The 23rd Australian Conference for Science and Mathematics Education

27th, 28th, 29th September 2017
Monash University, Clayton Campus
http://www.acds-tlcc.edu.au/events/acsme/
PROCEEDINGS OF THE AUSTRALIAN CONFERENCE ON SCIENCE AND MATHEMATICS EDUCATION 2017
(22nd Annual UniServe Science Conference)

27TH – 29TH SEPTEMBER 2017
MONASH UNIVERSITY

SCIENCE AND MATHEMATICS TEACHING AND LEARNING FOR THE 21ST CENTURY
The organisers of ACSME 2017 would like to acknowledge the generous sponsorship provided to this conference from:

- Monash University
 https://www.monash.edu/

- Australian Council of Deans of Science Teaching and Learning Centre

- Monash Education Academy
 https://www.monash.edu/learning-teaching/Enhancing-teaching/monash-education-academy

- Cengage

Local organizing committee

- Cristina Varsavsky: Monash University
- Chris Thompson: Monash University
- Tina Overton: Monash University

Program committee

- Tina Overton (Chair): Monash University
- Deborah King: The University of Melbourne
- Yvonne Hodgson: Monash University
- David Hoxley: La Trobe University
- Barbie Panther: Federation University
- Jan West: Deakin University

Editors: Tina Overton and Alexandra Yeung

Published by: UniServe Science, The University of Sydney, NSW 2006, Australia
ISBN: 978-0-9871834-6-0
©2017
EDITORIAL

The 23rd Australian Conference of Science and Mathematics Education (ACSME 2017) is held at Monash University, Clayton campus. This is the second time this conference made it to Melbourne, and also the second conference held under the management of the Australian Council of Deans of Science.

We have a rich program of talks in the form of orals, bites and poster bites, as well as poster displays. The keynotes are presented by Karen Burke DaSilva and Paul Francis, both recipients of a 2016 Australian Award for University Teaching, who will inspire us with tips and insights on how to best engage students in science learning and prepare them for their futures. Together, ACSME 2017 presentations represent the challenges faced by academics and professional staff today in their daily lives as science educators, and their innovative ways to address these. The variety of technologies available to us, the many types of assessment, what to do online and what not, the use of e-resources, the different approaches to teaching; all these provide many possibilities and hence there are many important decisions for those of us teaching science and mathematics. The passion, enthusiasm, creativity and expertise of the many ACSME presenters can only help to improve our knowledge, and assist us to make good decisions and to improve science teaching and learning at undergraduate level.

These proceedings contain abstracts and full papers presented at ACSME 2017. All contributions were reviewed by at least two reviewers. Each full paper submission was double blind reviewed.

We give our heartfelt thanks to all those who made ACSME 2017 happen, to the program committee, and to our many colleagues who working in the background took care of every little detail to make this conference a success.

We hope that you find ACSME 2017 enjoyable and stimulating, and that you take home new ideas to implement within your context.

Cristina Varsavsky, Tina Overton, Christopher Thompson
Local organising committee, Australian Conference for Science and Mathematics Education 2017
The Proceedings of the Australian Conference on Science and Mathematics Education contains three types of papers:

- **Full Refereed Papers** which have been peer reviewed by two independent experts and satisfy the Australian DEST E1 category.
- **Full Written Papers (non-refereed)** which have been subject to editorial assessment and satisfy the Australian DEST E2 category.
- **Abstracts** (extract of paper) which have been subject to editorial assessment and satisfy the Australian DEST E3 category.

We look forward to seeing you at the Australian Conference on Science and Mathematics Education (23rd Annual UniServe Science Conference).
TABLE OF CONTENTS

KEYNOTE PRESENTATIONS

Teaching large classes without lectures
Paul Francis
1

A road to success – Preparing students for an unknown career future
Karen Burke Da Silva
2

ORALS 1: EMPLOYABILITY

Deviation from stem peers and employers in employability focuses: the case of maths, stats, physics and astronomy students
Serene Lin-Stephens, Maurizio Manuguerra, James Downes, Judith Dawes, Carolyn Kennett, John Uesi
3

Graduate employability in science: academics’ perceptions
Mathbub Sarkar, Tina Overton, Christopher Thompson, Gerry Rayner
4

Beyond placements: Using curriculum mapping to embed WIL across a chemistry major
Erica Smith, Jackie Reid
5

ORALS 2: E-RESOURCES AND TOOLS

Optimising video feedback: What assessment fits best?
Jack Wang, Hoon Slang Gk, Yung-I Liu, Peter Worthy
6

Do students learn introductory physics effectively in an online environment?
Elizabeth Angstmann
7

Using industry developed online tools in tertiary agricultural science teaching
Amy Cosby, Mark Trotter, Wendy Fasso, Sue Gregory
9

ORALS 3: EMPLOYABILITY

Building employability skills in a biomedical science capstone unit
Daniel Czech, Maria Demaria, Yvonne Hodgson
11

Developing undergraduate careers awareness and employability skills via an assessed professional development program
Julia Choate, Sandy Cran, Maria Demaria
13

Barriers and opportunities for engaging science students in WIL
Jo Elliott, Trina de St Jorre, Elizabeth Johnson
15

ORALS 4: THINKING SKILLS

A cross sectional study of [performance on a pilot chemistry critical thinking tests
Stephen Danczak, Chris Thompson, Tina Overton
16

Critical thinking: A STEM industry perspective
Alastair Pearl, Ian Larson, Laurence Orlando, Gerry Rayner
18

Cultivating creative thinking in science students
Jasmina Lazendic-Galloway
20

ORALS 5: ASSESSMENT

Prompting undergraduate students’ metacognition of learning: Implementing meta-learning assessment tasks in the biomedical sciences
Kay Colthorpe, Tania Sharifirad, Stephen Anderson, Kirsten Zimbardi
21

Students created notes as an exam aid: A cross disciplinary content analysis
Jo-Ann Larkins
23

Open-note examinations as opportunities for meaningful learning and assessment
Elizabeth Yuriev, Michelle Lazarus, Daniel Malone
25
ORALS 6: LAB LEARNING
‘You thought you did really well?’ Examining the relationship between self-evaluation, attributions and confidence in anatomy practical exams
Julian Vitali, Louise Ainscough, Tracey Langfield, Kay Colthorpe
Laboratory aims and expectations: Measuring the gap between students and teaching staff
Stephen George, Tina Overton, Chris Thompson
Redesigning the lab component of a bridging chemistry unit
Catherine Rowen, Leonie Hughes, LanChi Koenigsberger

ORALS 7: SKILLS DEVELOPMENT
Encouraging students’ self-regulated learning skills through the use of discussion boards
Richard Leung, Louise Ainscough, Kay Colthorpe, Tracey Langfield
Developing teamwork skills in undergraduate science students: The academic perspective and practice
Rowan Brookes
Removing the cloak of invisibility: Developing scientific writing practices for commencing science students
Yvonne Davila, Neela Griffiths

ORALS 8: MATHS AND MISCONCEPTIONS
Perceptions of mathematics among undergraduate biomedicine students
Anthony Morphett
Perspectives on equity in mathematics education at an Australian university
Jim Pettigrew
Getting fundamentals right: Case studies in how to confront students’ misconceptions
Heather Verkade, Terence Mulhem, Allen Espinoza, Jason Lodge, Kristine Elliott, Simon Cropper, Benjamin Rubinstein

ORALS 9: ENGAGEMENT
Motivating Greater student engagement in learning
Raoul Mulder, Theresa Jones
Physical biochemistry: Embodying the amino acids
Terence Mulhem, Rinske Ginsberg
Enhancing student engagement and conceptual understanding through active learning tutorials
Allen Espinosa, Heather Verkade, Terence Mulhem, Jason Lodge

ORALS 10: THE FIRST YEAR
Explicit teaching of skills for first year biologists: Reflecting on our impact
Dawn Gleeson, Lisa Godinho, Lynetter O’Neill
Curriculum transformation: Creating alternative pathways in first year chemistry
Simon Bedford, Glennys O’Brien
Patterns of study of the first year chemistry cohort
Suzanne Boniface, Amanda Gilbert

ORAL BITES 1: THINKING SKILLS
Evaluating the metacognitive skills of first year allied health students in anatomy
Angelique Sweep, Tracey Langfield, Kay Colthorpe, Louise Ainscough
Addressing gender disparity in the understanding of projectile motion
Umairia Malik, David Low, Kate Wilson
Do our students have a weight problem?
David Low, Kate Wilson
Transformations of records usage in higher education
Kei Wei Lam, Kay Colthorpe, Louise Ainscough
Pathways to creating inclusive learning environments through adaptation of multimodal external representations used in chemistry lectures
Joao Elias Vidueira Ferreira, Gwendolyn Lawrie
Table of Contents

ORAL BITES 2: LEARNING IN THE LAB
Can spreadsheets be used to engage students with open investigations in school science?
Vidya Kota, Scott Cornish, Manjula Sharma

The ASELL Schools national project
Manjula Sharma, Scott Cornish, Alexandra Yeung, Scott Kable

Investigating students' experiences of undergraduate science experiments across 5 disciplines: are student experiences really that different?
Scott Cornish, Alexandra Yeung, Scott Kable, Manjula Sharma

Supporting decision making in the lab
Angela Ziebell, Stephen George, Chris Thompson, Tina Overton

Trends in level 1 chemistry students' laboratory anxiety and self-efficacy
Cara Rummey, Dino Spagnoli, Tristran Clemmons

Using iPads in a first year chemistry laboratory to enhance student learning
Suzanne Boniface

ORAL BITES 3: IDENTITIES
Transition into STEM study: Developing strategies to engage indigenous students
David Collins, Lisa Godinho, Michelle Levitt, Lyn O'Neill, Mick Moylan, Syd Bordell

Academic attitudes to service teaching
Delma Clifton, Steve McKillup

Who are we? The identity of STEM educators
Rachel Sheffield, Susan Blackley, Dawn Bennett

The impact of gender on the career plans of undergraduate chemistry students in Australia, New Zealand and the UK
Jared Ogunde, Tina Overton, Chris Thompson

ORAL BITES 4: SUPPORTING STUDENTS
We built it, where are they?
Don Shearman, Lyn Armstrong

Development of an instrument to investigate affective factors impacting students' mathematics success in an enabling program
Jasmine Ng, Kung-Keat Teoh

Supporting students with disabilities in our undergraduate classes
Lisa Starkey

Structure mathematics support with flexible learning modes: Who, what, why, where, when and how?
Deborah Jackson

Looking for innovative and efficient teaching methods for first year university mathematics
Jelena Schmalz, Xenia Schmalz

ORAL BITES 5: DEVELOPING SKILLS
Transitioning to the flipped classroom: Impacts on student satisfaction
Laura Dooley, Sarah Frankland, Elise Boller, Elizabeth Tudor

Student perspective of peer partnerships for learning
Nirma Samarawickrema

Digital literacy and self-efficacy in STEM education
Hoon Siang Gn, Jack Wang, Gwendoline Lawrie

Student perceptions of teamwork in undergraduate science degrees
Laura Ann Wilson, Rowan Brookes, Susie Ho

Ready for work: Helping undergraduates recognise the transferable skills developed during their degree
Michelle Hill, Tina Overton, Rowan Brookes

ORAL BITES 6: ASSESSMENT
Applying learning analytics approaches at course/unit level to develop a targeted intervention
Lesley Lluka, Mark Williams, Prasad Chunduri
Evaluation of students’ attitudes towards written and video feedback for laboratory reports
Klaudia Budzyn, Barbara Kemp-Harper, Elizabeth Davis, Gerry Rayner

Does (online versus traditional) assessment method impact on exam performance?
Maria Parapilly, Mark Taylor

A case for limiting written examinations
Nicholas Tran, David Hoxley

Assessing the assessments: What have we learned?
Siegbert Schmid, Simon Pyke, Samuel Priest, Glennys O’Brien, Daniel Southam
Madeleine Schultz, Kieran F. Lim, Gwen Lawrie, Simon B. Bedford, Ian M. Jamie, Adam Bridgeman

ORAL BITES 7: ETOOLS
Monash Rocks: The first step in an augmented reality journey through deep time
Barbara Macfarlan, Marion Anderson, Julie Boyce

Changing your mind on the internet: Can YouTube audience think critically
Petr Lebedev, Manjula Sharma

Using social media in a science communication course
Natalie Williamson, Heather Bray

Online interactive textbook use in anatomy and physiology: Teaching an old dog (academic) new tricks
Glenn Harrison, Andrew Brodie

Ausgeol.org: A new resource for earth science education
Michael Roach, Samantha Lake, Bronwyn Kimber, Shelley Greener, Stephen Harwin,
Jennifer Ralph, Stephen Cooke, Phillip Sansom

ORAL BITES 8: ENGAGEMENT
Do accelerated students in nursing benefit from face-to-face support when online support is available?
Sheila Doggrell, Sally Schaffer

Understanding students’ motivations and learning and how they change in a peer learning program
James Brady, Christine Devine, Hayley Moody, Therese Wilson, Yulin Liu, Richard Medland, Sharmila Gamlath, Dulip Herath, Jennifer Tredinnick, Ian Lightbody

Student engagement, learning and perceptions in a flipped classroom
Kate Carroll, Sharon Flecknoe, Caitlin Filby, Amanda Davies, Kirsten Schliephake

Pre-lecture videos and quizzes as effective tools to promote student engagement and achievement
Siegbert Schmid, Ayla Jones, Rena Bokosmaty, Adam Bridgeman, Meloni Muir

Designing blended learning in STEM
Roslyn Gleadow, Barbara Macfarlan, Melissa Honeydew

POSTERS (INCLUDING POSTER BITES)
POSTER 1: An open access etextbook to support students to become scientists
Briania L Julien, Louise A Lexis

POSTER 2: Embedding employability into the final year of a non-vocational health sciences course
Louise Lexis, Briania L. Julien

Alexandra Trollope, Maria Bellei, Torres Woolley and Ryan Harris

POSTER 4: Evaluation of current teaching practices and approaches to teaching in the school of biomedical sciences at Monash University
Alice A. Kim, Caroline J. Speed, Janet O. Macaulay

POSTER 5: Do students and staff see assessment through the same eyes?
Yvonne Hodgson and Loretta Garvey

POSTER 6: Science inquiry in undergraduate physics laboratories: comparing student expectations and experiences
Gabriel Ha Nguyen, John O’Byrne, Manjula Sharma
| POSTER 7: Using interactive simulations to enhance student engagement in mathematics and physics |
| Margaret J. Wegener, Elise Kenny, Juan C. Ponce Campuzano, Anthony P. Roberts, Kelly E. Matthews, Timothy J. McIntyre |
| 103 |
| POSTER 8: Assessment practices over a whole degree program: What do students see? |
| Yvonne Hodgson and Loretta Garvey |
| 105 |
| POSTER 9: Online lessons: An effective avenue for content delivery |
| Wayne Sturrock and Amanda Davies |
| 106 |
| POSTER 10: Efficacy of workbooks in foundation chemistry |
| Siew Chong, Erica Smith |
| 107 |
| POSTER 11: Teaching-interested science academics: Scholarly activity across a range of roles |
| Margaret J. Wegener, Maria Parappilly, John Dacopoulus |
| 108 |
| POSTER 12: Stem graduates as digital creators: Computational thinking for twenty-first century employability |
| Daniel C. Southam, Andrew L. Rohl, Teri C. Balser |
| 110 |
| POSTER 13: Big data: Maximising the teaching and learning opportunities for higher education science students |
| Simon. B. Bedford, Roza Dimeska |
| 112 |
| POSTER 14: Extending and sustaining work integrated learning in science |
| Liz Johnson, Malcolm Campbell, John Holdsworth, John Rice, Cristina Varsavsky, Jo Ward, Trina Jorre de St Jorre, Jo Elliott, Jen Aughterson |
| 113 |
| POSTER 15: Nursing students are more reliant on ongoing assessment scores to succeed in bioscience and pharmacology than paramedic students |
| Sheila A. Doggrell, Sally Schaffer |
| 114 |
| POSTER 16: Does attending bioscience lectures matter, when lecture recordings are readily available? |
| Sheila A. Doggrell, Sally Schaffer |
| 115 |
| POSTER 17: Statistical analysis of academic results in a first-year on-campus and on-line physics unit |
| Purna Chandra Poudel, John M. Long |
| 116 |
| POSTER 18: Partnership teaching in a first-year life-sciences physics unit |
| John M. Long, Peter Huf, Ajay Mahato, Rupinder Sian |
| 117 |
| POSTER 19: Combined 2nd year practicals — innovation and change within the system |
| Michelle Coulson, James Botten, Christopher Wong |
| 118 |
| POSTER 20: Making online pre-work achievable and worthwhile |
| Sharon Flecknoe, Kate Carroll, Amanda Davies, Caitlin Filby, Kirsten Schliephake |
| 119 |
| POSTER 21: Engineering technology: The missing stem subject |
| Nicholas Tran, Anthony Carter, David Hoxley |
| 120 |
| POSTER 22: “I've done this. Let me show you.” Developing student-designed resources for troublesome STEM concepts. |
| Therese Wilson, Kristy A Winter, Christine Devine, Richard Medland, Hayley Moody, Sharmila Gamlath, James Brady, Yulin Liu, Dulip Herath, Ian Lightbody, Laurence Fairbairn |
| 121 |
| POSTER 23: An investigation into students’ strategies and pitfalls for solving electrophilic aromatic substitution mechanism questions |
| Ryan E. Lopez, Dino Spagnoli, Tristan D. Clemons |
| 123 |
| POSTER 24: A comparison of two software packages for use as electronic laboratory logbooks — Preliminary findings |
| Alexandra Yeung, Diana Taylor |
| 124 |
| POSTER 25: Understanding student initiated mobile-learning in higher education |
| Sanjay Vasudeva, Hardy Ernst, Kay Colthorpe |
| 125 |
| POSTER 26: Developing creativity through an innovative approach to laboratory reports |
| Caroline J. Speed, Giuseppe Lucarelli, Janet O. Macaulay |
| 126 |
| POSTER 27: Practicing information skills in the context of the engineering classroom |
| Fiona Jones, Nicholas Tse, Raymond A’Court, Carmi Cronje |
| 127 |
DISCIPLINE DAY WORKSHOPS

Chasing the unicorn: A new approach to course design in chemistry to engage students and achieve threshold learning

Shannan Maisey, Kim Lapere, Scott Sulaway, Steven Yannoulatos

Molypoly2: A new novel organic chemistry interactive modelling tool

Susan Turland, Winyu Chinthammit

Networking for student success in STEM-dependent disciplines

Therese Wilson, James Brady, Kristy Winter

AIP Physics Education Group: Innovative teaching: Practice and spaces

Jasmina Lazendic-Galloway, Maria Parappilly, Theo Hughes, John Daicopoulos

CUBEnet and VIBEnet (BEAN) workshop

Tina Hinton, Fiona Bird

CUBEnet and VIBEnet (BEAN) workshop: Professionalism in biomedical science degrees

Yvonne Hodgson, Julia Choate

Mathematics Network

Deborah King, Katherine Seaton, Cristina Varsavsky

REFEREED PAPERS

Developing teamwork skills in undergraduate science students: The academic perspective and practice

Rowan Brookes

Do accelerated students in nursing benefit from face-to-face support when online support is available?

Sheila A. Doggrell & Sally Schaffer

Deviation from stem peers and employers in employability focuses: the case of maths, stats, physics and astronomy students

Serene Lin-Stephens, Maurizio Manuguerra, James Downes, Judith Dawes, Carolyn Kennett, John Uesi

Perceptions of mathematics among undergraduate biomedicine students

Anthony Morphett
REMOVING THE CLOAK OF INVISIBILITY: DEVELOPING SCIENTIFIC WRITING PRACTICES FOR COMMENCING SCIENCE STUDENTS

Yvonne C. Davilaa, Neela Griffithsb

Presenting Author: Yvonne Davila (Yvonne.Davila@uts.edu.au)
aFaculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
bInstitute for Interactive Media and Learning, University of Technology Sydney, Ultimo NSW 2007, Australia

KEYWORDS: academic writing, blended learning, communication skills, first year, scientific report

PROBLEM
First year (FY) students are expected to write scientific reports to demonstrate their understanding of the scientific method and are also assessed on their communication of the results, writing style, and adherence to scientific writing formats. Although students are taught how to conduct experiments, they are not explicitly taught scientific writing conventions and often have limited exposure to what is expected in a university report. Numerous guides on scientific writing are available but these are not tailored to FY novice writers. Not surprisingly, FY students’ unpreparedness can lead to low confidence and many students continue to find scientific writing challenging.

PLAN
The ability to communicate research findings is fundamental to scientific practice. Our aim is to support FY science students in building their capacity and confidence around writing, through analysing the structure of a scientific report. We have designed online interactive modules and workshops focusing on:
1. Introducing the conventions of scientific writing,
2. Developing the students’ scientific report writing practices, and
3. Building students’ confidence in their scientific writing.

ACTION
Since mid-2016, we have embedded our scientific writing resources into a core FY first semester inquiry-oriented science subject. This work builds on reading strategies modules and workshop that develop students’ critical reading practices (Davila & Griffiths, 2016). We use a scaffolded, blended learning approach; students complete interactive online modules prior to applying their scientific writing practices in workshops, in preparation for their report assessment task. Our learning design incorporates recommendations for flipped and active learning approaches supporting an authentic task in science education (Overton & Johnson, 2016).

We evaluated our intervention over two semesters through tracking online module completions, a paired comparison survey to gauge students’ levels of confidence in their writing practices in weeks 1 and 12, and an anonymous survey evaluating students’ experiences and perceived value of the learning activities.

REFLECTION
The majority of students completed the online modules in preparation for the workshop. Students commented on how useful it was to have modules dedicated to unpacking each report section and identifying the language used. Their confidence increased in several areas particularly around their understanding of the structure and correct placement of information into each section of a scientific report. They also indicated that they had a clearer understanding of the university’s expectations and of the conventions of academic scientific writing. Students commented that the workshop enabled them to receive timely actionable feedback to improve their writing for the task and helped them learn to write collaboratively. Our blended learning approach to scientific writing and presenting skills in an authentic context means students see these skills as an integral part of their learning and careers.

REFERENCES
