
Small and large scale behavior of moments

of Poisson cluster processes

Nelson Antunes
CEMAT/University of Lisbon

Vladas Pipiras∗

University of North Carolina

Patrice Abry
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Abstract

Poisson cluster processes are special point processes that find use in modeling Internet
traffic, neural spike trains, computer failure times and other real-life phenomena. The focus of
this work is on the various moments and cumulants of Poisson cluster processes, and specifically
on their behavior at small and large scales. Under suitable assumptions motivated by the
multiscale behavior of Internet traffic, it is shown that all these various quantities satisfy scale
free (scaling) relations at both small and large scales. Only some of these relations turn out
to carry information about salient model parameters of interest, and consequently can be
used in the inference of the scaling behavior of Poisson cluster processes. At large scales, the
derived results complement those available in the literature on the distributional convergence
of normalized Poisson cluster processes, and also bring forward a more practical interpretation
of the so-called slow and fast growth regimes. Finally, the results are applied to a real data
trace from Internet traffic.

1 Introduction

A Poisson cluster process (PCP, for short; sometimes also called cluster Poisson process or CPP)
consists of points usually defined on the positive half-axis (0,∞) whose positions are determined
by the following construction. Clusters of a finite number of points are assumed to arrive according
to a Poisson arrival process with intensity λ > 0 at times Sj , j ≥ 1 (with 0 < S1 < S2 < . . .).
The clusters are i.i.d. copies with a random but almost surely finite number of points Wj . The
focus throughout is on clusters having the following structure: the Wj points are separated in
time by i.i.d. sequence of positive interarrival times Aj,k, k ≥ 1, and the first point of a cluster
is located at the the arrival time of the cluster. Such PCPs are also known as the Bartlett-Lewis
processes after Bartlett (1963) and Lewis (1964) (see, for example, Cox and Isham (1980), Daley
and Vere-Jones (2003)).
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In mathematical terms, if N(B) denotes the number of such PCP points in a set B ⊂ (0,∞),
then

N(B) =
∞∑
j=1

Wj−1∑
k=0

1B

(
Sj +

k∑
m=1

Aj,m

)
, (1.1)

where 1B(x) is the indicator function of the set B. The PCP N defined by (1.1) is called transient
(that is, nonstationary), since the distributions of N(B) and N(B + T ) are in general not equal
for T > 0 and B ⊂ (0,∞), where B + T = {x + T : x ∈ B}. The equilibrium PCP Ne(B) is
defined as N(B+T ) letting T →∞. For the equilibrium process, the distributions of Ne(B) and
Ne(B+h) are the same for any h > 0 and B ⊂ (0,∞). The equilibrium process Ne can be viewed
as stationary, and will be the focus throughout this work.

PCPs form an interesting class of point processes which has been studied in theory (e.g.
in the general context of point process; see Cox and Isham (1980), Karr (1991), Daley and
Vere-Jones (2003)) and used successfully in applications (e.g. computer failure patterns in Lewis
(1964), software reliability in Zeephongsekul et al. (1994), neural spike trains in Grüneis et al.
(1989, 1990), physics in Saleh and Teich (1982), Lowen and Teich (2005), rainfall in Onof et al.
(2000)). The motivating application in this work is the Internet traffic observed on a network link,
where points are data packets and clusters are packet flows (essentially packetized document files,
web pages, videos or other application contents). The use of PCPs in modeling data packet traffic
was popularized by Hohn et al. (2003). See also Faÿ et al. (2006), Mikosch and Samorodnitsky
(2007), Fasen and Samorodnitsky (2009), González-Arévalo and Roy (2010), Antunes and Pipiras
(2016). Models related to PCPs for modeling Internet traffic include the ON/OFF model (e.g.
Leland et al. (1994)), the infinite source Poisson arrival process (e.g. Mikosch et al. (2002), Guerin
et al. (2003)), and the renewal point process (e.g. Kaj (2002), Gaigalas and Kaj (2003)).

In this work, we focus on the moments and cumulants of PCPs. On the one hand, moments
and cumulants are among the most basic and fundamental quantities of any random object of
study and, in fact, have already been studied for PCPs to some extent (see references in Section
2 below). We are particularly interested here in their scaling behavior at large (coarse) and small
(fine) scales, especially in connection to the use of PCP models motivated by the “self-similar”
and multiscale nature of Internet traffic (e.g. Abry et al. (2002), Hohn et al. (2003)).

More specifically, we will consider the following moments of PCPs: for integer r ≥ 1,

(usual) moments : mr(a) = ENe(0, a)r, (1.2)

factorial moments : m[r](a) = ENe(0, a)[r], (1.3)

central moments : m0
r(a) = E(Ne(0, a)− ENe(0, a))r, (1.4)

where n[r] = n(n− 1) . . . (n− r + 1) for a nonnegative integer n and a > 0 will be referred to as
“scale.” Central moments are natural to consider in view of some of the large scale limiting results
available for centered PCPs (see (5.15) and (5.16) below). Factorial moments are considered
because, as will be shown, they may be more informative about PCPs than the usual or central
moments.

The quantities most convenient to work with in the context of PCPs are not any of the moments
above but rather factorial cumulants. Moreover, the (usual) cumulants are often considered in
practice, in addition to the (usual) moments. We will thus also consider: for integer r ≥ 1,

(usual) cumulants : κr(a) =
∂r logMa(t)

∂tr

∣∣∣
t=0

, (1.5)

factorial cumulants : κ[r](a) =
∂r logPa(z)

∂zr

∣∣∣
z=1

, (1.6)
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Asymptotic behavior small scales (a→ 0+) large scales (a→∞)

cumulants if a� aκ,r: if aκ,r � a: (*)
κr(a) ∼ cκ,rλa ∼ Cκ,rλar−α+1

factorial cumulants if a� aκ,[r]: if aκ,[r] � a:

κ[r](a) ∼ cκ,[r]λa1+(r−1)θ ∼ Cκ,[r]λar−α+1

moments if a� am,r: if am,r � a:
mr(a) ∼ cm,rλa ∼ Cm,rλrar

factorial moments if a� am,[r]: if am,[r] � a:

m[r](a) ∼ cm,[r]λa1+(r−1)θ (θ < 1) ∼ Cm,[r]λrar
∼ cm,[r]λrar (θ > 1)

central moments if a� a0m,r,1: if a0m,r,1 � a� a0m,r,2: (fast growth*)

m0
r(a) ∼ c0m,rλa ∼ C0

m,r,1λ
r/2a(3−α)r/2, for even r

∼ C0
m,r,1λ

r/2a(3−α)(r−1)/2+1, for odd r

if a0m,r,2 � a: (slow growth*)

∼ C0
m,r,2λa

r−α+1

Table 1: The asymptotic behavior of the various moments and cumulants (r ≥ 2).

where Pa(z) is the probability generating function of the equilibrium PCP on the interval (0, a)
(see Section 2 for definition) and Ma(t) is the moment generating function of the equilibrium PCP
on the interval (0, a). In fact, the results of interest will be derived first for factorial cumulants
κ[r](a) and then used to obtain analogous results for the remaining quantities (1.2)–(1.4) and
(1.5).

Small and large scale behaviors of the quantities (1.2)–(1.4) and (1.5)–(1.6) refer, respectively,
to a → 0+ and a → ∞. As indicated above, in connection to Internet traffic and especially its
self-similar (multiscale) nature, it has become common and useful to examine various quantities
as analysis scale changes. In our study, we shall make the following assumptions motivated by
the applications to Internet traffic. At large scales (a→∞), we shall assume, in particular, that
the cluster size distribution of W = Wj is heavy-tailed with exponent α ∈ (1, 2) in the sense that

P(W > w) ∼ CWw−α, as w →∞, (1.7)

where ∼ denotes the asymptotic equivalence and CW > 0 is a constant. This is a common
assumption in the Internet traffic models, based on empirical findings (e.g. Abry et al. (2010)).
At small scales (a→ 0+), we shall assume that the cumulative distribution F of interarrival times
A = Aj,m has a density f satisfying: for θ > 0 and Cf > 0,

f(t) ∼ Cf tθ−1, as t→ 0+. (1.8)

In the applications to Internet traffic, F is often taken as a gamma distribution, that satisfies (1.8).
For the Internet traffic data considered in this work, the parameter θ of the gamma distribution
satisfying (1.8) is estimated to be smaller than 1.

Under the assumptions (1.7) and (1.8), the asymptotic behavior of the various cumulants and
moments at small and large scales is summarized in Table 1 for r ≥ 2. In each case, the asymptotic
behavior is expressed in terms of λ and a, and a constant which depend only on r, and possibly
the distributions of W (at large scales) and A (at small scales), with the exception of the factorial
moments at small scales when θ = 1. The latter case is not included in the table but is treated
in our analysis below. We also specify the scales for which the asymptotic results are expected
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to hold in practice: e.g. a � aκ,r and aκ,r � a for cumulants where aκ,r is the transition scale
between small and large scales obtained by equating the two asymptotic behaviors at small and
large scales, and solving for a. (The notation � stands for the heuristic “much smaller.”) The
exact forms of all the constants and transition scales will be given below.

One reason that we single out λ in the asymptotic results, in addition to a, is that the
asymptotic behavior of the central moments is more delicate at large scales, depending on the
magnitude of λ compared to a. This fact is well-known in the studies of large scale behavior of
the distributional properties of PCPs, where one distinguishes between the so-called fast growth
regime corresponding to large λ/aα−1 and the slow growth regime corresponding to small λ/aα−1

(see Section 5 for more information). The different asymptotic behaviors of the central moments
at large scales in Table 1 correspond to these two regimes. We should stress that all the other
stated results at large scales are valid in both slow and fast growth regimes. We also note that the
results indicated by (*) in Table 1, have been verified up to the order r = 10 only but otherwise
conjectured to hold for all r.

Several interesting conclusions can be drawn from Table 1. For example, on the moments side
and at large scales, note that the exponent α in (1.7) is captured by the central moments only,
while at small scales, the exponent θ in (1.8) is captured by the factorial moments and in the
case θ < 1 only. The factorial cumulants, on the other hand, have the exponents α and θ at large
and small scales, respectively. One natural interest in the obtained scaling relations is that they
could be used for robust estimation procedures while inferring the scaling behavior. Our results
for the central moments at large scales provide a more practical interpretation of the slow and fast
growth regimes. Indeed, as argued below, these regimes reflect naturally the changing nature of
the central moments as a increases for fixed λ; whereas in the earlier literature, λ was associated
with the length of the time window where the PCP was observed.

Our results on the large scale asymptotic behavior of the various moments are closest in the
spirit to those of Dombry and Kaj (2013) who considered moment measures in the parallel context
of renewal point processes. But it should be noted that our approach and proofs are different,
and some of the issues considered here are not addressed in Dombry and Kaj (2013). Further
comparison with the work of Dombry and Kaj (2013) will be provided (see Remark 5.3 below).

Our results at small scales are somewhat connected to the so-called multifractal analysis
which similarly focuses on the scaling behavior of the usual moments and cumulants of various
quantities at small scales (e.g. Wendt et al. (2007)). We shall pursue these connections in greater
detail elsewhere. But we would like to note here that the behavior of PCPs and related models
in connection to Internet traffic and multifractals, was explored in Hohn et al. (2003), Veitch
et al. (2005), Ribeiro et al. (2005), Krishna et al. (2012). The use of factorial moments in the
multifractal (intermittency) analysis of point process data, instead of the usual moments, can be
found in Carruthers et al. (1989), de Wolf et al. (1996), in connection to high-energy multiparticle
collisions.

In summary, the structure of the paper is as follows. In Section 2, we provide the known
formulae for the various cumulants and moments of PCPs. The behavior of the moments of PCP
at large scales is studied in Section 3. Section 4 concerns the behavior of the moments at small
scales. The large scale behavior in the slow and fast regimes mentioned above is discussed in
Section 5. The transition between the different scaling behaviors is discussed in Section 6. The
application to Internet traffic is given in Section 7, where we find the various empirical moments
of the Internet traffic data set to be described quite well by the derived formulae for the moments
of PCP and their asymptotic relations. Finally, in Appendix A, we provide the formulae relating
the first 7 central moments and factorial cumulants, which are used in Section 5, and in Appendix
B, we derive the formula for the factorial cumulants of PCP, adapting the approach of Westcott
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(1973).

2 Moments and cumulants of Poisson cluster processes

The definition of moments and cumulants and their relations for general point processes are given
in Daley and Vere-Jones (2003) (Section 5.2). We gather here these formulae for the Poisson
cluster processes (PCPs). We also introduce some notation used throughout this work. The focus
is on the PCP N given by (1.1), and the corresponding equilibrium PCP Ne discussed following
(1.1).

The interarrival times Aj,m in (1.1) between the points in a cluster are independent and
identically distributed as a random variable A having distribution function

F (t) = P(A ≤ t), t > 0. (2.1)

Its kth convolution will be denoted Fk, k ≥ 1, with F1 = F . The numbers of points Wj in
clusters are independent and identically distributed as a random variable W with probability
mass function

pW (w) = P(W = w), w ≥ 1. (2.2)

Its tail probability will be denoted

Rw = P(W ≥ w), w ≥ 1. (2.3)

As in (1.1), the starting points Sj of the clusters are the arrival times of a Poisson process with
intensity λ > 0.

Let
Pt(z) = EzNe(0,t) (2.4)

be the probability generating function of the equilibrium PCP on the interval (0, t). Factorial
cumulants of Ne(0, t) are defined as

κ[r](t) =
∂r logPt(z)

∂zr

∣∣∣
z=1

, r ≥ 1. (2.5)

The factorial cumulants of the equilibrium PCP Ne can also be obtained as

κ[1](t) = λEWt, κ[2](t) = 2λ

∞∑
k=1

∫ t

0
Fk(u)du

∞∑
j=1

Rj+k (2.6)

and, for r > 2,

κ[r](t) = (r − 1)rλ

∞∑
k=r−1

(k − 1)(k − 2) . . . (k − r + 2)

∫ t

0
Fk(u)du

∞∑
j=1

Rj+k. (2.7)

The formulas (2.6)–(2.7) appear in Westcott (1973) when the first points of the clusters are
excluded. When the first points are included, the formulae are derived in Appendix B below. The
usual cumulants of Ne(0, t), on the other hand, are denoted κr(t) and defined as in (1.5).

Remark 2.1 In computing the factorial cumulants through (2.7) for underlying choices of F , we
truncate the sum (2.7) at large k. Evaluating the integrals

∫ t
0 Fk(u)du is computationally most

expensive, especially as k increases. One possibility we explored in computing these integrals
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for large k is to use normal approximations. That is, by central limit theorem, Fk is approxi-
mately normal with mean kµ and variance kσ2, where µ and σ2 are the mean and variance of F ,
respectively. Supposing this normal distribution for Fk, one can show that

∫ t

0
Fk(u)du =

1

2
√

2πkσ
e−(t

2+k2µ2)/(2kσ2)
∞∑
i=0

bi/2c∑
j=0

t2+i
(µ/σ2)i−2j

(i− 2j)!(2jσ2)j

×
(

Γ(i/2− j + 1/2)

Γ(i/2 + 3/2)
− Γ(i/2− j + 1)

Γ(i/2 + 2)

)
, (2.8)

where b.c is the floor function. (The proof of (2.8) is omitted.) The series on the right-hand side
of (2.8) converges quickly and makes the evaluation of

∫ t
0 Fk(u)du computationally convenient.

We found this approximation to work well in practice, but also not to make significant difference
for our purposes.

The factorial moments are defined as

m[r](t) = ENe(0, t)
[r], r ≥ 1, (2.9)

where n[r] = n(n− 1) . . . (n− r+ 1). They are related to the factorial cumulants in the same way
that the usual moments and cumulants relate, that is,

m[1](t) = κ[1](t), m[2](t) = κ[2](t) + κ[1](t)
2, m[3](t) = κ[3](t) + 3κ[2](t)κ[1](t) + κ[1](t)

3 (2.10)

and, in general,

m[r](t) =
r−1∑
k=0

(
r − 1

k

)
κ[r−k](t)m[k](t) (2.11)

and also

m[r](t) =
r∑

k=1

Br,k

(
κ[1](t), κ[2](t), . . . , κ[r−k+1](t)

)
, (2.12)

where Br,k are the Bell polynomials given by

Br,k(x1, x2, . . . , xr−k+1)

=
∑

(n1,n2,...,nr−k+1)∈Sr,k

r!

n1!n2! . . . nr−k+1!

(x1
1!

)n1
(x2

2!

)n2

. . .
( xr−k+1

(r − k + 1)!

)nr−k+1

(2.13)

with Sr,k consisting of all (n1, n2, . . . , nr−k+1) ∈ (N∪{0})r−k+1 such that n1+n2+. . .+nr−k+1 = k
and n1+2n2+. . .+(r−k+1)nr−k+1 = r. See, for example, Peccati and Taqqu (2011), Proposition
3.3.1.

The usual moments
mr(t) = ENe(0, t)

r, r ≥ 1, (2.14)

are related to the factorial moments through the relation

mr(t) =
r∑
j=1

∆j,rm[j](t), (2.15)
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where ∆j,r are the Stirling numbers of the second kind (e.g. Daley and Vere-Jones (2003), pp.
114-115). In our analysis, we shall be working with factorial cumulants through the formulas
(2.6)–(2.7), and then relate them to factorial and usual moments by using the relations above.

We shall also present results for central moments

m0
r(t) = E(Ne(0, t)− ENe(0, t))

r, r ≥ 1, (2.16)

which are related to the usual moments through

m0
r(t) =

r∑
j=0

(
r

j

)
(−1)r−jmj(t)m1(t)

r−j . (2.17)

Finally, we use the following recursion formula relating cumulants and central moments (e.g.
Willink (2003)):

κr(t) = m0
r(t)−

r−2∑
j=1

m0
j (t)κr−j(t), r ≥ 2, (2.18)

and κ1(t) = λEWt.

3 Moment and cumulant behavior at large scales

In this section, we study the asymptotic behavior of the cumulants κ[r](a), κr(a) and the various
moments m[r](a), mr(a) and m0

r(a) at large scales, that is, as a → ∞. We assume that the
distribution of the number of points in a cluster is heavy-tailed in the following sense.

Assumption W: The distribution of W is heavy-tailed, that is,

P (W > w) ∼ CWw−α, as w →∞, (3.1)

where 1 < α < 2 and CW > 0.

The assumption α ∈ (1, 2) can be relaxed to α > 1 but at the expense of more involved
formulae. The range α ∈ (1, 2) is motivated by typical estimated values of α in applications to
Internet traffic, and corresponds to W having finite mean but infinite variance.

Proposition 3.1 Suppose that the distribution of the number of points in a cluster of PCP sat-
isfies Assumption W above. The factorial cumulants κ[r](a), r ≥ 1, of PCP then satisfy:

κ[1](a) = λEWa, κ[r](a) ∼ Cκ,[r]λar−α+1, r ≥ 2, as a→∞, (3.2)

where

Cκ,[r] =
r(r − 1)CW

(α− 1)(r − α)(r + 1− α)(EA)r−α
. (3.3)

Proof: We denote by S̃k the sum of k i.i.d. interarrival times A, associated with the distribution
function Fk, k ≥ 1. We also let Ñ(u) =

∑∞
k=1 1{S̃k≤u}, u ≥ 0, be the respective infinite renewal

process. The first relation in (3.2) is just the first relation in (2.6). For r = 2, the second relation
in (2.6) and Assumption W yield

κ[2](a) = κ[2],1(a) + o(a ∨ κ[2],1(a)), (3.4)
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where a ∨ b = max{a, b} and

κ[2],1(a) = 2λCW

∞∑
k=1

∫ a

0
Fk(u)du

∞∑
j=1

(j + k)−α

= 2λCW

∞∑
k=1

∫ a

0
Fk(u)du k1−α

∞∑
j=1

(
1 +

j

k

)−α 1

k
.

Similarly,
κ[2],1(a) = κ[2],2(a) + o(a ∨ κ[2],2(a)), (3.5)

where, by using
∫∞
0 (1 + u)−αdu = (α− 1)−1,

κ[2],2(a) =
2λCW
α− 1

∞∑
k=1

∫ a

0
Fk(u)du k1−α

=
2λCW
α− 1

∫ a

0

∞∑
k=1

P(S̃k ≤ u)k1−αdu

=
2λCW
α− 1

∫ a

0

∞∑
k=1

P(Ñ(u) ≥ k)k1−αdu

=
2λCW
α− 1

∫ a

0

∞∑
j=1

P(Ñ(u) = j)

j∑
k=1

k1−αdu

and
κ[2],2(a) = κ[2],3(a) + o(a ∨ κ[2],3(a)), (3.6)

where

κ[2],3(a) =
2λCW

(α− 1)(2− α)

∫ a

0

∞∑
j=1

P(Ñ(u) = j)j2−αdu

=
2λCW

(α− 1)(2− α)

∫ a

0
E(Ñ(u)2−α)du.

By Theorem 5.1, (ii), in Gut (2009), Chapter 2, E((Ñ(u)/u)2−α) → (1/EA)2−α as u → ∞ and
hence

κ[2],3(a) ∼ 2λCW
(α− 1)(2− α)(3− α)(EA)2−α

a3−α. (3.7)

The relation (3.2) with r = 2 now follows from (3.4)–(3.7). The relation (3.2) with r > 2 can be
proved similarly by arguing that

κ[r](a) ∼ r(r − 1)λCW
(α− 1)(r − α)

∫ a

0
E(Ñ(u)r−α)du

and again using the same result of Gut (2009). 2

The next two results describe the asymptotic behavior of the moments and cumulants at large
scales.
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Corollary 3.1 Under the assumptions of Proposition 3.1, the factorial moments m[r](a), the
moments mr(a) and the central moments m0

r(a), r ≥ 2, of PCP satisfy:

m[r](a) ∼ Cm,[r]λrar, (3.8)

mr(a) ∼ Cm,rλrar, (3.9)

m0
r(a) ∼ C0

m,rλa
r−α+1, as a→∞, (3.10)

where
Cm,[r] = Cm,r = (EW )r, C0

m,r = Cκ,[r] (3.11)

with Cκ,[r] given in (3.3). (When r = 1, m[1](a) = m1(a) = κ[1](a) = λEW a and m0
1(a) = 0.)

Proof: The relation (3.8) can be shown recursively by using (3.2) and (2.10)–(2.11). In-
deed, when r = 2, it follows from the second relation in (2.10) and (3.2). Supposing it
holds for 2, . . . , r − 1, it also holds for r since the term κ[r−k](a)m[k](a) in (2.11) behaves
as (λEWa)(Cm,[r−1]λ

r−1ar−1) = Cm,[r]λ
rar when k = r − 1, and is of the smaller order

ar−k−α+1 · ak = ar−α+1 when k < r − 1. The relation (3.9) follows immediately from (2.15)
and (3.8), and the fact that ∆r,r = 1.

The relation (3.10) is slightly more difficult to deal with. We shall use the relation (2.17) to
express m0

r(a) in terms of the moments mj(a), j = 1, . . . , r, and the relations (2.15) and (2.12)
to express mj(a) in terms of the factorial cumulants κ[1](a), . . . , κ[j](a). Changing the indices to
avoid confusion, note that (2.15) and (2.12) yield

mj(a) =

j∑
p=1

∆j,pm[p](a) =

j∑
p=1

∆j,p

p∑
q=1

Bp,q(κ[1](a), κ[2](a), . . . , κ[p−q+1](a))

=

j∑
p=1

p∑
q=1

∑
(n1,...,np−q+1)∈Sp,q

∆j,p
p!

n1! . . . np−q+1!

(κ[1](a)

1!

)n1

. . .
( κ[p−q+1](a)

(p− q + 1)!

)np−q+1

=:

j∑
p=1

p∑
q=1

∑
(n1,...,np−q+1)∈Sp,q

Tp,q(n1, . . . , np−q+1), (3.12)

where integers n1, n2, . . . , np−q+1 ≥ 0 are such that n1 + n2 + . . . + np−q+1 = q and n1 + 2n2 +
. . . + (p − q + 1)np−q+1 = p. By using these two relations for n1, n2, . . . , np−q+1 and (3.2), note
that the order of the term Tp,q(n1, . . . , np−q+1) in (3.12) is

an1an2(2−α+1) . . . anp−q+1(p−q+1−α+1) =

{
ap−(q−n1)(α−1), q ≤ p− 1,

aq, q = p = n1.
(3.13)

This order is largest when

p = j, q = j, n1 = j, n2 = . . . = np−q+1 = 0, (3.14)

which corresponds to
Tj,j(j, 0, . . . , 0) = κ[1](a)j .

But, when substituted into (2.17), this term yields

r∑
j=0

(
r

j

)
(−1)r−jTj,j(j, 0, . . . , 0)m1(a)r−j = κ[1](a)r

r∑
j=0

(
r

j

)
(−1)r−j = 0,

9



and hence the case (3.14) can be eliminated from the sum in (3.12). The next largest order in
(3.13) occurs when

q − n1 = 1 (n1 = q − 1), p = j. (3.15)

The rest of the integers n2, . . . , np−q+1 ≥ 0 then satisfy n2 + . . . + np−q+1 = 1 and 2n2 + . . . +
(p− q + 1)np−q+1 = p− q + 1 which is possible only when np−q+1 = 1, n2 = . . . = np−q = 0. The
corresponding terms in (3.12) are then

j−1∑
q=1

Tj,q(q − 1, 0, . . . , 0, 1) =

j−1∑
q=1

j!

(q − 1)!(j − q + 1)!
κ[1](a)q−1κ[j−q+1](a).

When substituted into (2.17), this yields

r∑
j=2

(
r

j

)
(−1)r−j

j−1∑
q=1

Tj,q(q − 1, 0, . . . , 0, 1)κ[1](a)r−j

=

r∑
j=2

(
r

j

)
(−1)r−j

j−1∑
q=1

j!

(q − 1)!(j − q + 1)!
κ[1](a)q−1+r−jκ[j−q+1](a)

=
r∑
j=2

(
r

j

)
(−1)r−j

j∑
`=2

j!

(q − `)!`!
κ[1](t)

r−`κ[`](a)

=

r∑
`=2

κ[1](a)r−`κ[`](a)

r∑
j=`

(−1)r−j
(
r

j

)(
j

`

)
= κ[r](a),

since, for ` < r,
r∑
j=`

(−1)r−j
(
r

j

)(
j

`

)
=

(
r

`

) r−∑̀
k=0

(
r − `
k

)
(−1)r−`−k = 0.

This yields (3.10) in view of (3.2). 2

Corollary 3.2 Under the assumptions of Proposition 3.1, the cumulants κr(a), r ≥ 2, of PCP
satisfy:

κr(a) ∼ Cκ,rλar−α+1, as a→∞, (3.16)

where
Cκ,r = Cκ,[r] (3.17)

with Cκ,[r] given in (3.3). (When r = 1, κ1(a) = λEWa.)

Proof: To show (3.16), we shall use the relation (2.18) between cumulants and central moments
and the asymptotic behavior (3.10) of the central moments at large scales. The relation (3.16) is
trivial for the second and third cumulants since κ2(a) = m0

2(a) and κ3(a) = m0
3(a) (which follow

from (2.18)). By induction, if (3.16) holds for 2, . . . , r − 1, then it also holds for r since in (2.18)
the term m0

j (a)κr−j(a) is of the order aj−α+1 · ar−j−α+1 = ar−2α+2 and the term m0
r(a) has the

order ar−α+1. 2

At large scales, the scaling behaviors of (factorial) cumulants and central moments include
the tail parameter α in the exponent of a, and in that sense they are more informative about the
scaling behavior of PCPs than moments and factorial moments whose behavior does not involve
α in the exponents.
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4 Moment and cumulant behavior at small scales

We are interested here in the asymptotic behavior of the cumulants κ[r](a), κr(a) and the various
moments m[r](a), mr(a) and m0

r(a) at small scales, that is, as a→ 0+. We focus on the following
class of distributions of the interarrival times between points in clusters.

Assumption A: Suppose that the cumulative distribution F of interarrival times between
points in clusters has a density f satisfying: for θ > 0 and Cf > 0,

f(t) ∼ Cf tθ−1, as t→ 0+. (4.1)

An example is the gamma distribution with parameters θ > 0 and β > 0 having density

f(t) =
β(βt)θ−1e−βt

Γ(θ)
, t > 0, (4.2)

where Γ(·) denotes the usual gamma function. The gamma distribution will be used in the
application to Internet traffic in Section 7 below. Note that for the gamma distribution, Cf =
βθ/Γ(θ) in (4.1).

The next result provides the small scale behavior of the factorial cumulants. The behavior of
the moments and cumulants will follow from this result, as stated in the subsequent corollaries.

Proposition 4.1 Suppose that the distribution of the interarrival times of PCP satisfies Assump-
tion A above. The factorial cumulants κ[r](a), r ≥ 2, of PCP then satisfy:

κ[r](a) ∼ cκ,[r]λa1+(r−1)θ, as a→ 0+, (4.3)

where

cκ,[r] =
r!CF,r−1Rr
(r − 1)θ + 1

(4.4)

with Rr =
∑∞

w=r Rw =
∑∞

w=r P(W ≥ w) and

CF,r−1 = CF,r−2CfB((r − 2)θ + 1, θ) =
Cr−1f Γ(θ)r−1

Γ((r − 1)θ + 1)
, CF,1 =

Cf
θ

(4.5)

for the beta function B(·, ·). (When r = 1, κ[1](a) = λEWa.)

Proof: We shall use the formulas (2.6)–(2.7) for the factorial cumulants κ[r](a), which involve

the integrals
∫ a
0 Fk(u)du, k ≥ 1. When k = 1, we have from (4.1) that F1(u) ∼ Cfuθ/θ =: CF,1u

θ,
as u→ 0+. In fact, for any k ≥ 1,

Fk(u) ∼ CF,kukθ, as u→ 0+, (4.6)

where CF,k = CF,k−1CfB((k − 1)θ + 1, θ) with the beta function B(·, ·). Indeed, supposing by
induction that (4.6) hold for k, note that

Fk+1(u) =

∫ u

0
Fk(y)f(u− y)dy ∼ CF,kCf

∫ u

0
ykθ(u− y)θ−1dy

= CF,kCf

∫ 1

0
zkθ(1− z)θ−1dz u(k+1)θ = CF,kCfB(kθ + 1, θ − 1)u(k+1)θ = CF,k+1u

(k+1)θ.
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The relation (4.6) now implies that∫ a

0
Fk(u)du ∼

CF,k
kθ + 1

a1+kθ, as a→ 0+. (4.7)

In view of (4.7), the leading term for κ[r](a) in (2.6)–(2.7) is of the desired order a1+(r−1)θ and
with the specified constant cκ,[r]λ. To show that the sum of the remaining terms in negligible,

one can use the argument above to conclude that, for any ε > 0, f(a) ≤ Caθ−ε−1, a ∈ (0, a0), and
hence ∫ a

0
Fk(u)du ≤

C ′F,k
k(θ − ε) + 1

a1+k(θ−ε), as a ∈ (0, a0), (4.8)

where C ′F,k has the same structure as CF,k but with θ replaced by θ − ε. The remaining terms

in (2.6)–(2.7) (that is, without the leading term a1+(r−1)θ) are thus bounded by a function of the
order a1+r(θ−ε), which is negligible compared to a1+(r−1)θ for small enough ε.

The last equality in the first relation of (4.5) follows from using the recursion relation CF,r−1 =
CF,r−2CfB((r−2)θ+1, θ) along with the definition of the beta function B(a, b) = Γ(a)Γ(b)/Γ(a+
b). 2

Corollary 4.1 Suppose the distribution of the interarrival times of PCP satisfies Assumption A
above. The moments mr(a), factorial moments m[r](a) and central moments m0

r(a), r ≥ 2, of
PCP then satisfy:

m[r](a) ∼


cm,[r](θ)λa

1+(r−1)θ, 0 < θ < 1,(∑r
k=1Br,k(cκ,[1], cκ,[2], . . . , cκ,[r−k+1])λ

k
)
ar, θ = 1,

cm,[r](θ)λ
rar, θ > 1,

(4.9)

mr(a) ∼ cm,rλa, (4.10)

m0
r(a) ∼ c0m,rλa, as a→ 0+, (4.11)

where

cm,[r](θ) =

{
cκ,[r], 0 < θ < 1,

(EW )r, θ > 1,
cm,r = EW, c0m,r = EW (4.12)

with Br,k the Bell polynomials and cκ,[r] appearing in (4.4). (When r = 1, m[1](a) = m1(a) =
κ[1](a) = λEWa and m0

1(a) = 0.)

Proof: To show (4.9), we suppose first that θ 6= 1 and argue by induction. The relation (4.9)
with r = 2 holds in view of (2.10), (2.6) and (4.3), and taking into account the fact that 0 < θ < 1
or θ > 1. Supposing it holds for 1, . . . , r − 1, it also holds for r by using the recursion formula
(2.11) relating factorial moments and factorial cumulants and (4.3). Indeed, for 0 < θ < 1, the
term κ[r−k](a)m[k](a) in the sum (2.11) behaves as cκ,[r]λa

1+(r−1)θ when k = 0, and is of the

smaller order a1+(r−k−1)θa1+(k−1)θ = a2+(r−1)θ−θ when k ≥ 1. Similarly, for θ > 1, the term
κ[r−k](a)m[k](a) in the sum (2.11) behaves as (λEWa)(cm,[r−1](θ)λ

r−1ar−1) = cm,[r](θ)λ
rar when

k = r − 1, and is of the smaller order a1+(r−k−1)θak = arθ−(θ−1)(k+1) when k < r − 1.
When θ = 1, it is more convenient to use the direct relation (2.12) between factorial moments

and factorial cumulants. By using (4.3) and (2.13), the Bell polynomials in (2.12) behave as

Br,k(κ[1](a), κ[1](a), . . . , κ[r−k+1](a)) ∼∑
(n1,n2,...,nr−k+1)∈Sr,k

r!

n1!n2! . . . nr−k+1!

(cκ,[1]λa
1!

)n1
(cκ,[r]λa2

2!

)n2

. . .
(cκ,[r−k+1]λa

r−k+1

(r − k + 1)!

)nr−k+1

(4.13)
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and since λn1+n2+...+nr−k+1 = λk and an1+2n2+...+(r−k+1)nr−k+1 = ar, the relation (4.9) follows for
θ = 1.

The relation (4.10) follows from (2.15), (4.9) and the fact that m[1](a) = κ[1](a) = λEWa,
since the term m[1](a) dominates in the sum in (2.15). Similarly, the relation (4.11) follows from
(2.17) and (4.10) since the term mr(a) when j = r is dominant in (2.17). 2

Corollary 4.2 Suppose the distribution of the interarrival times of PCP satisfies Assumption A
above. The cumulants κr(t), r ≥ 2, of PCP then satisfy:

κr(a) ∼ cκ,rλa, as a→ 0+, (4.14)

where
cκ,r = EW. (4.15)

(When r = 1, κ1(a) = λEWa.)

Proof: The relation (4.14) can be shown by using (2.18) and (4.11). From (2.18) we have
κ2(a) = m0

2(a) and κ3(a) = m0
3(a) and the result follows immediately by (4.11). By induction, if

(4.14) holds for 2, 3, . . . , r − 1, then it also holds for r since in (2.18) the term m0
j (a)κr−j(a) in

the sum is of the order a · a = a2 and the term m0
r(a) has the order a. 2

The asymptotic results (4.9), (4.10) and (4.11) show that using regular moments and central
moments of PCP at small scales does not reveal the underlying interarrival distribution, since
the dominating behavior is governed by a for all the moments; in contrast, the behavior of the
factorial moments (when θ < 1) and factorial cumulants is more informative. A similar conclusion
can be drawn for cumulants and factorial cumulants.

Example 4.1 Proposition 4.1 describes the asymptotic behavior of the factorial cumulants of
PCP under Assumption A. A more explicit, non-asymptotic expression of the factorial cumulants
can be obtained in the special case of the gamma distribution with parameters θ > 0 and β > 0
(4.2) used in practice (Abry et al. (2010)), yielding a result of independent interest. Indeed,
observe that in this case,

Fk(x) =
γ(kθ, βx)

Γ(kθ)
,

where γ(s, x) =
∫ x
0 a

s−1e−sds is the lower incomplete gamma function. By using integration by
parts, note that∫ a

0
γ(kθ, βu)du =

1

β

∫ βa

0
γ(kθ, u)du =

1

β

(
βaγ(kθ, βa)− γ(kθ + 1, βa)

)
and hence∫ a

0
Fk(u)du =

1

Γ(kθ)β

(
βaγ(kθ, βa)− γ(kθ + 1, βa)

)
=

1

Γ(kθ)β

(
βa(βa)kθΓ(kθ)e−βa

∞∑
j=0

(βa)j

Γ(kθ + j + 1)
− (βa)kθ+1Γ(kθ + 1)e−βa

∞∑
j=0

(βa)j

Γ(kθ + 1 + j + 1)

)
=
e−βa

β

∞∑
j=0

(βa)kθ+j+1
( 1

Γ(kθ + j + 1)
− kθ

Γ(kθ + 1 + j + 1)

)
=
e−βa

β

∞∑
j=0

(βa)kθ+j+1 j + 1

Γ(kθ + 1 + j + 1)
=
e−βa

β

∞∑
j=1

(βa)kθ+j
j

Γ(kθ + 1 + j)
(4.16)
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An expression for the factorial cumulants can now be obtained by substituting (4.16) into (2.6)–
(2.7). For example, for r ≥ 3 and as a → 0+, the leading term in thus obtained relation leads
to

κ[r](a) ∼ r!λ(βa)(r−1)θ+1Rr
βΓ((r − 1)θ + 2)

=
r!λβ(r−1)θRr

Γ((r − 1)θ + 2)
a1+(r−1)θ, (4.17)

which is consistent with (4.3)–(4.5).

Remark 4.1 An asymptotic behavior of the density f not captured by Assumption A is when
f(t) decays faster than any power as t → 0+. This could be expressed, for example, by the
assumption that

f(t) ∼ Ctδe−| log t|β , as t→ 0+, (4.18)

where δ ∈ R, β > 1 and C > 0. Results analogous to (4.3) and (4.9)–(4.10) could be obtained,
we believe, under the assumption (4.18). However, we shall not pursue this direction here for the
following reason. A prototypical example of the density satisfying (4.18) is that of a lognormal
distribution. When working with the Internet traffic data for Section 7, we found the behaviour
at small scale to be difficult to capture using the lognormal distribution. Indeed, it is known that
the moments of log normal distributions are “localized,” making the use of the distribution quite
delicate in practice (Mandelbrot (1997)).

5 Moment and cumulant behavior at large scales in the slow and
fast growth regimes

The results of Proposition 3.1 and Corollaries 3.1 and 3.2, are valid when a → ∞ and thus are
asymptotic in nature. In fact, depending on the magnitude of the arrival rate λ, a different scaling
behavior could be observed for some quantities of interest over a range of large scales a. We shall
focus here and refine the behavior of central moments, not just in terms of a but also λ. The
cases of other moments and cumulants will be discussed briefly in Remark 5.2 below.

As in some related work to be discussed below, we shall distinguish between the so-called slow
growth regime, defined as

λ

aα−1
→ 0, (5.1)

and the fast growth regime, defined as

λ

aα−1
→∞, (5.2)

where α is the power-law exponent appearing in (3.1). From a practical perspective, the relations
(5.1) and (5.2) are mathematical idealizations for the conditions that λ/aα−1 is small and large,
respectively. What “small” and “large” mean from a practical perspective will be discussed in
Section 6. Since a → ∞, note that (5.2) is possible only when λ → ∞ as well. But to reiterate,
this does not mean that λ changes with a – the condition (5.2) stands for λ/aα−1 being large.
Under the regime (5.1), λ can be “constant” or “increase” slower than aα−1. The reader unfamiliar
with these regimes from the literature will be able to follow the arguments below without much
difficulty. As will be shown, the regimes (5.1) and (5.2) are natural in the simple asymptotic
analysis of central moments to be carried out below.

We do not have a general result for the asymptotics of centered moments of PCP under the
slow and fast growth conditions. The key difficulty is seemingly the lack of a direct general
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formula relating central moments to factorial cumulants (see also Remark 5.1 below). But such
formula can be derived for a number of first moments of interest, as done for the first seven central
moments in Appendix A, and then be used to obtain the asymptotics of central moments under
the slow and fast growths.

By using the formula (A.1) and substituting the factorial cumulants κ[1](t) and κ[2](t) from
(3.2) (valid for any λ, possibly λ→∞), we can write

m0
2(a) ∼ Cκ,[1]λa+ Cκ,[2]λa

3−α, (5.3)

as a→∞. In view of (5.1) and (5.2),

m0
2(a) ∼ Cκ,[2]λa3−α, (5.4)

for the slow and fast growth regimes. From (A.2) and proceeding as above,

m0
3(a) ∼ Cκ,[1]λa+ 3Cκ,[2]λa

3−α + Cκ,[3]λa
4−α, (5.5)

as a→∞ and
m0

3(a) ∼ Cκ,[3]λa4−α, (5.6)

in both growth regimes. From the relationship between the fourth central moment and factorial
cumulants in (A.3), we can write the asymptotic relation

m0
4(a) ∼ Cκ,[1]λa+ 3C2

κ,[1]λ
2a2 + 7Cκ,[2]λa

3−α + 6Cκ,[3]λa
4−α

+ Cκ,[4]λa
5−α + 6Cκ,[1]Cκ,[2]λ

2a4−α + 3C2
κ,[2]λ

2a6−2α, (5.7)

as a→∞. Now, the behavior of m0
4(a) is different depending on the slow or fast growth regime,

yielding

m0
4(a) ∼

{
Cκ,[4]λa

5−α, slow growth,

3C2
κ,[2]λ

2a6−2α, fast growth.
(5.8)

The reader is encouraged to check that the terms λa5−α and λ2a6−2α are indeed dominant in (5.7)
in the slow and fast growth regimes, respectively.

Similarly, the relation (A.4) gives that

m0
5(a) ∼ Cκ,[1]λa+ 15Cκ,[2]λa

3−α + 25Cκ,[3]λa
4−α + 10Cκ,[4]λa

5−α + Cκ,[5]λa
6−α + 10C2

κ,[1]λ
2a2

+ 40Cκ,[1]Cκ,[2]λ
2a4−α + 10Cκ,[1]Cκ,[3]λ

2a5−α + 30C2
κ,[2]λ

2a6−2α + 10Cκ,[2]Cκ,[3]λ
2a7−2α, (5.9)

as a→∞ and therefore,

m0
5(a) ∼

{
Cκ,[5]λa

6−α, slow growth,

10Cκ,[2]Cκ,[3]λ
2a7−2α, fast growth.

(5.10)

We also get from (A.5) that

m0
6(a) ∼ Cκ,[1]λa+ 31Cκ,[2]λa

3−α + 90Cκ,[3]λa
4−α + 65Cκ,[4]λa

5−α + 15Cκ,[5]λa
6−α + Cκ,[6]λa

7−α

+ 25C2
κ,[1]λ

2a2 + 180Cκ,[1]Cκ,[2]λ
2a4−α + 110Cκ,[1]Cκ,[3]λ

2a5−α + 15Cκ,[1]Cκ,[4]λ
2a6−α

+ 195C2
κ,[2]λ

2a6−2α + 150Cκ,[2]Cκ,[3]λ
2a7−2α + 25C2

κ,[1]λ
2a8−2α + 10Cκ,[2]Cκ,[4]λ

2a8−2α

+ 15C3
κ,[1]λ

3a3 + 45C2
κ,[1]Cκ,[2]λ

3a5−α + 45Cκ,[1]C
2
κ,[2]λ

3a7−2α + 15C2
κ,[2]λ

3a9−3α, (5.11)
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as a→∞, which yields

m0
6(a) ∼

{
Cκ,[6]λa

7−α, slow growth,

15C3
κ,[2]λ

3a9−3α, fast growth.
(5.12)

Similarly, from (A.6),

m0
7(a) ∼

{
Cκ,[7]λa

8−α, slow growth,

105C2
κ,[2]Cκ,[3]λ

3a10−3α, fast growth.
(5.13)

The relations above lead us to conjecture that, for r ≥ 2 and a→∞,

m0
r(a) ∼


Cκ,[r]λa

r−α+1, slow growth,
r!C

r/2
κ,[2]

(r/2)!2r/2
λr/2a(3−α)r/2, fast growth and even r,

r!C
(r−1)/2−1
κ,[2]

Cκ,[3]

((r−1)/2−1)!2(r−1)/2−13!
λ(r−1)/2a(3−α)(r−1)/2+1, fast growth and odd r,

(5.14)

In fact, we have checked the conjecture (5.14) not only up to the seventh central moment but up
to the tenth central moment. (The formulae relating the central moments and factorial moments
naturally get quite lengthy for larger r and are therefore not included in Appendix A.)

Remark 5.1 The difficulty in proving (5.14) in general was indicated above but it is instructive
to provide some further insight. First, we note that the proof of Corollary 3.1 cannot be used
directly to show (5.14). Indeed, the terms associated with (3.15) in the proof of the corollary lead
to κ[r](a) ∼ cλar−(α+1) but this term is no longer necessarily dominant in the fast regime. For

example, note the presence of λar−(α−1) = λa7−α in (5.11) when r = 6. But this term is indeed
dominated by λ3a9−3α in the fast regime. Second, the actual difficulty is in tracking the dominant
term. For example, when r = 6, the dominant term arises from κ[2](a)3 ∼ cλ3a6−3(α−1) which
enters into the moment m6(a) through (3.12). But, for example, m6(a) also contains the term
κ[1](a)3κ[3](a) ∼ cλ4a6−4(α−1). Though this term dominates κ[2](a)3, it does not appear in (5.11)
since it gets canceled once substituted into (2.17).

Several interesting observations can be made concerning (5.14). First, note that the conjec-
tured behavior in the slow growth regime is exactly the same as in (3.10) for a fixed λ. Second,
it is interesting to compare (5.14) with the available results concerning the large scale behavior
of PCPs at large scales. In the slow growth regime, one has{Ne(0, au)− ENe(0, au)

a1/α

}
u∈[0,1]

fdd→ {Lα(u)}u∈[0,1], as a→∞, (5.15)

where the convergence is in the sense of finite-dimensional distributions and Lα is an α–stable
Lévy motion (Mikosch and Samorodnitsky (2007), Proposition 5.11). In the fast growth regime,
on the other hand,{Ne(0, au)− ENe(0, au)

λ1/2a(3−α)/2

}
u∈[0,1]

fdd→ {BH(u)}u∈[0,1], as a→∞, (5.16)

where BH is fractional Brownian motion with the self-similarity parameterH = (3−α)/2 (Mikosch
and Samorodnitsky (2007), Proposition 4.7). The use of a in (5.15) and (5.16) are somewhat
misleading since for these results, a is usually thought as the length of the observation window
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(0, a), whereas a is the analysis scale throughout this work. We nevertheless use a for simplicity,
as well as to indicate that the behavior (5.14) is consistent with the normalization used in (5.16)
when r is even. Interestingly, this is not the case for odd r, showing that some moments of the
left-hand side of (5.16) do not converge to those of the limiting process.

The practical implications of the slow and fast regimes, and of the scaling relations in (5.14)
will be discussed in greater detail in Sections 6 and 7 below.

Remark 5.2 We have analyzed above the behavior of central moments under the slow and fast
growth conditions. In the case of the factorial cumulants κ[r](a), an inspection of the proof of
Proposition 3.1 reveals that the asymptotic result in (3.2) holds irrespective of the slow and fast
growth regimes. The same conclusion can be reached for the factorial moments m[r](a) and the
usual moments mr(a), with the respective asymptotics in (3.8) and (3.9) valid for both regimes.
The case of the usual cumulants κr(a) is more delicate. But an examination of the first ten
cumulants leads us to conjecture that the asymptotics in (3.16) holds for both regimes as well.

Remark 5.3 As mentioned in Section 1, our analysis of the moments of PCP at large scales is
closest in the spirit to that of the moments of renewal point processes carried out by Dombry and
Kaj (2013). In contrast to the approach taken here, Dombry and Kaj (2013) work with somewhat
more general moment measures. The different growth regimes in superimposing renewal point
processes are considered by Dombry and Kaj (2013) but not for the behavior of the moment
measures. We have not aimed specifically to be different from Dombry and Kaj (2013) but just
became aware of their work towards the end of this project.

6 Transitions between different scaling regimes

The analysis carried out in Sections 3 and 4 shows the existence of biscaling for all the moments and
cumulants considered, that is, the different scaling behaviors at large and small scales. Moreover,
the study of Section 5 revealed a further biscaling of central moments at large scales, that is, the
different scaling behaviors in the slow and fast growth regimes. Since the scaling behaviors are
different depending on the situation, one could expect them to be separated by a “knee,” the
transition scale (or the range of such) where the behavior changes as one moves from one scaling
behavior to another. The biscaling and the “knee” are clearly seen in Figure 1 (to be discussed in
more detail in Section 7) where the factorial moments, moments and central moments are plotted
on the log scale for both axes.

The location of the “knee” (i.e., the transition scale a) can be approximated by equating the
scaling relations for different scaling behaviors and quantities of interest, and solving with respect
to a. For the factorial cumulants, by equating the relations (3.2) and (4.3), we obtain

Cκ,[r]λa
r−α+1 = cκ,[r]λa

1+(r−1)θ, r ≥ 2,

and solving for a leads to the approximate location of the “knee” (the transition scale from small
to large scales) given by aκ,[r] = (cκ,[r]/Cκ,[r])

1/(r−(r−1)θ−α) or

aκ,[r] =

(
(r − 2)!CF,r−1(EA)r−α(α− 1)(r − α)(r + 1− α)Rr

((r − 1)θ + 1)CW

)1/(r−(r−1)θ−α)

, r ≥ 2, (6.1)

by using the forms of the coefficients Cκ,[r] and cκ,[r]. Similarly, from Corollaries 3.1 and 4.1, the
locations of the “knee” (the transition scales) in the transition from small to large scales for the
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factorial moments and the usual moments are approximated by, respectively,

am,[r] =

(
r!CF,r−1Rr

λr−1((r − 1)θ + 1)(EW )r

)1/(r−(r−1)θ−1)

, θ ∈ (0, 1), (6.2)

am,r =
1

λEW
, r ≥ 2. (6.3)

We note that the location of the “knee” for the moments does not dependent on the order r and
the distribution of the interarrival times A. When θ > 1, the factorial moments have the same
asymptotics for both large and small scales. When θ = 1, the asymptotics are the same in a but
differ in the multiplicative constants, and our approach does not yield a transition scale.

The case of the central moments is more delicate due to the effect of the slow and fast growth
regimes discussed in Section 5. We note first that for fixed λ and as a increases, the fast growth
regime comes before the slow growth regime; indeed, as a→∞, λ/aα−1 → 0 for fixed λ. Thus, for
the central moments, we shall distinguish between two transition scales a0m,r,1 and a0m,r,2: a

0
m,r,1

being the transition scale (“knee”) from small scales into the fast growth, and a0m,r,2 being the
transition scale (“knee”) from the fast growth into the slow growth. By equating (4.11) and (5.14)
(in the fast regime) and solving for a leads to

a0m,r,1 =


(

r!C
r/2
κ,[2]

EW (r/2)!2r/2
λr/2−1

)−2/((3−α)r−2)
, even r ≥ 2,(

r!C
(r−1)/2−1
κ,[2]

Cκ,[3]

EW ((r−1)/2−1)!2(r−1)/2−13!
λ(r−1)/2−1

)−2/((r−1)(3−α))
, odd r ≥ 2.

(6.4)

Similarly, equating (5.14) in the fast and slow regimes leads to

a0m,r,2 =


(

r!C
r/2
κ,[2]

Cκ,[r](r/2)!2
r/2λ

r/2−1
)2/((r−2)(α−1))

, even r ≥ 4,(
r!C

(r−1)/2−1
κ,[2]

Cκ,[3]

Cκ,[r]((r−1)/2−1)!2(r−1)/2−13!
λ(r−1)/2−1

)2/((r−3)(α−1))
, odd r ≥ 4.

(6.5)

(Recall from Section 5 that there is difference in the two regimes only when r ≥ 4.) As will be
seen in Section 7, the transition scale a0m,r,2 may be too large to observe in practice.

For the usual cumulants, the location of the transition scale aκ,r, r ≥ 2, from small to large
scales follows from (3.16) and (4.14), to yield

aκ,r =

(
(α− 1)(r − α)(r + 1− α)EW (EA)r−α

r(r − 1)CW

)1/(r−α)
, r ≥ 2. (6.6)

Finally, the various regimes and scaling relations are summarized in Table 1 of Section 1. They
will be examined through a numerical study and an application to real data in the next section.

7 Numerical study and application to Internet traffic

In this section, we illustrate the scaling relations of the various moments of PCP through a numer-
ical study by using an Internet traffic data set (which we find more interesting and illuminating
than using synthetic data). We exclude cumulants from the discussion for shortness sake. We
consider a publicly available Internet trace, Auckland1, which is one hour long and consists of
38,308,012 packets which make 1,371,756 flows.

1Auckland IX, file 20080327-080000-0, Available: http://wand.net.nz/wits/auck/9/
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We shall first describe how the parameters are fitted to the data trace. The flow (Poisson)
arrival parameter λ is estimated directly from the sample mean of flow interarrival times, yielding
λ̂ = 396 (flows/sec). We choose the flow (cluster) size W to be zeta distributed, which is taken
to be heavy-tailed and may be thought of as a discrete counterpart of the Pareto distribution,
with p.m.f. pW (w) = 1/(wαζ(α)), w ≥ 1, α > 1, where ζ(α) is the Riemann zeta function.
Note that the mean of W is α/(α − 1). Calculating the empirical value of the mean size of
flows in the trace results in α̂ = 1.02. The distribution of interarrival times between packets of
a flow (between points of a cluster) is often modeled by a gamma distribution with parameters
θ and β (see (4.2)). However, determining the appropriate parameters is not trivial as pointed
out by Hohn et al. (2003) and a similar approach as in their work is considered here. One of
the quantities of interest is the packet arrival rate within a flow 1/EA = β/θ. An estimate for
this in-flow packet arrival rate using the median or the mean of the empirical rates of all flows
performs poorly. Since PCP represents the overall packet arrival process, it is essential to capture
the impact of each value of the rate of a flow in terms of its packets. Therefore, the rate is
weighed by the number of interarrival times in each flow. This results in an estimate for β/θ that
is generally considerably above a simple mean. The parameter θ is tuned to fit the estimation
of the scaling exponent function of the factorial moments over small scales in (4.9). The fitting
procedure using the second empirical factorial moment yields θ̂ = 0.6 and the in-flow rate then
results in β̂ = 1/0.002.

Plots (a)–(c) in Figure 1 show the usual moments mr(a) against scale a, for r = 2, 3, 5,
using the natural logarithmic scale for the two axis. (The first moment yields a straight line
which is not very informative.) We compute the theoretical values of the moments first using the
formula (2.7) and then the relations (2.12) and (2.15) based on the estimated parameters. The
empirical values of the moments have been computed through the number of packet arrivals on
contiguous non-overlapping intervals of size a over all trace duration, with the smallest value for
a being 10−6 sec (≈ −13.8 in the log scale; the packet arrivals were extracted with increments
of 1 microsecond). We also include the dashed lines corresponding to the scaling relations of the
moments at small scales and large scales using (3.9) and (4.10), respectively. Note from the plots
that these relations hold for a wide range of values. The vertical dotted line depicts with a good
accuracy the transition between the small and large scales computed through the log of (6.3).
Plots (a)–(c) show that the log-moments (theoretical line) of the PCP fit well the empirical values
with a small deviation around the transition between scales for the fifth (and higher) moments.
(This is also observed for the factorial moments and central moments below.) It is in this region
of the transition between time scales where potencial differences between PCP and the data are
more pronounced. The discrepancy might be due to the fact that in the trace considered here,
large flows tend to have shorter interarrival times. In fact, the more general PCP considered by
Westcott (1973), allows the interarrival times A to be non-identically distributed and dependent
on the cluster (flow) size. Another potencial cause is the impact of the flow size distribution. We
plan to examine these possibilities further elsewhere. However, the fits in the plots of Figure 1 are
already quite acceptable so that any payoff might be minimal at the expense of oversophistication
of the model.

Plots (d)–(f) in Figure 1 show the analogous plots for the factorial moments m[r](a), for
r = 2, 3, 5. We compute the empirical factorial moments using the number of packet arrivals
over contiguous non-overlapping intervals of size a over all trace duration. The quality of the fit
is good with the exception around the transition between scales for the higher moment possibly
due to the shorter interarrival times of packets of large flows as mentioned above. We also note
that the empirical line does not extend as far for small values of a as for the usual moments. It
is especially difficult to estimate the factorial moments for small a because of the order of the
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Figure 1: Top: moments (log-log scale); Middle: factorial moments (log-log scale); Bottom:
central moments (log-log scale).

theoretical values. In this case, a trace with a longer duration is needed for more intervals of size
a to be used in the estimation.

The central moments m0
r(a) for the same order r values are depicted in plots (g)–(i) of Figure

1. We point out that in computing the theoretical values for large a using the factorial cumulants
(2.7) and then the relations to central moments, the truncation parameter in the first sum of (2.7)
has to be much larger compared with the other moments. This is also reflected in the empirical
central moments, where the variation in these moments for larger a means that the number of
contiguous non-overlapping intervals of length a used in the estimation is insufficient.

Note that the plot (i) of Figure 1 also includes the lines corresponding to the slow and fast
growth regimes according to (5.14). (As discussed in Section 5, the scaling behavior for r = 2, 3
is the same for the two regimes.) From (5.14), the slopes of the two lines are r − α + 1 = 6 − α

20



−20 −15 −10 −5 0 5
−80

−60

−40

−20

0

20

40

60

80

 

 

Theoretical
Small scale
 Slow (Fast) growth 

log(a0
m,3,1)

(a) r = 3

−20 −15 −10 −5 0 5
−80

−60

−40

−20

0

20

40

60

80

 

 

Fast growth regime

Slow growth regime

log(a0
m,4,1) log(a0

m,4,2)

(b) r = 4

−20 −15 −10 −5 0 5
−80

−60

−40

−20

0

20

40

60

80

log(a0
m,5,1) log(a0

m,5,2)

Slow growth regime

Fast growth regime

(c) r = 5

Figure 2: Central moments (log-log scale) with α = 1.5.

(slow growth) and (3 − α)(r − 1)/2 + 1 = 7 − 2α (fast growth). For the choice of α = 1.02 used
above, these slopes are nearly identical, which can also be seen from the plot. Although note that
the intercepts of the two lines are quite different. The nearly identical slopes of the two lines also
translate into the fact that they cross at a0m,5,2 in (6.5) which is too large to be observable for this

trace (the actual value of a0m,5,2 is approximately 1.8761 × 1091). Thus, the slow growth regime
is not observed either, and the theoretical values follow closely the line corresponding to the fast
growth for all observable large scales. The transition scale a0m,5,1 computed from (6.4) captures
well the change from the small scales to the large scales in the fast growth regime. Finally, we also
note that observing the fast growth scaling only is consistent with the fast growth condition itself:
for the chosen λ = 396 flows/sec and α = 1.02, the ratio λ/aα−1 in (5.1) and (5.2) is relatively
large for the largest a considered in plot (i) of Figure 1.

In plot (i) of Figure 1 only the scaling in the fast growth regime was observable since the
value α = 1.02 is very close to 1 (see the discussion above). In order to illustrate the possibility
of observing the different scaling behaviors of the fast and slow growth regimes, we repeated the
numerical study with the same parameters but changing α = 1.02 to α = 1.5. The results are
reported in Figure 2 for r = 3, 4 and 5 (with no distinction between the slow and fast growth
scalings for r = 3). For r = 5, especially, we can now see the transition of the scaling behavior
at a0m,5,1 from small scales into large scales associated with the fast growth, and then at a0m,5,2
from the fast growth scaling into the slow growth scaling. The findings are also consistent with
the fact that λ/aα−1 = 396/a1/2 is now smaller for large observable scales a.

8 Conclusions and directions for future work

In this work, we derived the asymptotic behaviors at large and small scales of the various moments
and cumulants of the PCP, and compared them through the information carried in terms of the
model parameters. At large scales, the slow and fast growth regimes were introduced in the liter-
ature to establish the convergence of an appropriately normalized PCP. We analyzed the behavior
of the central moments under both regimes and showed through numerical results how the two
regimes could be observed depending on the model parameters and the observation window. We
identified the transition scales where the behavior changes as one moves from one scaling behavior
to another. The derived results can contribute in developing more robust estimation procedures,
avoiding misleading inference while studying the scaling behavior of the current Internet traffic,
including the controversial multifractality at small scales, a direction that we shall pursue in a
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future work.
In other future work, it would be interesting to establish the same small scale behavior of

the (central) moments and cumulants under more general assumptions on the distribution of the
interarrival times between the points in a cluster - we assumed above a particular type of the
distribution motivated by the Internet traffic but the resulting scaling relations do not involve the
specific model parameters. As another extension, the interarrival times could be assumed to be
non-identically distributed and dependent on the cluster size.

A Formulae relating central moments and factorial cumulants

For Section 5, the relations between the first seven central moments and factorial cumulants using
(2.17) along with (2.15) and (2.12) are listed below. We use the variable t instead of a as in
Section 5 to emphasize that these are general relations between central moments and factorial
cumulants.

m0
2(t) = κ[1](t) + κ[2](t), (A.1)

m0
3(t) = κ[1](t) + 3κ[1](t) + κ[3](t), (A.2)

m0
4(t) = κ[1](t) + 3κ2[1](t) + 7κ[2](t) + 6κ[1](t)κ[2](t) + 3κ2[2](t) + 6κ[3](t) + κ[4](t), (A.3)

m0
5(t) = κ[1](t) + 10κ2[1](t) + 15κ[2](t) + 40κ[1]κ[2](t) + 30κ2[2](t) + 25κ[3](t)

+ 10κ[1](t)κ[3](t) + 10κ[2](t)κ[3](t) + 10κ[4](t) + κ[5](t), (A.4)

m0
6(t) = κ[1](t) + 25κ2[1](t) + 15κ3[1](t) + 31κ[2](t) + 180κ[1](t)κ[2](t) + 45κ2[1](t)κ[2](t)

+ 195κ2[2](t) + 45κ[1](t)κ
2
[2](t) + 15κ3[2](t) + 90κ[3](t) + 110κ[1](t)κ[3](t) + 150κ[2](t)κ[3](t)

+ 10κ2[3](t) + 65κ[4](t) + 15κ[1](t)κ[4](t) + 15κ[2](t)κ[4](t) + 15κ[5](t) + κ[6](t), (A.5)

m0
7(t) = κ[1](t)+56κ2[1](t)+105κ3[1](t)+63κ[2](t)+686κ[1](t)κ[2](t)+525κ2[1(t)κ[2](t)+1050κ2[2](t)

+ 735κ[1](t)κ
2
[2](t) + 315κ3[2](t) + 301κ[3](t) + 770κ[1](t)κ[3](t) + 105κ2[1](t)κ[3](t) + 1400κ[2](t)κ[3](t)

+210κ[1](t)κ[2](t)κ[3](t)+105κ2[2](t)κ[3](t)+210κ2[3](t)+350κ[4](t)+245κ[1](t)κ[4](t)+315κ[2](t)κ[4](t)

+ 35κ[3](t)κ[4](t) + 140κ[5](t) + 21κ[1](t)κ[5](t) + 21κ[2](t)κ[5](t) + 21(t)κ[6](t) + κ[7](t). (A.6)

B Factorial cumulants of PCP

We derive here the formulae (2.6)–(2.7) for the factorial cumulants of PCP. As noted following the
formulae, they appears in Westcott (1973) when the first points in the clusters are excluded. We
shall modify slightly the argument of Westcott (1973) to include the first points in the clusters,
leading to the exact same formulae (2.6)–(2.7).

The factorial cumulants are obtained through the formula (2.5) based on the probability
generating function Pt(z) in (2.4). For the equilibrium process, Pt(z) is defined as the limit

Pt(z) = lim
x→∞

EzN(x,x+t),
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where N is the transient PCP. We need first to introduce some notation. Let Sj , j ≥ 1, be the
Poisson arrivals of the first points of the clusters, and Xj,k, k ≥ 0, be the distances of the cluster
points from the first point in cluster j, with Xj,0 = 0. Let Xk, k ≥ 0, be the generic distances
of cluster points, with X0 = 0 and the understanding that there is a finite but random number
of Xk’s in a cluster. The point process consisting of the points Xk is referred to as a subsidiary
point process in Westcott (1973). To make connection to Westcott (1973), we shall denote the
subsidiary process by N (s) when the first point X0 = 0 is excluded, and also let

P (z; a, b) = EzN
(s)(a,b), P (z; b) = P (z; 0, b) = EzN

(s)(0,b), P (z) = P (z;∞),

that is, the probability generating functions associated with the subsidiary process N (s) (excluding
X0 = 0).

With the introduced notation and letting hx(y) = z1(x,x+t)(y), we get that

logPt(z) = lim
x→∞

logE
∞∏
j=1

∞∏
k=0

hx(Sj +Xj,k) = lim
x→∞

(
− λ

∫ ∞
0

(
1− E

∞∏
k=0

hx(u+Xk)
)
du
)
,

where we used the fact that the probability generating functional of a Poisson process is given
by E

∏∞
j=1 g(Sj) = exp{−λ

∫∞
0 (1− g(u))du} for suitable deterministic functions g. Splitting the

integral
∫∞
0 into

∫ x+t
x and

∫ x
0 , it follows that

logPt(z) = lim
x→∞

(
− λ

∫ x+t

x

(
1− E

∞∏
k=0

z1(x,x+t)(u+Xk)
)
du− λ

∫ x

0

(
1− E

∞∏
k=0

z1(x,x+t)(u+Xk)
)
du
)

= −λ
∫ t

0

(
1− E

∞∏
k=0

z1(0,t)(v+Xk)
)
dv − λ

∫ ∞
0

(
1− E

∞∏
k=0

z1(v,v+t)(Xk)
)
dv,

after the change of variables v = u− x for the first integral, and v = x− u for the second integral
and letting x → ∞. Since v + X0 = v ∈ (0, t) for v ∈ (0, t) (for the first integral above) and
X0 = 0 /∈ (v, v + t) for v > 0, we get further that

logPt(z) = −λ
∫ t

0

(
1− zE

∞∏
k=1

z1(0,t)(v+Xk)
)
dv − λ

∫ ∞
0

(
1− E

∞∏
k=1

z1(v,v+t)(Xk)
)
dv

= −λ
(∫ t

0
(1− zP (z; t− v))dv +

∫ ∞
0

(1− P (z; v, v + t))dv
)

= −λ
(∫ t

0
(1− zP (z; v))dv +

∫ ∞
0

(1− P (z; v, v + t))dv
)
, (B.1)

by using the notation above and another change of variables (t− v to v in the first integral). We
shall next evaluate the two integrals in (B.1).

Let now W (0) = W − 1 be the number of points in a cluster excluding the first point, and

R
(0)
w = P(W (0) ≥ w) = P(W − 1 ≥ w) = P(W ≥ w + 1) = Rw+1. As shown in Westcott (1973),

Eq. (4),

P (z;u) = P (z) + (1− z)
∞∑
j=0

zjR
(0)
j+1(1− Fj+1(u)).
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Note that

P (z) = EzN
(s)(0,∞) = EzW

(0)
=
∞∑
j=0

zjP(W (0) = j) =
∞∑
j=0

zj
(
R

(0)
j −R

(0)
j+1

)
(with R

(0)
0 = 1). After simple algebraic manipulations, this leads to

P (z;u) = 1 + (z − 1)

∞∑
j=0

zjR
(0)
j+1Fj+1(u).

Then, for the first integral in (B.1),∫ t

0
(1− zP (z; v))dv = −(z − 1)t− (z − 1)

∞∑
j=0

zj+1R
(0)
j+1

∫ t

0
Fj+1(u)du. (B.2)

As shown in Westcott (1973) (see the arguments following Eq. (19) and terminating with Theorem
4), the second integral in (B.1) can be written as∫ ∞

0
(1− P (z; v, v + t))dv = −(z − 1)

∞∑
k=1

zk−1Jk

∞∑
j=0

R
(0)
j+k,

where

Jk =

∫ t

0
(Fk−1(x)− Fk(x))dx.

Basic algebraic manipulations lead to∫ ∞
0

(1− P (z; v, v + t))dv = −(z − 1)tEW (0)

−(z − 1)2
∞∑
k=1

zk−1
∫ t

0
Fk(x)dx

∞∑
j=1

R
(0)
j+k − (z − 1)

∞∑
k=1

zk−1
∫ t

0
Fk(x)dxR

(0)
k . (B.3)

By using (B.2) and (B.3), we can express (B.1) as

logPt(z) = (z − 1)λt+ (z − 1)2λ
∞∑
j=0

zjR
(0)
j+1

∫ t

0
Fj+1(x)dx

+(z − 1)λtEW (0) + (z − 1)2λ
∞∑
k=1

zk−1
∫ t

0
Fk(x)dx

∞∑
j=1

R
(0)
j+k

= λ(z − 1)
(
t+ tEW (0) + (z − 1)

∞∑
k=1

zk−1
∫ t

0
Fk(x)dx

∞∑
j=0

R
(0)
j+k

)
.

By noting that 1 + EW (0) = EW and that

∞∑
j=0

R
(0)
j+k =

∞∑
j=0

P(W (0) ≥ j + k) =
∞∑
j=0

P(W ≥ j + k + 1) =
∞∑
j=1

Rj+k,

we get further that

logPt(z) = λ(z − 1)
(
tEW + (z − 1)

∞∑
k=1

zk−1
∫ t

0
Fk(x)dx

∞∑
j=1

Rj+k

)
.

By using (2.5), this yields the formulae (2.6)–(2.7).
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González-Arévalo, B. & Roy, J. (2010), ‘Simulating a Poisson cluster process for Internet traffic
packet arrivals’, Computer Communications 33(5), 612–618.
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