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Abstract

Instead of heuristical heterogeneity assumption in the current heterogeneous agent models (HAMs),

we derive the trading heterogeneity by introducing information uncertainty about the fundamen-

tal value to a HAM. Conditional on their private informationabout the fundamental value, agents

choose different trading strategies when optimizing theirexpected utilities. This provides a micro-

foundation to heterogeneity and switching behavior of agents. We show that the HAM with trading

heterogeneity originating from the incomplete information performs equally well, if not better than

existing HAMs, in generating bubbles, crashes, and mean-reverting prices. The simulated time se-

ries matches with the S&P 500 in terms of power law distribution in returns, volatility clustering

and long memory in volatility.
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1 Introduction

Heterogeneous agent models (HAMs) are useful in explainingfinancial market abnormality such

as bubbles and crashes (Lux, 1995; Brock and Hommes, 1998; Heand Westerhoff, 2005; Huang

et al., 2010). They are also powerful in duplicating and analyzing stylized facts of financial data,

such as fat tails, volatility clustering and long memory (Alfarano et al., 2008; Huang et al., 2012;

He and Li, 2015). More recent evidence suggests that HAMs provide empirical specifications that

outperform random walk and many conventional models (de Jong et al., 2010 and Chiarella et

al., 2012, Lof, 2015). The explanatory power of the existingHAMs mainly comes from exploring

market mechanism by focusing more on the interaction among heterogeneous agents, but less so on

the role of information friction. In particular, the HAM literature assumes a complete information

about the fundamental value of risky assets. It is well recognized that information friction plays a

very important role in explaining various puzzles and anomalies in financial markets.1

This paper aims to examine the joint role of heterogeneity and information uncertainty in fi-

nancial markets. It contributes to the HAMs by providing an endogenous mechanism on trading

heterogeneity among agents and a micro-foundation to heterogeneity and switching behavior of

agents. More explicitly, we consider a HAM in which agents face information uncertainty by

receiving private noisy signals about the fundamental value of a risky asset when entering the mar-

ket. Due to the uncertainty about the fundamental value and well-documented price momentum

in short-run, agents consider both trading strategies based on the private information and short-run

momentum when making their investment decision. Conditional on public information of history

price and his private signal, an agent chooses the trading strategy that maximizes his expected util-

ity. This leads to endogenous heterogeneity and switching behavior of agents’ choices. We show

that the HAM with trading heterogeneity originating from the information uncertainty performs

equally well, if not better than existing HAMs, in generating bubbles, crashes, and mean-reverting

1There is a growing literature that deviates from the standard fundamentalist-chartist setup. For example, Parke
and Waters (2007) allow agents to utilize different subsetsof the complete information, Kasa et al. (2014) introduce
two information sets about the fundamental that are translated into heterogeneous beliefs.
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prices. Numerical analysis shows that the model is able to match with the S&P 500 in terms of

power-law distribution in returns, volatility clusteringand long memory in volatility.

This paper is closely related to the current HAMs with respect to heterogeneity and switching

behavior of agents. However, different from the current HAMs, the heterogeneity of agents in

this paper is characterized by agents’ choices between two typical trading strategies based on the

long-run reversal (to the fundamentals) and short-run momentum (in price trend), the two most

prominent financial market anomalies (see, for example, Poterba and Summers, 1988; Jagadeesh

and Titman, 1993 and Moskowitz et al., 2012). Despite the success HAMs have achieved, many re-

main skeptical about this approach arguing that they rely ontoo many heuristic assumptions. Most

of the existing HAMs either exogenously specify whether an agent is a fundamentalist or chartist

(Frankel and Froot, 1990; Day and Huang, 1990) or assume thatagents have a complete informa-

tion about the fundamental value and switch from one type to another based on some performance

measures. In the seminal work of Brock and Hommes (1998), agents switch evolutionarily to

the strategy that generates higher past realized profit following a discrete choice probability func-

tion. Because of the complete information, agents are able to compare the performance of the two

commonly used strategies and switch to better performed strategies. Such an approach is widely

applied with different customized switching criteria in subsequent studies.2 These studies innova-

tively capture the behavioral aspects of trading and model how agents change their strategy over

time, focusing more on the market mechanism of heterogeneous trading on market inefficiency

but less (or nor) on the role of information uncertainty. Therefore they are limited to explain why

not all agents from the same group switch to better-performing strategies with certainty. If the

information is complete, should not all agents cluster to the strategy that is expected to perform

better?

This paper aims to provide a micro-foundation on trading heterogeneity and switching behav-

ior of agents’ choices by considering information uncertainty and agents’ optimal trading decision

2See for example, de Jong et al. (2010), and Jongen et al. (2012). For other switching mechanism, see Chiarella
et al. (2012) that model the fraction of fundamentalists as aMarkov process conditional on some unobserved market
conditions, i.e. booms and burst states; Lof (2012) that updates the fractions of fundamentalists and chartists according
to a discrete function of the real business cycles.
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facing the uncertainty. In this paper, agents are not heterogeneous by nature, experience or ran-

domness. Instead, we assume a continuum of agents who have incomplete information about the

fundamental value. Each agent receives a noisy and private signal about the fundamental value

when entering the market. Because of the information uncertainty about the fundamental value,

agents make their decision by considering trading strategies based on both public and private in-

formation.3 Therefore, agents are allowed to choose either fundamentaltrading strategy based on

the private information or chartist trading strategy basedon public information and price trend.

Conditional on the public information and his private signal, each agent chooses the strategy that

generates a higher expected utility. Due to the informationdispersion, agents may choose dif-

ferent trading strategies, generating cross-sectional trading heterogeneity among agents. Instead

of switching exogenously based on certain probability, agents switch their choices on the trading

strategies endogenously based on their information and theoptimal trading. As market prices and

agents’ private information change, the market fractions of agents choosing particular strategies

vary over time. As a result, both cross-sectional and time-varying trading heterogeneity arise.

Representing enumerable strategies with fundamental and chartist trading strategies is on the

one hand motivated by the survey finding (Allen and Taylor, 1990) that most investors, especially

institutional investors, conduct both fundamental and technical analysis. On the other hand, this is

also motivated by the long-run mean-reversal and short-runmomentum in prices, the two market

anomalies observed widely across various financial markets. It also follows from the conventional

setup in HAMs. Even though agents are well-informed about the fundamental value, because of

the information uncertainty about the fundamental value, an agent may choose chartist strategy

when it is expected to generate higher expected utility conditional on public information and his

private signal. In particular, when mispricing based on theprivate information is expected to

be small, a fundamental trading strategy may lead to a lower expected utility, while a short-run

momentum strategy may lead to a higher expected utility, which motivates agents to choose chartist

3With complete information assumption in the current HAMs, agents are able to compare the performance of dif-
ferent trading strategies. However, facing the information uncertainty, it makes agents more difficult, if not impossible,
to compare the performance of these two strategies and choose the better performed one.
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strategy. Among various trading strategies based on the public information, we choose momentum

strategy which is widely used in the HAMs and well supported by empirical evidence on short-run

momentum. As a result, the fractions of agents who choose fundamental and momentum strategies

are uniquely determined by the distribution of the private signals and the past asset prices.

In our model, the market fraction of agents who choose the fundamental trading strategy gener-

ally increases with the degree of asset mispricing, but declines with the market power of agents who

choose momentum strategy. Here the degree of mispricing is measured by the absolute difference

between market price and the expected fundamental value, while the market power is measured

by the absolute difference between market price and a reference price or price trend. As the mar-

ket price and private signals change, the fraction of agentswho choose the fundamental trading

strategy fluctuates, which affects the comparative advantage of the two strategies and hence the

aggregate demand of agents. This in turn has a feedback effect on the magnitude and direction of

the future price movements, generating rich price dynamic patterns. We show that the explanatory

power of the model developed in this paper remains robust with information uncertainty compared

to the current HAMs. In particular, the price dynamics generate occasional booms and bursts of

bubbles, as well as transitions between bubbles and recessions. The simulated time series exhibit

the power-law distribution in returns, volatility clustering and long memory, which are commonly

observed properties in financial market returns and volatility.

2 The Model

We consider a continuum[0,1] of agents trading on one risky asset and one risk-free asset in

discrete-time. For simplicity, the interest rate of the risk-free asset is normalized to zero. The

fundamental value of the risky assetµ is not known publicly. Agents only know thatµ is normally

distributed with mean of̄µ and standard deviation ofσµ . Denoteαµ = 1/σ2
µ the precision of the

distribution of the fundamental valueµ. In each time period, there is a new entry of agents4 and

4Different from the existing HAMS, we allow agents to come, stay, or leave the market at any point of time.
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each agenti receives a private signal on the fundamental valueµ, given by

xi,t = µ + εi,t,

where the noise termεi,t is independently and normally distributed with mean 0 and a standard

deviation ofσx, across agents and over time. Similarly denoteαx = 1/σ2
x the precision of agents’

signals. This implies that the private signals are normallydistributed with a mean ofµ and a

variance of 1/αx. All agents have a constant absolute risk aversion (CARA) exponential utility

function

U (Wi,t) =−exp(−AWi,t) ,

whereA is the common absolute risk aversion coefficient for all agents andWi,t is the wealth of

agenti in time t. Let pt be the (cum-)market price of the risky asset and denoteIt = {pt , pt−1, · · ·}

the public information of history price. Each agent seeks tomaximize the expected utility by

allocating her wealth between risky and risk-free assets conditional on the public informationIt−1

and her private signalxi,t about the fundamental value of the risky asset. Letqi,t be agenti’s

demand of the risky asset at timet. Then the expected utility of the agent becomes

E (U (Wi,t |xi,t, It−1)) =−exp

(

−A

[

E (Wi,t |xi,t, It−1)−
A
2

Var(Wi,t|xi,t , It−1)

])

=−exp

(

−A

[

Wi,t−1+qi,t (E(pt |xi,t, It−1)− pt−1)−
A
2

q2
i,tVar(pt|xi,t , It−1)

])

, (1)

whereE(pt |xi,t , It−1) andVar(pt |xi,t, It−1) are agenti’s prediction about the price and variance of

the risky asset conditional on the public informationIt−1 and her signalxi,t . The maximization of

the expected utility leads to agenti’s optimal demand

qi,t =
E(pt |xi,t, It−1)− pt−1

AVar(pt |xi,t, It−1)
. (2)
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Note thatqi,t is independent of the agent’s wealth but relies on her predicted future price movement.

It is an increasing function of the predicted price change,E(pt |xi,t, It−1)− pt−1, and a decreasing

function of the price volatilityVar(pt |xi,t, It−1).

Facing the information uncertainty on the fundamental value, an agent considers both the long-

run mean-reverting of the market price to the fundamental value and the short-run momentum in

price trend when entering the market. Correspondingly, theagent considers both fundamental and

momentum trading strategies based on the public information of the history price and her private

signal about the fundamental value of the risky asset. More explicitly, the predicted price and

variance based on fundamental trading strategy are

E f (pt |xi,t , It−1) = (1− γ)pt−1+ γ
αµ µ̄ +αxxi,t

αµ +αx
, (3)

Var f (pt |xi,t , It−1) = γ2Var(µ|xi,t , It−1) =
γ2

αµ +αx
, (4)

whereγ ∈ (0,1] is a constant. Note thatαµ µ̄+αxxi,t
αµ+αx

and 1
αµ+αx

are agenti’s posterior updating of

the mean and variance, respectively, of the fundamental value of the risky asset conditional on her

signalxi,t . Condition (3) means that the predicted price is a weight average of the latest market

price and the posterior updating of the fundamental value conditional on her private signalxi,t ;

while (4) means that the conditional variance is proportional to the posterior variance conditional

on the private signalxi,t . In particular, whenγ = 1, the conditional mean and variance (3)-(4) are

reduced to the posterior mean and variance respectively. Condition (3) can also be written as

E f (pt |xi,t, It−1)− pt−1 = γ
[

αµ µ̄ +αxxi,t

αµ +αx
− pt−1

]

.

Thereforeγ measures the convergence rate of the market price to the expected fundamental value.

A high γ means a quick convergence to the expected fundamental value. Therefore the fundamental

trading strategy reflects agent’s belief that the future price is expected to converge to the expected

fundamental value. Though the private signalsxi,t are i.i.d. across agents and over time, they are
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partially incorporated through the current market pricespt , which is then reflected in the prediction

of the future price. This set up is different from the rational equilibrium model in which the

expected price equals to its fundamental value in the next period. Consequently, following from

(2)-(4), the optimal demand of the risky asset based on the fundamental analysis becomes

qf
i,t =

αµ µ̄ +αxxi,t −
(

αµ +αx
)

pt−1

Aγ
, (5)

which is called the fundamental trading strategyf .

The predicted price and variance based on momentum trading are independent of the private

signalxi,t ,

Ec(pt |xi,t , It−1) = pt−1+β (pt−1−vt) , Varc(pt |xi,t , It−1) = σ2
t−1, (6)

wherevt is a reference price or a price trend,β measures the extrapolation of the price deviation

from the trend, andσ2
t−1 is a heuristic prediction on the variance of the asset price.The reference

pricevt can be a moving average, a supporting (resistance) price level, or any index derived from

technical analysis. Equations (2) and (6) then lead to the optimal demand of the risky asset

qc
i,t =

β (pt−1−vt)

Aσ2
t−1

, (7)

which is called momentum strategyc. In particular, whenvt is a moving average of history

price andβ > (<)0, the strategyc is essentially a time-series momentum (contrarian) strategy

(Moskowitz et al., 2012). For now, we keep the specification of vt open in order to keep the model

general.

Given the information uncertainty, the agent compares the expected value functions based on

the two optimal trading strategies and chooses the one with relative higher value function. More

explicitly, the agent firstly calculates the respective value functions based on strategyf and c,
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which can be obtained by substituting Eqs.(5) and 7) into Eq.(1)

E f
i,t (U) = −exp

{

−A

[

Wi,t−1+

[

αµ µ̄ +αxxi,t −
(

αµ +αx
)

pt−1
]2

2A
(

αµ +αx
)

]}

,

Ec
i,t (U) = −exp

{

−A

[

Wi,t−1+
β 2(pt−1−vt)

2

2Aσ2
t−1

]}

.

The agent then compares the value functions of the two strategies and selects the one that yields

a higher value function. Note thatE f
i,t is an increasing function of the absolute value of the signal

|xi,t|, while Ec
i is independent ofxi,t . Therefore there exists threshold values for the private signal

such thatE f
i,t = Ec

i,t . Let x̄t be the threshold signal value that makes agenti indifferent between

choosing strategiesf andc whenxi,t = x̄t , that is

E f
i,t(U)

Ec
i,t(U)

= exp

{

−
[

[

αµ µ̄ +αxx̄t −
(

αµ +αx
)

pt−1
]2

2
(

αµ +αx
) − β 2(pt−1−vt)

2

2σ2
t−1

]}

= 1.

Solving for x̄t yields

x±t =
1

αx

[

(

αµ +αx
)

pt−1−αµ µ̄ ± β√αµ +αx

σt−1
(pt−1−vt)

]

. (8)

In the case whenE f
i,t (U) = Ec

i,t (U), an agent is indifferent between choosing strategiesf andc

and we assume that she chooses strategyf . Then, whenpt−1 = vt , all agents choose strategyf . If

pt−1 6= vt , then the agent chooses strategyc if her signal falls into the interval(xm
t ,x

M
t ) and strategy

f otherwise, wherexm
t = min(x±t ) andxM

t = max(x±t ). Therefore, the optimal demand of agenti is

determined by

qi,t =











qf
i,t if xi,t ≤ xm

t or xi,t ≥ xM
t ;

qc
i,t if xi,t ∈ (xm

t ,x
M
t ).

(9)

Intuitively, when agent’s private signal is near the mean fundamental value, the private informa-

tion of the agent becomes less valuable (in terms of the valuefunction based on the fundamental

strategy) and the agent tends to choose momentum strategy which is expected to generate a higher
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utility. However, when agent’s private signal is far away from the mean fundamental value, the pri-

vate information of the agent becomes more valuable and the agent favor the fundamental trading

strategy. For convenience, we call agenti fundamentalist if she chooses the fundamental strategy

so thatqi,t = qf
i,t and chartist if she chooses the momentum strategy so thatqi,t = qc

i,t. An agenti

chooses to be a fundamentalists if her signal is in the tails of the distribution such thatxi,t ≤ xm
t or

xi,t ≥ xM
t , and a chartist otherwise.

Recall thatxi,t ∼ N(µ,1/αx). Let

yi,t =
√

αx(xi,t −µ), y±t =
√

αx(x
±
t −µ),

then from (8)

y±t =
1√
αx

[

(

αµ +αx
)

pt−1− (αµ µ̄ +αxµ)± β√αµ +αx

σt−1
(pt−1−vt)

]

. (10)

Denote

ym
t =

√
αx(x

m
t −µ), yM

t =
√

αx(x
M
t −µ).

Then the demand function (9) can be written as

qi,t =











qf
i,t if yi,t ≤ ym

t or yi,t ≥ xM
t ;

qc
i,t if yi,t ∈ (ym

t ,y
M
t ),

(11)

in whichxi,t in (9) is replaced byxi,t = µ +yi,t/
√

αx. The standard normal probability density and

cumulative probability functions are denoted, respectively,

φ(x) =
1√
2π

e−x2/2, Φ(x) =
∫ x

−∞
φ(y)dy. (12)

It then follows from the demand function (11) that the chartists are those whose signals fall into
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(ym
t ,y

M
t ). Denotemt the fraction of the chartists, then

mt = Φ(yM
t )−Φ(ym

t ). (13)

Note thatdmt/dt = φ(yM
t )−φ(ym

t ). As the market consists of fundamentalists and chartists only,

the fraction of fundamentalists becomes 1−mt .

Different from the existing HAMs where the fundamentalistsshare the same demand function,

in this paper, because of the information dispersion, the fundamentalists have different demand

functions corresponding to their different signals on the fundamental values. With equation (9)

and the notation in (13), the aggregate demand of all the agents is then given by

Dt =
∫ ym

t

−∞

αµ µ̄ +αxµ +
√

αxyi,t −
(

αµ +αx
)

pt−1

Aγ
φ (yi,t)dyi,t

+
∫ +∞

yM

αµ µ̄ +αxµ +
√

αxyi,t −
(

αµ +αx
)

pt−1

Aγ
φ (yi,t)dyi,t +mt

β (pt−1−vt)

Aσ2
t−1

=

√
αx

Aγ

(

∫ ym
t

−∞
yi,tφ (yi,t)dyi,t +

∫ +∞

yM
t

yi,tφ (yi,t)dyi,t

)

+(1−mt)
αµ µ̄ +αxµ −

(

αµ +αx
)

pt−1

Aγ
+mt

β (pt−1−vt)

Aσ2
t−1

.

Using (12), the above demand function can be rewritten as

Dt =
αx

Aγ

[

1√
2παx

(

e−
(yM

t )2

2 −e−
(ym

t )2

2

)

+µ
(

1− (Φ(yM
t )−Φ(ym

t ))

)]

+

[

1− (Φ(yM
t )−Φ(ym

t ))

]

αµ µ̄ − (αµ +αx)pt−1

Aγ
+[Φ(yM

t )−Φ(ym
t )]

β (pt−1−vt)

Aσ2
t−1

,

or alternatively, using (12) and (13),

Dt =

√
αx

Aγ
[φ(yM

t )−φ(ym
t )]+ [1−mt]

αµ µ̄ +αxµ − (αµ +αx)pt−1

Aγ
+mt

β (pt−1−vt)

Aσ2
t−1

.

To determine the market price, we follow Day and Huang (1990)and assume that a maker maker
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adjusts the price according to

pt = pt−1+λ (Dt +St), (14)

whereλ > 0 measures the impact of marginal aggregate demand on the asset price, andSt ∼

N(0,σ2
s ) is an exogenous supply of the risky asset5. The price updating mechanism suggests that

the price goes up in the next period ifDt +St > 0, declines or remains constant otherwise.

In the absence of supply shock (that isSt = 0) and all the agents use the fundamental strategy

(that ismt = 0), the market equilibrium price under the Walrasian auctioneer scenario reaches an

equilibrium whenDt = 0. Solving for the equilibrium price yields

p∗ =
αxµ +αµ µ̄

αµ +αx
. (15)

Note thatµ may not necessarily equal tōµ due to the information uncertainty. Therefore the

equilibrium pricep∗ may not necessarily equal to the fundamental valueµ even if all agents are

acting as fundamentalists. The equilibrium price is above the fundamental value ifµ < µ̄ , below

the fundamental ifµ > µ̄ and equivalent to the fundamental ifµ = µ̄ . The potential difference

between the equilibrium pricep∗ and the fundamental valueµ is caused by the imperfect informa-

tion. In our model, even in the absence of supply shock, thereare two origins of asset mispricing,

the information uncertainty about the fundamental value and the presence of chartists.

To better understand the dynamics of the market price (14), we now consider a simple deter-

ministic model of (14) when there is no supply shock,σ2
t−1 = σ2 andvt = pt−2. In this case, the

price dynamics become

pt = pt−1+λ
[√

αx

Aγ
m′

t +(1−mt)
αµ µ̄ +αxµ − (αµ +αx)pt−1

Aγ
+mt

β (pt−1− pt−2)

Aσ2

]

. (16)

It is easy to see that the fundamental equilibrium pricep∗ defined in (15) is the unique fixed point

of (16) and its stability can be characterized by the following proposition.

5Alternatively,St can be interpreted as the demand of the noise trader as in Black (1986).
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Proposition 1 The fundamental equilibrium price p∗ of the price dynamics(16) is locally stable

if and only if

λ
αµ +αx

Aγ
< 2. (17)

In addition, the loss of stability leads to a flip bifurcationwhenλ αµ+αx
Aγ = 2.

Proposition 1 shows that the stability of the fundamental value is maintained with small pre-

cisions of the noisy processes. This implies that less noisein the fundamental information can

contribute toward instability of the fundamental value, leading to high price volatility even when

the equilibrium is unique. Intuitively, when the dispersion of the fundamental information becomes

small, the fundamental information become more accurate but less valuable while the momentum

trading strategy becomes more popular among the agents, which then leads to instability and high

volatility. This result is consistent with the literature on coordination game with imperfect infor-

mation such as Angeletos and Werning (2006). Proposition 1 also shows that the price dynamics of

such a deterministic model can switch from stable fundamental value to two-period cycle and then

to more complicated behavior. Figure 1 illustrates the bifurcation plot of the price with respect to

γ, the speed that price is expected to converge to the fundamental. It shows that, as the speed of

the convergence of the expected price to the fundamental in the fundamental strategy increases, the

price becomes more stable. This analysis on the deterministic model provides some insight into

the price dynamics of the stochastic model to be discussed inthe following.

3 Implications of Trading Heterogeneity

The model characterizes the endogenous trading heterogeneity among agents when facing infor-

mation uncertainty. The agent that seeks to maximize her expected utility may choose different

strategies simply because either her signal or the market price has changed over time. Note that

the two threshold valuesx±t are time varying. Because of the price change, an agent may choose

different strategy even if she receives the same signal. As we are interested in the evolution in the

market fractions of agents choosing the fundamental and momentum strategies, it is sufficient to
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Figure 1: Bifurcation analysis. The price converges to the fixed point p∗ =
αxµ+αµ µ̄

αµ+αx
when γ

increases to the extent that it satisfies the stability condition thatλ αµ+αx
Aγ < 2. The parameter used

for the bifurcation isp0 = 950, p1 = 954, σ2
s ≡ 1,µ̄ = µ = 1000,β = 0.004, 1/αu = 4× 104,

1/αx = 8×104 andλ = 2.3.

know the distribution of the signals instead of every agent’s signal. Below we illustrate how various

factors affect the evolution of the fraction of the chartists,mt , over various ranges of prices. Unless

specified otherwise, we use the following set of parameters:µ̄ = µ = 1000,γ = 0.4, β = 0.9,

1/αµ = 4×104, 1/αx = 8×104, λ = 2.3, pt−1−vt = 3,σ2
t−1 ≡ 1,A= 1 andσ2

s ≡ 0.

3.1 The Impact of Mispricing

We first examine the impact of mispricing. As shown by Figure 2, the fraction of chartistsmt

decreases as the price deviates more from the fundamentalµ (for both values in|pt−1−vt | andβ ).

In another words, agents’ choose to the fundamental strategy increase with the degree of mispricing

|pt−1−µ|. In fact, it follows from (10) that

y±t =
1√
αx

[

(αµ +αx)(pt−1−µ)−αµ(µ̄ −µ)± β√αµ +αx

σt−1
(pt−1−vt)

]

. (18)

This, together with (13), implies that∂ (mt)/∂ (|pt−1−µ|)< 0, meaning that the fraction of agents

choosing the momentum strategy decreases as the mispricingincreases. This result is illustrated

in Fig. 2 with respect to different price trend|pt−1− vt | and extrapolationβ of the momentum
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Figure 2: The effect of mispricing|pt−1−µ| and momentum trading on the fraction of the chartists
mt with (a) two different price trend|pt−1− vt | = 3 and 5; and (b) two different extrapolation
β = 0.9 and 1.2.

trading strategy. It shows thatmt is close to 1 when the pricept−1 is near the fundamental value

µ = 1000, meaning most of the agents choose the momentum strategy. However,mt decreases

as the pricept−1 deviates from the fundamental valueµ, meaning that more agents choose the

fundamental strategy. This suggests that it is unlikely forthe price to deviate far away from its

value infinitely. All the others being the same, the price reverts towards its fundamental value

when it is significantly mispriced, any bubble eventually bursts and recession eventually recovers

as significant mispricing trigger agents to choose the fundamental strategy that drive the price to-

wards its fundamental value. Such nonlinear mean-reverting price movements are consistent with

De Grauwe et al. (1993), Gaunersdorfer and Hommes (2007), Bauer et al. (2009), Dieci and

Westerhoff (2010), among many others. Most studies derive the mean-reverting price behavior by

assuming the distribution of fundamentalists and chartists in different market states similar to Fig-

ure 2. The model developed in this paper provides a micro-foundation to the endogenize switching

of the choices between heterogeneous strategies as a consequence of utility maximization under

information friction.6

6We would like to thank the Associate Editor for emphasizing this contribution to the current HAMs.
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3.2 The Impact of Momentum Trading

We further examine the impact of the market power of momentumtrading on the fractionmt . Recall

from Eq.(7) that all momentum strategy shares the same demand function. The market power of

the momentum trading can be measured by|pt−1−vt | and the extrapolationβ of the momentum

strategy. Based on (9) and (10), an increase in|pt−1−vt | andβ enlarges the interval(xm
i ,x

M
i ). This

means that, as the market power of the momentum trading increases, there are less extreme signals

outside of the interval and hence more agents choose the momentum trading strategy, leading to

highermt . This result is illustrated in Figure 2. In (a), we comparemt for two different values of

|pt−1− vt |. The solid curve representsmt with relatively large|pt−1−vt | = 3, while the dashed

curve describesmt with relatively small|pt−1−vt | = 2. We observe from Figure 2(a) that, given

the samept−1, mt is larger when|pt−1−vt | is higher. We have the same observation in Figure 2(b)

with respect to the extrapolationβ of the momentum trading.

The above analysis suggests that, on the one hand, the greater the market power of the momen-

tum trading, the higher the market fraction of chartistsmt is, which may destabilize the market

price, leading to significant mis-pricing. This destabilizing role of the momentum trading is con-

sistent with the current HAMs. On the other hand, based on theprevious discussion, a significant

mis-pricing motivates more agents to choose the fundamental strategy, driving the market price to-

wards the fundamental value. This endogenous“self-correction”mechanism of the market is very

different from the current HAMs where market stability depends exogenously on the balanced

activities from the fundamentalists and chartists.

3.3 Market Fractions under Regime-dependent Reference Price

Previously we assume|pt−1−vt | to be exogenously in order to better understand the impact ofthe

market power of momentum trading on market price. In the literature, the reference pricevt of the

momentum strategy is usually a function of the historical price and can be different over different

price range. We follow Huang, et al. (2010, 2012) and definevt as regime-dependent reference

price. In particular, we divide the price domainP= [pmin, pmax] equally inton mutually exclusive
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Figure 3: The impact of regime-dependentvt onmt .

regimes such that

P= ∪n
j=1P j = [0,κ)∪ [κ ,2κ)∪· · ·∪ [(n−1)κ ,nκ ],

where jκ ( j = 1,2...,n.) represents psychological threshold corresponding to different support

(resistance) level in the chartist analysis. Whenpt−1 is observed,vt is extrapolated to be in the

middle of the trading window thatpt−1 falls into, that is:

vt = (⌊pt−1/κ⌋+ ⌈pt−1/κ⌉) ·κ/2. (19)

where⌊pt−1/κ⌋ and⌈pt−1/κ⌉ are the lower and upper bounds of the regime that enclosept−1.

Let κ = 100, based on the regime-dependentvt , we plotmt againstpt−1 in Fig. 3. It shows

that, as the price changes, the fraction of chartistsmt changes between 1 and 0 frequently. When

pt−1 is relatively close to the center of the regimevt , the market power of the momentum trading

is weak andmt moves towards 0. Otherwise, whenpt−1 is on the boundary of the regime,mt

changes towards 1. As the price changes from one regime to another, the regime-dependentvt

updates accordingly, which changesmt accordingly. Such regime-dependentvt makes agents more

sensitive to the price changes and introduces more volatility to mt by enhancing the switching

between choosing the two strategies.

As vt is a function of the past price, the price dynamics is essentially one-dimension. Such a

model is nonlinear, maybe even chaotic, which is capable of generating rich price dynamic patterns.
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Given the complexity of the model, we illustrate a typical phase diagram of the model in Figure

4, with κ = 200,αx = 1/200,αµ = 1/100 and other parameters given in the standard parameter

set. The asterisk-marked curve captures the phase line thatmapspt−1 to pt . It cross the 45 degree

line on whichpt−1 = pt several times, suggesting that there are multiple equilibria. Moreover,

when the price is significantly higher than the fundamental value (µ = 1000), the phase line is

always below the 45 degree line, which means that the price will subsequently decline when it is

sufficiently overpriced. In particular, given anypt−1 that is sufficiently higher than the fundamental

value, it is observed from Figure 4 thatpt < pt−1. This is because, when the asset is significantly

overpriced, agents cluster almost entirely to be fundamentalists (see Figure 2), which drives the

price down towards its fundamental value. Similarly, when the price is significantly lower than

the fundamental value, the phase line is above the 45 degree line, indicating that the price will

subsequently rebounds when it is sufficiently underpriced.The result is driven by agents clustering

to fundamentalists when the asset is significantly underpriced. When market price is not far away

from the fundamental value, the trading is dominated by momentum strategy, which increases

price fluctuation, indicating by the significant upward piece-wise phase lines when price is around

the fundamental vale (µ = 1000). This again illustrates the price fluctuations and endogenous
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self-correction when the market price deviates far away from the fundamental value.

4 Time Series Properties and the Stylized Facts

The current literature on HAMs is powerful in reproducing commonly observed financial market

abnormalities that cannot be justified by efficient market hypothesis. In this section, we explore the

time series properties numerically and in particular focuson whether our HAM with endogenous

heterogeneity can also generate the stylized facts in financial time series. We test for the non-

normality, fat tails and volatility clustering in returns.We also examine whether the return series

exhibit the power-law distribution and long-memory process (or long-range dependence), which

are widely observed in financial markets.

To understand the effect of the stochastic noise, we simulate two price series, one with and one

without stochastic supply shock. In the absence of the supply shock, the model is deterministic.

A deterministic data generating process is unrealistic given that the price is largely unpredictable,

however it provides a good way to understand the performanceof the model. Note that these

stylized facts are commonly observed across internationalfinancial markets over decades while

exogenous shocks are random, they are more likely driven by some endogenous price dynamics

instead of random shocks. Therefore we are interested in if the deterministic model helps to gener-

ate these stylized facts. In general, as shown in He and Li (2007), it is the interaction between the

underlying deterministic dynamics and noise that characteristics the realistic time series properties.

To see how well the simulated data matches with the real data in terms of statistical and qual-

itative properties, we benchmark for each stylized fact based on the daily price of S&P 500 index

from August 28, 2006 to August 7, 2014. The compounded single-period return of the risky asset

from t −1 to t is defined asrt = log(pt)− log(pt−1). To differentiate the time series generated

from the S&P 500 index (SP), the simulation based on deterministic model (SD) and the simu-

lation based on stochastic model (SS), we add SP, SD and SS in front of the name of each time

series. For example SPpt , SD pt and SSpt denote respectively the price of S&P 500 index, the
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simulation of the deterministic and the stochastic models respectively. Similarly, SPrt , SD rt and

SSrt denote the log returns based on the three price series SPpt , SD pt and SSpt .

The set of parameters used to simulate the deterministic andstochastic price is common:p0 =

1295.09, κ = 43.891,σ2
s ≡ 1 and the other parameters are the same with the standard parameter

setS: µ̄ = µ = 1000,γ = 0.4, β = 0.9, 1/αu = 4× 104, 1/αx = 8×104, A = 1 andλ = 2.3.7

The parameter value ofp0 equals to the first observation of the S&P 500 sample, and thatof

µ̄ andµ is broadly calibrated with the average fundamental value ofS&P 500 calculated based

on Gordon growth model. Among the other parameters,β , γ, λ , αu andαx , we focus on the

two key behavior parametersγ andβ later. We use this standard parameter set throughout the

paper, unless specified otherwise. As our purpose is to illustrate if the model has the capability to

generate various stylized facts as the conventional HAMs do, we focus on typical deterministic and

stochastic simulated price series. A Monte Carlo simulation and sensitivity analysis are conducted

to analyze the impact of the two key behavior parametersβ andγ later.

4.1 Time Series Properties

Before examining the stylized facts, we first present some time series properties on price and

return. Figure 5 plots time series of the prices and returns of the index and a typical simulation.

Although the price trajectories for the three price series of (a) the indexSPpt , (c) the deterministic

modelSDpt and (e) the stochastic modelSSpt look quite different, we do observe commonly that

the prices move up and down with occasional bubbles and crashes. For the simulated prices, even

though the fundamental value is constant, the price are quite volatile, suggesting the presence of

excess volatility. The results are consistent with the empirical evidence documented in Ebrahim

and Mathur (2001), Taylor (2007) and early HAMs for example Lux (1995). The commonly shared

features by the corresponding three return series in (b), (d) and (f) are: (i) the return moves around

zero; (ii) high and low volatility tend to cluster together,suggesting that small (large) changes in

returns tend to be followed by small (large) changes in return; and (iii) returns are generally more

7Note that the parameterσ2
s is abandoned when simulating the deterministic price.
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Figure 5: The time series of prices and returns on the S&P500 index (top panel), the simulation
from the deterministic model (middle panel), and the simulation from the stochastic model (bottom
panel).
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volatile when the price declines. The results suggest that simulations based on our model share

some of the time series properties of the real return patterns documented in existing literature.

Table 1 summarizes the statistical properties of returns. In line with the S&P 500 index, returns

generated from the deterministic and stochastic models have negative skewness and high kurtosis.

The negative skewness suggests that extremely negative returns are more likely to happen than

extremely positive returns. The large kurtosis suggests the presence of fat tails, that is, the extreme

returns appear more frequently than what are predicted by the normal distribution. These features

suggests that the returns are not normal. This is further supported by p-value of the Jarque-Bera

test, which rejects the null hypothesis that either SPrt , or SDrt or SSrt is normally distributed.

Table 1: Summary Statistics of Returns. This table reports the summary statistics, including mean,
standard deviation (sd), skewness, kurtosis, and the p-value of the Jarque-Bera test, of the re-
turn series of S&P500 index (SPrt), the simulated deterministic model (SDrt) and the simulated
stochastic model (SSrt).

mean sd min max skewness kurtosis p-value
SPrt 0.000 0.014 -0.095 0.110 -0.325 12.525 0.000
SD rt -0.000 0.012 -0.065 0.068 -0.347 8.515 0.000
SSrt 0.000 0.042 -0.328 0.355 -0.211 19.327 0.000

The above results suggest that the model is able to generate realistic time series observed in the

S&P500. They are however very sketchy and basic. To explore further the statistics of the model

and compare with the S&P500 index, we conduct econometric tests to study the degree of volatility

clustering, the heaviness of the tails, and the distribution of returns. In paricular, we examine the

short-term and long-term features of the price movements and study the long-memory process and

long-range dependence.

4.2 The Power Law of Returns

Both theoretical and empirical evidence suggests that the tail distribution of return is well approx-

imated by the power law (Gabaix et al., 2003, 2006). In particular the distribution of returns is
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Table 2: The power law of returns. For each return series in SPrt , SD rt and SSrt , we estimate

lnP

(

∣

∣

rt−r̄
sd

∣

∣ > X

)

= −ζ lnX + b, whereζ ≃ 3 is the Pareto exponent. This table reports the

estimatedζ ≃ 3, the number of observations N and theR2.

SP lnP(
∣

∣

rt−r̄
sd

∣

∣> X) SD lnP(
∣

∣

rt−r̄
sd

∣

∣> X) SS lnP(
∣

∣

rt−r̄
sd

∣

∣> X)
ζ 2.981∗∗∗ 3.086∗∗∗ 2.681∗∗∗

(14.649) (12.924) (12.988)
N 55 55 55
R2 0.799 0.756 0.758

found to decay according to

P

(
∣

∣

∣

∣

rt − r̄
sd

∣

∣

∣

∣

> X

)

∼ X−ζ , (20)

whereζ ≃ 3 is the tail or Pareto exponent, ¯r andsd are the mean and standard deviation of the

returnsrt ,
rt − r̄

sd
is the normalized return, and∼ denotes asymptotic equality up to numerical

constants. In Gabaix (2003, 2006), the estimation resultζ ≃ 3 is obtained by lettingX take a range

of values and estimate with ordinary least squares (OLS) thelogarithmal of Eq.(20), that is,

lnP

(
∣

∣

∣

∣

rt − r̄
sd

∣

∣

∣

∣

> X

)

=−ζ lnX+b. (21)

We follow the same methodology to test whether the simulatedreturns exhibit such a power-

law distribution. In particular, we letX = 0.1,0.2, ...0.55 and calculateP(
∣

∣

rt−r̄
sd

∣

∣ > X) for each

realization ofX for each of SPrt , SDrt and SSrt
8. Based on these observations ofX andP(

∣

∣

rt−r̄
sd

∣

∣>

X), we estimate Eq.(21) with OLS for each return series. The estimation results are reported in

Table 2. It shows that, like the tail distribution of SPrt , both SDrt and SSrt have a power exponent

ζ of around 3. The fact that estimation coefficients ofζ ≃ 3 confirms the presence of power-law

distribution in both the index and simulated return series.
8If we further increasesX above 0.55, thenP(

∣

∣

rt−r̄
sd

∣

∣ > X) = 0 for the time series of SDrt . For the other two
series, the result that the estimated coefficientζ is approximately 3 remains robust even after we increaseX as long as
P(
∣

∣

rt−r̄
sd

∣

∣> X)> 0.
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4.3 Volatility Clustering, Long Memory, and Leverage Effect

As documented in Cont (2001), the autocorrelations function (ACF) of returns are insignificant but

different measures of volatility, such as absolute or square returns, exhibit positive and persistent

ACFs. We report the ACFs in Figure 6. The trivial ACFs of returns suggest that past return is not

necessarily informative for future return. The significantly positive ACFs of volatility measures

imply that periods of quiescence and turbulence tend to cluster together. Panels (a)-(c) of Figure

6 demonstrate these characteristics of volatility clustering by piloting ACFs as a function of the

number of lags. For the S&P 500, deterministic and stochastic simulations, there are no significant

and decaying ACFs in return (apart from the first lag), but theACFs of the absolute returns and

squared returns are relatively large and persistent even after 100 lags.

To see how persistent the volatility is, we follow Cont (2001) to estimate the following power

component in the ACFs of absolute returns:

corr(
∣

∣rt+q
∣

∣ , |rt |)≃ ς/qd, (22)

whereq is the number of lags,ς is a parameter that captures the ACF of absolute returns withlag

one, andd is the power exponent that captures how fast the ACFs decay. For each of the time series

of returns, we first obtain the ACFs of the absolute returns for q= 1,2, . . .200, and then estimate

Eq.(22) using nonlinear least squares (NLS). Let SPcorr(
∣

∣rt+q
∣

∣ , |rt |), SDcorr(
∣

∣rt+q
∣

∣ , |rt |) and SS

corr(
∣

∣rt+q
∣

∣ , |rt |) denote the ACFs of absolute returns of SPrt , SDrt and SSrt respectively. Table 3

presents the estimation results. We find that the ACFs of absolute returns of S&P 500, deterministic

and stochastic simulations, decay with exponents of 0.368, 0.417 and 0.205 respectively. The

results are roughly consistent with the empirical evidencethatd generally falls into[0.2,0.4] (see

Cont, 2001).

Long memory and long range dependence are synonymous notions that are used interchange-

ably in the literature. Volatility clustering is an indicator of long memory but it does not necessarily

lead to long memory. Following the standard definition in Tsay (2010, Chapter 2) and Campbell,
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Figure 6: Volatility clustering and Long Memory. Panel (a) plots the autocorrelations function
(ACFs) of returns (solid line), absolute returns (asteriskmarked line) and squared returns (dotted
line) for S&P500 index against the number of lag. Panel (b) and (c) plots similar statistics based
on returns of simulation from deterministic and stochasticmodel respectively. Panel (d) plots the
Lo modified R/S statistic of the absolute returns.

Table 3: Persistence of ACFs of absolute returns. For each return series in SPrt , SD rt and SSrt ,
we estimatecorr(

∣

∣rt+q
∣

∣ , |rt |)≃ ς/qd with nonlinear least squares and reportς andd.

SPcorr(
∣

∣rt+q
∣

∣ , |rt|) SD corr(
∣

∣rt+q
∣

∣ , |rt |) SScorr(
∣

∣rt+q
∣

∣ , |rt|)
d .368∗∗∗ .417∗∗∗ .205∗∗∗

(21.015) (51.367) (23.461)
ς .605∗∗∗ .916∗∗∗ .658∗∗∗

N 200 200 200
R2 .866 .966 .974
Root MSE .058 .037 .046
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Lo and MacKinlay (1997, Chapter 2), the time seriesxt is said to be long-memory9 if

(1−L)d xt = εt ,

whereL is the lag operator,d ∈ (−0.5,0.5) is the memory parameter that measures the extent of

the memory or long range dependence in{xt}, and{εt} is a white noise series. The long-memory

time seriesxt is said to be fractionally differenced of orderd. It is neither stationary, where the

ACF declines exponentially, nor is it a unit root, where the ACF decays linearly. Such a long-

memory process is characterized with small and slowly-decayed ACFs. The decay of ACFs in

long-memory process is much faster than in the unit root process for the first lag, but slower for

larger lags. Whend ∈ (−0.5,0.5) andq→ ∞, the ACFs of{xt} fades away at a polynomial rate as

the lag increases such that:

corr(xt ,xt+q)∽ f (q)/q1−2d,

where f (q) is any slowly varying function at infinity, verifyingf (aq)/ f (q)→ 1 for anya> 0, as

the number of lagq→ ∞.

As documented in Christensen and Nielsen (2007), Christensen, et al. (2010), Bollerslev, et al.

(2013), Rossi and Santucci de Magistris (2013), among many others, the stock market volatility

has long memory. The phenomenon of volatility clustering discussed above is a necessary but not

sufficient condition for the existence of long memory. We nowformally test the existence of long

memory in the volatility measured by the time series of|rt |. The methodology that we apply is the

range over standard deviation or R/S statistic modified by Lo(1991) that corrects for the effects of

short-range dependence10.

We test for the null hypothesis that there is no long memory ifthe estimated R/S statistic falls

out of the critical interval. The result rejects the null hypothesis and provides evidence that the

time series is long-memory. As the Lo modified R/S statistic does not provide a criteria for the

9Baillie (1996) provides an extensive survey on the definition of long memory.
10The other commonly used methodologies is the semiparametric estimator of log periodogram (LP) regression,

represented by Geweke and Porter-Hudak (1983), Phillips (2007) and Robinson (1995).
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Figure 7: The leverage effect. This figure plots the degree ofleverage effect measured by
corr(r2

t+q, rt).

selection of the optimal lag and the R/S statistic maybe sensitive to the selection of lags. We report

the R/S statistic for lags ranging from 1 to 100 and graph it inPanel (d) of Figure 6. When the

number of lags is not too large, i.e.q< 30, the Lo modified R/S statistic for SP|rt |, SD |rt | and

SS|rt | all fall out of the 95% critical interval[0.809,1.862], which suggests the existence of long

memory in both the real and simulated absolute return series.

Other than volatility clustering and long memory, we also observe from Fig. 5 that volatility

tends to become higher as price declines and lower as the price rises. The negative correlation

between volatility and returns is called leverage effect orvolatility asymmetry (Bouchaud, et al.,

2001 and Pagan, 1996). Represent the volatility with absolute returns, for each of the three return

series, we calculatecorr(r2
t+q, rt) for q = 0,1,2, . . .100. Figure 7 plotscorr(r2

t+q, rt) against the

number of lagq for each return series. It shows that when the number of lag issmall, i.e.q< 7, the

relation between volatility and returns is negative for each of the three time series of return. This

suggests that negative returns are associated with higher contemporary volatility and followed by

higher volatility in the short-term. This implies that the model is able to capture the leverage effect

observed in financial markets.
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4.4 Monte Carlo Analysis

In this section, we conduct a Monte Carlo analysis on the robustness of the results based on the

simulations of the stochastic model. We run 1,000 simulations using the same parameter set. In

each simulation, the exogenous supply shockSt is normally distributed around 0 with a variance

of 1. The realization ofSt takes different random values in the 1000 repeated simulations.11 We

repeat the previous statistical analysis for each valid simulation and summarize the results in Table

4. The last column of Table 4 report these statistics based onthe S&P 500 index. Based on the

mean of these statistics, it remains robust that the stochastic simulation matches with the S&P

500 in terms of the first to fourth moments, power-law distribution, volatility clustering and long

memory. Looking at the 5% confidence interval enclosed by p5 and p95 values, we observe that a

large proportion of our simulation matches with the S&P 500.12

Table 4: Monte Carlo Analysis. This table reports the summary statistics, including mean, standard
deviation (sd), minimum value (min), median value (Med), maximum value (Max), 5th percentile
(p5), and 95th percentile (p95), of the various measures of stylized facts in the first column based
on 634 different time series of returns. The mean, sd, skewness, kurtosis are the first, second, third

and fourth moments of returns respectively.ζ is the power component in lnP

(

∣

∣

rt−r̄
sd

∣

∣ > X

)

=

−ζ lnX + b, d is a measure of how fast the autocorrelation function decays, R/S statistic is the
Lo-modified test of long-range dependence. The last column reports the corresponding statistics
for S&P 500.

Mean sd Min Med Max p5 p95 SP500
mean 0.000 0.000 -0.002 0.000 0.000 -0.001 0.000 0.000
sd 0.021 0.012 0.006 0.018 0.071 0.009 0.047 0.014
skewness 0.036 0.218 -3.044 0.025 2.168 -0.102 0.249 -0.325
kurtosis 6.348 9.529 2.124 3.997 126.487 2.541 18.437 12.525
ζ 2.929 0.435 1.542 2.956 3.942 2.124 3.575 2.981
d 0.299 0.130 0.073 0.283 1.094 0.123 0.522 0.368
R/S statistic 6.047 1.518 2.064 5.966 10.096 3.698 8.711 6.716

11The simulation may lead to non-positive price that is not realistic. We drop the simulation that generates any
non-positive price, which may explain the positive skewness on average in Table 4. Eventually, we include in our
sample 634 valid simulations, each of which contains 2000 observations on returns.

12This proportion increases further in the 90% confidence interval (not reported for space constraint). Among the
634 simulated time series of returns, we find 521 (or 82%) of them have a kurtosis greater than 3, 512 (81%) of them
have a p-value of Jarque-Bera normality test less than 5%, 356 (56%) of them have ad that falls into [0.2,0.4], and
634 (100%) of them have R/S statistic that fall out of[0.809,1.862] when the number of lag is 2.
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Figure 8: The R/S statistics forγ (on the left panel) andβ (on the right panel).

4.5 Sensitivity Analysis

We are also interested in how the stylized facts depends on the choice of behavior parameters

of the model, in particular, the mean reverting parameterγ of the fundamental strategy and the

extrapolation parameterβ of the momentum strategy.13 We first focus on the R/S statistics since

long memory is found to be the most challenging one among those stylized facts. With the chosen

set of parameters, we varyγ andβ , respectively, from 0.01 to 1 with an interval of 0.01 and run

100 simulations for each value. For each simulated time series, we calculate its R/S statistics. For

each parameter value, we then calculated the average R/S statistics of the 100 simulated time series

and report the results in Figure 8, illustrating the relation between R/S statistics andγ on the left

panel andβ on the right panel. The results show the evidence of long memory in returns for all

values ofγ andβ (except whenβ ≤ 0.05); all the R/S statistics are greater than the cutoff value

1.862.

We then examine the impact ofγ andβ on volatility clustering, measured by the significant

decaying ACFs. For illustration, we choose three representative values for each ofγ andβ . For

each parameter value, we calculate the average ACFs of 100 simulated returns series for all lags

13The sensitivity analysis in this section means to provide additional evidence on the robustness of the results
presented above and to offer some implications on the relation between key parameters and various statistics and
stylized facts. Note however due to the large number of parameter sets, the nonlinear and complexity nature of the
underlying deterministic model, one should be careful in extending the relation between parameter values and various
statistics documented in this section.
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Figure 9: The autocorrelation functions (ACFs) of absolutereturns forγ = 0.1,0.4,0.7 (on the left
panel) andβ = 0.3,0.6,0.9 (on the right panel).

from 1 to 100 and report the result in Figure 9 forγ on the left panel andβ on the right panel.

For γ = 0.1,0.4 and 0.7, the left panel shows that the decaying pattern of the ACFs are very

similar, indicating that the volatility clustering is not very sensitive to the mean reverting speed

γ. However, the ACFs patters forβ = 0.3,0.6 and 0.9 are very different. It appears that the

stronger the extrapolation parameter of the momentum tradingβ is, the higher the ACFs of absolute

returns (similar evidence is found if we calculate the ACFs of squared returns), indicating that an

increasing in momentum trading enhances volatility clustering.

5 Conclusion

Heterogeneity and bounded rationality are two key characteristics of financial markets. Based

on complete information and some heuristic assumptions, the existing heterogeneous agent mod-

els (HAMs) have been successful in explaining financial market abnormality and stylized facts

of financial data and outperforming random walk and many conventional models. This paper

contributes to the development of this literature by endogenizing heterogeneity of agents’ trading

when agents face information uncertainty. Because of the information dispersion, agents that seek

to maximize their utility may choose different trading strategies in response to changing market
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environment, which generates cross-sectional trading heterogeneity among agents. The choices

of strategies can vary over time due to changes in their private signals and market prices. Conse-

quently, both cross-sectional and time-varying trading heterogeneity arise endogenously. This pro-

vides a micro-foundation to the switching mechanism widelydocumented in the current HAMs.

The model is able to generate transitions between bubbles and recessions and to match the real

data pretty well with respect to the cubic-law distributionin returns, volatility clustering and long

memory, which are commonly observed properties in financialmarket returns and volatility.
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Appendix: Proof of Proposition 1

First of all, note that at the steady state equilibrium pricep∗, we haveym
t = yM

t = 0,mt = 0 and

m′
t = 0. Letqt = pt−2, then (16) can be written as











pt = pt−1+λD(pt−1,qt−1),

qt = qt−1,

where

D(pt−1,qt−1) =

√
αx

Aγ
m′

t +(1−mt)
αµ µ̄ +αxµ − (αµ +αx)pt−1

Aγ
+mt

β (pt−1−qt−1)

Aσ2 .
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Note that at the stead statept = p∗ andqt = p∗, we have

∂D(pt−1,qt−1)

∂ pt−1
=−αµ +αx

Aγ
,

∂D(pt−1,qt−1)

∂qt−1
= 0.

This leads to the two eigenvalues:

Γ1 = 0, Γ2 = 1−λ
αµ +αx

Aγ
.

Therefore|Γ2|< 1 if and only if 0< λ αµ+αx
Aγ <2. In addition, whenλ αµ+αx

Aγ = 2, we haveΓ2=−1,

leading to a flip bifurcation. This completes the proof.
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