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Abstract 

This paper presents a novel method to localise and quantify damage in a jack arch structure by 

introducing a linkage modelling technique to overcome issues caused by having limited sensors. The 

main strategy in the proposed Frequency Response Function (FRF) based sensitivity model updating 

approach is to divide the specimen into partitions. The Young’s modulus of each partition is then 

updated to detect stiffness reduction caused by damage. System Equivalent Reduction Expansion 

Process (SEREP) is used to reduce the full finite element (FE) model to a linkage model. The number 

of measured degrees of freedom (DOFs) is then expanded to the linkage model using the mass and 

stiffness matrices of the linkage model for the synthesis of interpolated FRFs. The FRF sensitivities 

are then formulated using the linkage model along with the interpolated FRFs to iteratively calculate 

the values of the updating parameters until convergence is achieved. The methodology and theory 

behind this procedure is discussed and verified using a numerical and experimental study. The 

successful implementation of this method has the potential to detect the location and severity of 

damage where sensor placement is limited. 

1. Introduction 

In the past couple of decades, Structural Health Monitoring (SHM) has received significant attention 

in the field of asset management, especially for ageing infrastructures. SHM systems generally aim to 

provide information on the health state of a structure, including detecting, localising and quantifying 

damage and deterioration. Numerous damage detection methods have been developed over the years 

[1, 2]. Many of these methods involve the analysis of vibration data, including modal data, which is 

directly related to the physical properties of a structure. Hence, the characteristics of damage in a 

structure can be identified by analysing its vibration response. 

Damage detection using model updating has received increasing attention in the past couple of 

decades. The model updating procedure reduces the discrepancy between the results obtained from a 

finite element (FE) model and the results measured from a physical structure by adjusting the 

modelling parameters until the analytical and the measured results are in agreement. This procedure is 

well suited to the aims of damage detection. Model updating utilising computational intelligence 
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techniques have been used for damage detection by several researchers. Kang et al. [3] used an 

immunity enhanced particle swarm optimisation algorithm to detect damage in a simply supported 

beam. Hao and Xia [4] applied genetic algorithms to the model updating procedure to detect the 

stiffness reduction in elements of a cantilever beam and a portal frame structure. Perera and Torres [5] 

also used genetic algorithms to detect damage in a simply supported beam structure. While these 

methods excel in finding the global minimum of the discrepancies between the measured and 

analytical results, they generally require a large number of iterations, which can be problematic for 

larger models. 

One of the most successful approaches to model updating is the sensitivity method, which requires 

less iterations to reach an updated model than computational intelligence methods. Mottershead et al. 

[6] provided a tutorial on how to update an FE model using the sensitivity method and demonstrated 

the procedure on a Lynx helicopter airframe. Sinha et al. [7] used eigenvalue sensitivities in their 

model updating procedure to estimate crack locations and sizes in a cantilever beam. Shi et al. [8] 

derived the sensitivity of modal strain energy with respect to damage and used this sensitivity to 

detect damage in a frame structure. 

An important issue in SHM is the limited number of sensor arrays. In the ideal case, there would be 

one sensor corresponding to each degree of freedom (DOF) in the FE model. However, this is rarely 

possible in practical applications, due to the limited sensor availability and the inaccessibility of 

certain areas for sensor placement. The spatial incompleteness of measured data is commonly 

addressed by researchers by reducing the FE model to the number of measured sensors. Mousavi and 

Gandomi [9] addressed this issue by developing an iterative hybrid method that uses dynamic 

condensation to detect damage in structures with incomplete modal data. Hansen et al. [10] used 

Guyan reduction to condense their T-shaped FE model to ensure that the numerical DOFs 

corresponded with the measured DOFs. Sun and Büyüköztürk [11] used an iterated improved reduced 

system (IIRS) to reduce their FE model from 8 DOF to 4 DOF to match the measured data. Another 

added benefit of model reduction is the overall reduction in the computation time required for model 

updating. Weng et al. [12] derived eigenvalue and eigenvector partial derivatives with respect to a 

structural parameter based on a dynamic condensation technique to improve the efficiency of the 

model updating procedure. 

The spatial incompleteness of measured data has also been address by researchers by expanding the 

measured eigenvectors to the FE model DOF. Au et al. [13] and Entezami et al. [14] used the System 

Equivalent Reduction Expansion Process (SEREP) by O’Callahan et al. [15] to expand their simulated 

measured data. Shi et al. [8] made adjustments to SEREP by incorporating a weighting coefficient that 

could be used to weight the accuracy of the analytical model and the measured data. The authors used 

this method to expand their measured mode shapes and localise damage in a frame structure.  

The past investigations described in this paper used rod, beam and shell elements for their FE model 

updating procedure. However, in certain cases it is necessary to use solid elements to model a unique 

structure for damage detection, which can be computationally expensive. Hence, a linkage model that 

acts as an intermediary between a large FE model and a limited number of measured responses can be 

used for updating. In addition to expanding measured data, SEREP is also capable of reducing the full 

system matrices of a FE model with no loss of accuracy in the natural frequencies and mode shapes 

for the lower modes. Expansion can also be achieved by directly using the mass and stiffness matrices 

of a model which eliminates the need for eigenvalue analysis or mode tracking.  
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Model updating can be achieved by reducing the discrepancies between the analytical and 

experimental FRFs directly. The FRFs contain information on the modal properties of a structure. 

This eliminates the need to pair the analytical to the experimental modes in each iteration of model 

updating. Alamdari et al. [16] used gradient-based design optimisation to reduce the discrepancies 

between analytical and measured FRFs by adjusting the non-linear properties of a joint. Araújo et al. 

[17] identified the damage in a laminated structure using the FRF sensitivity method. The authors also 

pointed out that the FRF sensitivity technique produced better results than the modal sensitivity 

method in their study due to the FRF sensitivity method having an overdetermined set of equations as 

opposed to the modal sensitivity method, which had an underdetermined set of equations.  

This paper proposes the use of FE model updating using the FRF sensitivity method to localise and 

quantify damage in a replicated jack arch structure of the Sydney Harbour Bridge via a linkage model. 

Details of prior studies of the jack arch structure can be found in Mustapha et al. [18] and Nguyen et 

al. [19]. The parameters defined for the model updating procedure include the Young’s modulus of 10 

divided sections of the specimen and three additional parameters relating to the boundary conditions 

of the jack arch. The full FE model contains 5,706 DOFs and is reduced to a linkage model containing 

60 DOFs using SEREP. The mode shapes determined experimentally using 11 accelerometers are 

then expanded to 60 DOFs using the mass and stiffness matrices of the linkage model. The receptance 

FRFs are synthesised based on the expanded mode shapes and used to form the FRF sensitivity matrix 

and FRF residual vectors. The linear least squares method incorporating the trust region reflective 

algorithm is then used to update the parameters. This procedure is iteratively repeated until the 

convergence criterion is met. The damage location and severity is then determined based on the 

updated parameters. The procedure is verified numerically and experimentally.  

The main innovation in the proposed method is that it uses the mass and stiffness matrices of a 

reduced FE model to expand the mode shapes obtained from the measured data. Past investigations 

that aimed to match the DOFs of the FE model to measured mode shapes have either reduced the FE 

model [9-12] or expanded the modal data [8, 13, 14]. If the DOFs of the FE model are reduced to the 

measured DOFs, then information of the mode shapes retained from the FE model can be insufficient. 

On the other hand, expanding the measured DOFs to the FE model can result in the model updating 

process being computationally expensive. This method aims to provide a balance between the 

information lost due to model reduction and the computational cost of expanding the measured DOF 

by introducing the linkage model. 

2. Addressing the Limited Sensor Issue Using a Linkage Model 

In real structures, it is impractical (if not impossible) to place one sensor at each location of all DOFs 

in the FE model. These restrictions are due to the limited number of available sensors for 

instrumentation and inaccessibility of certain areas of the structure. This study proposes the use of a 

linkage model that reduces the DOFs of a 3D FE model to a linkage model while expanding the 

measured DOFs to the same model. In this investigation, SEREP [15] is used for model reduction. 

The procedure requires partitioning of the mass (M) and stiffness (K) matrices according to the 

expression in Eq. (2.1). 

 
𝐌 = [

𝐌mm 𝐌ms

𝐌sm 𝐌ss
] and 𝐊 = [

𝐊mm 𝐊ms

𝐊sm 𝐊ss
] (2.1) 
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where the subscript m refers to the master DOF that will be retained and s is the slave DOF that will 

be removed after the reduction procedure. The transformation matrix, T, used to reduce the FE model 

can be deduced using Eq. (2.2) 

 
𝐓 = [

𝚽m

𝚽s
]𝚽m

+ (2.2) 

 

where 𝚽 is the matrix containing the mass normalised eigenvectors of the FE model. The superscript 

+ refers to the pseudo inverse of a matrix. The transformation matrix is then used to reduce the full 

system matrices to the linkage model system matrices using Eq. (2.3) 

 𝐌𝐥 = 𝐓T 𝐌 𝐓 and 𝐊𝐥 = 𝐓T 𝐊 𝐓 (2.3) 

 

where 𝐌𝐥 and 𝐊𝐥 are the mass and stiffness matrices of the linkage model. The system matrices of the 

linkage model are then used to expand the measured DOFs to the linkage model DOFs. Friswell et al. 

[20] provide the procedure for this using Eq. (2.4) 

 
(−ωj

2 [
𝐌𝐥mm

𝐌𝐥ms

𝐌𝐥sm
𝐌𝐥ss

] + [
𝐊𝐥mm

𝐊𝐥ms

𝐊𝐥sm
𝐊𝐥ss

]) {
𝛟mj

𝛟sj
} = {

𝟎
𝟎
} (2.4) 

 

where 𝛟mj and 𝛟sj , respectively, represent the mode shape at the measured and unmeasured DOFs of 

the jth mode and 𝛚𝐣
𝟐 is the corresponding eigenvalue. The bottom half of this equation can be 

rearranged to Eq. (2.5) 

 𝛟sj = −(−ωj
2𝐌𝐥ss

+ 𝐊𝐥ss)
−1

(−ωj
2𝐌𝐥sm

+ 𝐊𝐥sm
)𝛟mj (2.5) 

 

which can be used to calculate the interpolated mode shapes for the unmeasured DOFs using the mass 

and stiffness matrices of the linkage model and the measured eigenvectors. The interpolated mode 

shapes can be used to synthesise the receptance FRFs at the unmeasured DOFs using a formulation 

provided by Maia and Silva [21] expressed in Eq. (2.6) 

 

αjk(ω) = ∑(
ϕjrϕkr

iω − sr
+

ϕjr
∗ ϕkr

∗

iω − sr
∗)

N

r=1

 (2.6) 

 

where there is N number of modes used in the FRF synthesis, 𝛟𝐣𝐫 represents the modal displacement 

at response j for mode r, 𝛟𝐤𝐫 represents the modal displacement at the force input k for mode r. The 

eigenvalues 𝐬𝐫 are the poles for mode r. The residuals in Eq. (2.6) are normalised by multiplying the 

numerators with Eq. (2.7) 

 
ar =

1

2imrωdr
 (2.7) 

 

where 𝑖 = √−1, 𝐦𝐫 is the modal mass and 𝛚𝐝𝐫 is the damped natural frequency of mode r. The 

synthesised FRFs can be used in the model updating procedure covered in the next section of this 

paper. 
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3. Damage Identification Using FRF Sensitivity Model Updating 

The location and severity of damage is identified in this study by updating FE model using FRF 

sensitivities. The method is based on the iterative formulation of the FRF sensitivities derived by Lin 

and Ewins [22]. In each iteration, this method uses the Linear Least Squares Solver “lsqlin” in 

MATLAB to minimise the squared 2-norm of the residual expressed in Eq. (2.8) 

 
min
∆𝐩

1

2
‖𝐒 ∆𝐩 − ∆𝛂‖2

2 (2.8) 

 

where ∆𝐩 is the vector of updating parameters and ∆𝛂 is the vector of FRF residuals calculated using 

Eq. (2.9) 

 

∆𝛂 = {

{𝜶𝑋(𝜔1)}𝑗 − {𝜶𝐴(𝜔1)}𝑗
⋮

{𝜶𝑋(𝜔𝑛)}𝑗 − {𝜶𝐴(𝜔𝑛)}𝑗

} (2.9) 

 

where {𝜶𝑋(𝜔𝑖)}𝑗 refers to the vector of the experimentally obtained receptance FRFs at the ith 

measured frequency with each row of the vector corresponding to the DOF of the measured response 

with the input applied at coordinate j and {𝜶𝐴(𝜔𝑖)}𝑗 being the analytical counterpart. S is the FRF 

sensitivity matrix and can be calculated using Eq. (2.10) 

 

𝐒 =

[
 
 
 
 
 −[𝛂A(ω1)] [

∂𝐙A(ω1)

∂p1
] {𝛂X(ω1)}j ⋯ −[𝛂A(ω1)] [

∂𝐙A(ω1)

∂pNp
] {𝛂X(ω1)}j

⋮ ⋱ ⋮

−[𝛂A(ωn)] [
∂𝐙A(ωn)

∂p1
] {𝛂X(ωn)}j ⋯ −[𝛂A(ωn)] [

∂𝐙A(ωn)

∂𝐩Np
] {𝛂X(ωn)}j

]
 
 
 
 
 

 (2.10) 

 

where 𝐙A(ω) is the dynamic stiffness matrix expressed in the frequency domain in Eq. (2.11) 

 𝐙𝐀(ω) = 𝐊 + iω𝐂 − ω2𝐌 (2.11) 

 

where 𝐊 is the stiffness matrix, 𝐂 is the damping matrix and 𝐌 is the mass matrix of the FE model. 

The formulation of the sensitivity matrix 𝐒 requires the partial derivatives of the dynamic stiffness 

matrix with respect to the updating parameters to be calculated. The dynamic stiffness matrix 

derivatives can be reduced to the linkage model using the transformation matrix calculated in 

Eq. (2.2). Also, the numerical conditioning of Eq. (2.8) can be improved by normalising the updating 

parameters so that the current parameter estimate is unity. The choice of updating parameters depends 

on the purpose of the model updating procedure. For damage detection purposes, this is typically the 

Young’s modulus of an element or a partition of the model. A decrease in the stiffness of the material 

can indicate damage in a structure. Dividing the FE model into partitions and using the Young’s 

modulus of each partition as an updating parameter can be used as an approach for damage detection 

via model updating. The decision of DOFs to retain after model reduction can be tailored around the 

updating parameters chosen. An example of this is provided in the next section of this paper. The 

updated parameters can be used to form a damage index (DI) for each partition of the structure based 

on the overall stiffness reduction of each partition as expressed in Eq. (2.12) 

 
DI =

|Eh − Ed|

Eh
 (2.12) 
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where Eh and Ed refer to the Young’s modulus of a partition of the FE model in its healthy state and 

damaged state respectively. The model updating procedure is illustrated in Figure 1. In this 

investigation, this procedure is first applied to the specimen in its healthy state to capture the overall 

Young’s modulus, Eh, and the stiffness of its boundary conditions before any damage occurs. Once 

the structure is damaged, it is partitioned so that the Young’s Modulus, Ed, can be identified for each 

partition. The procedure in Figure 1 is repeated for each damage case. As indicated in the flow chart, 

the damage index is only calculated when the procedure is applied to the structure in its damaged 

state. For all model updating procedures applied in this investigation, the convergence criterion is set 

such that convergence is achieved when either the changes in all parameters is less than 0.1 % or a 

maximum of 20 iterations is reached. 

 

Fig. 1. Flow chart summarising the model updating procedure. 
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4. Case Study – Experimental Testing 

An experimental specimen replicating a jack arch component from the bus lane of the Sydney 

Harbour Bridge, shown in Figure 2, was used as the case study for this investigation. The jack arch 

component was 375 mm in height, 1,000 mm in width and 2,000 mm in length and had an internal 

steel I-Beam embedded along it. The cantilever structure was adhered to a clamp at the fixed end 

using plaster and was additionally supported at 1,000 mm from the front of the specimen. 

 

Fig. 2. Experimental jack arch specimen and its boundary condition setup. 

Experimental modal analysis (EMA) was conducted on the specimen to extract its dynamic 

characteristics. An impact hammer was used to excite the structure 25 times to generate multiple data 

samples and eleven accelerometers (model PCB 352C34), A1 to A11, were used to measure the 

acceleration response of the structure in the vertical direction. Figure 3 shows the EMA testing set up. 

The data was collected with a sampling rate of 20 kHz captured over 2 seconds for each impact. The 

time history and the auto-spectrum measured from an impact sample are illustrated in Figure 4. In 

general, the force level is relatively constant until a cut-off frequency is met, which is usually taken to 

be 10 dB below the maximum power [20]. In this example, the cut off frequency is taken to be 

1,250 Hz. A1 was chosen as the driving point FRF, since impacting the specimen near A1 was found 

to excite identifiable vertical bending, in-plane bending and torsional modes. The inertance FRFs for 

each impact sample were calculated and the outliers were removed. The remaining samples were 

averaged to emphasise the repeatable features of the FRFs while softening the non-repeatable 

features. The receptance FRFs were then calculated by dividing the inertance FRFs by −ω2 at each 

measured frequency.  

The next step of this investigation was to introduce damage to the specimen. Therefore, a static load 

was applied at the front of the specimen using a hydraulic jack as shown in Figure 5. The specimen 

was treated as an overhanging cantilever beam in this configuration. The load was applied until an 

immediate reduction in the load carrying capacity of the structure was observed. After the loading was 

Clamp at 

Fixed End 

Plaster 

Adhesive 
Additional 

Support 

Front of 

Specimen 

Left 

Side 

Right 

Side 



8 
 

stopped, the hydraulic jack was removed and the dynamic test was repeated. A crack was observed at 

1,300 mm measured on the left and 1,400 mm measured on the right of the specimen from its front 

with a depth of 275 mm as shown in Figure 6. The specimen was loaded a second time and the depth 

of the crack was increased to 300 mm. Modal testing was conducted for the two damage cases. 

 
Fig. 3. Schematic for dynamic testing showing the locations of the hammer impact and the 

accelerometers A1 to A11 measuring the vertical acceleration. 

(a)  

(b)  

Fig. 4: The (a) time history and (b) auto-spectrum measured from the force of an impact sample. 
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Fig. 5. Setup for static load testing. 

a)  b)   

Fig. 6. A single crack observed from (a) top view and (b) right side view. 

5. Numerical Validation  

An FE model was constructed in ANSYS APDL using 20 noded SOLID 186 elements to exhibit 

quadratic displacement behaviour in the model. This model is illustrated in Figure 7. The updating 

parameters in the FE model were defined by dividing the model into ten partitions along the structure 

with each partition being 200 mm long. This was done to detect the location and severity of the 

transverse crack that was expected to occur as a result of loading the specimen at its tip in the 

overhanging cantilever beam configuration shown in Figure 5. A Young’s modulus value was defined 

for each of these partitions. These parameters are denoted as P1 to P10 in Figure 7. The initial 

Young’s modulus for the concrete specimen was set to 30 GPa. The Young’s modulus of the 

adhesives connecting the specimen to the supports were also considered as updating parameters, as 

they had a significant influence on the dynamic properties of the structure. They are denoted as BC1 

1300 mm 

from 

front 

1400 mm 
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to BC3 in Figure 7. The partial derivatives of the mass and stiffness matrices with respect to the 

updating parameters were numerically determined by perturbing the updating parameters by a value 

of 1 MPa and calculating the differences in the perturbed and unperturbed system matrices.  

 

Memory constraints were a major issue in the numerical modelling of the specimen. The mass and 

stiffness matrices of the FE model were created using ANSYS APDL. However, the matrix operations 

described in the previous sections of this paper were conducted in MATLAB. For the proposed 

procedure, it was necessary to store multiple system matrices including the mass and stiffness 

matrices of the FE model with its current parameter estimates and the partial derivatives of the system 

matrices with respect to the updating parameters. The full FE model contained 5,706 DOF. It was 

observed that a maximum of 5.2 GB of random-access memory (RAM) was used during the updating 

procedure. If the mesh density was to double in any dimension, then the computation would require 

four times the memory. This was problematic, as the system used to conduct this analysis contained 

16 GB of RAM. Hence the quality of the model needed to be compromised to demonstrate the 

proposed method. For example, the plaster used to adhere the specimen to the supports was modelled 

with elements that had a poor aspect ratio and the steel I-beam was excluded from the FE model. In 

future works, strategies to improve memory management will be employed so that higher quality 

models can be used. 

 
Fig. 7. Finite element model of jack arch specimen. 

The numerical validation demonstrates the model updating procedure being applied to the structure in 

its damaged state. Smeared cracking was used to simulate damage by reducing the Young’s modulus 

of P7, as the crack identified on the specimen was located within the region covered by this 

parameter. The Young’s modulus of P7 was arbitrarily reduced to 20 GPa to test whether the damage 

identification method could detect this stiffness reduction. Eleven receptance FRFs were synthesised 

based on the experimental setup of the modal test shown in Figure 3. Rayleigh damping was assumed 

in the FRF synthesis with the values of α = 5.95 and β = 1.1 × 10−6, which were based on the first 

and last modes of interest of the specimen in its healthy state. The eleven receptance FRFs were then 

used as the measured data in the numerical study. In the initial iteration of the model updating 

procedure, the mass and stiffness matrices of the FE model were reduced from the 5,706 DOF shown 

in Figure 7 to the 60 DOF linkage model shown in Figure 8 using SEREP. The DOFs of the linkage 

model were chosen based on the updating parameters of the FE model. The partitions of the FE model 

covered a length of 200 mm along the specimen. Hence, 200 mm was chosen as the distance between 

the DOFs along the linkage model. The spacing of 250 mm across the specimen was chosen to retain 

a good aspect ratio for the grid and to ensure that there was a node in the centreline of the structure. 

This resulted in 55 DOFs for the linkage model. An additional 5 DOFs were added to include 

measured DOFs, resulting in a total of 60 DOFs for the linkage model. Only the vertical DOFs were 

considered for the linkage model since vibration was only measured in the vertical direction on the 

specimen. 

BC1 

BC2 

BC3 
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Fig. 8. Linkage FE model. 

 

The mass and stiffness matrices of the linkage model were then used to expand the measured mode 

shapes to match the DOFs of the linkage model using Eq. (2.5). Examples of expanded mode shapes 

are shown in Figure 9. The interpolated receptance FRFs used in the updating algorithm were then 

synthesised using the expanded mode shapes with the expression in Eq. (2.6). The choice of measured 

frequencies was considered in the updating process. Sufficient measured frequencies were needed to 

ensure that there was adequate information on the dynamic properties of the structure. However, it 

was found that using too many measured frequencies resulted in the updating parameters being 

adjusted minimally with each iteration. According to Imregun et al. [23], there is a cut-off in the 

number of measured frequencies used where using more measured frequencies is no longer beneficial 

as the number of iterations needed to reach convergence is significantly increased. 

The frequency range chosen for the updating procedure was 0 Hz to 1000 Hz with an increment of 

2 Hz. The next step of the damage detection method was to produce the FRF sensitivity matrix using 

Eq. (2.10). The sensitivity matrix consisted of 13 columns corresponding to the updating parameters 

and 60,120 rows to accommodate the 501 measured frequency points, 60 measurement locations 

including the measured and interpolated DOFs and the splitting of the real and imaginary components 

of the FRF. The linear least-squares problem in Eq. (2.8) was then solved using the linear least-

squares solver function in MATLAB with the trust region reflective algorithm. The lower bounds and 

upper bounds for P1 to P10 were set to 1 GPa and 30 GPa, respectively. A value of 1 GPa was used as 

a lower limit to allow the Young’s Modulus of each partition to drop significantly to indicate its 

damage severity. 30 GPa was used as the upper limit, as it was understood that the Young’s modulus 

of each partition would not rise above its healthy value. This procedure was repeated iteratively with 

the linkage model system matrices and interpolated FRFs changing with each iteration according to 

the adjustments in the updating parameters. The convergence criteria to set to stop the iterative 

procedure, once either, all values had a change of less than 0.1 %, or a maximum of 20 iterations was 

reached. This criterion was met after 17 iterations. The comparison of the FRFs before and after 
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updating is shown in Figure 10 and the parameter convergence is shown in Figure 11. The finalised 

updating parameters were used to calculate the damage index using Eq. (2.12). The results are 

summarised in Figure 12. 

 

Fig. 9. Examples of mode shapes expanded from 11 DOFs to 60 DOFs for the numerical study. 

 

Fig. 10. Driving point FRF before and after updating in numerical investigation. 
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a)  

b)  

Fig. 11. Convergence of updating parameters of numerical investigation for the elastic modulus of (a) 

specimen partitions and (b) boundary condition adhesives. 

 

Fig. 12. Damage index for numerical investigation. 
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The comparison illustrated in Figure 10 showing the driving point FRFs of the FE model and 

simulated target data indicates a significant reduction in the discrepancies between the model FRF and 

the measured FRF after updating. Figure 11 shows that the convergence of the parameters was 

achieved after 17 iterations. The Young’s modulus of each partition remained within 0.4% of the 

original value except for P7, which dropped down to 20.1 GPa. The damage index calculated using 

Eq. (2.12) revealed that the region covered by P7 had an overall stiffness reduction of 33.1% as 

shown in Figure 12. The results are summarised in Table 1. 

Table 1. Summary of numerical simulated study. 

Parameter 
Initial 

Parameter 
(Mpa) 

Updated 
Parameter 

(Mpa) 

Damage 
Index 

Measured 
Parameter 

(Mpa) 
Error 

P1 30,000 30,000 0.0% 30,000 0.0% 

P2 30,000 30,000 0.0% 30,000 0.0% 

P3 30,000 30,000 0.0% 30,000 0.0% 

P4 30,000 29,999 0.0% 30,000 0.0% 

P5 30,000 29,999 0.0% 30,000 0.0% 

P6 30,000 29,871 0.4% 30,000 -0.4% 

P7 30,000 20,075 33.1% 20,000 0.4% 

P8 30,000 29,996 0.0% 30,000 0.0% 

P9 30,000 29,999 0.0% 30,000 0.0% 

P10 30,000 29,999 0.0% 30,000 0.0% 

BC1 50 70.08 - 70.00 0.1% 

BC2 50 39.91 - 40.00 -0.2% 

BC3 50 8.01 - 8.00 0.1% 

 

6. Experimental Validation  

The proposed method was investigated using the experimentally measured data from the jack arch 

specimen. One healthy case and two damage cases were considered in this experimental validation. 

The FRF comparisons of these cases are shown in Figure 13. The practical measurements obtained 

from the dynamic tests had significantly more noise than the numerically simulated measurements. 

The imperfect boundary conditions were a major source of noise in this investigation. Gaps were 

observed in the plaster layers used to adhere the specimen to the fixtures. This non-uniformity in the 

boundary conditions most likely contributed to the splitting of modes identified in the FRF. It has 

been observed that asymmetry in a structure can lead to peaks splitting in FRFs [24]. This made it 

difficult to detect all the modes that were identified in the FE model. Figure 13 shows that four 

modes, including a vertical bending, in-plane bending and two torsion modes could be identified in all 

three cases. The FRF range used to update the model were selected based on these modes. 
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Fig. 13. FRF comparison of healthy and damage cases. 

Initial attempts were made to detect damage in the structure using the measurements from the damage 

cases alone. However, the updated results for P9 and P10 dropped to unrealistically low values. The 

authors suspect that this is due to the information lost in the FRF used for updating. Multiple peaks 

were identified in the FRF between 200 Hz to 800 Hz in the numerical study, as shown in Figure 10. 

However, these peaks could not be identified in Figure 13, with the exception of the mode at 615 Hz 

for the healthy case. This mode could not be identified for the damage cases. It is likely that these 

modes split into multiple modes due to the asymmetry in the cracks. Similarly, the other modes may 

have not been identified due to the asymmetry in the boundary conditions. To overcome this issue, the 

number of updating parameters was reduced by dividing the updating procedure into two stages.  

The first stage was to update the healthy case of the specimen using four updating parameters 

including the overall Young’s modulus of the specimen and the three boundary condition parameters. 

The second stage was to update the Young’s modulus of the 10 partitions of the jack arch specimen 

only i.e., P1 to P10. The Young’s modulus of the specimen and boundary conditions identified in the 

first stage were, respectively, used as the healthy Young’s modulus and fixed boundary condition 

parameters in the second stage. It was assumed that the boundary conditions would not change 

between different cases. The FRFs of the healthy case were cleaned by synthesising the FRFs using 

the modal data obtained experimentally and applying them to Eq. (2.6). The Rayleigh damping 

parameters of α = 5.95 and β = 1.1 × 10−6 were assumed based on the damping ratios identified 

from the first and last mode of interest. A comparison of the synthesised and measured driving point 

FRF is shown in Figure 14. The first vertical bending and in-plane bending mode, and the second 

torsion mode were used to update the model in its healthy state. The first torsion mode identified at 

167 Hz was excluded from the updating procedure, as the damping properties of this mode could not 

be represented by the Rayleigh damping parameters used in the FE model. The peak identified at 

615 Hz was also a torsion mode that was removed from the model updating procedure, as it had a 

significantly smaller peak for the measured FRF than the one identified from the FE model. Further, 

this mode could not be clearly identified for the damage cases. Hence it was removed from the model 

updating process. For the healthy case, the frequencies considered for updating the model included 0 

Hz to 100 Hz and 800 Hz to 1,000 Hz. The frequency resolution was 2 Hz for the considered range. 

Vertical bending mode 

Torsion mode 
In-plane bending mode 

Torsion mode 
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Fig. 14. Driving point synthesised FRF versus driving point measured FRF for the healthy case. 

Similarly, to the numerical case, the FE model was reduced to the 60 DOF linkage model shown in 

Figure 8, which was then used to expand the mode shapes of the 11 measured DOFs as shown in 

Figure 15. The interpolated FRFs were synthesised using the expanded modal data and used to form 

the FRF sensitivity matrix, which contained of 4 columns corresponding to the updating parameters 

and 18,240 rows to accommodate the 152 measured frequencies, 60 DOFs and the splitting of the real 

and imaginary components of the FRF. A lower limit of 15 MPa was placed for the boundary 

condition parameters to stop them from falling to unrealistic values. The linear least-squares problem 

expressed in Eq. (2.8) was solved and this procedure was repeated until 20 iterations were reached. 

The results in Figure 16 show that the updated FRF is a closer representation of the measured FRF 

than the initial FRF. The iterative change of parameters is shown in Figure 17 and the results of 

updating the healthy specimen is summarised in Table 2. The next step of this investigation was to 

update the partitions of the FE model using the FRFs measured from the damaged specimen.  

Table 2. Summary of updating of healthy specimen.  

Parameter Initial Parameter (MPa) Updated Parameter (MPa) 

Concrete Young's Modulus 30,000 32,721 

Boundary Condition 1 50 39.50 

Boundary Condition 2 50 35.85 

Boundary Condition 3 50 17.49 

 

  

Updating 

Range 

Updating 

Range 
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Fig. 15. Examples of mode shapes expanded from 11 DOF to 60 DOF for the experimental healthy 

case. 

a) b)  

Fig. 16. Driving point FRF before and after updating for the healthy case at frequencies (a) 0 Hz to 

100 Hz (b) 800 Hz to 1000 Hz. 
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a)  

b)  

Fig. 17. Iterative changes of parameters of the healthy case for the Young’s modulus of the 

(a) concrete specimen and (b) boundary conditions adhesives. 

The next step of this procedure was to identify the damage location and severity using the data 

measured in the first damage case. As with the healthy case, the FRFs were cleaned by synthesising 

the FRFs using modal data obtained experimentally. Rayleigh damping was assumed based on the 

damping ratios of the first and last modes considered in this investigation leading to the parameters 

α = 48.6 and β = −2.5 × 10−7. A comparison between the synthesised FRF and the measured FRF 

is shown in Figure 18. The frequency range chosen for updating were based on the four modes 

identified in Figure 13. In this case, the frequency range chosen was 0 Hz to 200 Hz and 800 Hz to 

1,000 Hz with a resolution of 2 Hz. In each iteration of the model updating procedure, the model was 

reduced to the linkage model, which was used to expand the measured mode shapes. Examples of 

expanded mode shapes of the first damaged case are illustrated in Figure 19. The expanded mode 

shapes were used to synthesise the interpolated FRFs, which was used, in combination with the 

linkage model, to form the sensitivity matrix to update the parameters of the FE model. The 

sensitivity matrix contained of ten columns, corresponding to the Young’s modulus of the ten sections 
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of the jack arch specimen and contained 24,240 rows to accommodate the 202 measured frequencies, 

60 DOFs and splitting the real and imaginary components of the FRF.  

 

Fig. 18. Driving point synthesised FRF vs driving point measured FRF for Damage Case 1. 

 
Fig. 19. Examples of mode shapes expanded from 11 DOF to 60 DOF for Damage Case 1. 
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Range 

Updating 

Range 
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a) b)  

Fig. 20. Driving point FRF before and after updating for Damage Case 1 at frequencies 

(a) 0 Hz to 200 Hz (b) 800 Hz to 1,000 Hz 

 
Fig. 21. Convergence of updating parameters for Damage Case 1. 

Following the model updating procedure, there was a closer agreement between the model FRF and 

the measured FRF as shown in Figure 20. The model updating procedure was stopped once the 

maximum of 20 iterations were reached. The updated parameter P7 showed a clear decrease in its 

Young’s modulus value in comparison to the other partitions of the specimen. This can be seen in 

Figure 21. Based on the updated information, the damage index was calculated. The results shown in 

Figure 22 and Table 3 indicate that P7 had a stiffness reduction of 41.4 %, which was significantly 

larger than the other partitions of the specimen. These results agree with the crack visually identified 

in Figure 6, which was located between 1,300 mm and 1,400 mm from the front of the specimen and 

lies within the region covered by P7. 
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Fig. 22. Damage index for Damage Case 1 in the experimental investigation. 

Table 3. Summary of updating for Damage Case 1. 

Parameter Initial Parameter (Mpa) Updated Parameter (Mpa) Damage Index 

P1 32,721 32,721 0.0% 

P2 32,721 32,717 0.0% 

P3 32,721 32,721 0.0% 

P4 32,721 32,710 0.0% 

P5 32,721 32,719 0.0% 

P6 32,721 32,365 1.1% 

P7 32,721 19,181 41.4% 

P8 32,721 31,438 3.9% 

P9 32,721 32,700 0.1% 

P10 32,721 32,435 0.9% 

 

The second damage case was the next case to be tested in the model updating procedure. As with the 

previous two experimental cases, cleaned FRFs were synthesised using the modal data obtained 

experimentally. The Rayleigh damping values of α = 82.8 and β = 1.0 × 10−6 were used based on 

the first and last mode considered for the second damaged case. Figure 23 illustrates the comparison 

between the synthesised and measured driving point FRFs. A frequency range of 0 Hz to 200 Hz and 

800 Hz to 1,000 Hz with a resolution of 2 Hz was chosen to include the modes identified in Figure 13. 

The model updating procedure described for the previous experimental cases was also used for this 

case. Figure 24 shows that the model FRF has become a closer representation to the measured FRF 

after updating. Parameter convergence is shown in Figure 25 and was stopped after 20 iterations were 

reached. The Young’s modulus of P7 dropped to a value of 14.9 GPa during this model updating 

procedure. Based on these results, the damage index was calculated and can be seen in Figure 26 and 

Table 4. A stiffness reduction of 54.4 % could be observed in P7 as a result of the crack after the 

second load. 
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Fig. 23. Driving point synthesised FRF vs driving point measured FRF for Damage Case 2. 

a) b)  

Fig. 24. Driving point FRF before and after updating for Damage Case 2 at frequencies 

(a) 0 Hz to 200 Hz (b) 800 Hz to 1,000 Hz 

 
Fig. 25. Convergence of updating parameters for Damage Case 2. 
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Fig. 26. Damage index for Damage Case 2 in the experimental investigation. 

Table 4. Summary of updating of Damage Case 2. 

Parameter Initial Parameter (Mpa) Updated Parameter (Mpa) Damage Index 

P1 32,721 32,717 0.0% 

P2 32,721 32,717 0.0% 

P3 32,721 32,713 0.0% 

P4 32,721 32,713 0.0% 

P5 32,721 32,055 2.0% 

P6 32,721 32,638 0.3% 

P7 32,721 14,934 54.4% 

P8 32,721 32,498 0.7% 

P9 32,721 32,345 1.1% 

P10 32,721 32,646 0.2% 

 

Overall, the proposed method could detect the stiffness reduction in partition P7 due to the presence 

of the crack located within that region using a limited sensor array. Two damage cases were tested 

with P7 being found to have a stiffness reduction of 41.4 % and 54.4 % for Damage Case 1 and 

Damage Case 2, respectively. This is consistent with the observations of the crack identified on the 

specimen approximately 1,350 mm from its front. After the first static load, the crack was recorded to 

have a depth of 275 mm. The specimen was loaded again and the crack length increased to 300 mm. 

The investigation into the correlation between the crack depth and stiffness reduction was outside the 

scope of this paper. However, future research will involve the investigation into the correlation 

between the stiffness reduction of a partition and crack properties in a similar manner to the research 

conducted by Sinha et al. [7]. The authors of that study made small modifications to the local 

flexibility in Euler-Bernoulli beam elements to estimate crack locations and sizes. 

 

In SHM, it is impossible to apply a sensor on every point corresponding to the DOFs in the FE model. 

The linkage model serves as an intermediary to link the FE model to the spatially limited measured 

data. This technique can be used in real world applications where the spatial limitation of sensors is an 

issue. 
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8. Conclusions 

The presented study investigated a method to detect the location and severity of damage in a jack arch 

specimen by updating a linkage FE model using the FRF sensitivity method. In the developed method, 

the specimen was first divided into partitions, then the Young’s modulus of each partition was 

updated to identify the stiffness reduction in each section. The numerical validation showed that the 

method could identify the location and severity of damage within 17 iterations. However, the 

experimental investigation proved to be more challenging. In general, the modes between 200 Hz and 

800 Hz could not be clearly identified. A mode at 615 Hz was identified from the healthy case. 

However, the mode appeared to have been split into multiple peaks for the damage cases, potentially 

due to the asymmetry in the crack. Thus it was necessary to reduce the number of updating parameters 

by diving the procedure into two stages. For the healthy case of the experimental investigation, four 

parameters including the overall Young’s modulus of the specimen, and three parameters based on the 

boundary conditions of the specimen were updated. The updated overall Young’s modulus of the 

specimen was treated as the healthy Young’s modulus and the updated boundary condition parameters 

were fixed for the damaged case. Then, the Young’s moduli of the 10 partitions of the specimen were 

used as the updating parameters in the model updating procedure for the damaged cases. The results 

correctly located the damage in partition P7 with a stiffness reduction value of 41.4 % after the first 

load. For the second damage case, it identified an increased stiffness reduction value of 54.4 % at P7. 

The method is a practical approach to interpolating data to identify the location and severity of 

damage for real SHM systems that contain a limited numbers of measurement sensors. 
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