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The Early Access AmpliSeq™ Mitochondrial Panel amplifies whole mitochondrial genomes 22 

for phylogenetic and kinship identifications, using Ion Torrent™ technology. There is currently 23 

limited information on its performance with degraded DNA, a common occurrence in forensic 24 

samples. This study evaluated the performance of the Panel with DNA samples degraded in 25 

vitro, to mimic conditions commonly found in forensic investigations. Purified DNA from five 26 

individuals was heat-treated at five time points each (125°C for 0, 30, 60, 120 and 240 minutes; 27 

total n=25). The quality of DNA was assessed via a real-time DNA assay of genomic DNA and 28 

prepared for massively parallel sequencing on the Ion Torrent™ platform. Mitochondrial 29 

sequences were obtained for all samples and had an amplicon coverage averaging between 30 

66X to 2,803X. Most amplicons (157/162) displayed high coverages (452 ± 333X), while reads 31 

with less than 100X coverage were recorded in 5 amplicons only (90 ± 5X). Amplicon coverage 32 

was decreased with prolonged heating. At 72% strand balance, reads were well balanced 33 

between forward and reverse strands. Using a coverage threshold of 10 reads per SNP, 34 

complete sequences were recovered in all samples and resolved kinship and, haplogroup 35 

relations. Additionally, the HV1 and HV2 regions of the reference and 240 minute heat-treated 36 

samples (n=10) were Sanger – sequenced for concordance. Overall, this study demonstrates 37 

the efficacy of a novel forensic Panel that recovers high quality mitochondrial sequences from 38 

degraded DNA samples. 39 

40 
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1 Introduction 41 

There is value in using mitochondrial DNA (mtDNA) for ancestry and kinship analysis. This is 42 

true in cases of unsuccessful nuclear DNA typing or when there is lack of reference profiles 43 

[1]. Traditionally, mtDNA sequencing has been restricted to the hypervariable regions (HVR) 44 

that exhibit the most polymorphisms [2]. However, the control region covers only 7% of the 45 

human mitochondrial genome and limits the resolution of matrilineal and ancestry inferences 46 

[3-5]. Whole genome sequencing offers additional sequences from which mitochondrial 47 

haplogroups can be determined to the highest resolution [6, 7]. 48 

For the last forty years, chain-terminating technology has been a consensus method of DNA 49 

sequencing [8]. However, using this technology to sequence whole genomes can be highly 50 

labour intensive and costly. Alternatively, massively parallel sequencing (MPS) can retrieve 51 

billions of ssDNA molecules, amplified from panels containing targeted or whole genome 52 

markers [9]. Both targeted and whole genome panels have been used as in-house methods 53 

to amplify mitochondrial genomes for sequencing [7, 10-12]. However, based on panel 54 

design, the performance of in-house panels can be highly variable in accuracy, coverage 55 

and strand balance. This is not optimal for operational forensic laboratories that require a 56 

standard panel of optimised performance. Therefore a standard panel is required to 57 

normalise mitochondrial MPS testing across forensic DNA laboratories. 58 

The Early Access AmpliSeq™ Mitochondrial Panel (Applied Biosystems, CA, USA) offers a 59 

solution to standardising MPS testing of mitochondrial genomes. The Panel uses 162 primer 60 

pairs to amplify whole mitochondrial genomes for MPS uses. To date, only earlier versions of 61 

the Panel have been evaluated using degraded DNA samples [13]. This study assessed the 62 

performance of the MPS panel to amplify mitochondrial genomes in reference and degraded 63 

DNA samples. Coverage, strand balance and accuracy of variant calls for familial and 64 

phylogenetic relations were evaluated and the potential of the MPS Panel to supplement the 65 

CE workflow of operational forensic laboratories is discussed. 66 
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2 Materials and methods 67 

2.1 Samples 68 

Saliva samples (Classiq Swabs™, Copan Diagnostics, CA, USA) were collected from one 69 

unrelated individual of Swiss ancestral background and four related Fijian-Indian individuals. 70 

The ancestry information was self-reported and based on the biogeographical ancestry of all 71 

five grandparents. DNA samples were collected with informed consent and handled 72 

according to ethical procedures approved by the Human Ethics Committee for the University 73 

of Technology Sydney (Approval Number: 2015000296). DNA was extracted using the 74 

QIAamp® DNA Mini Kit (Qiagen, Hilden, Germany), following the manufacturer’s protocol for 75 

buccal swabs [14]. Equal volumes of each biological extract were heat-treated at 125°C for 76 

30, 60, 120, 240 minutes. An untreated sample for each individual was used as a reference 77 

for artificial degradation (total n=25). The quantity and degradation of DNA was measured 78 

using the Quantifiler™ Trio DNA Quantification Kit (Life Technologies, CA, USA), on the 79 

QuantStudio™ 6 Flex Real-Time PCR System (Applied Biosystems, CA, USA), following 80 

manufacturer’s protocol [15]. DNA concentrations were normalised (4 ng/µL) and stored at -81 

20°C. 82 

2.2 Library preparation 83 

Each DNA template was amplified for 162 mitochondrial amplicons using two primer pools 84 

included in the Early Access AmpliSeq™ Mitochondrial Panel (Applied Biosystems, CA, 85 

USA) in two separate reactions. Following manufacturer’s 2-in-1 method for low copy 86 

number samples, 0.1 ng gDNA for each sample was combined with 5X Ion AmpliSeq™ HiFi 87 

Mix and 10X primer pool, included in the Precision ID Library Kit (Applied Biosystems, CA, 88 

USA) [16]. Amplification included 2 minutes at 99°C followed by 21 cycles of 15 seconds at 89 

99°C, 4 minutes at 60°C and overnight hold at 10°C on the Veriti® 96-Well Thermal Cycler 90 

(Applied Biosystems, CA, USA). Products from two primer pools were combined for each 91 
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respective sample and post-PCR primers were digested with FuPa reagent included in the 92 

kit. 93 

Amplicons were ligated to Ion P1 Adapter and Ion Xpress™ Barcode adapters and, purified 94 

using AMPure™ XP reagent (Beckman Coulter, CA, USA). Size (bp) of library fragments 95 

were assessed using the Agilent High Sensitivity DNA Kit on the Agilent 2100 Bioanalyser 96 

(Agilent Technologies, CA, USA), following standard protocols [17]. Quantity of libraries was 97 

determined using the KAPA SYBR® FAST ABI Prism qPCR Kit (Kapa Biosystems, MA, USA) 98 

on the QuantStudio™ 6 Flex Real-Time PCR System (Applied Biosystems, CA, USA) [18]. 99 

Libraries were diluted (8 pM) and equal volumes pooled for template preparation. 100 

Pooled libraries (25 µL) were fixed onto template beads and amplified using the Ion PGM™ 101 

Template OT2 200 Kit (Applied Biosystems, CA, USA) [19]. Amplification was carried out on 102 

the Ion OneTouch™ 2 System (Applied Biosystems, CA, USA). Amplified templates were 103 

enriched for target monoclonal Ion Sphere™ Particles (ISPs) on the Ion OneTouch™ 104 

Enrichment System (Applied Biosystems, CA, USA). Quality of ISPs were evaluated with the 105 

Ion Sphere™ Assay (Life Technologies, CA, USA) on Qubit® 2.0 Fluorometer (Invitrogen, 106 

CA, USA) [20]. 107 

2.3 DNA sequencing 108 

25 mtDNA template libraries were loaded onto a Ion 316™ Chip using the Ion PGM™ Hi-109 

Q™ Sequencing Kit (Applied Biosystems, CA, USA), following the manufacturer’s 110 

recommendations [21]. Libraries were sequenced on the Ion Torrent PGM™ System 111 

(Applied Biosystems, CA, USA) using the protocol for 500 nucleotide flows. 112 

2.4 DNA sequence analysis 113 

DNA sequences were reconstructed by pooling all barcoded libraries to respective samples 114 

and trimming adapter sequences 20 bases from the 3’ and 5’ end, using Torrent Suite™ 115 

software (Applied Biosystems, CA, USA). Sequences were formatted to the human 116 
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mitochondrial genome by alignment to the revised Cambridge Reference Sequence (rCRS) 117 

[22, 23]. Sequence variants, SNPs, insertions and deletions (INDELs) were reported using 118 

the Ion PGM™ System: Torrent Variant Caller (Applied Biosystems, CA, USA) plugin as 119 

variant caller files. Binary alignment map files of aligned sequences and variants were 120 

inspected using Integrative Genomics Viewer (Broad Institute, MA, USA) [24, 25]. Variants 121 

were imported into MitoTool, a third party online software designed with PhyloTree Build 17, 122 

and used for assignment of mitochondrial haplogroups [26, 27]. HaploGrep 2 (v2.1.0) was 123 

used as a secondary confirmation of haplogroups [28]. A minimum arbitrary threshold of 10X 124 

coverage reads was used to call mitochondrial variants and a threshold of 0.05 was set for 125 

point heteroplasmy detection. In line with forensic convention, length heteroplasmy was 126 

reported to the most dominant allele of all detected sequences [29]. 127 

2.5 Statistical analysis 128 

Coverages of mitochondrial amplicons were pooled and presented as overall reads for each 129 

treatment (n=5). Strand balance was calculated as a percentage of lower reads/higher reads 130 

between complementary amplicon strands [30]. ANOVA (one-way) was used to measure 131 

strand balance differences across treatments. The statistical tests (α=0.05) were performed 132 

using Microsoft Excel 2010 (Microsoft Corporation, WA, USA). 133 

2.6 CE concordant sequence 134 

HV1 (15,971 – 16,410 rCRS) and HV2 regions (15 – 389 rCRS) of the reference and 240 135 

minute heat-treated samples (n=10) were sequenced by CE systems for concordant data. 136 

PCR amplification was prepared with the HotStarTaq Plus Master Mix Kit (Qiagen, Hilden, 137 

Germany) using 4 ng genomic DNA and 0.5 µM HV1 and HV2 M13-tailed primers [31, 32]. 138 

The Veriti® 96-Well Thermal Cycler (Applied Biosystems, CA, USA) was used for 139 

amplification with parameters set to 95°C for 5 minutes followed by 35 cycles of 94°C for 30 140 

seconds, 62°C for 45 seconds, 72°C for 1 minute and final extension of 72°C for 10 minutes 141 

[33]. Products were sequenced using the BigDye™ Terminator v3.1 Cycle Sequencing Kit 142 
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on the 3730XL DNA Analyser (Applied Biosystems, CA, USA) [33].  Raw DNA sequences 143 

were analysed and aligned using DNA Sequencing Analysis Software (Applied Biosystems, 144 

California, USA). 145 

3 Results and discussion 146 

3.1 DNA quality 147 

The quality of DNA was decreased with heat-treatment, marked by the higher degradation 148 

indexes (DI) (Fig. 1). The DNA quantities (ng/µL) used to derive DI’s for each treatment 149 

group is provided in Supporting Information Figure 1. Little to no degradation was observed 150 

in reference samples (4 ng/µL), with a DI 0.75 ± 0.03 (mean ± S.E.M.). Mild degradation was 151 

seen in the heat-treated DNA samples at 30 minutes (DI 1.02 ± 0.07, 3.52 ng/µL) and 60 152 

minutes (DI 1.74 ± 0.21, 2.46 ng/µL). Prolonged heat-treated samples at 120 minutes (DI 153 

5.64 ± 0.67, 1.41 ng/µL) and 240 minutes (DI 18.18 ± 3.22, 0.44 ng/µL) were highly 154 

degraded, indicating occurrence of putative DNA fragmentation. 155 

Note in this study, degradation refers to the fragment quality of DNA.  While heat-treatment 156 

was used for in vitro degradation, it is recognised that the method is limited as it does not 157 

truly mimic forensic DNA samples. Other factors such as the quantity of DNA and presence 158 

of co-inhibitors in extracts can also be encountered in compromised samples. Consequently 159 

it is strongly recommended that these variables can be assessed in separate studies. 160 

Degradation of DNA has been previously shown to start at 100°C and become completely 161 

degraded with longer exposures [34]. In these cases, heat was found to degrade nucleic 162 

acids into fragments due to DNA depurination, and a break of glycosidic and phosphodiester 163 

bonds [35]. Therefore these findings support the progressive degradation of heat-treated 164 

DNA samples that were determined from a real-time assay. However, there is a limitation to 165 

infer mtDNA quality from genomic real-time assays as mtDNA has been shown to be more 166 
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stable to degradation [36, 37]. Hence, a real-time duplex assay for mtDNA targets of which 167 

few are available, would offer a more accurate assessment of DNA quality [38, 39]. 168 

3.2 Sequencing metrics 169 

A total of 173 megabases of MPS data was generated for 25 samples using 500 flow runs. 170 

An average live ISP density of 47% (1,503,921 reads) was obtained and 131 million bases 171 

were correctly aligned to the rCRS. Mean coverage depth for alignment quality was reported 172 

to 7,875X at mean read lengths of 99 bp fragments. 173 

3.3 Coverage  174 

The Panel shows high amplicon coverage for reference mtDNA samples, though coverage 175 

reads are non-uniformly distributed, with some reads as low as 66X (amplicon 3473-3596 176 

rCRS) and other reads as high as 2803X (amplicon 10,482-10,577 rCRS) (Fig. 2). Overall 177 

amplicon coverage (n=5) was 468 ± 21 reads (mean ± S.E.M.) for time 0 samples, 348 ± 8 178 

reads for 30 minute samples, 395 ± 12 reads for 60 minute samples, 339 ± 12 reads for 120 179 

minute samples and 274 ± 11 reads for 240 minute samples (Fig. 3).Ninety-seven percent of 180 

amplicons (157/162) demonstrated reads greater than 100X on both strands. Only five 181 

amplicons (3473-3596 rCRS, 10,394-10,492 rCRS, 12,352-12,459 rCRS, 13,686-13,789 182 

rCRS and 14,276-14,367 rCRS) were under-reported with reads below 100X. While there 183 

was a marginal decrease in reads for prolonged heating times, the decrease did not affect 184 

the detection of variants. This trend agrees with a previous study that recovered full 185 

mitochondrial genomes for DNase-treated samples (at 50 reads) [13]. In comparison, at a 186 

coverage threshold of 50 reads, 92% (23/25) of samples in this study displayed complete 187 

genomes and reported all variants. When lowered to 10 reads, all samples were sequenced 188 

for complete genomes (Supporting Information Table 1). 189 

The difference in recovery of genomes may be explained by sequencing samples of varying 190 

qualities on a single chip. The multiplexing of different quality samples has been considered 191 



9 
 

to reduce read quality as there is a preferable amplification towards high quality DNA 192 

samples [40]. Consequently separating samples of pristine and compromised quality may 193 

improve sequence recovery. Alternatively reducing the number of samples may also improve 194 

coverage and sequence quality as more reads can be assigned to each sample [41, 42]. 195 

Though chip density was not maximised (ISP, 47%) which indicates manual library 196 

preparation and chip loading could be further optimised or automated. The highest number 197 

of samples multiplexed in a sequence run has been previously reported to be 15 samples on 198 

a single Ion 316™ Chip, albeit using a different custom MPS panel [43]. Here it is 199 

demonstrated that chip capacity can be extended to at least 25 samples, using this whole 200 

genome Panel. Therefore it is suggested that the pooling of samples of similar qualities as 201 

well as reducing the number of samples in sequence runs, may result in overall higher 202 

coverages. 203 

The low reads reported for two samples may indicate potential nucleotide sites (14,766 and 204 

14,783 rCRS) which are difficult to sequence. Both sites follow a 4-mer poly-A-stretch 205 

(AAAA) region. Studies have suggested that it is the homopolymer stretch that lowers the 206 

efficiency of reads in this region [7, 43]. Low coverage in homopolymer regions of the Ion 207 

PGM™ or other MPS platforms has been described, as have high coverages in amplicons 208 

with few homopolymeric repeats [44, 45]. Bragg et al. [46] suggest the most likely 209 

explanation to be an inaccurate flow-call of the proton-based system. As well as 210 

homopolymer stretches, G/C content and sample quality are also known to affect the 211 

accuracy of flow-calls [44]. The over- and under- calling of nucleotides would also explain 212 

the non-uniform distribution of amplicon reads that were observed in homopolymeric regions. 213 

It seems that the amplicon reads were mostly affected by sequence composition over other 214 

variables such as base size. The two samples which failed to reproduce complete genome 215 

sequences were both heat-treated at 125°C for 240 minutes. Naturally, DNA samples of 216 

poor or degraded qualities are likely to record low to no reads, because of the fragmented 217 

state of the DNA [12, 13, 47]. Therefore the observed low coverages most likely arise from a 218 
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complication in the assigned flow-call algorithm and DNA quality as opposed to the design of 219 

the Panel. 220 

Point heteroplasmy was detected  in all samples (ranges, 1-16,569 rCRS) at a threshold of 221 

0.05. Three point heteroplasmic variants were each detected in the Swiss individual (214R, 222 

750R, 16221Y) and the Fijian-Indian father (750R, 10586R, 15043R), while the same point 223 

heteroplasmy was shared between the Fijian-Indian mother, son and daughter (750R, 224 

15043R, 15258Y). Manual inspection of mitochondrial variants showed insertion and 225 

deletion of nucleotides, especially in homopolymer regions. Length heteroplasmy was also 226 

observed in these homopolymer regions. All reference samples were found to contain an 227 

uninterrupted C stretch in the range of 303-315 rCRS as 310C, 315.1C and 315.2C. 228 

Additionally one sample also showed deletions, 514- at 214 reads and 515- at 212 reads 229 

(Supporting Information Figure 2).230 
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3.4 Strand balance 

Amplicons of the Panel were well balanced between forward and reverse strands, though 

balance was non-uniform across the mitochondrial genome. For five reference samples, 

strand bias (<50%) was observed in 19/162 (12%) amplicons. In particular, three amplicons 

(299-411 rCRS, 13,686-13,789 rCRS and 14,276-14,367 rCRS) showed extreme strand bias 

(<10%) (Fig. 4). 

While most strands were balanced in this study, extreme strand bias has led to the 

erroneous designation of SNPs in other MPS panels [48]. Other studies using different in-

house mitochondrial panels have also observed imbalance at similar positions suggesting 

that strand bias in these regions is inherent in the sequence of DNA [43]. Since strands are 

equal in length and complementary, strand bias can quite possibly be sequence and 

platform dependent [49, 50]. Previously, strand bias has been attributed to the multiple 

continuous stretches of homopolymers in the DNA region [43]. This is plausible as 

homopolymers have been shown to reduce reads more so in strands with poly-C-stretches 

than any other repeats [30].  

Overall strand bias was 72% ± 14% (mean ± S.E.M.) for reference samples and 60% ± 3% 

for heat-treated samples at 30, 60, 120 and 240 minutes (n=5) (data not shown). Strand bias 

was significantly increased in degraded samples (P=0.000, one-way ANOVA). Originally it 

was hypothesised that strand bias would remain unaffected by the nature of the sample 

(degraded or non-degraded) as forward and reverse strands undergo the same treatment. 

However, random breakage of covalent bonds in strands is increased with heat-treatment 

and thereby may account for the imbalanced reads [34, 51]. 

3.5 Variant detection 

As expected more variants were detected in the whole mitochondrial genome than the HV1 

and HV2 regions. In non-treated samples, the number of HVR variants (16,024-576 rCRS) 



12 
 

compared to the whole mitochondrial genome (1-16,569 rCRS) were 7/14 for sample 1, 

11/33 for sample 2, 10/34 for sample 3, 11/33 for sample 4 and 11/33 for sample 5 (Table 1). 

These variants were mostly concordant to the HV1 and HV2 CE sequences of reference and 

240 minute heat-treated samples. Compared to the typing of single DNA molecules in CE 

systems, MPS platforms have a greater sensitivity to detect intra-individual sequences as it 

types a multitude of DNA fragments [52]. The greater sensitivity accounts for the differences 

in base calls that were mostly found in heteroplasmic positions, such as 214R and 16043R. 

Other sequence differences were due to unreported bases by the CE system, mostly likely 

arising as artifacts of sequencing. A remaining 97 variants were called in addition to HV1 

and HV2 and highlight the increased resolution of a whole genome MPS panel over HV1 and 

HV2 sequencing. 

Variant assignment of mitochondrial haplogroups was consistent and accurate between 

reference and degraded samples of the same individual. However, not all archetypical 

variants of haplogroups were present in each individual as might be expected (Table 1). It is 

common for individuals to acquire mutations that differ to the overall variants of historical 

haplogroups because of the high mutation rate of mtDNA [30, 53-55]. Nonetheless, it has 

been shown that a majority of detected variants will allow haplogroups to be assigned with a 

sufficient reliability. Specifically, mtDNA sequences of high scoring quality (>90% quality, 

HaploGrep) have been shown to correctly assign haplogroups [30]. Herein, the quality 

scores of variants were >90% and thereby indicates a reliable and, accurate alignment of 

variants to haplogroups. 

3.5.1 Kinship analysis 

Kinship relations were correctly assigned to individuals of the same maternal lineage. Within 

the five individuals, twenty one unique variants were detected for Individual 1 and seven 

unique variants for Individual 2 which could be used for kinship exclusion. All heat-treated 

samples were used for kinship analysis at 10X minimum coverage. The results 



13 
 

demonstrated that even the prolonged-treated samples can be used for exclusion of the 

Swiss individual and Fijian-Indian father as maternal lineages of the Fijian-Indian mother, 

son and daughter, who all shared the same haplogroup (M30d1) variants (Table 1). 

3.5.2 Phylogenetic analysis 

Haplogroup phylogenies were accurately identified to declared ancestries (Table 1). 

Although haplogroups for four related Fijian-Indian individuals were distributed across 

South/SE Asia and South Africa, the admixed ancestry has been previously observed [56]. 

Most likely the admixture results from a migration of the M haplogroup from Asia into the 

pacific islands, started by the African expansion and continued from British colonisation [56]. 

Nonetheless, the Panel shows diverse coverage of haplogroups of different ancestries, in 

this case, of European and Fijian-Indian ancestries. Previously the earlier version of this 

Panel has inferred genetic ancestries in South Africa, Russia, Israel, New Guinea, Algeria, 

China, Italy, China, Australia, Thailand and the Netherlands [13]. The additional inference of 

samples from Swiss and Fijian-Indian heritage in this study shows the Panel can be further 

applied to worldwide haplogroups. 

3.6 Workflow 

The Panel workflow was completed in 5 days (from library preparation to sequencing) for two 

Ion 316™ chips. Manual preparation of the Panel required significant hands-on time and has 

been shown to cause variability in chip loading and densities which are difficult to reproduce 

[57, 58]. However, the protocol can be automated onto the Ion Chef™ (Life Technologies, 

CA, USA)and favour the standard workflow of forensic laboratories. An automated protocol 

facilitates reproducibility and has also been identified to increase through-put capacities and 

reduce turnaround times and processing costs compared to Sanger sequencing workflows 

[57]. For forensic use, issues such as contamination, in particular the carry-over of ‘ghost’ 

barcodes as well as the unprecedented volume of MPS data and associated bioinformatics 

expertise required for analysis relative to CE platforms, have been raised [50]. More-so the 
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logistics of storing MPS files in secured formats are considered. To address contamination, 

laboratories are considering the preparation of forensic and reference samples in separate 

sequence runs (private communication). While this may reduce sample contamination, it 

also results in inter-run variability between different chip uses [40]. Considering this, it is best 

to multiplex with barcode adapters and pool samples based on chip capacity and samples of 

similar qualities. This will be most cost-effective and achieve even coverages, as supported 

by this study. All these challenges have been raised by European laboratories and seconded 

by Australian laboratories [59]. Australian forensic DNA laboratories are yet to implement 

MPS workflows, however ongoing laboratory validations will likely lead to the introduction of 

MPS and associated panels in the foreseeable future.  It is likely that MPS of the HV1 and 

HV2 regions will first be introduced into the workflow of mtDNA analyses, as this is readily 

compatible with existing techniques such as dideoxynucleotide sequencing. 

4 Concluding remarks 

The Early Access AmpliSeq™ Mitochondrial Panel (Applied Biosystems, CA, USA) is able to 

target and amplify whole mitochondrial genomes using the Ion Torrent™ technology. The 

Panel amplifies genomes at coverages that can reliably call variants for haplogroups, even in 

highly degraded samples. The Panel is amendable to the forensic identification of kinship 

and phylogenetic relations. In view of this performance, it is concluded that the Panel can 

potentially translate as a commercial and standard workflow into operational forensic 

laboratories that consider introducing MPS.  
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Figure Legends 

Figure 1. Quality of genomic DNA in heat-treated DNA extracts. Mean (n=5) degradation index (DI) of heat-

treated DNA samples determined using the Quantifiler™ Trio DNA Quantification Kit (Life Technologies, CA, 

USA). DI calculated as ratio, small autosomal target/large autosomal target [15]. Error bars represent S.E.M. 

between replicates. 

Figure 2. Amplicon Coverage. Average coverage (in reads) of 162 amplicons spanning the mitochondrial 

genome in reference samples (n=5).  Amplicons part of the Early Access AmpliSeq™ Mitochondrial Panel 

(Applied Biosystems, CA, USA). Thresholds for variant calling were arbitrary set at 10X minimum (- - - - -) and 

100X maximum (         ). 

Figure 3. Amplicon Coverage for Degraded DNA. Mitochondrial sequencing amplicon coverage (in reads) of 

DNA samples (n=5) heated at 125°C for 0, 30, 60, 120 and 240 minutes. Amplicons (n=162) part of the Early 

Access AmpliSeq™ Mitochondrial Panel (Applied Biosystems, CA, USA). Error bars represent S.E.M. 

Figure 4. Overall amplicon strand bias for five reference samples. Average strand bias (n=5) of mitochondrial 

amplicons part of the Early Access AmpliSeq™ Mitochondrial Panel (Applied Biosystems, CA, USA). Strand bias 

(%) between forward strand and reverse strands was calculated as lower reads/higher reads. a) amplicons 16-

119 rCRS to 5,455-5,574 rCRS, b) amplicons 5,564-5,688 rCRS to 11,175-11,301 rCRS, c) amplicons 11,292-

11,384 rCRS to 16,542-166,496 rCRS. 

 

 


