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Abstract

Instead of heuristical heterogeneity assumption in theeciheterogeneous agent models (HAMSs),
we derive the trading heterogeneity by introducing infatiorauncertainty about the fundamen-
tal value to a HAM. Conditional on their private informatiabout the fundamental value, agents
choose different trading strategies when optimizing tBepected utilities. This provides a micro-
foundation to heterogeneity and switching behavior of égeéwve show that the HAM with trading
heterogeneity originating from the incomplete informatperforms equally well, if not better than
existing HAMSs, in generating bubbles, crashes, and meariag prices. The simulated time se-
ries matches with the S&P 500 in terms of power law distrifiuin returns, volatility clustering

and long memory in volatility.
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1 Introduction

Heterogeneous agent models (HAMs) are useful in explaifivagcial market abnormality such
as bubbles and crashes (Lux, 1995; Brock and Hommes, 1998né#i&Vesterhoff, 2005; Huang
et al., 2010). They are also powerful in duplicating and yriab stylized facts of financial data,
such as fat tails, volatility clustering and long memoryfékano et al., 2008; Huang et al., 2012;
He and Li, 2015). More recent evidence suggests that HAMggeaempirical specifications that
outperform random walk and many conventional models (dg &ral., 2010 and Chiarella et
al., 2012, Lof, 2015). The explanatory power of the existit#Ms mainly comes from exploring
market mechanism by focusing more on the interaction ametegbgeneous agents, but less so on
the role of information friction. In particular, the HAM &tature assumes a complete information
about the fundamental value of risky assets. It is well recag that information friction plays a
very important role in explaining various puzzles and anleaan financial markets.

This paper aims to examine the joint role of heterogeneityiaformation uncertainty in fi-
nancial markets. It contributes to the HAMs by providing am@yenous mechanism on trading
heterogeneity among agents and a micro-foundation to dgetaeity and switching behavior of
agents. More explicitly, we consider a HAM in which agentsefanformation uncertainty by
receiving private noisy signals about the fundamentalevala risky asset when entering the mar-
ket. Due to the uncertainty about the fundamental value aglldocumented price momentum
in short-run, agents consider both trading strategiestbas¢he private information and short-run
momentum when making their investment decision. Condition public information of history
price and his private signal, an agent chooses the tradiatggy that maximizes his expected util-
ity. This leads to endogenous heterogeneity and switchéhgaor of agents’ choices. We show
that the HAM with trading heterogeneity originating frometinformation uncertainty performs

equally well, if not better than existing HAMSs, in genergtinubbles, crashes, and mean-reverting

There is a growing literature that deviates from the stathdiandamentalist-chartist setup. For example, Parke
and Waters (2007) allow agents to utilize different subeéthe complete information, Kasa et al. (2014) introduce
two information sets about the fundamental that are tréedliato heterogeneous beliefs.



prices. Numerical analysis shows that the model is able temaith the S&P 500 in terms of
power-law distribution in returns, volatility clusterirmgnd long memory in volatility.

This paper is closely related to the current HAMs with respetieterogeneity and switching
behavior of agents. However, different from the current HANhe heterogeneity of agents in
this paper is characterized by agents’ choices betweenyipical trading strategies based on the
long-run reversal (to the fundamentals) and short-run nmume (in price trend), the two most
prominent financial market anomalies (see, for examplegrBatand Summers, 1988; Jagadeesh
and Titman, 1993 and Moskowitz et al., 2012). Despite thesss HAMs have achieved, many re-
main skeptical about this approach arguing that they relpomany heuristic assumptions. Most
of the existing HAMs either exogenously specify whether gard is a fundamentalist or chartist
(Frankel and Froot, 1990; Day and Huang, 1990) or assumeagjeaits have a complete informa-
tion about the fundamental value and switch from one typettter based on some performance
measures. In the seminal work of Brock and Hommes (1998ntagavitch evolutionarily to
the strategy that generates higher past realized profiviollg a discrete choice probability func-
tion. Because of the complete information, agents are aldermpare the performance of the two
commonly used strategies and switch to better performadkesgiies. Such an approach is widely
applied with different customized switching criteria irbsequent studiesThese studies innova-
tively capture the behavioral aspects of trading and model &igents change their strategy over
time, focusing more on the market mechanism of heterogengading on market inefficiency
but less (or nor) on the role of information uncertainty. figfere they are limited to explain why
not all agents from the same group switch to better-perfognsitrategies with certainty. If the
information is complete, should not all agents cluster ® dtrategy that is expected to perform
better?

This paper aims to provide a micro-foundation on tradingtageneity and switching behav-

ior of agents’ choices by considering information uncertiaand agents’ optimal trading decision

2See for example, de Jong et al. (2010), and Jongen et al. Y2B&other switching mechanism, see Chiarella
et al. (2012) that model the fraction of fundamentalists dMaskov process conditional on some unobserved market
conditions, i.e. booms and burst states; Lof (2012) thaatgsthe fractions of fundamentalists and chartists agugprd
to a discrete function of the real business cycles.



facing the uncertainty. In this paper, agents are not hgéreous by nature, experience or ran-
domness. Instead, we assume a continuum of agents who ltraptete information about the
fundamental value. Each agent receives a noisy and priigitalsabout the fundamental value
when entering the market. Because of the information uaceyt about the fundamental value,
agents make their decision by considering trading straselgased on both public and private in-
formation® Therefore, agents are allowed to choose either fundamieattihg strategy based on
the private information or chartist trading strategy basadoublic information and price trend.
Conditional on the public information and his private sigmeach agent chooses the strategy that
generates a higher expected utility. Due to the informatimpersion, agents may choose dif-
ferent trading strategies, generating cross-sectioadlrtg heterogeneity among agents. Instead
of switching exogenously based on certain probabilitynégewitch their choices on the trading
strategies endogenously based on their information andgtieal trading. As market prices and
agents’ private information change, the market fractiohagents choosing particular strategies
vary over time. As a result, both cross-sectional and timging trading heterogeneity arise.
Representing enumerable strategies with fundamental lzaudist trading strategies is on the
one hand motivated by the survey finding (Allen and Taylof%hat most investors, especially
institutional investors, conduct both fundamental antimézal analysis. On the other hand, this is
also motivated by the long-run mean-reversal and shortmamentum in prices, the two market
anomalies observed widely across various financial markedtso follows from the conventional
setup in HAMs. Even though agents are well-informed aboeitftimdamental value, because of
the information uncertainty about the fundamental valueagent may choose chartist strategy
when it is expected to generate higher expected utility tmmél on public information and his
private signal. In particular, when mispricing based on phieate information is expected to
be small, a fundamental trading strategy may lead to a loweeated utility, while a short-run

momentum strategy may lead to a higher expected utilityclvimotivates agents to choose chartist

3With complete information assumption in the current HAMgeats are able to compare the performance of dif-
ferent trading strategies. However, facing the infornratincertainty, it makes agents more difficult, if not imp b
to compare the performance of these two strategies and elto@$etter performed one.



strategy. Among various trading strategies based on thiecpnfmormation, we choose momentum
strategy which is widely used in the HAMs and well supportg@impirical evidence on short-run
momentum. As a result, the fractions of agents who choos#aimental and momentum strategies
are uniquely determined by the distribution of the privagmals and the past asset prices.

In our model, the market fraction of agents who choose thddorental trading strategy gener-
ally increases with the degree of asset mispricing, buieslvith the market power of agents who
choose momentum strategy. Here the degree of mispricing&sured by the absolute difference
between market price and the expected fundamental valuée thle market power is measured
by the absolute difference between market price and a referprice or price trend. As the mar-
ket price and private signals change, the fraction of agehts choose the fundamental trading
strategy fluctuates, which affects the comparative adgantd the two strategies and hence the
aggregate demand of agents. This in turn has a feedback effebe magnitude and direction of
the future price movements, generating rich price dynamitepns. We show that the explanatory
power of the model developed in this paper remains robustiwibrmation uncertainty compared
to the current HAMs. In particular, the price dynamics gateioccasional booms and bursts of
bubbles, as well as transitions between bubbles and recsssihe simulated time series exhibit
the power-law distribution in returns, volatility clusiteg and long memory, which are commonly

observed properties in financial market returns and vdiatil

2 TheMode

We consider a continuurfd, 1] of agents trading on one risky asset and one risk-free asset i
discrete-time. For simplicity, the interest rate of thek+iee asset is normalized to zero. The
fundamental value of the risky asgets not known publicly. Agents only know thatis normally
distributed with mean ofi and standard deviation af,. Denotea,, = 1/03 the precision of the

distribution of the fundamental valye. In each time period, there is a new entry of agéaisd

4Different from the existing HAMS, we allow agents to comaysbr leave the market at any point of time.



each agentreceives a private signal on the fundamental valugiven by
Xit=H+Et,

where the noise termg ; is independently and normally distributed with mean 0 anthadard
deviation ofay, across agents and over time. Similarly dermte= 1/0? the precision of agents’
signals. This implies that the private signals are normdistributed with a mean oft and a
variance of Jay. All agents have a constant absolute risk aversion (CARApaerntial utility

function

U (W) = —exp(-AWy),

whereA is the common absolute risk aversion coefficient for all ag@mdW ; is the wealth of
agenti in timet. Let p; be the (cum-)market price of the risky asset and dehete{pt, pt—1,--- }
the public information of history price. Each agent seeksntximize the expected utility by
allocating her wealth between risky and risk-free assetglitional on the public informatioh_1
and her private signaf;; about the fundamental value of the risky asset. dgtbe agent’s

demand of the risky asset at tiheThen the expected utility of the agent becomes

Xit, |t1)D

A
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whereE(pt|xit,lt—1) andVar(p

Xit,lt—1) are agent’s prediction about the price and variance of
the risky asset conditional on the public informatiery and her signa; ;. The maximization of

the expected utility leads to agarg optimal demand

E(pt|Xit,lt—1) — Pt—1

2
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Note thatg ; is independent of the agent’s wealth but relies on her prediuture price movement.
It is an increasing function of the predicted price charkgigx |xit,lt—1) — pt—1, and a decreasing
function of the price volatilitwar(pt|Xit,lt—1).

Facing the information uncertainty on the fundamental @aéun agent considers both the long-
run mean-reverting of the market price to the fundamentaievand the short-run momentum in
price trend when entering the market. Correspondinglyatient considers both fundamental and
momentum trading strategies based on the public informatfdhe history price and her private
signal about the fundamental value of the risky asset. Mapdiatly, the predicted price and

variance based on fundamental trading strategy are

OpH + Ot
Ef i I, = 1— - g 3
(Pt[Xit; 1) (1-y)p-1+y e 3)
Varf(pt|xi,t, It_l) — y Var(u|Xi7t, lt—l) — ’ (4)

ay + Oy’

Qubt s ooy 1 o agent’s posterior updating of

wherey € (0,1] is a constant. Note thm%wX Tyt iy

the mean and variance, respectively, of the fundamentaéwaf the risky asset conditional on her
signalx; ;. Condition (3) means that the predicted price is a weightame of the latest market
price and the posterior updating of the fundamental valuelitional on her private signad ;
while (4) means that the conditional variance is propoglda the posterior variance conditional
on the private signat;;. In particular, whery = 1, the conditional mean and variance (3)-(4) are
reduced to the posterior mean and variance respectivehdi@on (3) can also be written as
Ay OxXit _

Xit,lf—1) = p—1=Y|———— — Pt—1|-

Ef
(Pt o+ 0

Thereforey measures the convergence rate of the market price to thetexpendamental value.
A high y means a quick convergence to the expected fundamental Vidieesfore the fundamental
trading strategy reflects agent’s belief that the futureeis expected to converge to the expected

fundamental value. Though the private signalsare i.i.d. across agents and over time, they are



partially incorporated through the current market pripgsvhich is then reflected in the prediction
of the future price. This set up is different from the ratibequilibrium model in which the
expected price equals to its fundamental value in the nexvghe Consequently, following from

(2)-(4), the optimal demand of the risky asset based on thegnental analysis becomes

£ QuH+axXiy— (oy+0x) p1
qi’t - Ay }

(5)

which is called the fundamental trading stratefigy
The predicted price and variance based on momentum tradinm@ependent of the private

signalx; ,

ES(pt%it, l-1) = po1+ B (o1 —w),  Var(pxili-1) = 621, (6)

wherev; is a reference price or a price trer@imeasures the extrapolation of the price deviation
from the trend, an@? , is a heuristic prediction on the variance of the asset pfite reference
pricev; can be a moving average, a supporting (resistance) prieg mvany index derived from

technical analysis. Equations (2) and (6) then lead to thienapdemand of the risky asset

B(p-1—w)
Ao,

C1ic,t = (7)

which is called momentum strategy In particular, whenv is a moving average of history
price andf > (<)0, the strategy is essentially a time-series momentum (contrarian) gyate
(Moskowitz et al., 2012). For now, we keep the specificatibn @pen in order to keep the model
general.

Given the information uncertainty, the agent compares xpe@ed value functions based on
the two optimal trading strategies and chooses the one eligive higher value function. More

explicitly, the agent firstly calculates the respectiveueafunctions based on stratedyandc,



which can be obtained by substituting Egs.(5) and 7) int¢18q.

M — 2
f [aup+ o — (ap + ax) pr—1]
Elu) = — AW
it (U) eXp{ _ 1+ 2A (o + ) :
| B2 (po1—w)?
E:(U) = —exp{—A Wit_1+ —<2Aaltzl t -

The agent then compares the value functions of the two gtest@nd selects the one that yields
a higher value function. Note tthjt is an increasing function of the absolute value of the signal
i t|, while Ef is independent of; ;. Therefore there exists threshold values for the privajeadi
such thalEift = Ef;. Letx be the threshold signal value that makes agéntlifferent between

choosing strategiesandc whenx; s = X, that is

EVV) _ [ [lowita— (autadpal® ppoa-w?|| _,
o 2(ay ) 207, |f

Solving forx; yields

1 _
e GRSV

X

P g ®

In the case WhelEift (U) = E% (U), an agent is indifferent between choosing strategiesidc
and we assume that she chooses strafe@jhen, wherp;_1 = \, all agents choose stratedy If
Pt_1 # W, then the agent chooses strategfher signal falls into the intervai™, xM) and strategy
f otherwise, wherg™ = min(x") andx™ = max(x(°). Therefore, the optimal demand of agers
determined by

. oy if X <xMorx > X, o

o if X € ().

Intuitively, when agent’s private signal is near the meamdfamental value, the private informa-
tion of the agent becomes less valuable (in terms of the Valugtion based on the fundamental

strategy) and the agent tends to choose momentum strategly istexpected to generate a higher



utility. However, when agent’s private signal is far awagrfrthe mean fundamental value, the pri-
vate information of the agent becomes more valuable andgéetdavor the fundamental trading
strategy. For convenience, we call ageiitndamentalist if she chooses the fundamental strategy
so thatdjs = qitt and chartist if she chooses the momentum strategy sajthat qﬁt. An agenti
chooses to be a fundamentalists if her signal is in the tilseodistribution such that ; < x" or

Xt >xM, and a chartist otherwise.

Recall thatxt ~ N (u,1/ay). Let

Vit =Vox(Xt—H), Y& =vox(§ —H),

then from (8)

1 _ B./ay, + ax
+ _ ay 4+ oy) Pr_1 — (ayi + oxp) = Y H T X o 1 —w)l. 10
Vi NG (au+ax) pr—1— (QpH + OxH) oL (Pt—1—W) (10)

Denote
YW= vax(— 1), W = Ve - ).

Then the demand function (9) can be written as

fo. M.
o if Y <wyihoryi > X"
Gt Gi t Yit SYOMYie =% (11)

qic,t if yi,t S (y{nuth>7

in whichx; 1 in (9) is replaced byt = 1 +Yit//0x. The standard normal probability density and

cumulative probability functions are denoted, respebtjve

o0 =——e 2 o= [ oydy (12

It then follows from the demand function (11) that the clsstiare those whose signals fall into



(y" yM). Denotem the fraction of the chartists, then

m = Sy — d(yM). (13)

Note thatdm /dt = @(yM) — @(y"). As the market consists of fundamentalists and chartidts on
the fraction of fundamentalists becomes fi.

Different from the existing HAMs where the fundamentalsitsre the same demand function,
in this paper, because of the information dispersion, tmeldnentalists have different demand
functions corresponding to their different signals on thedamental values. With equation (9)

and the notation in (13), the aggregate demand of all thetagethen given by

W o U4 Oyl + /OyYit — (o, + ay) pe—
Di = / Ll \/_XXIVt (Gu+ o) P 1§0(Yi,t)dy|,t
+o oy U+ ax + /OxYit — (0 + ax) pr— 11—V
+/ HH T O \/_XA'V‘ (0 + ) 1¢(Yi,t>dyl,t+m—ﬁ(io.12 i
t—1

</ Yit® (Vi) dyie+ o Y|t(P(Y|)dY|,t)

oyl + g — (au+ax)pt 1+ml3(pt 1—W)
Ay AGZy

+(1-m)

Using (12), the above demand function can be rewritten as

e (e e ) (1= (ot - 00 )|

auu — (az\;’ ax) Pt—1 n [CD(y{Vl) B CD(y{“)] B(iqlz__l W) :

n [1— (@) — D)

or alternatively, using (12) and (13),

Oy + axd — (0 + oy) pr— 1V
- O — (0 - 0x) py 1+mﬁ(pt1 t).

Dc= L) — gy + [L-m] o ro?
t—

Ay

To determine the market price, we follow Day and Huang (1281 assume that a maker maker

10



adjusts the price according to

pt=pP-1+AD:+9), (14)

whereA > 0 measures the impact of marginal aggregate demand on tee@sse, andS ~
N(0, 0?) is an exogenous supply of the risky asSsdthe price updating mechanism suggests that
the price goes up in the next perioddf + § > 0, declines or remains constant otherwise.

In the absence of supply shock (thaSs= 0) and all the agents use the fundamental strategy
(that ismy = 0), the market equilibrium price under the Walrasian aunaér scenario reaches an

equilibrium whenD; = 0. Solving for the equilibrium price yields

* aX“‘f’aulj

. 15
oy + O (15)

Note thaty may not necessarily equal fo due to the information uncertainty. Therefore the
equilibrium pricep* may not necessarily equal to the fundamental valusren if all agents are
acting as fundamentalists. The equilibrium price is abtresfindamental value ffi < u, below
the fundamental it > u and equivalent to the fundamentaliif= p. The potential difference
between the equilibrium pricg* and the fundamental valyeis caused by the imperfect informa-
tion. In our model, even in the absence of supply shock, taeréwo origins of asset mispricing,
the information uncertainty about the fundamental valuthe presence of chartists.

To better understand the dynamics of the market price (1d)new consider a simple deter-
ministic model of (14) when there is no supply shodk,; = 02 andv = pt_». In this case, the
price dynamics become

NG O O — (O P B(pi—1— Pi—2)

(16)

Pt=p-1+A

It is easy to see that the fundamental equilibrium pptelefined in (15) is the unique fixed point

of (16) and its stability can be characterized by the follaywroposition.

SAlternatively,S can be interpreted as the demand of the noise trader as ik @886).
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Proposition 1 The fundamental equilibrium price’ pf the price dynamicgl6) is locally stable

if and only if
ay + ax
Ay

<2. (17)

In addition, the loss of stability leads to a flip bifurcatiatnenA ““:yax =2.

Proposition 1 shows that the stability of the fundamentéleras maintained with small pre-
cisions of the noisy processes. This implies that less rniaiskee fundamental information can
contribute toward instability of the fundamental valugdang to high price volatility even when
the equilibriumis unique. Intuitively, when the dispersaf the fundamental information becomes
small, the fundamental information become more accurdtéebs valuable while the momentum
trading strategy becomes more popular among the agentshwien leads to instability and high
volatility. This result is consistent with the literatura ooordination game with imperfect infor-
mation such as Angeletos and Werning (2006). Propositidedlstnows that the price dynamics of
such a deterministic model can switch from stable fundaaleatue to two-period cycle and then
to more complicated behavior. Figure 1 illustrates therbdtion plot of the price with respect to
y, the speed that price is expected to converge to the fundaiméinshows that, as the speed of
the convergence of the expected price to the fundamenta¢ifundamental strategy increases, the
price becomes more stable. This analysis on the deterministdel provides some insight into

the price dynamics of the stochastic model to be discusstxifollowing.

3 Implicationsof Trading Heterogeneity

The model characterizes the endogenous trading heteribgangong agents when facing infor-
mation uncertainty. The agent that seeks to maximize hesaggd utility may choose different
strategies simply because either her signal or the market pas changed over time. Note that
the two threshold valueg™ are time varying. Because of the price change, an agent naseh
different strategy even if she receives the same signal. @an interested in the evolution in the

market fractions of agents choosing the fundamental andentum strategies, it is sufficient to

12
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Figure 1: Bifurcation analysis. The price converges to tRedipoint p* = ag’ﬂz‘;“
cr,,+ax

increases to the extent that it satisfies the stability damrdthatA Ay < 2. The parameter used
for the bifurcation ispp = 950, py = 954, 02 = 1,4 = u = 1000, 3 = 0.004, Y/ay = 4 x 10,
1/ay=8x10* andA =2.3.

wheny

know the distribution of the signals instead of every agesitinal. Below we illustrate how various
factors affect the evolution of the fraction of the chagijst, over various ranges of prices. Unless
specified otherwise, we use the following set of parametgrs: u = 1000,y = 0.4, 8 = 0.9,

1/a, =4x10% 1/ax=8x 10, A =2.3,p_1— % =3,02 ; = 1, A= 1 ando? = 0.

3.1 Thelmpact of Mispricing

We first examine the impact of mispricing. As shown by Figureh2 fraction of chartistsn
decreases as the price deviates more from the fundamef(fl both values inp;_1 — v | andp).
In another words, agents’ choose to the fundamental syrategease with the degree of mispricing

|pt—1— U|. In fact, it follows from (10) that

+

Yo = )+ Bi”a“m(ptfl —w)|. (18)

Ot—1

jj_x (A + 06 (Pt — 1) — (I —

This, together with (13), implies thatm ) /d(|pi—1 — U|) < 0, meaning that the fraction of agents

choosing the momentum strategy decreases as the mispinciregses. This result is illustrated

in Fig. 2 with respect to different price treng_1 —w| and extrapolatior8 of the momentum

13
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Figure 2: The effect of mispricingp;,_1 — ¢t| and momentum trading on the fraction of the chartists
my with (a) two different price trendp;_1 —w%| = 3 and 5; and (b) two different extrapolation
B =0.9 and 12.

trading strategy. It shows that is close to 1 when the pricg._; is near the fundamental value
(U = 1000, meaning most of the agents choose the momentum stratiegvever,m decreases
as the pricep;_1 deviates from the fundamental valye meaning that more agents choose the
fundamental strategy. This suggests that it is unlikelytli@r price to deviate far away from its
value infinitely. All the others being the same, the priceeréy towards its fundamental value
when it is significantly mispriced, any bubble eventuallydts and recession eventually recovers
as significant mispricing trigger agents to choose the foretdal strategy that drive the price to-
wards its fundamental value. Such nonlinear mean-reggpiiite movements are consistent with
De Grauwe et al. (1993), Gaunersdorfer and Hommes (200erBet al. (2009), Dieci and
Westerhoff (2010), among many others. Most studies deneartean-reverting price behavior by
assuming the distribution of fundamentalists and charirstlifferent market states similar to Fig-
ure 2. The model developed in this paper provides a micradation to the endogenize switching
of the choices between heterogeneous strategies as a aensedf utility maximization under

information friction®

5We would like to thank the Associate Editor for emphasizinig tontribution to the current HAMSs.
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3.2 Thelmpact of Momentum Trading

We further examine the impact of the market power of momertading on the fractiom. Recall
from Eq.(7) that all momentum strategy shares the same difoaction. The market power of
the momentum trading can be measuredyy; — | and the extrapolatiofi of the momentum
strategy. Based on (9) and (10), an increasginy — | and enlarges the intervak™ xM). This
means that, as the market power of the momentum tradingasese there are less extreme signals
outside of the interval and hence more agents choose the ntomérading strategy, leading to
higherm. This result is illustrated in Figure 2. In (a), we compaxefor two different values of
|pt—1 — w|. The solid curve representsg with relatively large|p;—1 —w| = 3, while the dashed
curve describesy with relatively small|p;_1 — | = 2. We observe from Figure 2(a) that, given
the samep,_1, m is larger whenp,_1 — w| is higher. We have the same observation in Figure 2(b)
with respect to the extrapolatighof the momentum trading.

The above analysis suggests that, on the one hand, thergtreatearket power of the momen-
tum trading, the higher the market fraction of chartisisis, which may destabilize the market
price, leading to significant mis-pricing. This destalilzrole of the momentum trading is con-
sistent with the current HAMs. On the other hand, based opt&eous discussion, a significant
mis-pricing motivates more agents to choose the fundarheinédegy, driving the market price to-
wards the fundamental value. This endogen®e#-correction’mechanism of the market is very
different from the current HAMs where market stability defde exogenously on the balanced

activities from the fundamentalists and chartists.

3.3 Market Fractionsunder Regime-dependent Reference Price

Previously we assum@;_1 — \¢| to be exogenously in order to better understand the impabtof
market power of momentum trading on market price. In theditge, the reference prieg of the
momentum strategy is usually a function of the historicadgoand can be different over different
price range. We follow Huang, et al. (2010, 2012) and defjn&s regime-dependent reference

price. In particular, we divide the price dom&n= [pmin, Pmax €qually inton mutually exclusive

15



my o5k 4

500 1000 1500 2000
Pt—1

Figure 3: The impact of regime-dependgnon m.

regimes such that

P =Ul_4Pj = [0,K)U[K,2k)U---U[(n— 1) K,NnK],

where jk (j =1,2...,n.) represents psychological threshold corresponding terifit support
(resistance) level in the chartist analysis. When, is observedy; is extrapolated to be in the

middle of the trading window that; 1 falls into, that is:

Vi = ([P-1/K] + [p-1/K]) - K /2. (19)

where| pt—1/K | and[p—1/k | are the lower and upper bounds of the regime that englose

Let k = 100, based on the regime-dependeéntve plotm againstp;_1 in Fig. 3. It shows
that, as the price changes, the fraction of chartistshanges between 1 and 0 frequently. When
p:_1 is relatively close to the center of the regimethe market power of the momentum trading
is weak andmn, moves towards 0. Otherwise, whex.1 is on the boundary of the regimey
changes towards 1. As the price changes from one regime thendhe regime-dependewnt
updates accordingly, which changasaccordingly. Such regime-dependgninakes agents more
sensitive to the price changes and introduces more ve&yatdim by enhancing the switching
between choosing the two strategies.

As v; is a function of the past price, the price dynamics is esalyne-dimension. Such a

model is nonlinear, maybe even chaotic, which is capablewérating rich price dynamic patterns.
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Figure 4: The phase diagram pfandp;_ 1.

Given the complexity of the model, we illustrate a typicabpl diagram of the model in Figure
4, with k = 200, ax = 1/200,a, = 1/100 and other parameters given in the standard parameter
set. The asterisk-marked curve captures the phase linendagp; 1 to p;. It cross the 45 degree
line on whichp;_1 = p; several times, suggesting that there are multiple eqialibMoreover,
when the price is significantly higher than the fundamenédle (U = 1000), the phase line is
always below the 45 degree line, which means that the pritesubsequently decline when it is
sufficiently overpriced. In particular, given apy_1 that is sufficiently higher than the fundamental
value, it is observed from Figure 4 that< p;_1. This is because, when the asset is significantly
overpriced, agents cluster almost entirely to be fundaailistd (see Figure 2), which drives the
price down towards its fundamental value. Similarly, whiea price is significantly lower than
the fundamental value, the phase line is above the 45 deigeeindicating that the price will
subsequently rebounds when it is sufficiently underpridduek result is driven by agents clustering
to fundamentalists when the asset is significantly undegdriVWWhen market price is not far away
from the fundamental value, the trading is dominated by nmore strategy, which increases
price fluctuation, indicating by the significant upward @egise phase lines when price is around

the fundamental valeu(= 1000). This again illustrates the price fluctuations andogedous
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self-correction when the market price deviates far awayftioe fundamental value.

4 Time Series Propertiesand the Stylized Facts

The current literature on HAMs is powerful in reproducingreoonly observed financial market
abnormalities that cannot be justified by efficient markegtdtfiesis. In this section, we explore the
time series properties numerically and in particular foosasvhether our HAM with endogenous
heterogeneity can also generate the stylized facts in fiaktime series. We test for the non-
normality, fat tails and volatility clustering in returng/e also examine whether the return series
exhibit the power-law distribution and long-memory pra&ésr long-range dependence), which
are widely observed in financial markets.

To understand the effect of the stochastic noise, we simtai price series, one with and one
without stochastic supply shock. In the absence of the gugipbck, the model is deterministic.
A deterministic data generating process is unrealistiemgihat the price is largely unpredictable,
however it provides a good way to understand the performafd¢be model. Note that these
stylized facts are commonly observed across internatifamahcial markets over decades while
exogenous shocks are random, they are more likely driverolmesndogenous price dynamics
instead of random shocks. Therefore we are interestedhe idiéterministic model helps to gener-
ate these stylized facts. In general, as shown in He and 0Oi{R@ is the interaction between the
underlying deterministic dynamics and noise that charaties the realistic time series properties.

To see how well the simulated data matches with the real datmns of statistical and qual-
itative properties, we benchmark for each stylized facetam the daily price of S&P 500 index
from August 28, 2006 to August 7, 2014. The compounded sipgited return of the risky asset
fromt—1 tot is defined as; = log(p:) —log(pt—1). To differentiate the time series generated
from the S&P 500 index (SP), the simulation based on detestitrmodel (SD) and the simu-
lation based on stochastic model (SS), we add SP, SD and 3&nindf the name of each time

series. For example SR, SD p; and SSp; denote respectively the price of S&P 500 index, the
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simulation of the deterministic and the stochastic modetpectively. Similarly, S, SDr; and
SSr¢ denote the log returns based on the three price serigs, S p; and SSp;.

The set of parameters used to simulate the determinististaictiastic price is commonmmy =
129509, k = 43.891,02 = 1 and the other parameters are the same with the standardegara
setS [ =pu=1000,y=04,B=09, I/a,=4x10% 1/ay=8x 10", A=1 andA = 2.3/
The parameter value gy equals to the first observation of the S&P 500 sample, andahat
u and u is broadly calibrated with the average fundamental valu8&® 500 calculated based
on Gordon growth model. Among the other parametgrsy, A, ay, anday , we focus on the
two key behavior parametegsand 8 later. We use this standard parameter set throughout the
paper, unless specified otherwise. As our purpose is tdraiigsif the model has the capability to
generate various stylized facts as the conventional HAMswedocus on typical deterministic and
stochastic simulated price series. A Monte Carlo simutediod sensitivity analysis are conducted

to analyze the impact of the two key behavior paramefeaisdy later.

4.1 Time SeriesProperties

Before examining the stylized facts, we first present somme tseries properties on price and
return. Figure 5 plots time series of the prices and retufrieeindex and a typical simulation.
Although the price trajectories for the three price serig@pthe indexSPp, (c) the deterministic
modelSDp and (e) the stochastic modeE p look quite different, we do observe commonly that
the prices move up and down with occasional bubbles andesas$tor the simulated prices, even
though the fundamental value is constant, the price are goittile, suggesting the presence of
excess volatility. The results are consistent with the elcgdievidence documented in Ebrahim
and Mathur (2001), Taylor (2007) and early HAMs for example (1995). The commonly shared
features by the corresponding three return series in (par(d (f) are: (i) the return moves around
zero; (ii) high and low volatility tend to cluster togethsyggesting that small (large) changes in

returns tend to be followed by small (large) changes in retand (iii) returns are generally more

"Note that the parameter is abandoned when simulating the deterministic price.
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Figure 5: The time series of prices and returns on the S&PBAExi (top panel), the simulation
from the deterministic model (middle panel), and the siokefrom the stochastic model (bottom

panel).
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volatile when the price declines. The results suggest thailations based on our model share
some of the time series properties of the real return pat@ooumented in existing literature.
Table 1 summarizes the statistical properties of retumbné with the S&P 500 index, returns
generated from the deterministic and stochastic modelks hagative skewness and high kurtosis.
The negative skewness suggests that extremely negati@sedre more likely to happen than
extremely positive returns. The large kurtosis suggestptasence of fat tails, that is, the extreme
returns appear more frequently than what are predicteddpdhmal distribution. These features
suggests that the returns are not normal. This is furthepatged by p-value of the Jarque-Bera

test, which rejects the null hypothesis that eitherSBr SDr; or SSr; is normally distributed.

Table 1: Summary Statistics of Returns. This table repbgsummary statistics, including mean,
standard deviation (sd), skewness, kurtosis, and theyewail the Jarque-Bera test, of the re-
turn series of S&P500 index (8B, the simulated deterministic model (3P and the simulated
stochastic model (S8§).

mean sd min max  skewness kurtosis p-value
SPr; 0.000 0.014 -0.095 0.110 -0.325 12.525 0.000
SDr;y -0.000 0.012 -0.065 0.068 -0.347 8.515 0.000
SSr; 0.000 0.042 -0.328 0.355 -0.211 19.327 0.000

The above results suggest that the model is able to geneddigtic time series observed in the
S&P500. They are however very sketchy and basic. To explotkdr the statistics of the model
and compare with the S&P500 index, we conduct econometis te study the degree of volatility
clustering, the heaviness of the tails, and the distriloubibreturns. In paricular, we examine the
short-term and long-term features of the price movemerntsardy the long-memory process and

long-range dependence.

4.2 The Power Law of Returns

Both theoretical and empirical evidence suggests thatthdistribution of return is well approx-

imated by the power law (Gabaix et al., 2003, 2006). In paldicthe distribution of returns is
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Table 2. The power law of returns. For each return series i, SED r; and SSr¢, we estimate
In P(}r } > X) —{InX + b, where{ ~ 3 is the Pareto exponent. This table reports the

estimated ~ 3, the number of observations N and fRfe

SPInP(["F[>X) SDInP(["F[>X) SSInP(["[>X)

l 2.981* 3.086* 2.681*
(14.649) (12.924) (12.988)

N 55 55 55

R2 0.799 Q756 Q758

found to decay according to

r—r e
P X ~X"%, 20
where{ ~ 3 is the tail or Pareto exponentandsd are the mean and standard deviation of the

re—r . . . . .
t is the normalized return, and denotes asymptotic equality up to numerical

returnsry,
constants. In Gabaix (2003, 2006), the estimation r&sti3 is obtained by lettinX take a range

of values and estimate with ordinary least squares (OLSptithmal of Eq.(20), that is,

r—r _
InP(‘ﬂ >x)_ ZInX +b. 1)

We follow the same methodology to test whether the simuleggns exhibit such a power-
law distribution. In particular, we leX = 0.1,0.2,...0.55 and calculaté® ]r } > X) for each
realization ofX for each of SR, SDr; and SS2. Based on these observationsdndP(| L1 ] >
X), we estimate Eq.(21) with OLS for each return series. Thienasibn results are reported in
Table 2. It shows that, like the tail distribution of §Pboth SDr; and SS have a power exponent
¢ of around 3. The fact that estimation coefficients{af 3 confirms the presence of power-law

distribution in both the index and simulated return series.

8If we further increaseX above 0.55, thei®( |rt | > X) = 0 for the time series of SB;. For the other two
series, the result that the estimated coefflcfernapprommately 3 remains robust even after we increaae long as
P(|%F| > X) > 0.
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4.3 Volatility Clustering, Long Memory, and L ever age Effect

As documented in Cont (2001), the autocorrelations fungfeCF) of returns are insignificant but
different measures of volatility, such as absolute or sgjueturns, exhibit positive and persistent
ACFs. We report the ACFs in Figure 6. The trivial ACFs of resisuggest that past return is not
necessarily informative for future return. The signifidanqositive ACFs of volatility measures
imply that periods of quiescence and turbulence tend tdelusgether. Panels (a)-(c) of Figure
6 demonstrate these characteristics of volatility clusteby piloting ACFs as a function of the
number of lags. For the S&P 500, deterministic and stoahastiulations, there are no significant
and decaying ACFs in return (apart from the first lag), butAlk#-s of the absolute returns and
squared returns are relatively large and persistent evendO lags.

To see how persistent the volatility is, we follow Cont (2p@4 estimate the following power

component in the ACFs of absolute returns:

corr(|reyq|,Irel) ~ ¢ /o, (22)

whereq is the number of lags; is a parameter that captures the ACF of absolute returnslagth
one, andl is the power exponent that captures how fast the ACFs decagdeh of the time series
of returns, we first obtain the ACFs of the absolute returngife 1,2,...200, and then estimate
Eq.(22) using nonlinear least squares (NLS). Let8R(|riq, [rt|), SDcorr(|riiq|,[re|) and SS
corr(|riiq| ,|rt|) denote the ACFs of absolute returns ofigFSDr; and S respectively. Table 3
presents the estimation results. We find that the ACFs oflatese@turns of S&P 500, deterministic
and stochastic simulations, decay with exponents.86®, 0417 and 205 respectively. The
results are roughly consistent with the empirical evidethe¢d generally falls intd0.2,0.4] (see
Cont, 2001).

Long memory and long range dependence are synonymous sittianare used interchange-
ably in the literature. Volatility clustering is an indicatof long memory but it does not necessarily

lead to long memory. Following the standard definition inyT€2010, Chapter 2) and Campbell,
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Figure 6: \olatility clustering and Long Memory. Panel (dpfs the autocorrelations function
(ACFs) of returns (solid line), absolute returns (astensdrked line) and squared returns (dotted
line) for S&P500 index against the number of lag. Panel (lo) @) plots similar statistics based
on returns of simulation from deterministic and stochastadel respectively. Panel (d) plots the

Lo modified R/S statistic of the absolute returns.

Table 3: Persistence of ACFs of absolute returns. For edaamreeries in SP;, SDr; and SS,
we estimateorr(|riq|, rt|) =~ ¢/ with nonlinear least squares and reppendd.

SPcorr([riq

Ir])  SDcorr(ri4q

rel) SSCO”(\ftJrqutD

d .368** 417 205+
(21.015) (51.367) (23.461)

C .605* .916°* .658**

N 200 200 200

R2 .866 .966 974

Root MSE .058 .037 .046
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Lo and MacKinlay (1997, Chapter 2), the time series said to be long-memofyf

whereL is the lag operatod € (—0.5,0.5) is the memory parameter that measures the extent of
the memory or long range dependencéx}, and{& } is a white noise series. The long-memory
time series is said to be fractionally differenced of ordeér It is neither stationary, where the
ACF declines exponentially, nor is it a unit root, where theFAdecays linearly. Such a long-
memory process is characterized with small and slowlyyetaACFs. The decay of ACFs in
long-memory process is much faster than in the unit rootgsedor the first lag, but slower for
larger lags. Whed € (—0.5,0.5) andg — o, the ACFs of{x } fades away at a polynomial rate as
the lag increases such that:

corr (%, X+q) ~ f(q)/a*2,

wheref(q) is any slowly varying function at infinity, verifyind (aq)/f(q) — 1 for anya > 0, as
the number of lag] — .

As documented in Christensen and Nielsen (2007), Christeres al. (2010), Bollerslev, et al.
(2013), Rossi and Santucci de Magistris (2013), among m#mgrs, the stock market volatility
has long memory. The phenomenon of volatility clusterirggdssed above is a necessary but not
sufficient condition for the existence of long memory. We rfomwnally test the existence of long
memory in the volatility measured by the time seriesrdf The methodology that we apply is the
range over standard deviation or R/S statistic modified by11991) that corrects for the effects of
short-range dependeri€e

We test for the null hypothesis that there is no long memotiyafestimated R/S statistic falls
out of the critical interval. The result rejects the null bytpesis and provides evidence that the

time series is long-memory. As the Lo modified R/S statistesinot provide a criteria for the

9Baillie (1996) provides an extensive survey on the definitblong memory.
10The other commonly used methodologies is the semiparasrettimator of log periodogram (LP) regression,
represented by Geweke and Porter-Hudak (1983), Phillip@qpand Robinson (1995).
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Figure 7. The leverage effect. This figure plots the degredeedrage effect measured by
corr(ré, ¢, 1)
selection of the optimal lag and the R/S statistic maybeisea$o the selection of lags. We report
the R/S statistic for lags ranging from 1 to 100 and graph Pamel (d) of Figure 6. When the
number of lags is not too large, i.g.< 30, the Lo modified R/S statistic for SR|, SD |r¢| and
SS|r¢| all fall out of the 95% critical interva]0.809,1.862, which suggests the existence of long
memory in both the real and simulated absolute return series

Other than volatility clustering and long memory, we alss@te from Fig. 5 that volatility
tends to become higher as price declines and lower as the isies. The negative correlation
between volatility and returns is called leverage effectaatility asymmetry (Bouchaud, et al.,
2001 and Pagan, 1996). Represent the volatility with albsakiurns, for each of the three return
series, we calculateorr(rtﬂq,rt) forq=0,1,2,...100. Figure 7 plotsorr(rt2+q,rt) against the
number of lagy for each return series. It shows that when the number of lsigpal, i.e.q < 7, the
relation between volatility and returns is negative forteatthe three time series of return. This
suggests that negative returns are associated with highéeraporary volatility and followed by
higher volatility in the short-term. This implies that th@del is able to capture the leverage effect

observed in financial markets.
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4.4 Monte Carlo Analysis

In this section, we conduct a Monte Carlo analysis on the stoiass of the results based on the
simulations of the stochastic model. We ru®@0 simulations using the same parameter set. In
each simulation, the exogenous supply sh8cis normally distributed around 0 with a variance
of 1. The realization of takes different random values in the 1000 repeated sinouisitt We
repeat the previous statistical analysis for each validiation and summarize the results in Table
4. The last column of Table 4 report these statistics baseti@®&P 500 index. Based on the
mean of these statistics, it remains robust that the stacheimulation matches with the S&P
500 in terms of the first to fourth moments, power-law disttibn, volatility clustering and long
memory. Looking at the 5% confidence interval enclosed bynub®5 values, we observe that a

large proportion of our simulation matches with the S&P %00.

Table 4: Monte Carlo Analysis. This table reports the sunymatatistics, including mean, standard
deviation (sd), minimum value (min), median value (Med)xmaum value (Max), 5th percentile

(p5), and 95th percentile (p95), of the various measuregybzed facts in the first column based
on 634 different time series of returns. The mean, sd, skesyk@rtosis are the first, second, third

and fourth moments of returns respectively.is the power component in I?l( \“S—jjr_\ > X) =

—{InX+b, d is a measure of how fast the autocorrelation function dedayS statistic is the
Lo-modified test of long-range dependence. The last colwports the corresponding statistics
for S&P 500.

Mean sd Min Med Max p5 p95 SP500
mean 0.000 0.000 -0.002 0.000 0.000 -0.001 0.000 0.000
sd 0.021 0.012 0.006 0.018 0.071 0.009 0.047 0.014
skewness 0.036 0.218 -3.044 0.025 2.168 -0.102 0.249 -0.325
kurtosis 6.348 9.529 2.124 3.997 126.487 2541 18.437 %52.52
( 2929 0.435 1.542 2956 3.942 2.124 3,575 2.981
d 0.299 0.130 0.073 0.283 1.094 0.123 0.522 0.368
R/S statistic 6.047 1.518 2.064 5.966 10.096 3.698 8.711 166.7

1The simulation may lead to non-positive price that is notiséa. We drop the simulation that generates any
non-positive price, which may explain the positive skevgnes average in Table 4. Eventually, we include in our
sample 634 valid simulations, each of which contains 20@@&olations on returns.

12This proportion increases further in the 90% confidencenatgnot reported for space constraint). Among the
634 simulated time series of returns, we find 521 (or 82%) effitihave a kurtosis greater than 3, 512 (81%) of them
have a p-value of Jarque-Bera normality test less than 5% (3%%) of them have d that falls into [0.2,0.4], and
634 (100%) of them have R/S statistic that fall ouf@B09 1.862 when the number of lag is 2.
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R/S Statistics

Figure 8: The R/S statistics fgr(on the left panel) an@ (on the right panel).

45 Sensitivity Analysis

We are also interested in how the stylized facts depends erchbice of behavior parameters
of the model, in particular, the mean reverting paramgtef the fundamental strategy and the
extrapolation parametgd of the momentum stratedy. We first focus on the R/S statistics since
long memory is found to be the most challenging one amongethtydized facts. With the chosen
set of parameters, we vagyand 3, respectively, from 0.01 to 1 with an interval of 0.01 and run
100 simulations for each value. For each simulated timesgwe calculate its R/S statistics. For
each parameter value, we then calculated the average R&ficsaf the 100 simulated time series
and report the results in Figure 8, illustrating the relati@tween R/S statistics amtbn the left
panel and3 on the right panel. The results show the evidence of long ngmareturns for all
values ofy and 3 (except wherf3 < 0.05); all the R/S statistics are greater than the cutoff value
1.862.

We then examine the impact gfand 3 on volatility clustering, measured by the significant
decaying ACFs. For illustration, we choose three repregimetvalues for each gf and3. For

each parameter value, we calculate the average ACFs of tfifated returns series for all lags

13The sensitivity analysis in this section means to providditamhal evidence on the robustness of the results
presented above and to offer some implications on the oaldietween key parameters and various statistics and
stylized facts. Note however due to the large number of patansets, the nonlinear and complexity nature of the
underlying deterministic model, one should be careful iterding the relation between parameter values and various
statistics documented in this section.
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Figure 9: The autocorrelation functions (ACFs) of absofaetarns fory = 0.1,0.4,0.7 (on the left
panel) ang3 = 0.3,0.6,0.9 (on the right panel).

from 1 to 100 and report the result in Figure 9 foon the left panel ang@ on the right panel.
For y=0.1,0.4 and 0.7, the left panel shows that the decaying patternofAbFs are very
similar, indicating that the volatility clustering is noery sensitive to the mean reverting speed
y. However, the ACFs patters fg@# = 0.3,0.6 and 0.9 are very different. It appears that the
stronger the extrapolation parameter of the momentunriggslis, the higher the ACFs of absolute
returns (similar evidence is found if we calculate the ACFsquared returns), indicating that an

increasing in momentum trading enhances volatility cluste

5 Conclusion

Heterogeneity and bounded rationality are two key charaties of financial markets. Based
on complete information and some heuristic assumptiomlsexisting heterogeneous agent mod-
els (HAMs) have been successful in explaining financial m&adbnormality and stylized facts
of financial data and outperforming random walk and many entienal models. This paper
contributes to the development of this literature by endaeg heterogeneity of agents’ trading
when agents face information uncertainty. Because of floerration dispersion, agents that seek

to maximize their utility may choose different trading $¢@ies in response to changing market
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environment, which generates cross-sectional tradingrbgéneity among agents. The choices
of strategies can vary over time due to changes in their fgrisignals and market prices. Conse-
guently, both cross-sectional and time-varying tradingfogeneity arise endogenously. This pro-
vides a micro-foundation to the switching mechanism wididgumented in the current HAMs.
The model is able to generate transitions between bubblsemessions and to match the real
data pretty well with respect to the cubic-law distributiarreturns, volatility clustering and long

memory, which are commonly observed properties in finamogket returns and volatility.
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Appendix: Proof of Proposition 1

First of all, note that at the steady state equilibrium pgtewe havey” = yM = 0,m = 0 and

m{ = 0. Letg; = p;_»2, then (16) can be written as
P =p_1+AD(Pr_1,%-1),
Gt = Gt—1,

where

V0x B A+ oy — (O + ox) pr—1 B(pt—1— 0—1)

D(pt-1,%-1) =
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Note that at the stead stgbe= p* andqg: = p*, we have

OD(p-1,G-1) _  Op+0x dD(pr—1,%-1)

op—1 Ay ' 001

This leads to the two eigenvalues:

ay + ax

M= M=1—A
1=0, 2 Ay

Thereforglz| < 1 ifand onlyif 0< A “&2 % < 2. In addition, when g™

leading to a flip bifurcation. This completes the proof.
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