jects.2 In the current paper we present results from a laboratory experiment that was designed

to understand how human decision makers choose between different alternatives, and therefore

complements the earlier Learning-to-Forecast experiments. By focusing on the question of how

participants use the past performance in switching, we hope to provide further microfoundations

for the growing literature on heterogeneous agent models.

In particular, we are interested in finding a specification of the discrete choice model that

is able to explain participants’ decisions satisfactorily. In addition we will try to infer the

appropriate value of the so-called Intensity of Choice (IoC) parameter of the discrete choice

model. This parameter measures how responsive traders are with respect to differences in past

performance of the heuristics and it plays a pivotal role in the dynamic properties of heteroge-

neous agent models. In particular, low values of the IoC are associated with stable dynamics,

whereas high values typically lead to complicated phenomena and endogenous fluctuations in

stock prices, volumes and trading positions. Learning the relevant range of values of the IoC is

therefore crucial for a proper application of heterogeneous agent models. However, significant

estimates of this parameter are difficult to obtain from empirical studies because, due to a lack

of direct access to the strategies used, switching behavior can only be inferred indirectly.

Our laboratory experiment is designed such that it facilitates estimating the parameters of

the discrete choice models. The advantage of running a laboratory experiment is that it provides

a controlled environment where we can observe the choices of the participants directly. We

study the switching behavior of human subjects between a small number of alternatives. The

participants observe the past performance (framed as “financial returns”) of several (either two,

three or four) investment alternatives (“funds”) and, in every period, are asked to choose one of

the alternatives and are paid on the basis of the performance of the chosen alternative in that

period. As in actual financial markets, participants do not know the data generating process of

the returns, and their choice does not influence the return of the different alternatives.3 We use

different data generating processes that result in differences in the autocorrelation structure

(and therefore predictability) of the generated time series. Participants have to choose between

funds for 40 consecutive periods for one set of funds, and then for another 40 periods for a

different set of the funds. This allows us to study the effect of experience on choice behavior.

We find that participants often switch between funds. Given the information provided

in the experiment, it is not surprising that switching is, to a large extent, driven by past

performance of the funds. Answering the question of how exactly switching is driven by past

performances, we find that a simple discrete choice model with a predisposition effect provides

a good fit to the data, when there are two or three funds and there is no cyclical/periodic

pattern in the time series of returns. If such a cyclical pattern does exist, more lags need to

be incorporated in the model in order to provide a good description of the data. This suggests

2See Hommes et al. (2005), Heemeijer et al. (2009), Bao et al. (2012), Pfajfar and Žakelj (2014) and Bao
et al. (2016). The review in Hommes (2011) provides additional references.

3Anufriev et al. (2015) discuss a related experiment where subjects do know the data generating process.
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that participants recognize and exploit cyclical patterns in returns. Moreover, the estimated

IoC is not universal, but positively related to the degree of autocorrelation in the time series

of returns. From this we conclude that participants do not myopically chase past returns, but

are more likely to do so when past returns are more predictive of future returns. Our paper

therefore also contributes to the empirical literature that suggests that the flows in and out of

mutual funds are to a substantial extent driven by the recent past performance of these funds,

despite the fact that the funds which performed well in the past do not necessarily generate

an above-average return.4 By focusing participants’ attention on the funds’ past performance,

our experiment directly addresses the question of how past performance affects their choices.5

The remainder of the paper is organized as follows. Section 2 presents the discrete choice

framework and discusses some related literature. Section 3 introduces the experimental design

and Section 4 provides a first discussion of the experimental results. In Section 5 we estimate

the binary choice model on the experimental data from sessions with two funds. Section 6

discusses the estimated discrete choice models for sessions with more than two funds. Section

7 discusses the results. Appendices A, B and C contain the experimental instructions, further

details of the experimental design, and some estimation results. Appendices D, E and F contain

a detailed explanation of our estimation procedures and some further statistics.

2 Switching and the Discrete Choice Framework

Although not the first to explain market fluctuations by the interaction of different heuristics,

arguably the two seminal papers in the field of heterogeneous agent models are Brock and

Hommes (1997) and Brock and Hommes (1998).6 Brock and Hommes (1997) consider the

classic cobweb model where suppliers can either form price expectations rationally (against

positive information costs) or employ (cost free) naive expectations, i.e., predicting that the

price will equal the last observed realized price. Total supply, and therefore the market clearing

price, will then depend upon a weighted average of the rational and naive forecasts. The

evolution of the fraction of the population of firms using rational expectations is modeled by

the discrete choice dynamics with forecasting accuracy as the performance measure. The paper

shows that if the Intensity of Choice (IoC) is large enough, the dynamics converges to a strange

attractor with endogenous fluctuations in the market price. Moreover, the naive expectations

heuristic survives the competition with the more sophisticated rational expectations heuristic.

4See Sirri and Tufano (1998), Zheng (1999), Jain and Wu (2000), Choi et al. (2009) and Ferreira et al. (2012)
among others. In addition, Choi et al. (2009) find that “return chasing behavior” also describes investment
behavior in the 401(k) accounts by American households quite well.

5In fact, it is very common for professional financial websites (e.g., Morningstar, Yahoo Finance) to provide
information on past performance of all mutual funds, and recommend or rate funds based upon this past
performance.

6According to Web of Science (Google Scholar) together the two papers have been cited more than 1000
(2600) times by April 12, 2016. Important earlier influential contributions include Day and Huang (1990),
Chiarella (1992) and Lux (1995).

4



The same notion of (evolutionary) competition between different heuristics was applied to fi-

nancial markets in the follow-up paper, Brock and Hommes (1998), where traders can choose be-

tween different forecasting strategies representing, for example, fundamentalist traders, chartists

and noise traders. Again, if the IoC parameter is large enough, the asset price dynamics ex-

hibit irregular switches between periods of prolonged deviations from the fundamental value

followed by a correction in the direction of that fundamental value. This model has given rise

to a huge stream of theoretical, computational and empirical studies on endogenous dynamics

in financial markets. The key mechanism in these models, responsible for the non-linearities

leading to excess volatility, endogenous bubbles and crashes, etc., is the discrete choice model

which describes the evolution of the fractions of traders using the different heuristics by the

multinomial logit model.7 In its most basic version the discrete choice model assumes that the

fraction nht of the population of decision makers using heuristic h in period t is given by

nht =
exp [βπh,t−1]∑H
k=1 exp [βπk,t−1]

. (1)

Here πh,t−1 is the payoff or profit that was generated by heuristic h in period t− 1 and β > 0 is

the Intensity of Choice parameter that was already discussed above. If this parameter is small

(e.g., close to zero) the population of decision makers is spread out almost evenly over the

different heuristics, whereas a very high value of β implies that decision makers are sensitive

to differences in payoffs and the heuristic with the highest payoff attracts the majority of the

population of decision makers.

In this paper we will argue on the basis of experimental evidence that the following, more

general, version of (1), can be a more realistic choice in modeling the evolution of fractions:

nht =
exp [αh + βh,1πh,t−1 + . . .+ βh,Lπh,t−L]∑H
k=1 exp [αk + βk,1πk,t−1 + . . .+ βk,Lπk,t−L]

. (2)

This specification generalizes (1) in three directions. First, it allows for up to L lags of the

payoffs to play a role in the determination of the fraction choosing heuristic h. Second, it

does not require that decision makers respond to payoffs of the different heuristics in the same

manner. That is, we can have βk,` 6= βh,` for some lag ` and some heuristics h and k with k 6= h.

Third, it allows for a so-called predisposition effect : if αh > αk for some h and all k 6= h, then

traders are, on aggregate, biased towards choosing heuristic h over the other heuristics, even

when there is no difference in the past performance of these heuristics.8

A vast majority of the heterogeneous agent models uses equation (1) to model the frac-

tion of the population of traders that selects heuristic h in period t. As discussed above, the

dynamic properties of these models depend critically upon the choice of the IoC parameter

7The discrete choice model has its origin in econometrics, see Manski and McFadden (1981) for an overview
and a discussion of the underlying assumptions.

8Other generalizations are possible as well, see, e.g., Anufriev and Hommes (2012b) who consider a discrete
choice model with memory in the performance measure (corresponding to geometrically declining weights on
lagged payoffs) and asynchronous updating.
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β and therefore several researchers have attempted to estimate β, typically on the basis of

market or survey data. Branch (2004), for example, uses survey data on inflation expecta-

tions from Michigan households to estimate the discrete choice model with three forecasting

heuristics. His estimated model gives a good description of the data, with the qualification

that individuals typically exhibit a predisposition effect as captured by differences in the es-

timated values of the α parameters in equation (2). Boswijk et al. (2007) estimate model (1)

and the parameters of two heuristics on yearly S&P500 data from 1871–2003. Although the

estimated IoC is not statistically significant, their model can explain the price bubble from the

late nineties. Empirical evidence of switching (i.e., an estimated IoC significantly higher than

zero) between three heuristics on the interlinked stock markets of Hong Kong and Thailand

is presented in De Jong et al. (2009). An alternative heterogeneous agent model is estimated

on monthly S&P500 data from 1970–2012 by Chiarella et al. (2014). They also find evidence

for switching between fundamentalism and trend-following behavior. Goldbaum and Mizrach

(2008) make a distinction between passively and actively managed mutual funds and estimate

the IoC parameter from data on the flows of money into and out of these mutual funds. Franke

and Westerhoff (2012) propose a method of simulated moments approach to compare how well

different types of agent-based models perform in describing stylized facts of financial markets9

and find that inclusion of switching based upon the discrete choice mechanism (1) improves

data fitting. Finally, Anufriev and Hommes (2012a,b) calibrated a so-called ‘Heuristic Switch-

ing Model ’, which is similar to the multinomial logit model given by (1), on the experimental

data obtained from ‘Learning-to-Forecast’ experiments.

One drawback of all of this empirical and experimental work is that neither the specific

heuristics nor actual switches from one heuristic to another are observed, and therefore have to

be inferred from the data. In our experiment, on the other hand, the heuristics are given (and

represented by different investment alternatives) and we observe precisely when participants

switch from one alternative to another. In fact, the common denominator of all of the literature

referenced above is that none of these studies have attempted to estimate the IoC parameter

from the choices participants make directly. The aim of the current paper is to fill that void.10

9Some agent-based models explain the excess volatility and other stylized facts without modeling switching
between alternative heuristics on the basis of past performance. To generate volatility these models either
impose Markov regime switching of fundamental value as in Chiarella et al. (2012), or model herding through
imitation learning as in Alfarano et al. (2008).

10Our experiment is somewhat related to experimental studies on so-called “information cascades”, which
can also explain herding behavior on financial markets, see Anderson and Holt (1997), Drehmann et al. (2005)
and Alevy et al. (2007). In these experiments participants choose between two assets and receive a private as
well as a public signal about which asset has the highest payoff, where the public signal consists of the earlier
choices of the other participants. An information cascade sets in when participants base their decision purely
on the public signal and disregard their private signal, even if the signals are conflicting. Anderson and Holt
(1997) estimate a discrete choice model on the probability of choosing a particular asset and find an IoC that
typically lies between 2 and 8. While in their experiment different participants play in different periods and
the distribution of payoff of the assets is fixed, in our experiment the same participant makes decisions for all
periods, but the payoffs of the assets are time varying.
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3 Experimental Design

The experiment was conducted on June 17-18, 2010, at the CREED laboratory of the University

of Amsterdam. A total of 91 students participated in four sessions comprising the six different

treatments explained in Section 3.3 below. None of the students participated in more than one

session. Each session lasted for about one hour and a half, and the participants’ payoffs varied

between 18 and 25 euros.

3.1 Participants’ task

The experiment is an individual choice experiment where participants have to make an invest-

ment decision repeatedly. The participants observe the time series of past returns of either two,

three or four investment alternatives, represented as ‘funds’ A, B, C and D, in two blocks of

50 periods. The type and number of investment alternatives are different in the two blocks.

Each block starts with a history of 10 periods shown to the participant, so that (s)he can get

acquainted with the investment alternatives. For each of the remaining 40 periods in that block

the task of the participant is to choose one of the investment alternatives. After the choice

is made the realized returns for that period of all of the available investment alternatives are

revealed.

The payoff for a participant in any particular period is equal to the return of the alternative

(s)he chooses in that period. This return per period ranged between 0 and 16 points. The total

earnings of each participant was determined as the total number of points earned during the

experiment11 (i.e., over 2× 40 = 80 decision periods), translated to euros by dividing the total

number of points by 20. In addition, participants receive a ‘show-up’ fee of 5 euro.

Fig. 1 shows an example of the computer screen the participants face during the experi-

ment.12 A participant sees the past returns of all the funds on a graph as well as in a table,

where also the own past choices are displayed. The participant has to choose which fund to

invest in, using the radio buttons in the top part of the screen. After the participant has chosen

the fund, the computer screen is updated with the new information.

The instructions are provided in Appendix A. Note that the participants did not know

the data generating process that underlies the time series they observe, but they knew that a

different data generating process is used in the second block of 50 periods.

11We have chosen this payment scheme over the alternative where a participant is paid for a few random
periods to avoid that risk-averse participants choose the find with the lowest variance, instead of the fund with
the highest expected return. Our payoff scheme is consistent with the typical random utility setup used in the
literature on heterogeneous agent models, where agents are motivated to choose an alternative with maximum
expected payoff in the current period.

12The time series shown in the screen of the figure have not been used in the experiment. This picture was
printed on the paper shown to the participants during the instruction stage of the experiment, to explain the
different parts of the screen.
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Figure 1: An example of the experimental screen. Participants submit their decisions by
selecting the radio buttons in the upper part of the screen.

3.2 Time series used in the experiment

Prior to the experiment we prepared seven sets of time series of 50 periods, representing returns

(or payoffs) of the different investment alternatives. Letting t denote the period, each time series

is defined for t = −9, . . . , 40. The first 10 realizations, corresponding to t ≤ 0, are shown to

the participants at the start of the relevant block. The remaining observations are shown

sequentially as decisions are being made, such that for each time period t, t = 1, . . . , 40, in

which participants have to make an individual investment decision, they can observe return

realizations from periods τ = −9, . . . , t− 1, for all investment alternatives in the relevant set.

The time series were generated using the data generating processes (DGPs) discussed below

and then grouped in sets of two, three or four time series. The sets used in different blocks

of the experiment are illustrated in the left panels of Figs. 2, 3 and 4. At the start of every

block the participants could see the part of the time series to the left of the vertical dotted

line.13 The sets of time series can be characterized by their autocorrelation properties. Since

we conjecture that for a participant’s decisions the differences between returns of different

alternatives are more important than the absolute value of these returns, we specifically look

at the autocorrelation structure of return differences. Taking alternative A as a benchmark,

we calculate the return difference as the return of A minus the return of one of the other

alternatives. The autocorrelation function is plotted until the 10th lag. The dashed lines

represent 95% confidence bands.

13The line was not shown in the experiment.
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Figure 2: The return time series generated by the white noise model, WN2 (left panel) and the
autocorrelation of the difference between the returns (right panel).

1. White Noise time series. The first set of time series, denoted WN2, are generated by

the following DGP:

πi,t = 5 + εi,t, i = A,B and t = −9, . . . , 40 , (3)

where the εi,t are independently and identically distributed, with εi,t ∼ N(0, 1). The time series

used in the experiment are shown in Fig. 2 together with the autocorrelations of the difference

πA,t − πB,t. These two time series are independent from each other and serially uncorrelated.

2. Brock-Hommes time series. Three sets of time series, labeled BH2, BH3 and BH4,

are generated from numerical simulations of the two canonical heterogeneous agent models of

Brock and Hommes (1997, 1998) described in the previous section. The resulting sets of time

series are shown in Fig. 3 (left panels). Appendix B provides the details of the data generating

processes.

As explained in the previous section, Brock and Hommes (1997) introduce switching be-

tween heterogeneous expectations in the cobweb model. In particular, they study the dynamics

of the model with two types of expectations, costly rational expectations and costless naive

expectations. Our set BH2 contains the two time series of the realized returns associated with

these two forecasting heuristics, for a particular parameter setting.14 The participants to the

experiment experience this as a decision problem where there are two funds available for in-

vestment: fund A and fund B. Due to the nonlinear nature of the model, the simulated time

series exhibit a quasi-cyclic pattern, with fund A performing slightly worse than fund B most

14Note that in the Brock-Hommes model the distribution of the population over the different heuristics is one
of the determinants of prices and profits. In the experiment, however, choices of the participants have no effect
on the actual payoffs. We leave the experimental study of choices between heuristics, where these choices feed
back into the determination of profits, for future research.
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Figure 3: The return time series generated by the Brock-Hommes models (left panels) and the
autocorrelations of the differences between the returns (right panels).
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of the time but strongly outperforming fund B at certain periods. The autocorrelation function

shown in the right upper panel of Fig. 3 reflects this pattern with significant autocorrelations

at lags 1, 3, 4 and 7. Despite the quasi-periodic pattern, the time series are chaotic. In other

words, for the participants it is hard to predict the precise moment when fund A performs

better than fund B.

The next two sets of time series, BH3 and BH4, are based on Brock and Hommes (1998),

who apply the idea of evolutionary switching between heterogeneous forecasting heuristics to a

financial market model and study the dynamics for several versions of their model. The three

time series in BH3 are generated by the model with three forecasting heuristics, where one of

the heuristics corresponds to fundamentalist behavior, and the two others represent opposite

biased predictors. The returns of fund A are those generated by the fundamental forecast,

whose performance is always in between the performances of the two other funds. Funds B

and C are symmetric with respect to A, as their (opposite) biases are the same in absolute

value. From time to time a different fund performs best. Fig. 3 (middle right panel) shows

the autocorrelations of πA,t − πB,t and πA,t − πC,t, which are identical due to symmetry in the

model. There is no apparent structure in the returns.15

The four time series in BH4 are also generated by the asset pricing model from Brock

and Hommes (1998) but with four heuristics, representing fundamentalists, trend chasers with

an upward bias, trend chasers with a downward bias and strong trend chasers with no bias,

respectively Also for this set of time series the autocorrelation structure in differences is not

too strong, although it is significant for the first lag (for πA.t − πB,t and πA,t − πC,t).

3. Stock Index time series. These sets, labeled SI2, SI3 and SI4, are constructed from four

actual stock indices, the Austrian Trade Index (ATX), the Belgium 20 Stock Index (BFX), the

Dow Jones Index (DJI) and the FTSE 100 index (FTSE), from October 2005 to November

2009. We use rotation based yearly returns, instead of monthly returns.16 We use the ATX

and BFX indices for SI2, the ATX, BFX and DJI indices for SI3, and the ATX, BFX, DJI and

FTSE for SI4. Further, we normalize the data by dividing the returns by 12 and adding 5. The

resulting time series are shown in the left panel of Fig. 4. All of them are highly correlated as

can be seen from the right panels of Fig. 4. Autocorrelations of the difference between funds

A and B, between funds A and C and between funds A and D are significant up to lag 4, lag 6

and lag 7, respectively.

By applying a suitable linear transformations to the BH and SI sets, we made sure that

the maximum, minimum and average returns are similar across time series. This is necessary

15At the 95% confidence level the autocorrelation in differences is significant only at lags 2, 3 and 5 (but not
at the first lag).

16Due to using rotation based returns, these time series do not look like the typical monthly returns of mutual
funds. We label them here as “stock index” only due to the source of the data. The main purpose of using these
time series is to study switching behavior when returns are highly autocorrelated. The results from the white
noise time series may have more relevance for the behavior of investors in actual markets for mutual funds.
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Figure 4: The return time series of the stock indices (left panels) and the autocorrelations of
the differences between the returns (right panels).
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Time Series Treatments
Number of participants

Block 1 Block 2 Total
WN2 T1 and T6 16 13 29

BH2 T2 and T5 15 14 29
BH3 T3 and T1 14 16 30
BH4 T4 – 14 14

SI2 T4 and T3 14 14 28
SI3 T5 14 – 14
SI4 T6 and T2 13 15 28

Table 1: Structure of the treatments and blocks.

in order to compare the estimated intensity of choice parameters across different sets of time

series.17 The descriptive statistics of all time series is provided in Table 5 in Appendix B.

Time series from the different sets differ substantially in their autocorrelation structure.

The time series from set WN2 exhibit almost no autocorrelation or periodic pattern. The time

series from sets BH2 and BH3 exhibit a strong quasi-periodic pattern. Set BH4 has a high

autocorrelation only for the first lag. Finally, the time series in sets SI2, SI3 and SI4 exhibit

very strong autocorrelations.

3.3 Treatments

After generating the seven sets of time series, we constructed six treatments. Each treatment

consists of two blocks, and in each block a participant is confronted with one of the possible

seven sets of time series. Of the 7 × 6 = 42 possible combinations of two different sets, we

selected six, under the restrictions that the two blocks in a treatment had to consist of sets

with both a different number (2, 3 or 4) and a different type (WN, BH or SI) of investment

alternatives. Moreover, in order to test the effect of experience with another set of time series,

we organized the treatments in such a way that all the sets (except BH4 and SI3) appear exactly

once in the first and once in the second block. The participants who have a given set of time

series in their first block are denoted “inexperienced” (with this set) and those who have the

set in their second block as “experienced”.

The six resulting treatments T1 – T6 have the following sequences of sets of time series:

WN2  BH3 (T1), BH2  SI4 (T2), BH3  SI2 (T3), BH4  SI2 (T4), SI3  BH2 (T5)

and SI4  WN2 (T6). Table 1 is organized by the sets of the time series and shows the design

and the number of participants for each of the time series.

17The intensity of choice in (1) is not a scale-free parameter: multiplying all payoffs, πk,t−1 for all k, by a
constant is equivalent with dividing the estimated intensity of choice parameter by that same constant.
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3.4 Hypotheses

In the remainder of the paper we will present and analyze the experimental results. We present

the data in Section 4.1 and then focus on five different hypotheses which are introduced below.

First, all time series except BH4 and SI2 have been presented to participants of two treat-

ments, once in the first block and once in the second block (see Table 1). The question then

arises if, for a given set of time series, inexperienced and experienced participants behave sim-

ilarly. In Section 4.2 we test the following hypothesis.

Hypothesis 1. Behavior of participants for a given set of time series is independent of whether

they experience this set in the first or in the second block of the experiment.

If Hypothesis 1 is confirmed, we can pool, for a given set time series, the data from participants

that received this set in the first block with the data from participants that received the set in

the second block.

Turning to the main goal of the analysis, in Section 4.3 we present qualitative evidence that

participants condition their decisions on payoff information from the previous period, i.e., that

they exhibit return chasing. An important question of how they chase returns is rigorously

studied by estimating discrete choice models in Sections 5 and 6. Discrete choice models, as

they are used in the literature with heterogeneous agents, are backward looking models, i.e., it

is assumed that past returns determine the fractions of the population choosing the different

alternatives. In terms of the estimated discrete choice model, return chasing is represented by

the following hypothesis.

Hypothesis 2. Estimating model (1) or (2) on aggregate data gives estimates of β or βh,1 (for

all h) that are positive and significantly different from 0 for all sets of time series.

Confirmation of Hypothesis 2 would suggest that participants indeed exhibit return chasing

behavior.

The discrete choice model (1) furthermore assumes that agents only respond to the level of

the differences in past returns and not to patterns in these differences. The implication of this

is that there should be no significant differences between the discrete choice models that are

estimated from the experimental data generated by different time series.

Hypothesis 3. Experimental data from different sets of time series can be explained by exactly

the same discrete choice model.

If Hypothesis 3 is rejected, a universal discrete choice model – and therefore a universal value

of the intensity of choice β – does not exist. The responsiveness of participants with respect

to past payoff differences may then vary with the economic environment or with, for example,

observable patterns in past returns.

14



Moreover, discrete choice model (1) assumes that returns from the previous period determine

the current fractions, but returns from the more distant past do not play a role. Although

longer memory can easily be incorporated in the discrete choice model, most heterogeneous

agent models rule this out, typically for reasons of tractability. The following hypothesis can

be used to test whether this restriction is appropriate.

Hypothesis 4. A discrete choice model with more lags does not provide a substantially better

description of the aggregate data than model (1) (or (2) with L = 1).

If Hypothesis 4 is confirmed, a simple model with one lag will be a reasonable compromise

between tractability and realism.

Hypotheses 2, 3 and 4 are tested in Section 5 on the data from the blocks with two alter-

natives. Most applications of discrete choice models to heterogeneous agent models involve the

choice between either two or three alternatives. In Section 6 we will consider the blocks with

time series of three or four alternatives. It turns out that the general discrete choice model be-

comes more complicated when there are more than two alternatives. It is important, therefore,

to understand if a fundamentally different model is needed to describe participants’ behavior if

the number of alternatives increases. We formulate this question as the following hypothesis.

Hypothesis 5. There is no substantial difference in the structure of the best fitted discrete

choice model, when the number of alternatives goes from two to three to four.

Rejection of this hypothesis would mean that more sophisticated discrete choice mechanism

should be used in the models with more than two alternatives.

4 Experimental Data: Some Preliminary Findings

In this section we will have a first look at the experimental data. These data are presented

in Section 4.1. In Section 4.2 we investigate the effect of experience and in Section 4.3 we

investigate qualitatively whether choices of participants in the experiment are driven by past

returns, before we consider this issue in more detail when estimating discrete choice models in

Sections 5 and 6.

4.1 Experimental data

Fig. 5 gives, for each set of time series, the evolution of the share of participants choosing a

particular alternative. To facilitate exposition, and in anticipation of our first result below, we

pooled together participants from two blocks (that is, experienced and inexperienced) for the

time series from WN2, BH2, BH3, SI2 and SI4. Clearly, there are substantial fluctuations in
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Figure 5: Shares of choices over time for different sets. For WN2, BH2, BH3, SI2, and SI4 the
data from the two blocks are pooled.

the shares for a given set of time series, and many participants switch between alternatives

regularly during each block.

In addition, there also exist pronounced differences in choice behavior between different

sets of time series. In the BH2 blocks, for example, there are large swings in the fraction

of participants choosing alternative A (such large swings are also observed in the SI2 blocks,

although the pattern is different). In the BH3 blocks, however, the fraction of participants

choosing a particular alternative is more stable over time and subject to smaller fluctuations

(the same holds for the WN2 blocks).

Closer inspection of the dynamics of fractions reveals some other remarkable characteristics.

For example, although expected returns for alternatives A and B are the same in the WN2

blocks, participants choose A with a higher frequency than B in those blocks. This may be

attributed either to a “default choice bias” for alternative A18 or to the realization of the random

white-noise process where alternative A has a higher return than alternative B for 7 out of the

18However, note that in treatment T1 the participants experienced the BH3 time series after the WN2 time
series. In the BH3 block the participants actually choose B more often.

16



first 10 experimental periods (i.e., for t = 1, . . . , 10), or a combination of the two. Also, for the

set of time series in SI4, the majority of participants learns to switch from alternatives A and

B (which are the most profitable alternatives in periods t = −9, . . . , 5) to alternatives C and

D (which are, on average, the most profitable alternatives in periods t = 17, . . . , 37). These

observations suggest that participants do positively respond to past profit differences. We will

return to this issue in Section 4.3, but first we investigate the effect of experience.

4.2 Effect of experience

We analyze the effect of experience with another set of time series by comparing the aggregate

behavior of participants who experience a particular set of time series in the first block of their

treatment to those who experience that set of time series in the second block of their treatment.

Given the design of treatments (see Table 1) we can do this for the WN2, BH2, BH3, SI2 and

SI4 blocks, but not for the BH3 and SI4 blocks.19 Since by the design of the experiment the

choices of individual participants are independent from each other for any given time period,

the distribution of choices is multinomial. We can therefore apply Pearson’s chi-squared test

for each of the five relevant sets of time series and for every t = 1, . . . , 40 to test the hypothesis

that choice behavior of experienced and inexperienced participants is the same. We only reject

this hypothesis for five of the 5× 40 = 200 periods, see Appendix D for details.

An alternative way to investigate the effect of experience is by determining, for each partici-

pant, how often he/she switches between alternatives during a block. Subsequently, we compare

the empirical distribution of the number of switches of inexperienced participants to that of

experienced participants. Using the Kolmogorov-Smirnov test we can reject the hypothesis that

these distributions are the same only for the SI2 blocks.20

Summarizing, we reach the following conclusion.

Result 1. We confirm Hypothesis 1. For a given set of time series choice behavior of experi-

enced participants is not significantly different from that of inexperienced participants.

This result is corroborated by a comparison of the performance of inexperienced participants

with that of experienced participants. Table 2 shows, for each set of time series, how often

participants make the optimal decision by choosing the alternative with the highest actual

return in that period. Except for the WN2 time series, the fractions are much higher than

what they would be under random choice (i.e., 50%, 33% or 25% for time series with two, three

and four funds, respectively), see the third column of Table 2. Participants are most successful

19Fig. 9 in Appendix D shows the figures for each block separately, which facilitates a comparison of the
behavior of experienced vs. inexperienced participants.

20The test statistics are 0.375 for WN2, 0.176 for BH2, 0.5 for SI2, 0.188 for BH3 and 0.185 for SI4. The
corresponding p values are 0.207, 0.962, 0.039, 0.930 and 0.952, respectively. Fig. 9 in Appendix D shows the
histograms of the number of switches for inexperienced and experienced participants. Table 12 in Appendix D
shows, for each block, the number of switches per participant per period.
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Time series Treatments
Fraction of Best Choices

Total Inexp. Exp. First 20 Last 20
WN2 T1 and T6 52.24% 53.13% 51.15% 57.41% 47.07%

BH2 T2 and T5 83.10% 81.33% 85.00% 79.14% 87.07%
BH3 T3 and T1 44.58% 46.25% 43.13% 43.50% 45.67%
BH4 T4 57.68% - 57.68% 67.14% 48.21%

SI2 T4 and T3 71.70% 72.50% 70.89% 68.75% 74.64%
SI3 T5 65.18% 65.18% - 51.07% 79.29%
SI4 T6 and T2 58.39% 56.92% 59.67% 55.36% 61.43%

Table 2: Fraction of best choices in each block.

in choosing the best alternative from time series in BH2, SI2 and SI3, where autocorrelations

are significant. The fraction of best choices is lowest with the highly unpredictable time series

from WN2 and BH3.21 The numbers in columns four and five of Table 2 are similar. Thus,

consistently with Result 1, experience with another time series does not improve performance.

Result 1 allows us to pool experienced and inexperienced participants for the remainder

of the analysis. However, experience with a particular time series within a block may still

be important. The last two columns of Table 2 show performance of participants (where

experienced and inexperienced participants are pooled) in the first 20 and the last 20 periods of

a block, respectively.22 For the time series from BH2, SI2, SI3, SI4 and, to a lesser extent, BH3

we see an overall increase in the fraction of optimal choices.23 This suggests that experience

with a time series does have some effect on performance of the participants. Moreover, since

one of our objectives is to investigate the effect of the characteristics of the time series on choice

behavior (see Hypothesis 3 from Section 3.4) we believe that we should give the participants

sufficient opportunities to get acquainted with the time series first. For the estimation of the

discrete choice models in Sections 5 and 6 we therefore allow for a ‘learning phase’ of 20 periods

and focus on describing choice behavior of the last 20 periods of each block.

4.3 Return chasing

We now investigate whether participants in the experiment have a tendency to ‘chase returns’,

that is, whether they typically choose that alternative that had the highest actual return in the

previous period. First, we analyze whether return chasing is a sensible strategy. Fig. 6 gives,

21Since in some blocks there were more than two alternatives, the fraction of best choices may not be the
optimal measure to compare different blocks. Appendix E introduces an alternative efficiency measure. The
comparisons on the basis of that measure give results consistent with the straightforward analysis here.

22Fig. 10 in Appendix E shows how the fractions of best choices evolved over time.
23There is a negative trend for the time series from WN2 and BH4. In both cases, a decrease in the fraction

of best choices can be attributed to an unexpectedly high value of this fraction in the first 20 periods. This may
occur because of the particular characteristics of the times series. In the WN2 blocks alternative A was the best
relatively often in the first half of the experiment. Similarly, in the BH4 block, alternative C outperformed the
other alternatives in each of the first thirteen periods, whereas there was not a clearly superior alternative in
the remainder of that time series.
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Figure 7: The fraction of participants choosing in period t the fund that had highest returns
in period t − 1. Inexperienced and experienced sessions are pooled together. The horizontal
dashed lines show the averages of the fractions over the first 20 and last 20 periods.
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for each set of time series, the proportion of periods for which the best alternative in period

t coincides with the best alternative in period t − 1, t − 2 and t − 3, respectively. It follows

that return chasing works best for the SI2 and SI3 sets of time series, for which it leads to the

highest return in more than 80% of the periods. It also works relatively well in BH2, BH4 and

SI4.24 Obviously, return chasing does not help in WN2. Also in the BH3 blocks its success

would be relatively limited.

Fig. 7 provides evidence of return chasing by participants to the experiment. It plots the

fraction of participants choosing the alternative in the current period that had the highest

returns in the previous period. The more participants are chasing past returns, the closer the

fractions in Fig. 7 are to 1. Return chasing is prevalent in BH2, BH4, SI2, SI3 and SI4 where

participants choose the best alternative from the previous period around 80% of the time.

Return chasing increases over time in the SI2, SI3 and SI4 blocks, but decreases substantially

in the BH4 block. Remarkably, also in the WN2 blocks participants start with chasing returns,

but over time learn to abandon that strategy. Only in the BH3 blocks return chasing seems to

be relatively rare.

These observations suggest that a model where participants condition their decision upon the

returns of the different alternatives from the previous period might organize the experimental

data quite well. In the next two sections we estimate such models.

5 Explaining choices in WN2, BH2 and SI2

In this and the next section we investigate the extent to which the discrete choice models

(1) and (2), discussed in Section 2, can explain the choice behavior of the participants in our

experiment. We will estimate the models on the aggregate data using the method of maximum

likelihood and discriminate between these models by taking advantage of the nested structure

of the various specifications. We are interested in finding a parsimonious model that describes

the data reasonably well. Moreover, due to their pivotal role in heterogeneous agent modeling,

we have a specific interest in the estimated values of the Intensity of Choice parameters, such

as β in the basic model (1).

In this section we restrict attention to the binary choice model, using experimental data

from those blocks of the experiment where the set of time series contains only two alternatives

(i.e., WN2, BH2 and SI2). We start with estimating the one-lag model (model (1)) and turn

to the multi-lag model (model (2)) in Section 5.2. In Section 6 we estimate the multiple choice

model using the experimental data from the blocks with three and four alternatives.

To estimate the models we pool the data from experienced and inexperienced participants,

which is justified by Result 1. Also, to give participants the opportunity to get acquainted with

24Note that with two (four) alternatives, and a completely random time series, return chasing leads to the
best alternative around 50% (25%) of the time.
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their economic environment, we will estimate our models on data from the last 20 periods of

each block. More details, including our methodology and details of the goodness-of-fit tests,

are reported in Appendix F.

5.1 Binary choice models with a single lag

Motivated by the qualitative evidence on return chasing behavior discussed in Section 4.3 we

will try to explain the fraction of participants choosing alternative A as a function of the past

returns of alternatives A and B, for each of the three sets of time series with two alternatives.

Let us assume that the fraction of participants choosing alternative A at time t is given as

nAt =
exp [α + βAπA,t−1]

exp [α + βAπA,t−1] + exp [βBπB,t−1]
. (4)

Note that only a constant for alternative A is included.25 As discussed in Section 2, parameter

α represents a predisposition or bias towards one of the alternatives (see also Branch, 2004):

if α is positive (negative) the participant tends to choose alternative A (B) even if returns in

the previous period were the same.26 Eq. (4) allows for only one lag in past returns of the two

alternatives, but the responses to these past returns may be asymmetric, βA 6= βB. Note that

the vast majority of heterogeneous agent models use model (4) with α = 0 and βA = βB.

In finding a parsimonious model that gives a satisfactory description of participants’ choices,

we estimated equation (4) with three different specifications, using the method of maximum

likelihood:

� PreAsym1: This is the original model in equation (4), which contains a predisposition

effect and asymmetric responses to past returns.

� PreSym1: This corresponds to equation (4), with the restriction βA = βB imposed. This

model still has a predisposition effect, but symmetric responses to past returns.

� Sym1: This gives the specification with the restrictions βA = βB and α = 0 imposed.

This model corresponds to the canonical discrete choice model (1) for two alternatives.

We test the restrictions in PreAsym1 that lead to PreSym1 and Sym1 by the Likelihood

Ratio (LR) test, as well as by comparing the information criteria (Akaike, AIC, and Bayesian,

BIC) that penalize the models for additional parameters.

Table 3 presents the three estimated models, arranged from the most parsimonious model

(Sym1) on top to the most general model (PreAsym1) at the bottom. We report the values

25This can be done without loss of generality (also see the discussion in Appendix F.1.1).
26Note that this interpretation assumes symmetric responses, βA = βB . For asymmetric responses the actual

bias towards alternative A will also depend on βA, βB and the average values of πA and πB ; see footnote 28.
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Model Treatment α βA βB log-likelihood AIC BIC McFadden LR test
R-squared

Sym1

WN2 0.000 0.100 0.100 −396.432 794.863 799.226 −0.061
(0.030)

BH2 0.000 0.431 0.431 −285.560 573.121 577.484 0.210
(0.034)

SI2 0.000 3.747 3.747 −203.347 408.694 413.022 0.475
(0.277)

PreSym1

WN2 0.693 0.133 0.133 −364.927 733.854 742.580 0.023 63.009
(0.090) (0.032) (0.000)

BH2 −0.437 0.365 0.365 −278.606 561.212 569.938 0.230 13.908
(0.114) (0.035) (0.000)

SI2 0.626 4.409 4.409 −194.622 393.245 401.901 0.498 17.449
(0.162) (0.370) (0.000)

PreAsym1

WN2 0.532 0.151 0.123 −364.813 735.626 748.715 0.024 0.228
(0.350) (0.050) (0.038) (0.633)

BH2 −12.973 2.609 0.095 −223.469 452.938 466.027 0.382 110.274
(1.516) (0.299) (0.051) (0.000)

SI2 0.925 4.652 4.754 −194.221 394.442 407.426 0.499 0.803
(0.374) (0.471) (0.548) (0.370)

Table 3: Comparison of the three models with one lag over all treatments. Last 20 periods of
data are used (pooled over experiences). The last column shows the results of LR test of the
corresponding model against the previous (restricted) model.

of the parameters, the standard deviations (in parentheses), the values of the log-likelihood

function and the information criteria. For each set of time series, the value of the information

criterion for the best model (i.e., with the lowest AIC or BIC value) is shown in bold. Table 3

also shows McFadden’s R2 that evaluates the goodness of fit of a model by comparing it with

the model where only the constant term is included (the latter model corresponds to a ‘pure

predisposition’ model). The last column of Table 3 should be read from down to up. It shows,

for the corresponding set of time series and estimated model, the value of the log-likelihood

ratio and the p-value at the 5% significance level (in parentheses) when the model is tested

against its restricted version from the row immediately above.

Thus, for the WN2 blocks we test (i) the hypothesis that βA = βB in the PreAsym1 model,

leading to the PreSym1 model (the LR is 0.228 and we cannot reject the hypothesis), and (ii)

the hypothesis that α = 0 in the PreSym1 model leading to the Sym1 model (the LR is 63.009

and we therefore have to reject this hypothesis). This suggests that the PreSym1 model is

the most parsimonious model that gives a good description of the aggregate data in the WN2

blocks. The information criteria support this conclusion. In the same way (and also consistent

with the AIC and the BIC) we conclude that the PreSym1 model is the best one-lag model to

describe the data from the SI2 blocks. In contrast, the best model describing the BH2 blocks is

PreAsym1 with asymmetric responses in addition to a predisposition effect. We summarize

these and subsequent results regarding the optimal models (as selected by the LR test) in the

second and third column of Table 4 in Section 7.

The left panels in Fig. 8 compare the share of participants choosing alternative A in the

experiment (thick solid line) with the predicted fraction of participants choosing alternative A

using the estimated PreSym1 model from Table 3 (thick dashed line) and, for the BH2 time

series, also with the predictions of the PreAsym1 model (thin solid line). The panels illustrate

that the PreSym1 model describes the data from the WN2 and SI2 blocks quite well. In fact,
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also for the data from the BH2 blocks model PreSym1 gives a fairly good description although

model PreAsym1, with asymmetric responses to returns, performs significantly better.

It follows from the results presented in Table 3, that the estimated value of the intensity of

choice parameter β is significantly positive at the 5% level for the selected model PreSym1

in the WN2 and SI2 blocks. This is particularly noteworthy for the WN2 blocks since past

returns in those blocks have no predictive power for future returns. Also for the BH2 blocks,

the estimated value of βA in the selected model PreAsym1 is significantly positive at the 5%

level.27 Our result therefore is the following.

Result 2. We confirm Hypothesis 2 and conclude that human subjects do exhibit ‘return chasing

behavior’ in the WN2, BH2 and SI2 blocks.

As discussed in Section 2 this result is important for the literature on heterogeneous agent

models, because such ‘return chasing’ behavior (defined over performances of various behav-

ioral rules) is a crucial assumption in these models. Experimental evidence of validity of this

assumption is therefore reassuring. However, at the same time our results show that the canon-

ical specification (1) (equivalent to model Sym1) used in the vast majority of the theoretical

and computational contributions to this literature does not provide a satisfactory description

of aggregate choice behavior for any of the three sets of time series considered.

When we analyze the estimated models from Table 3 in a bit more detail we can make two

additional observations. First, the predisposition effect is significantly different from 0 for all

three sets of time series, and implies a bias towards alternative A.28 A possible explanation for

this is a simple preference of participants to choose the first presented option. Closer inspection

27In that model, however, βB is not significantly different from 0. This means that participants respond
to the payoffs for alternative A, but not so much to payoffs for alternative B. Considering the time series of
these alternatives, shown in upper left panel of Fig. 3, we see that for most periods alternative A has a lower
payoff (around 4.50) than alternative B (which in many periods gives a payoff of around 7.50). Moreover, an
increase in the returns for alternative A occurs simultaneously with a decrease in the return for alternative B.
The estimated PreAsym1 model from Table 3 suggests that the default option for the participants is to choose
alternative B, except if payoffs for alternative A in the previous period were substantially higher than their
lower bound of 4.5. That is, the estimated model can be written as

nAt =
1

1 + exp (−2.608 (πA,t−1 − 4.97))

meaning that for πA,t−1 = 4.50 (which is around the value that πA takes on most often), the fraction of the
participants choosing A is approximately 0.22, whereas nA,t will be above 0.50 (0.90) if πA,t−1 is above 5 (6).

28To see this, one can substitute, for the three sets of time series, the average payoffs for alternatives A and
B (as given in Table 5) in the estimated model from Table 3 that gives the best description of the data and
compute the predicted fraction of participants choosing A. This gives n∗ ≈ 0.68 for WN2, n∗ ≈ 0.53 for BH2
and n∗ ≈ 0.93 for SI2. Note that although the estimate of α is negative in BH2, the asymmetry in responses to
payoffs is large enough to lead to a bias towards A.
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Figure 8: Experimental data (thick solid line with circles) and model predictions. Left panels:
All 40 periods are shown; predictions are from the one-lag models, PreSym1 and PreAsym1
(only for BH2). Right panels: the 20 last periods are shown; predictions are from multiple lags
model compared with the best prediction from the one-lag model. The best model is shown by
the thin line with squares.
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of the different time series may provide sensible alternative explanations as well.29 In the time

series from WN2, for example, by chance A gives a higher payoff than B in 7 out of the first 10

periods (t = 1, . . . , 10). For the SI2 blocks, on the other hand, returns for these 10 periods are

roughly the same for choices A and B, but in the starting periods (t = −9, . . . , 0) alternative

A is dominating alternative B by a substantial margin. These initial differences may explain

the existence of the predisposition effect, even allowing for a learning phase of 20 periods.30

Second, we see that the estimated intensity of choice parameter β differs for different sets

of time series. As the return for all alternatives in each block is on average about 5 points

per period (see Table 5 in Appendix B), the differences between the estimated intensities of

choice can not be attributed to a scaling effect. We find the estimated β to be quite high

(β ≈ 4.4) for the SI2 blocks, and low (β ≈ 0.1) for the WN2 blocks. This ordering is consistent

both with Fig. 6, which shows persistence of the best fund over time for different blocks, and

with the autocorrelation structure in returns. Choosing the alternative that generated a high

return in the previous period makes sense in particular when returns are highly and positively

autocorrelated. The results suggest that the intensity of choice is affected by the structure of

the time series of returns, and participants are successful in adjusting their reaction to past

information in the right direction (e.g., their behavior is described by a higher value of β when

past returns have more predictive power about future returns). Based on this observation we

conclude the following:

Result 3. We reject Hypothesis 3. The estimated value of the intensity of choice parameter β

depends strongly on the predictability of returns. In particular, β is larger when the autocorre-

lation structure in the returns is stronger (and positive).

5.2 Binary choice models with multiple lags

Result 3 suggests that predictability of future returns is an important determinant of the

estimated intensity of choice parameter β, which is higher the higher the autocorrelation in the

time series of returns is. It therefore makes sense to consider an extended model that includes

more lags of past returns to allow for the possibility that participants try to exploit the structure

29It is difficult to explain the predisposition effect by risk aversion. To see this, note from Table 5 from
AppendixB that the differences in variances in returns is substantial for the choice sets BH2 and SI2, whereas
the difference in means is small. Participants’ risk aversion should then be represented by a predisposition
towards the alternative with the lower variance. Comparing Table 5 with Table 3 we see that this is the case
for the BH2 set of time series but not for the SI2 set, where there is a predisposition towards the alternative
with the higher variance.

30To illustrate that the predisposition effect diminishes somewhat over time we also estimated model
PreSym1 for WN2 on all 40 periods. Recomputing, for this estimated model, the predicted fraction for
A when payoffs for the alternatives are equal to their mean values, we find n∗ ≈ 0.73 (cf. footnote 28).
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in the time series. That is, we consider specification (2), which for two alternatives becomes:

nAt =
exp

[
α +

∑L
`=1 βA,`πA,t−`

]
exp

[
α +

∑L
`=1 βA,`πA,t−`

]
+ exp

[∑L
`=1 βB,`πB,t−`

] . (5)

Note that we allow for a predisposition effect and for differences between the coefficients on

past returns (both across time and across alternatives), but we do assume that participants

consider the same number of lags L for each alternative.31

We use the following methodology for estimating model (5). We begin with estimating

the model with only a constant, i.e., with L = 0. We then add one lag for both alternatives,

estimate this less parsimonious model and test (using the LR test with a significance level of

5%) the restriction βA,1 = βB,1 = 0, which leads to the first model. If this restriction is rejected

we reject the first model (with L = 0) and proceed in the same way with the second model.

That is, we add a second lag for both alternatives, estimate this new model and test if this

model is significantly better than the previous one, and so on. The procedure stops as soon as

adding a lag for both alternatives does not significantly improve the performance of the model.

We then choose the model which was the last one that provided a significant improvement.32

Using this procedure we end up with L = 3 for the WN2 set of time series (we call the resulting

model PreAsym3), with L = 4 for the BH2 set of time series (the PreAsym4 model) and

with L = 1 for the SI2 set of time series (the PreAsym1 model). The rest of our estimation

strategy is the same as in the previous section. Namely, we test the hypothesis that coefficients

on past returns are the same for both alternatives, that is βA,` = βB,` for all ` ≤ L, and then, if

this hypothesis cannot be rejected with the LR test, we attempt to simplify the model further

by testing the additional restriction, α = 0. Tables 6 and 7 in Appendix C.1 provide the results

of this final part of the estimation procedure, for the WN2 and BH2 blocks, respectively. For

the SI2 block, the results coincide with those in Table 3, i.e., model PreSym1 is selected.

For the WN2 block, after selecting model PreAsym3 in the first step of the estimation

procedure, we cannot reject the hypothesis that βA,` = βB,` for all ` ≤ 3 but, we do reject the

restriction α = 0 and therefore arrive at the PreSym3 model. However, comparing the BIC

values for the estimated multi-lag models from Table 6 in Appendix C.1 and the estimated one-

lag model in Table 3, we find that the more parsimonious model PreSym1 is almost as good

as the PreSym3 model. This suggests that, for the WN2 time series, the one-lag PreSym1

model is sufficiently flexible to provide a good explanation of the data.

For the BH2 blocks, the PreAsym4 model selected in the first step of the estimation

procedure cannot be simplified any further (the restriction βA,` = βB,` for all ` ≤ 4 is rejected

31See Appendix F.3 for a formal specification of the model with lags. We also estimated the models which
include an arbitrary number LA < 10 of lags for alternative A and an arbitrary number LB < 10 of lags for
alternative B. The results are available upon request.

32An alternative procedure is to start with, for example, L = 10 lags and then sequentially reduce the number
of lags as long as the hypothesis that the two coefficients on the highest lag are equal to zero is not rejected. In
general this procedure may lead to different results, e.g., with a higher number of lags in the final model.
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by the LR test). For the BH2 blocks there is a substantial improvement in considering a discrete

choice model with more than one lag in returns (as can be seen by comparing the AIC and

BIC values for this model in Table 7 with those for the PreAsym1 model in Table 3). The

estimated coefficients of the PreAsym4 model, as reported in Table 7, are remarkably high,

with the first and third coefficient significantly different from zero but with opposite signs.

This suggests that participants try to pick up the cyclic behavior in the return differences.

Although they respond positively to last periods return difference, they correct this with a

negative response to the return difference of two periods before.

The right panels of Fig. 8 compare, for the last 20 periods, the share of participants in the

experiment choosing alternative A, the predicted share by the selected model with one lag as

described in Section 5.1 (see Table 3), and the predicted share by the chosen multi-lag model as

described in this Section (see Tables 6 and 7 in Appendix C.1). The estimated multi-lag model

clearly outperforms the one-lag model for the data in the BH2 blocks. For the SI2 blocks the

best multi-lag model is in fact the model with one lag, and for the WN2 blocks performance of

the two models is similar.

These findings suggest that the structure in the time series is an important determinant of

the choice behavior of experimental participants. When there is either very limited structure

(as in the WN2 blocks), or very salient structure (as in the SI2 blocks), participants tend to

condition their choice only upon the most recent information and a discrete choice model with

one lag seems sufficient to describe the data. When the structure is more complicated (e.g.,

when it has a cyclical pattern as in the time series from the BH2 blocks), participants seem to

condition their behavior on a longer history of returns. We therefore have the following

Result 4. Hypothesis 4 is rejected. In particular for the BH2 block, the multi-lag model gives

a substantially better, and qualitatively different, description of the participants’ decisions.

To summarize, we find that the discrete choice model is successful in explaining the experi-

mental data from the WN2, BH2 and SI2 blocks, taking into account the following qualifications.

First, a predisposition effect in the discrete choice model is warranted, as this effect is signifi-

cant for all three models that performed best in describing the data (the PreSym1 model for

the WN2 and SI2 blocks and the PreAsym4 model for the BH2 blocks). Second, although for

models with either a little or a lot of structure in the time series a discrete choice model with

one lag and symmetric responses performs well, for time series with a nontrivial structure more

lags and asymmetric responses may be required. Importantly, the intensity of choice parameter

increases with the predictability in the time series. Finally, note that the discrete choice model

that is typically used in the literature, model Sym1, does not do a very good job in explaining

the experimental data.33

33Some extensions of the discrete choice model (Hommes et al., 2012; Anufriev and Hommes, 2012b) explicitly
allow for more payoff lags in the performance measure, introducing so-called “memory” with geometrically
declining weights. That is, the weight of payoff πt−τ is given by βητ−1, with η ∈ (0, 1). Inspection of Tables 6
and 7 suggests that such a model would not describe the behavior of participants in this experiment very well,
since the estimated coefficients are clearly not geometrically decreasing.
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6 Explaining choices in BH3, BH4, SI3 and SI4

In this section we briefly discuss estimation results for a general discrete choice or multinomial

logit model with one lag, applied to the experimental data from the blocks with three or

four alternatives (that is, the BH3, BH4, SI3 and SI4 blocks). An important feature of the

multinomial logit model with more than two alternatives is that it is more flexible than the

binary choice model. In the case of three alternatives, for example, the general model assumes

the following proportionalities of the fractions of choices for alternatives A, B and C as functions

of past performances:

nAt ∝ exp
[
αA + βAAπA,t−1 + βABπB,t−1 + βACπC,t−1

]
,

nBt ∝ exp
[
αB + βBAπA,t−1 + βBBπB,t−1 + βBCπC,t−1

]
,

nCt ∝ exp
[
αC + βCAπA,t−1 + βCBπB,t−1 + βCCπC,t−1

]
.

(6)

Note that the fraction choosing an alternative may be directly affected by the past returns

of any of the other alternatives, whereas this is not the case for the binary choice model.34

Another important characteristic is that, although model (6) has twelve parameters, only eight

of them can be identified. To see this, note that, for example, subtracting βCAπA,t−1 from each of

the profit sums in (6) gives rise to exactly the same normalized fractions. Selecting alternative

C as the ‘reference option’, we can then write the three normalized fractions as

nAt = exp
[
(αA − αC) + (βAA − βCA )πA,t−1 + (βAB − βCB )πB,t−1 + (βAC − βCC )πC,t−1

]/
Z ,

nBt = exp
[
(αB − αC) + (βBA − βCA )πA,t−1 + (βBB − βCB )πB,t−1 + (βBC − βCC )πC,t−1]

]/
Z ,

nCt = 1/Z ,

(7)

where Z is a normalization factor which is chosen in such a way that nAt + nBt + nCt = 1.

We refer to (7) as the General1 model. This model has eight parameters (two relative

predisposition effects, αh−αC for h = A,B, and six relative intensities of choice of the form βhk−
βCk for h = A,B and k = A,B,C). This General1 model nests the PreAsym1, PreSym1 and

Sym1 models that were discussed (for two alternatives) in Section 5. In particular, imposing

the restriction that βhk = βgk for all k, h and g that are different from each other, gives the

PreAsym1 model

nht =
exp [αh + βhπh,t−1]

exp [αA + βAπA,t−1] + exp [αB + βBπB,t−1] + exp [βCπC,t−1]
for h = A,B,C

34The general form implied by (6) reduces to the PreAsym1 model from Section 5.1 if there are only two
alternatives, see Appendix F for details. Since the fractions need to be normalized to make them add up to one,
the fractions in the binary choice PreAsym1 model are indirectly affected by payoffs of the other alternatives.
But in the case with more than two alternatives, the dependence is also direct and more complicated.
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which has five parameters (note that αC = 0).35 Imposing in addition that the three intensities

of choice are the same (βA = βB = βC = β) we obtain the PreSym1 model. Finally, the one-

parameter canonical Sym1 model is obtained when requiring that there are no predisposition

effects (αA = αB = 0), which gives model (1) from Section 2 with H = 3. For the case of four

alternatives the different models and restrictions are similar (see Appendix F for details).36

Given this general framework we search for a multinomial logit model that fits the exper-

imental data from the BH3, BH4, SI3 and SI4 blocks. We apply the same methodology as in

Section 5.1. That is, we start with estimating the General1 model and then investigate, using

the LR test and information criteria, whether a more parsimonious model exists that still gives

a good description of the experimental data. Note that we have now one additional step, from

the General1 to the PreAsym1 model. This step is interesting, because the literature on

heterogeneous agent models assumes that there is no direct effect of other alternatives (i.e., it

imposes restriction βKH = 0 for H 6= K in (6)) and thus never considers the General1 model.

Further details and the estimation results are presented in Appendix C.2. Below we give a

brief overview of the main findings, which are summarized in Table 4 in Section 7.

6.1 Choices in SI3 and SI4

The estimation results for the SI3 and SI4 blocks are presented in Tables 8 and 9 in Ap-

pendix C.2, respectively. Applying the results of the LR tests at the 5% significance level to

the models estimated on the experimental data from the SI3 block, we find that the PreSym1

model is the most parsimonious model that still gives a good description of the data. This is

consistent with the BIC, which is indeed lowest for the PreSym1 model, but not with the AIC

(which selects the PreAsym1 model, although the AIC values are quite close).

Note that the same specification (the PreSym1 model) was chosen for the SI2 blocks

(recall that the time series for alternatives A and B are exactly the same in the SI2 and SI3

blocks). Moreover, the predisposition effect towards alternative A that we found for the SI2

blocks (see Table 3) is preserved when adding a third time series (from Table 8 we see that the

estimated predisposition for alternative A, relative to the new alternative C, is 0.688, whereas

the predisposition for alternative B, again relative to alternative C, is −1.014). The estimated

intensity of choice, however, although still relatively high at β ≈ 1.97, is about twice as small

as the intensity of choice for the PreSym1 model estimated on the data from the SI2 blocks.

Inspection of the time series in the upper left and middle left panels of Fig. 4 may help explain

35These five parameters are related to the parameters of the General1 model (7) as follows: the two (relative)
predisposition effects are αA = αA − αC and αB = αB − αC and the three (relative) intensities of choice are
given by βA = βAA − βCA , βB = βBB − βCB and −βC = βAC − βCC .

36If there are four alternatives, the General1 model has fifteen parameters; the PreAsym1 model has seven
parameters (three relative predisposition effects and four intensities of choice); the PreSym1 model has four
parameters; and the Sym1 model has one parameter, the intensity of choice β. The latter model was used in
the case of four strategies discussed in Brock and Hommes (1998). Appendix F.2 provides formal equations,
parameters to be estimated and restrictions.
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this. Although in periods 1 until about 10 returns for alternatives A and B are roughly the

same, in the subsequent fifteen periods alternative A consistently outperforms alternative B.

Participants that only need to choose between these two alternatives may therefore learn that

the strategy of selecting the alternative that had the highest payoff in the previous period is

very successful, which is reflected in a high value of the intensity of choice. The success of

such a strategy is slightly inhibited, however, when adding alternative C. This new alternative

sometimes, but not always, outperforms alternative A in the first 25 periods. As a consequence

the estimated intensity of choice for the SI3 block is smaller.

Remarkably, where the experimental data from both the SI2 and SI3 blocks give rise to the

PreSym1 model, the chosen model for the data from the SI4 blocks, the General1 model, is

considerably more complicated. Although not all estimated coefficients in the General1 model

presented in the last row of Table 9 are significantly different from zero, the restrictions that

would reduce that model to the PreAsym1 model are rejected (let alone simplifying it further

to the PreSym1 model), a finding that is also consistent with the two information criteria.

Note that the first three time series in the SI4 blocks are the same as in the SI3 block, and that

only the time series corresponding to alternative D is added for the SI4 blocks. This new time

series has a rather straightforward relation to the time series of the other three alternatives.

In particular, as can be seen from the lower left panel of Fig. 4, it is the worst of the four

alternatives in each of the periods 1 until 15, but the best alternative for almost all of the last

fifteen periods. One would therefore not expect the addition of this alternative to complicate

the decision problem of the participants substantially. A more reasonable explanation may be

that participants are in general better able to make decisions between two or three alternatives

than between four alternatives, which is consistent with the finding that a much more complex

model structure is required to describe their behavior satisfactorily for this latter case.37

6.2 Choices in BH3 and BH4

We now consider the experimental data from the BH3 and BH4 blocks. Contrary to the SI

blocks, there exists no relationship between the time series from the BH2, BH3 and BH4 blocks.

These two sets of time series are special, however, in the sense that the different time series in a

given block are not linearly independent. In particular, for the time series from the BH3 blocks

we have that πA,t = 1
2
(πB,t+πC,t) for every t, and for the time series from the BH4 block we have

πA,t = cBπB,t + cCπC,t + cDπD,t for every t, with cB = cC ≈ 2.881 and cD ≈ −4.762. This linear

dependence has important consequences for estimating the multinomial logit model. More

specifically, it means that the parameters of the multinomial logit model are not identifiable.

We address this problem by using (for the BH3 block) the linear dependence to modify the

37Note that the (relative) intensities of choice associated with the return for alternative D (see the last column
of the General1 model in Table 9) are relatively high, suggesting that participants condition their behavior to
a substantial extent on returns of that alternative. Also note that, although returns of one particular alternative
may directly effect the fractions of all alternatives, the strongest effect is typically on the fraction of participants
using that particular alternative (that is, typically βhh > βkk > 0 for k 6= h and k, h ∈ {A,B,C}).
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General1 model (7) as follows

nAt = exp
[
(αA − αC) + (β̃AB − β̃CB )πB,t−1 + (β̃AC − β̃CC )πC,t−1

]/
Z ,

nBt = exp
[
(αB − αC) + (β̃BB − β̃CB )πB,t−1 + (β̃BC − β̃CC )πC,t−1]

]/
Z ,

nCt = 1/Z ,

(8)

where, for every alternative h = A,B,C, we define the modified (and identifiable) coefficients

β̃hB = βhB + 1
2
βhA and β̃hC = βhC + 1

2
βhA, and where Z is required for normalization. Note that the

interpretation of the parameters β̃hk differs from that of βhk (for k = B,C). A high value of the

former can derive from the fact that participants are sensitive to returns generated by alternative

k or that they are sensitive to returns generated by alternative A (or by a combination of both).

This makes interpretation of the estimated model more difficult. Appendix C.2 explains how

the PreAsym1, the PreSym1 and the Sym1 models are defined in this case. Similarly, the

models describing the data from the BH4 block become identifiable after defining for every fund

h = A,B,C,D the parameters β̃hB = cBβ
h
A + βhB, β̃hC = cCβ

h
A + βhC , and β̃hD = cDβ

h
A + βhD.

Table 10 in Appendix C.2 provides the estimation and test results for the data from the

BH3 blocks. The parameter restrictions leading to the PreAsym1 model are rejected, but

only weakly (the p-value is 0.048). Furthermore, for the PreAsym1 model the restrictions

that lead to the PreSym1 model are not rejected and for the PreSym1 model the restrictions

that lead to the Sym1 model are also not rejected. In addition, the two information criteria

select the Sym1 model as the best model for the BH3 blocks. Overall, therefore, it seems that

the Sym1 model gives a good description for participants’ decisions in the BH3 blocks. Note

that this is the only set of time series for which decisions are consistent with the canonical

discrete choice model (1).38 Relevant in this respect might be that the BH3 time series are

relatively unpredictable (see the middle left and right panels of Fig. 3 and also Fig. 6).

The results are, again, notably different when there are four alternatives, as can be seen

from Table 11 in Appendix C.2. Here the two information criteria as well as the LR tests select

the General1 model as the optimal model, which is consistent with the findings for the SI4

blocks.39 These results suggest that more complex multinomial logit models are required to

explain choice behavior when there are four or more alternatives.

The results in this section can be summarized as follows

Result 5. We reject Hypothesis 5. Experimental data from blocks with more than three alterna-

tives can only be described satisfactorily by models that are substantially more complicated than

the models required to describe the experimental data from blocks with two or three alternatives.

38The underlying data generating process used a Sym1 model as well.
39Note that the time series in the BH4 block seem to be (slightly) more predictable than those in the BH3

blocks (see Fig. 3), which is also consistent with the better performance of participants in the BH4 block as
compared to the BH3 blocks (see Table 14). Again, therefore, it is hard to argue that the decision problem for
the BH4 block is substantially more complicated than the decision problem for the BH3 blocks.
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7 Discussion

In this paper we presented a laboratory experiment where participants observe past performance

of two, three, or four different investment alternatives (framed as financial funds) and choose

between these alternatives for a number of consecutive periods. Participants switch regularly

between alternatives and their behavior is driven, to a large extent, by the past returns of the

different alternatives – in particular by the most recent returns. We also find that experience

with a different set of time series has no discernible effect on participants’ choices.

Our main goal is to analyze whether the well known discrete choice model can explain the

behavior of participants. Because such framework plays a central role in heterogeneous agent

models, evidence for its relevance in laboratory experiments would provide a sound empirical

microfoundation for these models. Such a microfoundation has been lacking until now. We

find that behavior of participants can be described by discrete choice models reasonably well.

Table 4 summarizes our findings. It shows, for each set of time series that we use in the

experiment, the version of the discrete choice model that gives the best description of the

choices made by the participants. It also identifies how the estimated models differ from the

canonical discrete choice model that is used in a large majority of heterogeneous agent models.

The table, together with our analyses from Sections 5 and 6, provides guidelines for scholars

working in the field of heterogeneous agent models which they can use when constructing their

models. We list some of those guidelines below.

� The canonical discrete choice model (1) gives a good description of choice behavior only

for the BH3 blocks. For all of the other sets of time series a predisposition towards one

of the alternatives has to be included.

� A model with one lag and symmetric responses to returns is able to explain choice behav-

ior of participants facing time series with either substantial or almost no structure (such

as in the SI2, SI3 and WI2 blocks). For time series with a more complicated autocorre-

lation structure or a cyclical pattern (such as in the BH2 blocks) discrete choice models

with multiple lags and/or asymmetric responses are required to give a good description

of participants’ decisions.

� The value of the IoC parameter increases with predictability of the time series. The esti-

mated intensities of choice differ across time series. From a comparison of the estimated

IoC parameters for data from the SI2 and SI3 blocks, with those obtained for the data

from the WN2 blocks, it follows that these estimated coefficients are substantially higher

when predictability in returns is higher.

� Standard discrete choice models fail to give a good description of participants’ behavior

when there are more than three alternatives. The experimental data from the SI4 and

BH4 blocks cannot be satisfactorily described by a discrete choice model of the type (1)

or (2).
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WN2 PreSym1 PreSym3� 4 4 8 8 8

BH2 PreAsym1 PreAsym4 4 4 4 4 8

BH3 Sym1 – 4 8 8 – 4

BH4 General1 – 8 4 4 – 8

SI2 PreSym1 PreSym1 4 4 8 8 8

SI3 PreSym1 – 4 4 8 – 8

SI4 General1 – 8 4 4 – 8

� On the basis of the BIC, penalizing for extra parameters, we conclude that the PreSym3 model is not better

than the PreSym1 model. Hence, WN2 does not require multiple lags.

Table 4: The most parsimonious model describing the data for every set of time series and an
overview of the characteristics of the selected modelss.

Our interest in the discrete choice approach originates from its validity and viability as a

building block of heterogeneous agent models, where it is used as a description of aggregate

decisions. Therefore this paper studies whether the discrete choice model can explain the

fraction of participants choosing a particular alternative. Alternatively, one could estimate a

version of discrete choice model (1) or (2) on individual choices of participants. In that case the

dependent variable is the probability that a particular individual chooses a certain alternative.

This would be an interesting extension of our analysis.40 It could be used to see whether the

discrete choice model gives a good description of every individual behavior and to characterize

the heterogeneity of the estimated intensity of choice parameters across participants.

By considering exogenously generated time series of returns in the experiment we abstract

from any influence the decisions of participants may have on the actual outcomes. However,

aggregate market dynamics may be influenced by traders beliefs: if many investors select a par-

ticular stock, demand for that stock goes up and so will its price and return. One could design

a laboratory experiment in which this feedback is incorporated. Payoffs of the participants will

then also depend upon the decisions the other participants in the experiment make and it will

be interesting to see whether, and how, this changes choice behavior.

40We only have 40 data points per participant, which is often not sufficient to get significant coefficients for
the discrete choice model estimated on these data. There are also a few ‘outliers’, where, e.g., a participant does
not react to the past returns by choosing the same fund every period, or where a participant always chooses the
best fund, making the discrete choice model for this participant unidentifiable. Typically, therefore, the discrete
choice models estimated on individual data are much more difficult to interpret than the model estimated on
the aggregate data, where individual idiosyncrasies are smoothed out.
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APPENDIX

A Experimental instructions

In this experiment you will observe the time series of the financial returns of 2, 3 or 4 investment

funds: fund A, B (or fund A, B, C, or fund A, B, C, D) for 100 consecutive periods. You will have

to make an investment decision by choosing one of these funds. Your payoff in the experiment

will depend on the return of the fund chosen as your investment decision.

The actual returns of the funds will always be positive. The information you have when making

your forecasts and investment decision consists of the actual returns of the funds in the recent

past. After each 50 periods of predictions, we will show you the returns of new funds, which

might not have the same pattern as the former ones.

Earnings

You may earn points for every period of the experiment. The earned points will be transformed

to the payoff in Euros at the end of the experiment. The number of points you get is the

return from the fund you have chosen this period.

At the end of the experiment you are paid 1 euro for each 20 points you earned during the

experiment. In addition you will get a show-up fee of 5 euros. As an example, if for one period

you choose between 3 funds, and your choice and the actual returns are as in the table below:

Then: you will get 3 points for this period, which is the actual return on fund A.

The Fund You choose Profit of Fund A Profit of Fund B Profit of Fund C Your Payoff

A 3 1.3 4.6 3
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B Details of the generated time series

The data generating processes for time series WN2, SI2, SI3 and SI4 are described in the main

text. Below we give the details for the time series BH2, BH3 and BH4. As explained in the

main text, to meaningfully compare the Intensity of Choice parameter across treatments with

different time series, we have to ensure that the values of returns are similar. For this purpose

we normalize the time series from the BH and SI sets. The descriptive statistics of all time

series (grouped by sets) is provided in Table 5.

BH2 time series. To generate the returns we simulate a version of the Brock and Hommes

(1997) model. Specifically, we used the Heuristic Switching Model from Anufriev and Hommes

(2012b) with intensity of choice parameter β = 3.9 and other parameters equal to η = 0.5 and

δ = 0.2. The demand, supply and cost parameters (see Brock and Hommes, 1997, p. 1066) are

given by A = 0, B = 0.5, b = 1.35 and C = 1. To normalize we multiply both time series of

returns by 4 and subsequently add 7. The resulting set of time series is shown in Fig. 3 (upper

left panel).

Time series Fund Min Mean Max Variance

WN2
A 2.17 5.68 9.37 3.13
B 0.60 5.16 10.25 4.48

All 0.60 5.42 10.25 3.83

BH2
A 4.50 5.24 9.42 1.38
B 0.47 6.01 7.75 5.42

All 0.47 5.63 9.42 3.52

BH3

A 2.43 4.85 10.44 5.59
B 0.76 4.64 14.66 12.34
C 0.39 5.06 15.32 13.29

All 0.39 4.85 15.32 10.29

BH4

A 4.20 5.93 10.64 1.52
B 0.84 5.35 10.39 3.05
C 1.17 5.56 10.66 2.62
D 2.24 5.36 8.42 1.72
All 0.84 5.55 10.66 2.25

SI2
A 0.36 5.62 10.72 9.42
B 0.93 5.18 7.89 5.73

All 0.36 5.40 10.72 7.55

SI3

A 0.36 5.62 10.72 9.42
B 0.93 5.18 7.89 5.73
C 1.96 5.31 7.34 2.44

All 0.36 5.37 10.72 5.82

SI4

A 0.36 5.62 10.72 9.42
B 0.93 5.18 7.89 5.73
C 1.96 5.31 7.34 2.44
D 2.59 5.44 7.62 2.23
All 0.36 5.39 10.72 4.91

Table 5: Descriptive statistics of the returns time series used in the experiment.
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Funds A and B shown in the experiment have the following interpretation in terms of the

original model. Fund A is run by a sophisticated manager that has rational expectations. This

manager, however, charges a fee. Fund B is run by a manager using the naive expectations

heuristic and charges no fee. The participant of our experiment does not know the strategies

of the managers (and also does not know that there is a difference in sophistication between

the fund managers), but only observes past returns (which also include the fee).

For the chosen parameters the model generates a repeating pattern of price fluctuations

around the equilibrium, with a constantly growing amplitude, followed by a strong price cor-

rection. When the fluctuations are small, the naive forecasting heuristic is more profitable than

the precise but expensive rational expectations heuristic. The agents in the model gradually

switch from rational to the naive heuristic, which destabilizes the cobweb dynamics up to a

point that fluctuations become so pronounced that the naive heuristic clearly performs worse

than the rational heuristic. This makes agents switch back to the latter, which stabilizes the

cobweb dynamics again, and so on. In the experiment we do not show the prices and forecasts,

nor do we use non-neutral names for the different funds. Instead, we only show implied returns

of the two heuristics (as in the left panel of Fig. 3) – framed as funds – in order to induce our

participants to be motivated by the same forces as the agents in the original theoretical Brock

and Hommes (1997) model.

BH3 and BH4 time series. The BH3 and BH4 time series are based on Brock and Hommes

(1998). The three time series in BH3 are generated by the model with three forecasting heuris-

tics, where one of the heuristics corresponds to fundamentalist behavior, and the two others

represent biased predictors (optimists and pessimists, respectively, see Brock and Hommes,

1998, p. 1258). The time series were generated by simulating the model with the intensity

of choice parameter β = 450 and the other parameters given by g1 = g2 = g3 = 0, b1 = 0,

b2 = −b3 = 0.1 and R = 1.1. This gives rise to quasi-cyclical dynamics. In order to inhibit

predictability slightly we added an IID shock drawn from N (0, 0.01). Finally, we normalized

the resulting returns by multiplying by 75 and adding 3. The three resulting returns, πA,t, πB,t,

and πC,t are shown in Fig. 3 (middle left panel).

The returns of fund A are those generated by the fundamental forecast, whose performance

is always in between the performances of the two other funds. Funds B and C are symmetric

with respect to A, as their (opposite) biases are the same in absolute value. From time to time

a different fund performs best.

The four time series in BH4 are also generated by the asset pricing model from Brock

and Hommes (1998) but with four heuristics, representing fundamentalists, trend chasers with

an upward bias, trend chasers with a downward bias and strong trend chasers with no bias,

respectively (see Brock and Hommes, 1998, pp. 1261− 63). The time series were generated by

simulating the model with the intensity of choice parameter β = 95 and the other parameters

given by b1 = b4 = 0, b2 = −b3 = −0.3, g1 = 0, g2 = 1.1, g3 = 0.9, g4 = 1.21, C = 0 and

R = 1.1. We added small noise drawn from N(0, 0.0144). Finally, we normalized payoffs by

multiplying them by 60 and adding 5.5. The resulting time series are shown in the left bottom

panel of Fig. 3.
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C Estimation Results

In this Section we collect the results of the estimation of various discrete choice models.

C.1 Estimations for WN2 and BH2 time series

Here we present the results of the estimation of the multiple lag model (5) from Section 5.2.

Recall that in the first step (whose results are not shown), we choose the smallest possible lag

L after which an extra lag would lead to the model which is not significantly different from the

current one (in the sense that the LR test would not reject the restriction βA,L+1 = βB,L+1 = 0).

In this step, we stop at L = 3 for the WN2 blocks, at L = 4 for the BH2 blocks and at L = 1

for the SI2 blocks.

In the second step we estimate three different nested models with the selected lag L. We

estimate (i) the unrestricted model (5), which is called PreAsymL, (ii) model (5) with re-

strictions βA,` = βB,` for ` ≤ L, which is called PreSymL, and (iii) model (5) with restrictions

βA,` = βB,` for ` ≤ L and α = 0, which is called SymL.

The results of this second step of the estimation procedure for the WN2 and BH2 blocks

are presented in Tables 6 and 7, respectively. These tables have the same structure as Table 3.

Model α βA,1 βA,2 βA,3 LL AIC BIC
McF

LR test
and Lag βB,1 βB,2 βB,3 R-sq

Sym3
0.081 −0.098 −0.063 −390.527 787.053 800.142 −0.045

(0.033) (0.033) (0.035)

PreSym3
0.704 0.114 −0.109 −0.059 −358.741 725.482 742.934 0.040 63.572

(0.092) (0.035) (0.035) (0.037) (0.000)

PreAsym3

2.106 0.134 −0.208 −0.140 −355.299 724.599 755.140 0.049 6.883
(0.879) (0.073) (0.060) (0.058) (0.332)

0.115 −0.103 0.018
(0.039) (0.045) (0.051)

Table 6: Estimation and test results for the multi-lag models for the WN2 blocks. The last 20
periods of data are used (pooled over experience). Before generating this table, the PreAsym3
model was chosen as the most parsimonious asymmetric model with multiple lags, see the main
text.

Model α βA,1 βA,2 βA,3 βA,4 LL AIC BIC
McF

LR test
and Lag βB,1 βB,2 βB,3 βB,4 R-sq

Sym4
1.207 −0.738 0.239 −0.312 −209.796 427.592 445.044 0.420
(0.106) (0.076) (0.103) (0.083)

PreSym4
−0.250 1.122 −0.673 0.173 −0.310 −209.463 428.925 450.740 0.421 0.667
(0.313) (0.146) (0.108) (0.138) (0.087) (0.414)

PreAsym4

9.223 10.896 0.717 −16.112 3.366 −189.981 397.962 437.229 0.475 38.963
(64.671) (2.032) (1.677) (4.976) (3.366) (0.000)

−8.931 12.341 −2.422 −0.259
(1.886) (2.970) (3.699) (−0.259)

Table 7: Estimation and test results for multi-lag models for BH2 blocks. The last 20 periods
of data are used. Before generating this table, the PreAsym4 model was chosen as the most
parsimonious asymmetric models with multiple lags, see the main text.
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C.2 Estimations for BH3, BH4, SI3 and SI4 time series

In this section we present the results of the estimation of the one lag model with more than

two alternatives from Section 6.

Model
αA − αC βAA − β

C
A βAB − β

C
B βAC − β

C
C LL AIC BIC

McF
LR test

αB − αC βBA − β
C
A βBB − β

C
B βBC − β

C
C R-sq

Sym1
−0.000 2.008 0.000 −2.008 −155.882 313.764 317.399 0.198

(0.158)

PreSym1

0.688 1.974 0.000 −1.974 −139.343 284.687 295.591 0.283 33.078
(0.280) (0.258) (0.000)
−1.014 0.000 1.974 −1.974
(0.417)

PreAsym1

−1.664 1.612 0.000 −1.123 −136.932 283.864 302.038 0.296 4.823
(1.127) (0.297) (0.454) (0.090)
−2.148 0.000 1.261 −1.123
(1.027) (0.431)

General1

−0.890 1.501 0.670 −1.720 −135.258 286.517 315.595 0.304 3.348
(1.280) (0.377) (0.468) (0.610) (0.341)
−2.604 0.257 0.818 −0.837
(2.096) (0.693) (0.863) (1.035)

Table 8: Estimation of multivariate logit models for the experimental data from the SI3 block.
The last 20 periods are used. The last column shows the results of LR test of the corresponding
model against the previous (restricted) model.

Model

αA − αD βA
A − βD

A βA
B − βD

B βA
C − βD

C βA
D − βD

D

LL AIC BIC

McF

LR testαB − αD βB
A − βD

A βB
B − βD

B βB
C − βD

C βB
D − βD

D R-sq

αC − αD βC
A − βD

A βC
B − βD

B βC
C − βD

C βC
D − βD

D

Sym1
0.000 2.694 −0.000 −0.000 −2.694 −418.554 839.109 843.437 0.259

(0.162)

PreSym1

1.303 3.072 0.000 0.000 −3.072 −391.487 790.974 808.286 0.307 54.135
(0.234) (0.248) (0.000)
−0.602 0.000 3.072 0.000 −3.072
(0.582)
−0.078 0.000 0.000 3.072 −3.072
(0.113)

PreAsym1

5.630 3.186 0.000 0.000 −4.059 −374.731 763.463 793.758 0.337 33.511
(0.958) (0.234) (0.366) (0.000)
0.660 −0.000 3.915 −0.000 −4.059
(1.510) (0.390)
−0.453 0.000 −0.000 4.204 −4.059
(0.503) (0.341)

General1

5.305 1.407 2.982 1.004 −5.677 −337.499 704.999 769.918 0.403 74.464
(3.551) (0.492) (0.817) (0.664) (1.243) (0.000)
24.027 1.573 10.230 −4.162 −11.678
(13.552) (2.415) (4.974) (3.931) (5.213)
7.385 0.500 1.875 5.497 −8.944
(2.880) (0.436) (0.621) (0.720) (1.080)

Table 9: Estimation of the multivariate logit models for the data from the SI4 blocks. The last
20 periods are used (pooled over experienced and inexperienced participants). The last column
shows the results of LR test of the corresponding model against the previous (restricted) model.

Tables 8 and 9 give the results for the SI3 and SI4 blocks, respectively. The estimated

coefficients are presented in matrix form, with a description of the relevant parameters given

in the first row of these tables (this description is based upon the specification in Eq. (7)). The

last row of the tables shows the estimated General1 models. For the restricted models (except

for the Sym1 model, which has only one parameter) we also show the values of all parameters

(with the value equal to 0 if the parameter is restricted to be 0), but we only report standard

errors once across parameters that are restricted to be the same. As before, the last column of

the tables should be read from bottom to top. It shows the LR statistics and p-value for the

hypothesis consisting of the restrictions leading to the model in the row immediately above.
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Model
αA − αC β̃AB − β̃

C
B β̃AC − β̃

C
C LL AIC BIC

McF
LR test

αB − αC β̃BB − β̃
C
B β̃BC − β̃

C
C R-sq

Sym1
0.000 0.000 −0.039 −654.266 1310.531 1314.928 0.005

(0.012)

PreSym1

0.110 0.000 −0.047 −653.891 1313.781 1326.972 0.006 0.750
(0.135) (0.017) (0.687)
0.063 0.047 −0.047
(0.099)

PreAsym1

0.175 0.000 −0.059 −653.612 1315.224 1332.811 0.006 0.558
(0.162) (0.024) (0.455)
0.192 0.033 −0.059
(0.199) (0.026)

General1

−0.230 0.061 −0.029 −650.573 1313.147 1339.528 0.011 6.077
(0.235) (0.032) (0.028) (0.048)
0.181 0.060 −0.080
(0.227) (0.031) (0.029)

Table 10: Estimation of multivariate logit model for BH3. Last 20 periods of data are used
(pooled over experiences). The last column shows the results of LR test of the corresponding
model against the previous (restricted) model.

Model

αA − αD β̃A
B − β̃D

B β̃A
C − β̃D

C β̃A
D − β̃D

D

LL AIC BIC

McF

LR testαB − αD β̃B
B − β̃D

B β̃B
C − β̃D

C β̃B
D − β̃D

D R-sq

αC − αD β̃C
B − β̃D

B β̃C
C − β̃D

C β̃C
D − β̃D

D

Sym1
0.000 0.000 −0.000 0.031 −387.197 776.395 780.029 −0.241

(0.022)

PreSym1

5.590 0.000 0.000 −0.302 −292.944 593.888 608.427 0.061 188.507
(0.762) (0.051) (0.000)
3.444 0.302 −0.000 −0.302
(0.718)
3.806 −0.000 0.302 −0.302
(0.715)

PreAsym1

9.132 0.000 0.000 −0.863 −291.893 595.785 617.594 0.065 2.103
(3.538) (0.500) (0.349)
7.247 0.258 0.000 −0.863
(3.552) (0.072)
7.120 0.000 0.341 −0.863
(3.531) (0.071)

General1

1.074 11.338 11.327 −22.185 −256.207 536.415 580.032 0.179 71.371
(8.101) (12.651) (13.358) (24.731) (0.000)
2.445 8.423 7.771 −15.924
(8.115) (12.656) (13.366) (24.743)
2.656 8.539 9.194 −17.498
(8.103) (12.653) (13.359) (24.732)

Table 11: Estimation of multivariate logit model for BH4. Last 20 periods of data are used.
The last column shows the results of LR test of the corresponding model against the previous
(restricted) model.

Before presenting the results for BH3 and BH4 blocks, recall from Section 6.2 that in this

case the General1 model has the special form (8). By imposing the restrictions β̃hk = β̃lk for

all h, k and l different from each other, model (8) reduces to the PreAsym1 model

nAt =
exp[αA]

Z
, nBt =

exp[αB + β̃BπB,t−1]

Z
, Z = exp[αA] + exp[αB + β̃BπB,t−1] + exp[β̃CπC,t−1] ,

where αA = αA − αC , αB = αB − αC , β̃B = β̃BB − β̃CB and β̃C = −(β̃BC − β̃CC ). This PreAsym1

model does not include the intensity of choice for alternative A. Indeed, we cannot identify all

of the intensities of choice simultaneously; and the way how we reduced parameters in (8) to

obtain identification, dictates that the intensity of choice for A is absent.41 With the additional

41If we would express performance of B (resp. C) as a linear combination of the performances of A and C
(resp. A and B), then the PreAsym1 model would not have the intensity of choice for B (resp. C).
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assumption β̃ = β̃B = β̃C we obtain the PreSym1 model given by

nAt =
exp[αA]

Z
, nBt =

exp[αB + β̃πB,t−1]

Z
, Z = exp[αA] + exp[αB + β̃πB,t−1] + exp[β̃πC,t−1] .

Finally, the Sym1 model – where predisposition effects are absent – reads

nAt =
1

Z
, nBt =

exp[β̃πB,t−1]

Z
, Z = 1 + exp[β̃πB,t−1] + exp[β̃πC,t−1] .

Tables 10 and 11 give the results of estimation for the BH3 and BH4 blocks, respectively.
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ON-LINE APPENDIX (not for publication)

D Testing the effect of experience

We analyze the effect of experience for a given time series, by comparing the aggregate behavior

of participants who experience this time series in the first block of their treatment and those

who experience this time series in the second block of their treatment. Given the design of

treatments, we can do this for the WN2, BH2, BH3, SI2 and SI4 time series.

Note that there are two ways to look at the decisions that participants make over time in our

experiment. On the one hand, using participants’ choices between alternatives, we can construct

the evolution of the share of participants choosing a particular alternative by aggregating over

all participants in the block. On the other hand, we can focus on those instances when a

participant has switched, i.e., when a participant’s choice in a given period differed from his

or her choice in the previous period, and construct the empirical distribution of the number of

switches. The left (middle) column of Fig. 9 contains the panels with the area charts plotting

the evolution of the shares of inexperienced (experienced) participants choosing a particular

alternative. The right column contains the normalized histograms of number of switches for

a particular set of time series (separately for inexperienced and experienced participants). To

get a better idea of the frequency with which participants switch between alternatives we count

the number of switches for each treatment. Because the number of participants varies with the

treatments, we use the number of switches per participant per period as a measure to compare

different blocks. The results are shown in Table 12. This normalized fraction of switches lies

between 21% (SI2, Experienced) and 55% (BH3, Inexperienced).

A visual comparison between the left and middle panels of Fig. 9 suggests that the effect

of experience is limited. Choice behavior of experienced participants seems to be quite similar,

Time-series Block, Treatment Switches
Total number per participant per period

WN2
1 (Inexperienced), T1 210 32.81%
2 (Experienced), T6 224 43.08%

BH2
1 (Inexperienced), T2 159 26.50%
2 (Experienced), T5 145 25.89%

BH3
1 (Inexperienced), T3 308 55.00%
2 (Experienced), T1 332 51.88%

BH4 2 (Experienced), T4 203 36.25%

SI2
1 (Inexperienced), T4 147 26.25%
2 (Experienced), T3 119 21.25%

SI3 1 (Inexperienced), T5 169 30.18%

SI4
1 (Inexperienced), T6 218 41.92%
2 (Experienced), T2 251 41.83%

Table 12: Number of switches for each block in the experiment.
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Figure 9: Shares of choices over time for inexperienced subjects (left panels) and for experienced
subjects (middle panels), and distributions of number of switches in a session (right panels).
From top to bottom: WN2, BH2, BH3, SI2 and SI4.
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for a given set of time series, to that of inexperienced participants.

To test Hypothesis 1 formally we introduce the following notation. For each time period

t = 1, . . . , 40 and for every alternative h (with h being A, B, C or D) we observe the shares of

choices sInExpt,h and sExpt,h made by the inexperienced and experienced participants, respectively.

Under the null hypothesis that the discrete choices in these two populations are drawn from an

identical multinomial distribution we can compute the actual, n, and “expected”, n̂, number

of choices of each of the alternatives in the inexperienced and experienced sessions:

nInExp
t,h = sInExpt,h ·N InExp , n̂InExp

t,h = (nInExp
t,h + nExp

t,h ) · N InExp

N InExp +NExp
,

nExp
t,h = sExpt,h ·N

Exp , n̂Exp
t,h = (nInExp

t,h + nExp
t,h ) · NExp

N InExp +NExp
.

where N InExp and NExp are the numbers of participants in the “inexperienced” and “experi-

enced” blocks, respectively. Under the null hypothesis Pearson’s statistic

∑
h

(nInExp
t,h − n̂InExp

t,h )2

n̂InExp
t,h

+
∑
h

(nExp
t,h − n̂

Exp
t,h )2

n̂Exp
t,h

is distributed according to the Chi-squared distribution with H − 1, degrees of freedom, where

H is the number of alternatives. Table 13 shows the p−value of this statistic for different time

periods and sets of time series. We reject the null hypothesis, at the 5% significance level, only

for t = 19 in WN2, for t = 3 in SI2, and for t = 3, t = 15 and t = 21 in BH3. We are never

able to reject the null hypothesis in BH2 and SI4.

Period WN2 BH2 BH3 SI2 SI4 Period WN2 BH2 BH3 SI2 SI4
1 0.88 0.12 0.00 0.87 0.93 21 0.33 0.53 0.34 0.96 0.25
2 0.10 0.68 0.38 0.22 0.79 22 0.78 0.71 0.69 0.23 0.35
3 0.90 0.32 0.97 0.98 0.00 23 0.91 0.67 0.00 0.93 0.14
4 0.18 0.88 0.81 0.74 0.95 24 0.81 0.40 0.00 0.43 0.68
5 0.64 0.92 0.75 0.40 0.59 25 0.18 0.71 0.69 0.52 0.54
6 0.78 0.84 0.55 0.02 0.11 26 0.81 0.67 0.69 0.65 0.41
7 0.91 0.66 0.38 0.39 0.43 27 0.90 0.04 0.55 0.29 0.25
8 0.48 0.22 0.72 0.81 0.91 28 0.55 0.72 0.00 0.57 0.38
9 0.81 0.00 0.78 0.74 0.68 29 0.68 0.72 0.38 0.37 0.72
10 0.81 0.32 0.00 0.94 0.53 30 0.89 0.14 0.64 0.48 0.82
11 0.93 0.04 0.81 0.86 0.24 31 0.32 0.00 0.81 0.42 0.25
12 0.19 0.71 0.00 0.93 0.01 32 0.32 0.04 0.93 0.68 0.25
13 0.89 0.67 0.00 0.19 0.08 33 0.55 0.72 0.87 0.55 0.53
14 0.23 0.04 0.00 0.74 0.07 34 0.38 0.00 0.86 0.54 0.25
15 0.32 0.71 0.00 0.97 0.52 35 0.66 0.00 0.69 0.48 0.59
16 0.55 0.00 0.00 0.86 0.09 36 0.53 0.00 0.69 0.59 0.66
17 0.81 0.50 0.69 0.38 0.25 37 0.23 0.00 0.69 0.66 0.38
18 0.90 0.00 0.00 0.93 0.39 38 0.90 0.87 0.00 0.04 0.72
19 0.99 0.00 0.57 0.46 0.43 39 0.76 0.04 0.46 0.46 0.50
20 0.81 0.00 0.00 0.53 0.18 40 0.10 0.04 0.00 0.64 0.53

Table 13: p−values for Pearson chi-squared statistics.
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E Efficiency and Learning

Analysis of performance in Section 4.2 focuses on the number of the best choices made by

participants. This measure is not perfect for the blocks with more than two alternatives,

because participants could earn more with the second best alternative than with the third or

fourth best alternative. To deal with this issue, we define the efficiency measure Eff as

Eff =
Average Experimental Earnings− Expected Earnings when Choosing Randomly

Earnings when Choosing Optimally − Expected Earnings when Choosing Randomly
.

If this measure is close to 1 it means that participants almost always make optimal decisions,

whereas if it is close to 0 participants’ performance is not much better than their expected payoff

when they choose an alternative randomly (note that Eff can become negative if participants

earn less points than they would earn, in expectation, when choosing randomly).

Table 14 presents this measure for the different sets of time series (the sixth column of the

table). It also presents the maximum and minimum number of points that could be earned,

the expected number of points under random choice and the actual average number of points

earned. By construction, there is no structure or predictability in the time series from WN2,

and indeed efficiency, although still positive, is the lowest there. The time series from BH3

show little structure as well and participants find it difficult to make correct choices for those

time series. For the other five sets of time series the efficiency level is between 63% and 78%.

The last two columns of Table 14 focus on possible learning by indirectly evaluating its

consequences. These columns give, for each set of time series, the value of the efficiency measure

Eff separately for the first 20 periods and the last 20 periods in the blocks. Note that for

WN2 efficiency goes down in the last twenty periods and even becomes negative, but since the

evolution of the WN2 returns series is, by construction, unpredictable we would not expect

any learning to take place in these blocks anyway. In fact, it is surprising that, by chance,

participants reach a quite reasonable level of efficiency in the first 20 periods. For five of

the other six sets of time series there is a substantial increase in efficiency, with the measure

increasing by 10 to 24 percentage points, which suggests that, during the block, participants

learn to make better decisions. The only surprising result in this respect is that the efficiency

Time series Max Min Random Experiment
Efficiency

Total First 20 Last 20

WN2 271.19 179.65 225.42 231.27 12.80% 32.19% −5.33%

BH2 285.30 161.08 223.19 269.87 75.16% 66.87% 82.36%
BH3 258.71 105.16 181.94 200.10 23.65% 16.60% 28.64%
BH4 263.59 179.88 223.22 249.50 65.09% 71.31% 59.20%

SI2 197.22 175.81 186.51 193.32 63.55% 58.11% 68.08%
SI3 217.82 170.72 193.03 210.89 72.04% 56.39% 80.42%
SI4 228.81 166.25 195.49 216.38 76.46% 70.76% 80.15%

Table 14: The average payoff, payoffs under different scenarios and efficiency for each type of
time series. Data from experienced and inexperienced participants are pooled.
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Figure 10: The fraction of participants choosing the best fund. Inexperienced and experienced
sessions are pooled together. The horizontal dashed lines show the averages of the fractions
over the first 20 and last 20 periods.

for the BH4 set of time series goes substantially down in the last 20 periods: apparently learning

for that set of time series is particularly challenging.

In addition to the averages presented in Table 2, Figure 10 shows how the percentage

of participants choosing the best fund was changing over time (the horizontal dashed lines

correspond to the averages reported in Table 2).
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F Estimation of Discrete Choice Models

In Section 5 we have presented results on estimating the standard logit model on choices between

two, three or four alternatives, with the past performance of these alternatives as explanatory

variables. In this appendix we elaborate on the underlying models and estimation procedures.

The most general version of the multivariate logit model predicts that the probability of

choosing alternative h at time t by participant i, denoted by Pr (ci,t = h), is proportional to the

exponent of a linear combination of past payoffs of all alternatives, i.e., all information available

to the participant. We again use capital letters A, B, C and D for the different alternatives

but abuse notation slightly by denoting the last alternative by H (so that H is B, C or D when

there are two, three or four alternatives, respectively) and the penultimate alternative by H−

(so that H− denotes A, B or C, respectively). The most general model then has

Pr (ci,t = h) ∝ exp
[
αh + βhA,1πA,t−1 + · · ·+ βhH,1πH,t−1 + βhA,2πA,t−2 + · · ·+ βhH,2πH,t−2 + . . .

]
,

(9)

for any alternative h. Here αh and the βhk,`’s are the coefficients to be estimated, where `

indicates the lag (which can go up to a fixed maximum lag L). Coefficient βhk,` measures the

sensitivity of choice of alternative h with respect to alternative k’s payoff ` periods ago. Note

that the model is indeterminate since adding, for a given other alternative k and lag l, the

same constant to the sensitivities of choices for each of the alternatives (i.e., for given k and `

change βhk,` to β̃hk,` = βhk,` + ξ for h = A,B, . . . , H) will not change the probabilities (the same

reasoning holds for the αh).

We can therefore choose one alternative as the “reference option” (in our case alternative

H) and rewrite expression (9) for all h = A,B, . . . , H as follows

Pr (ci,t = h) ∝ exp
[
(αh − αH) + (βhA,1 − βHA,1)πA,t−1 + · · ·+ (βhH,1 − βHH,1)πH,t−1

+ (βhA,2 − βHA,2)πA,t−2 + · · ·+ (βhH,2 − βHH,2)πH,t−2 + . . .
]
.

(10)

The coefficients to be estimated for this model are the predispositions of alternatives h =

A,B, . . . , H− relative to that of alternative H, αh − αH , and the relative intensities of choice

of alternative h = A,B, . . . , H− with respect to alternative H, βhk,l − βHk,l, given the payoffs of

the different choices at different lags.

In this paper we estimate different versions of model (10), including those that are described

by equations (1) and (2) in the main text (see below how these models are derived from (10)) and

test whether behavioral simplifications often implicitly made in theoretical work are consistent

with the experimental data.
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F.1 Models with One Lag

Consider the one-lag version of model (10) which, after normalizing the probabilities, gives (the

subscripts for the single lag have been suppressed)

Pr (ci,t = h) =
exp

[
(αh − αH) + (βhA − βHA )πA,t−1 + · · ·+ (βhH − βHH )πH,t−1

]∑H−

k=A exp
[
(αk − αH) + (βkA − βHA )πA,t−1 + · · ·+ (βkH − βHH )πH,t−1

]
+ 1

, (11)

for h = A,B, . . . , H−, with the remaining probability given by Pr (ci,t = H) = 1−
∑H−

h=A Pr (ci,t = h).

We refer to model (11) as the General1 model.

F.1.1 Binary Choice

When there are only two alternatives, A and B, the (binomial) logit model gives

Pr (ci,t = A) =
exp

[
(αA − αB) + (βAA − βBA )πA,t−1 + (βAB − βBB )πB,t−1

]
exp [(αA − αB) + (βAA − βBA )πA,t−1 + (βAB − βBB )πB,t−1] + 1

. (12)

There are three (composite) coefficients to be estimated, which we will denote by

α = αA − αB, βA = βAA − βBA and − βB = βAB − βBB . (13)

In the case of binary choice, therefore, the most general one-lag model (General1) coincides

with the PreAsym1 model (4), which we discussed in the main text.

The PreAsym1 model is characterized by a predisposition effect, α, and – potentially

different – intensities of choices, βA and βB. If we impose the restriction that the two intensities

of choice are the same, βA = βB = β, we obtain the PreSym1 model, corresponding to

Pr (ci,t = A) =
exp [α + β(πA,t−1 − πB,t−1)]

exp [α + β(πA,t−1 − πB,t−1)] + 1
=

exp [α + βπA,t−1]

exp [α + βπA,t−1] + exp [βπB,t−1 ]
,

which only has the parameters α and β.

Finally, imposing the additional restriction α = 0 results in model (1):

Pr (ci,t = A) =
exp [βπA,t−1]

exp [βπA,t−1] + exp [βπB,t−1]
,

which we refer to as the Sym1 model and has only one parameter (the intensity of choice β).
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F.1.2 Choice between Three Alternatives

When there are three alternatives, A, B and C, the General1 model becomes

Pr (ci,t = A) =
exp[(αA − αC) + (βAA − βCA )πA,t−1 + (βAB − βCB )πB,t−1 + (βAC − βCC )πC,t−1]

exp[(αA − αC) +
∑C
h=A(βAh − βCh )πh,t−1] + exp[(αB − αC) +

∑C
h=A(βBh − βCh )πh,t−1] + 1

(14)

Pr (ci,t = B) =
exp[(αB − αC) + (βBA − βCA )πA,t−1 + (βBB − βCB )πB,t−1 + (βBC − βCC )πC,t−1]

exp[(αA − αC) +
∑C
h=A(βAh − βCh )πh,t−1] + exp[(αB − αC) +

∑C
h=A(βBh − βCh )πh,t−1] + 1

,

with Pr (ci,t = C) = 1 − Pr (ci,t = A) − Pr (ci,t = B). Eight parameters need to be estimated:

two relative predispositions, αA−αC and αB−αC , and six relative intensities of choice, βAk −βCk
and βBk − βCk for k = A,B,C.

In order to obtain the PreAsym1 model we impose the following three restrictions

βBA = βCA , β
A
B = βCB and βAC = βBC . (15)

These restrictions imply that the probabilities of choosing any two different alternatives respond

in the same way to a change in the payoff associated to the third alternative. If these restrictions

are not rejected and we denote

βA = βAA − βCA , βB = βBB − βCB , and − βC = βAC − βCC , (16)

then model (14) simplifies to

Pr (ci,t = h) =
exp[αh + βhπh,t−1]

exp[αA + βAπA,t−1] + exp[αB + βBπB,t−1] + exp[αC + βCπC,t−1]
, h = A,B,C .

This model has five parameters: two relative predisposition effects, αA−αC and αB −αC , and

three intensities of choice, βA, βB and βC .

The PreSym1 model can be obtained from the PreAsym1 model with two additional

restrictions, βB = βA and βC = βA (using the notation from (16)). The resulting model is

(denoting βA by β):

Pr (ci,t = h) =
exp[αh + βπh,t−1]

exp[αA + βπA,t−1] + exp[αB + βπB,t−1] + exp[αC + βπC,t−1]
, h = A,B,C .

This model has three parameters: the two relative predisposition effects, αA−αC and αB−αC ,

and the intensity of choice β.

Finally, imposing the restrictions αA = αC and αB = αC we end up with the Sym1 model

which is

Pr (ci,t = h) =
exp[βπh,t−1]

exp[βπA,t−1] + exp[βπB,t−1] + exp[βπC,t−1]
.

This model has only one parameter, the intensity of choice, β = βAA − βCA .
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F.2 Choice between Four Alternatives

Finally, when the choice is between four alternatives (A, B, C and D) the General1 model
becomes

Pr (ci,t = A) = exp
[
(αA − αD) + (βAA − βDA )πA,t−1 + (βAB − βDB )πB,t−1 + (βAC − βDC )πC,t−1 + (βAD − βDD )πD,t−1

]/
Z

Pr (ci,t = B) = exp
[
(αB − αD) + (βBA − βDA )πA,t−1 + (βBB − βDB )πB,t−1 + (βBC − βDC )πC,t−1 + (βBD − βDD )πD,t−1

]/
Z

Pr (ci,t = C) = exp
[
(αC − αD) + (βCA − βDA )πA,t−1 + (βCB − βDB )πB,t−1 + (βCC − βDC )πC,t−1 + (βCD − βDD )πD,t−1

]/
Z ,

where Z is the normalizing constant and Pr (ci,t = D) = 1 − Pr (ci,t = A) − Pr (ci,t = B) −
Pr (ci,t = C). In this case, fifteen parameters need to be estimated: three relative predispo-

sitions, αA − αD, αB − αD and αC − αD, and twelve relative intensities of choice: βAk − βDk ,

βBk − βDk and βCk − βDk for k = A,B,C,D.

Similar to the case with three choices we obtain the PreAsym1 model if we impose that

the respective probabilities of choosing two different alternatives respond in a same way to a

change in the payoffs of a third alternative. This gives the following eight restrictions

βBA = βCA = βDA , β
A
B = βCB = βDB , β

A
C = βBC = βDC and βAD = βBD = βCD.

If these restrictions are not rejected and we introduce the following notation

βA = βAA − βDA , βB = βBB − βDB , βC = βCC − βDC and − βD = βAD − βDD , (17)

then we can write the PreAsym1 model as

Pr (ci,t = h) =
exp[αh + βhπh,t−1]

exp[αA + βAπA,t−1] + exp[αB + βBπB,t−1] + exp[αC + βCπC,t−1] + exp[αD + βDπD,t−1]
,

for h = A,B,C,D. In this model seven parameters can be identified: three relative predispo-

sition effects, αA − αD, αB − αD and αC − αD, and four intensities of choice, βA, βB, βC and

βD.

The PreSym1 model is obtained from the PreAsym1 model with the three restrictions

βA = βB = βC = βD (using the notation from (17)). The resulting PreSym1 model (denoting

the common intensity of choice by β) is

Pr (ci,t = h) =
exp[αh + βπh,t−1]

exp[αA + βπA,t−1] + exp[αB + βπB,t−1] + exp[αC + βπC,t−1] + exp[αD + βπD,t−1]
,

for h = A,B,C,D. This model has four parameters: three relative predisposition effects,

αA − αD, αB − αD and αC − αD, and the intensity of choice β.

Finally, the Sym1 model is a restricted version of the PreSym1 model with the three

restrictions αA = αB = αC = αD. The resulting model is

Pr (ci,t = A) =
exp[βπh,t−1]

exp[βπA,t−1] + exp[βπB,t−1] + exp[βπC,t−1] + exp[βπD,t−1]
,
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for h = A,B,C,D and only has the intensity of choice, β, as a parameter.

F.3 Models with Several Lags

For the blocks with two alternatives, A and B, we also estimate the binary choice models with

multiple lags. In the most general model the choice is affected by LA lags of performance for

alternative A and LB lags of performance for alternative B. This model gives (with alternative

B as “reference option”)

Pr (ci,t = A) ∝ exp
[
(αA − αB) + (βAA,1 − βBA,1)πA,t−1 + (βAB,1 − βBB,1)πB,t−1+

+ (βAA,2 − βBA,2)πA,t−2 + (βAB,2 − βBB,2)πB,t−2+

+ · · ·+ (βAA,LA − β
B
A,LA

)πA,t−LA + · · ·+ (βAB,LB − β
B
B,LB

)πB,t−LB

]
.

By introducing the notation α = αA − αB, βA,` = βAA,` − βBA,` for 1 ≤ ` ≤ LA and −βB,` =

βAB,` − βBB,` for 1 ≤ ` ≤ LB the model can be rewritten as

Pr (ci,t = A) =
exp

[
α +

∑LA
`=1 βA,`πA,t−`

]
exp

[
α +

∑LA
`=1 βA,`πA,t−`

]
+ exp

[∑LB
`=1 βB,`πB,t−`

] . (18)

In the main text we discuss the special case of LA = LB = L, when the model becomes (5),

which we call PreAsymL. The model has 2L + 1 parameters to be estimated. Note that the

number of lags necessary to include can be decided using various tests. For instance, model

PreSymL-1 is nested within PreSymL when the two restrictions βA,L = 0 and βB,L = 0 are

imposed.

Imposing the L restrictions βA,` = βB,` for every 1 ≤ ` ≤ L, we obtain model PreSymL

with L + 1 parameters, where there is no asymmetry in responses to the performances of the

two alternatives. With one additional restriction, α = 0, we obtain model SymL with L

parameters.

Finally, we might impose the following L− 2 restrictions in model PreSymL

βL
βL−1

= · · · = β`
β`−1

= · · · = β2
β1
, for all 2 ≤ ` ≤ L

and denoting the ratio between subsequent intensities of choice as η (and β = β1) we get the

following model

Pr (ci,t = A) =
exp

[
α + β

(
πA,t−1 + ηπA,t−2 + · · ·+ ηL−1πA,t−L

)]
exp

[
α + β

∑L
`=1 η

`−1πA,t−`

]
+ exp

[
α + β

∑L
`=1 η

`−1πB,t−`

] . (19)

This model (typically with α = 0) has been occasionally used in the literature on heteroge-

neous agent modelling, see footnote 33. The parameter η is then referred to as the memory

parameter.
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F.4 Method of Maximisation of Likelihood

In the paper we report the estimations of the general model (10) and its various restricted

versions on aggregate data from different blocks of time series. To explain the estimation

procedure we introduce the following general notation. Let N be the number of observations

for one block, K the number of parameters to be estimated, H the number of alternatives and

L the number of lags in the model.

Now we denote by X a N × (1 + HL) matrix of exogenous regressors that is arranged in

the following way. The first column of X is a vector of ones. The next H columns (that is,

column 2 until column H + 1) correspond to the performances of the H alternatives, lagged by

one period. Columns H + 2 until 2H + 1 correspond to the performances of the H alternatives,

lagged by two periods, etc.

Subsequently, let β denote the vector of K = (1 +HL) (H − 1) estimates, arranged as

β =

((
βA
)′
,
(
βB
)′
, . . . ,

(
βH

−
)′)′

, where the vector βh (for h = A,B, . . . , H−) collects the

1 +HL coefficients that effect the proportionality coefficient of choosing alternative h given in

equation (10), that is it consists of αh − αH , βhA,1 − βHA,1 up until βhH,L − βHH,L. The vector of

estimates β therefore can be written as

β =
[
αA − αH

∣∣βAA,1 − βHA,1| . . . |βAH,1 − βHH,1∣∣ . . . ∣∣βAA,L − βHA,L| . . . |βAH,L − βHH,L︸ ︷︷ ︸
(βA)′

∣∣∣
αB − αH

∣∣βBA,1 − βHA,1| . . . |βBH,1 − βHH,1∣∣ . . . ∣∣βBA,L − βHA,L| . . . |βBH,L − βHH,L︸ ︷︷ ︸
(βB)′

∣∣∣ . . . ]′ .
For example, in the General1 model with four alternatives, discussed in Section F.2, matrix

X has five columns, and there are five scalars in each of βA, βB and βC , leading to a total of

K = 15 parameters to be estimated.

Using this notation the likelihood function can now be derived. Let Ihi,t be an index function

of participant i choosing alternative h at time t, so that

Ihi,t =

{
1 if ci,t = h,

0 otherwise .

For binary choice, for instance, we have IBi,t = 1−IAi,t, and ICi,t = IDi,t = 0. The likelihood function

for an individual i is given by

Li(β) =
T∏
t=t0

Pr(ci,t = A)I
A
i,t Pr(ci,t = B)I

B
i,t Pr(ci,t = C)I

C
i,t Pr(ci,t = D)I

D
i,t , (20)

given that the model is estimated on data from period t0 to T (with t0 = 21 and T = 40 for

the estimations presented in the main text). The product of all individual likelihood functions

within the blocks with the same time series gives a likelihood function for the discrete choice
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model estimated on the aggregate data, which is

L(β) =
∏
i

Li(β). (21)

For aggregate estimation we maximize function L(β) given by (21). The sample size is (T −
t0 + 1)np, where the number of participants np for a given block (or for two blocks with the

same time series) is as reported in the last column of Table 1. Using (20) and (21) as well as

(10) the log-likelihood function becomes

logL(β) =
∑
i

logLi(β) =
∑
i

T∑
t=t0

[
H−∑
k=A

Iki,t ·Xtβ
k − log

(
1 +

H−∑
k=A

exp
(
Xtβ

k))] , (22)

where Xt denotes the (t− t0 + 1)’th row of matrix X (i.e., containing the performances from

the previous time period).

For function (22) we compute the gradient vector whose j’th element (j = 1, . . . , 1 + HL)

of the first part (corresponding to the derivative with respect to βA) is[
∂ logL(β)

∂βA

]
j

=
∑
i

T∑
t=t0

(
IAi,t −

exp(Xtβ
A)

1 + exp(XtβA) + exp(XtβB) + exp(XtβC)

)
[Xt]j,

where [Xt]j is the j’th element of Xt. Similar expressions describe the derivatives with respect

to the components of vectors βB and βC . Setting the gradient vector to zero we get a system

of first-order conditions, which we solve numerically to find the estimates.42

The Hessian matrix for the log-likelihood function is given by

H =


∂2 logL(β)

∂βA∂(βA)′
∂2 logL(β)

∂βA∂(βB)′
∂2 logL(β)

∂βA∂(βC)′

∂2 logL(β)

∂βB∂(βA)′
∂2 logL(β)

∂βB∂(βB)′
∂2 logL(β)

∂βB∂(βC)′

∂2 logL(β)

∂βC∂(βA)′
∂2 logL(β)

∂βB∂(βC)′
∂2 logL(β)

∂βC∂(βC)′


42We apply the optimization routine fminunc in MATLAB with the minus sign since we actually minimize
− logLi(β). The code is available at request. The formula above is implemented in the program loglikelihood

to compute the value of variable llf. Note that in the data file, the choices are 1 (for A), 2 (for B), 3 (for C)
and 4 (for D).

55



The diagonal blocks of this matrix are

∂2 logL(β)

∂βA∂(βA)′
= −

∑
i

T∑
t=t0

exp(Xtβ
A)
(
1 + exp(Xtβ

B) + exp(Xtβ
C)
)(

1 + exp(XtβA) + exp(XtβB) + exp(XtβC)
)2X ′tXt,

∂2 logL(β)

∂βB∂(βB)′
= −

∑
i

T∑
t=t0

exp(Xtβ
B)
(
1 + exp(Xtβ

A) + exp(Xtβ
C)
)(

1 + exp(XtβA) + exp(XtβB) + exp(XtβC)
)2X ′tXt,

∂2 logL(β)

∂βC∂(βC)′
= −

∑
i

T∑
t=t0

exp(Xtβ
C)
(
1 + exp(Xtβ

A) + exp(Xtβ
B)
)(

1 + exp(XtβA) + exp(XtβB) + exp(XtβC)
)2X ′tXt,

with the off-diagonal blocks given by

∂2 logL(β)

∂βA∂(βB)′
=
∑
i

T∑
t=t0

exp(Xtβ
A) exp(Xtβ

B)(
1 + exp(XtβA) + exp(XtβB) + exp(XtβC)

)2X ′tXt,

∂2 logL(β)

∂βA∂(βC)′
=
∑
i

T∑
t=t0

exp(Xtβ
A) exp(Xtβ

C)(
1 + exp(XtβA) + exp(XtβB) + exp(XtβC)

)2X ′tXt,

∂2 logL(β)

∂βB∂(βC)′
=
∑
i

T∑
t=t0

exp(Xtβ
B) exp(Xtβ

C)(
1 + exp(XtβA) + exp(XtβB) + exp(XtβC)

)2X ′tXt.

We numerically compute matrix H for the estimated β̂ and then compute the standard errors

of the estimates as the square roots of the diagonal elements of the inverse of this matrix.

Goodness-of-Fit

To evaluate the goodness of fit of a particular model we compute the McFadden R2 (also known

as likelihood ratio index) as follows

1− logL(β̂)

logL(0)
,

where logL(0) denotes the resulting log-likelihood when only the constant term is estimated.43

Model Comparison

To compare different models we use several criteria. First, we report and compare the log-

likelihood, logL(β̂), as well as the values for two information criteria penalizing for additional

parameters. The first of those, the Akaike Information Criterion, is given by

AIC = 2k − 2 logL(β̂),

43This measure cannot be larger than one, and it is never negative (except for model Sym1, where the
constant term is absent). Its interpretation as the percentage explained by the model with respect to the most
elementary model is not always useful, though the higher its value, the better.
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where k corresponds to the number of parameters. The second criterion, the Bayesian Infor-

mation Criterion, is computed as

BIC = k log(N)− 2 logL(β̂).

Minimizing each of these measures over different models can be used as a criterion for model

selection.
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