Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: implications for lung health and disease

Leonard F. Lebender1*, Laura Prünte1*, Nowshin N. Rumzhum1 and Alaina J. Ammit2,3

*joint first authors

1Faculty of Pharmacy, University of Sydney, NSW Australia
2School of Life Sciences, University of Technology Sydney, NSW Australia
3Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW Australia

Corresponding author: Alaina J. Ammit
Woolcock Institute of Medical Research;
University of Technology Sydney
Phone: +61 2 91140368
E-mail: Alaina.Ammit@uts.edu.au

Running title: Targeting EP1-4 receptors in respiratory disease
Abstract

Arachidonic acid is metabolized by cyclooxygenases (COX-1 and COX-2) into various prostanoids which exert different functions in mammalian physiology. One of these prostanoids, prostaglandin E₂ (PGE₂), interacts with four different G protein-coupled receptors, named EP₁, EP₂, EP₃ and EP₄, to initiate different downstream signaling pathways. Prostanoid receptors are diversely expressed throughout different tissues all over the body and PGE₂ is responsible for a large variety of beneficial and disadvantageous effects. We have recently achieved a greater understanding of the biology of prostanoid E receptors and the potential for specific drug targeting with the advent of potent and selective EP receptor agonists and antagonists. This has important implications for lung health and disease as PGE₂-mediated EP receptor activation impacts upon migration of airway smooth muscle cells, airway microvascular leak, tone regulation of pulmonary blood vessels, mast cell degranulation, bronchodilatation, cough, angiogenesis and airway inflammation, to name a few.

In this review, we overview the EP receptor family and the related signalling pathways, summarize a variety of EP₁-⁴ receptor agonists and antagonists, provide an overview of pharmacological tools used to implicate EP receptor function in the context of respiratory health and disease and finally highlight some of the more selective pharmacological reagents that have recently been developed. The availability of selective pharmacological agonists and antagonists for the distinct EP receptors, as well as the development of specific prostanoid receptor knock-out mice, offer hitherto unattainable opportunities for achieving an in depth understanding of the role and function of PGE₂ in respiratory disease and the exciting potential of targeting EP receptors more broadly.
Non-standard abbreviations: ASM, airway smooth muscle; BAL, bronchoalveolar; CHO, Chinese hamster ovary; COX, cyclooxygenase; EP, prostanoid E; ERK, extracellular signal-regulated kinase; GPCR, G protein-coupled receptors, GSK-3, glucogen synthase kinase-3; HMLC, human lung mast cells; K_i, binding affinity; IL, interleukin; IP$_3$, inositol triphosphate; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MKP-1, MAPK phosphatase 1; PGE$_2$, prostaglandin E$_2$; PKA, protein kinase A; PLC, phospholipase C; PI3K, phosphatidylinositol 3-kinase; PRP, platelet-rich plasma; TCF, T-cell factor; TRP, Transient Receptor Potential; VEGF, vascular endothelial growth factor.
Introduction

Prostaglandin E2 (PGE2) is an important lipid mediator that activates four different prostanoid E (EP) receptors, termed EP1, EP2, EP3, and EP4. Along with other important prostanoids, including PGD2, PGF2α, prostacyclin (PGI2), and thromboxane A2 (TxA2), PGE2 is synthesized from arachidonic acid by cyclooxygenase (COX) enzymes via the unstable intermediate forms PGG2 and PGH2 [1, 2]. EP1-4 are G protein-coupled receptors (GPCR) that form part of prostanoid receptor family that include receptors for other endogenous prostanoid ligands, including DP1-2 (for PGD2), FP (for PGF2α), IP (for PGI2) and TP (for TxA2).

PGE2 exhibits various functions in the human body which can be either beneficial or disadvantageous. With the relatively recent development of selective EP receptor antagonists and agonists it will be possible to examine ligand-mediated cell signalling pathways triggered via the EP receptors, well as the effects of the individual EP receptors more closely. This is especially important in the respiratory setting, where targeting the EP receptor system offers great potential as novel therapeutics to combat chronic respiratory diseases and lung conditions [3]. To date however, the EP receptor antagonists and agonists available have shown varying degrees of potency and selectively. Some of these have been used in the respiratory setting and offer a convenient pharmacological means to target EP receptors and demonstrate functional outcomes. However, these compounds do not always target the receptors they say they target. Often receptor identification has been incorrectly assigned based on the promiscuous nature of the agonist/antagonist.

Given that prostanoids are currently enjoying a renaissance, and that ligand-mediated cell signalling pathways triggered via EP receptors have broad implications in health and disease, it is important to have an understanding of the EP receptor family and to utilize selective
pharmacological agents. We address this herein and review the EP receptor family and the signalling pathways that are activated upon ligand binding (PGE$_2$ in particular). We will then provide a summary of some of the EP$_{1-4}$ receptor agonists and antagonists and offer an assessment of their selectivity. We will then focus on the respiratory setting and provide an overview of the agonists/antagonists used to implicate EP receptor function in the context of respiratory health and disease. Finally, we will highlight some of the more selective pharmacological reagents that recently been developed and underscore the promise of utilizing transgenic mice where a particular EP receptor has been knocked-out. These murine models are able to distinctly implicate a particular EP receptor in a precise manner. When coupled with validated experimental models of respiratory disease, these tools will allow researchers to more clearly define molecular mechanisms responsible for disease pathogenesis and enable improved treatments in the future.

I. Ligand-mediated cellular signalling via EP receptors

A. EP$_1$ receptor

1. Receptor

EP$_1$ was the first characterized EP receptor. Compared to other EP receptor subtypes, EP$_1$ is not widely distributed and its expression in animal tissue is relatively low, mostly occurring in kidney and lung tissue [1]. The human EP$_1$-receptor consists of 402 amino acids. In terms of amino acid sequence identity, the human EP$_1$ receptor is more closely related to the TXA$_2$ receptor, followed by EP$_3$, EP$_2$ and EP$_4$ [4]. The human EP$_1$ receptor is 86% homologous with the rat EP$_1$-receptor (rEP$_1$). In rats, Okuda-Ashitaka et al. [5] identified a variant: when the mRNAs of rEP$_1$ and of the rEP$_1$-variant were compared it became clear that the mRNA of the
rEP₁-variant is the unspliced form of the rEP₁-mRNA [5]. The mouse and rat EP₁ receptors share a sequence homology of 96% [5].

2. Signalling

One of the major signalling outcomes from engagement of PGE₂ with the EP₁ receptor is increased levels of intracellular Ca²⁺ [6]. When both receptors, rEP₁ and its variant, were expressed in Chinese hamster ovary (CHO) cells and the rEP₁-receptor activated, Ca²⁺ mobilization was significantly subdued. Co-expression of EP₄ and the rEP₁-variant in CHO cells led to a blockade of cAMP formation after activation of EP₄ [5]. These findings suggest that the rat EP₁ receptor variant is able to suppress the signalling of other receptors for PGE₂.

Although it is generally well accepted that EP₁ stimulation generates intracellular Ca²⁺ increase resulting in smooth muscle contraction, there are differing opinions about the coupling of the receptor, the activation of phospholipase C (PLC) and the hydrolysis of phosphatidylinositol [7]. Coleman <i>et al.</i> [1] stated that Ca²⁺ mobilization from intracellular stores is mediated via an inositol triphosphate (IP₃)-independent mechanism via EP₁. This was due to the fact that PGE₂-induced Ca²⁺ mobilization is not blocked by pertussis toxin and does not require extracellular Ca²⁺ [1]. Moreover, changes in cAMP were negligible in CHO-cells expressing recombinant murine EP₁ receptors. In contrast, Watabe <i>et al.</i> [8] showed that the increase of intracellular Ca²⁺ by engagement of the EP₁ receptor was completely abolished by removal of extracellular Ca²⁺; therefore suggesting that the PGE₂-induced increase in Ca²⁺ is due to the entry of extracellular Ca²⁺ [8]. Additionally, Katoh <i>et al.</i> observed two different ways of increasing intracellular Ca²⁺. Stimulation of mouse EP₁-receptor in cDNA-transfected CHO cells leads to an entry of extracellular Ca²⁺ inside the cell which again results in hydrolysis of phosphatidylinositol. This process is independent of PLC. There is also Ca²⁺-mobilization from internal stores, but in
contrast to extracellular Ca\(^{2+}\) influx, it is relatively weakly induced [9]. This process is sensitive to PLC inhibitors [10]. Protein kinase C affects the regulation of EP\(_1\) signal transduction as it induces short- and long-term desensitization of this receptor. Further research is required to reconcile these cellular signalling differences.

There is also evidence that the EP\(_1\) receptor also couples to G\(_{q/11}\) and G\(_{i/o}\). Tests with antisense oligodeoxynucleotides in the Xenopus oocyte expression system performed by Tabata et al. demonstrated that EP\(_1\) receptors can induce Ca\(^{2+}\) mobilization via G\(_{q/11}\) [10]. Ji et al. [7] showed that PGE\(_2\) clearly stimulated intracellular IP\(_3\) accumulation in HEK293 cells expressing the human EP\(_1\) receptor via coupling to G\(_{q/11}\). They also reported that the EP\(_1\) receptor could couple to G\(_{i/o}\) to activate multiple signalling pathways (ribosomal S6 kinases, phosphatidylinositol-3-kinase (PI3K), Akt and mammalian target of rapamycin) in a pertussin toxin-sensitive manner [7].

Moreover, it has been demonstrated that the interaction time between PGE\(_2\) and the EP\(_1\) receptor, compared to some of the other EP receptors, is relatively rapid. Association and dissociation of the ligand PGE\(_2\) takes 30 seconds on EP\(_1\), whereas association with and dissociation from EP\(_2\) takes 10 and 5 minutes [9]. In EP\(_3\) receptors these processes requires 10 minutes and 80 minutes, respectively [9].

B. EP\(_2\) and EP\(_4\) receptors

1. **Receptors**

EP\(_2\) and EP\(_4\) receptors will be discussed together in this section due to their similarities. Until 1995 the EP\(_4\) receptor was unknown and only three forms of EP receptors had been described in the literature. The discovery of the EP\(_4\) receptor was driven by a mistake, as the receptor first thought to be the EP\(_2\) receptor was in fact the EP\(_4\) receptor [11]. The true identity was soon to be
published and further investigations of this new receptor were performed [12-14]. EP₂ and EP₄ receptors differ in the length of the C-terminal sequence, as the EP₂ receptor has a rather short C-terminal sequence while the EP₄ receptor has a long C-terminal sequence [2]. EP₂ and EP₄ receptors show similar binding profiles and both mediate cellular signalling via adenylate cyclase activity resulting in increased levels of intracellular cAMP [15]. Although they demonstrate similarities in pharmacology and functional coupling, EP₂ and EP₄ receptors do not share high levels of amino acid identity: only ~38% homology in the transmembrane domain [16]. Phylogenetic analysis shows that the EP₂ receptor is more closely related to other relaxant prostanoid receptors, such as the IP and DP receptors [17], than the other EP receptors. Overall, there exists about ~30% identity with the other receptors, i.e. ~37% with EP₁ and ~34% with EP₃ [12, 16].

2. Signalling

Engagement of EP₂ and EP₄ receptors activate adenylate cyclase activity [1] resulting in cAMP increase [15]. When cAMP activates protein kinase A (PKA), the release of the PKA catalytic subunits allows them to phosphorylate a wide range of cellular targets, resulting in myriad cellular effects [1, 18]. Adenylate cyclase/cAMP/PKA signalling after PGE₂ stimulation of EP₂ and EP₄ receptors occurs in a Gₛ-coupled manner and can induce phosphorylation of the transcription factor, cAMP response element binding protein (CREB) at serine-133 resulting. This results in transcriptional regulation of genes containing promoters containing CRE consensus sequences. As EP₂ and EP₄ receptors are widely distributed throughout the body [19], receptor response to mediators is widespread: for example, relaxation in smooth muscle cells, non-acid secretion on epithelial cells and inhibition of mediator release in inflammatory cells, to name a few [1, 18].
But EP₂ and EP₄ receptors do show differences in their regulation following treatment with PGE₂. While the EP₄ receptor undergoes short term agonist-induced desensitization and internalization, the EP₂ receptor does not; although receptors show downregulation upon long-term exposure (>2 hour) to an agonist [20, 21]. Additionally, there are differences in the amount of cAMP produced upon stimulation. When receptors are stably expressed in HEK293 cells (at similar levels of receptor expression), the maximal amount of cAMP formation by stimulated EP₄ receptors is only 20 to 50% of that achieved amount by EP₂ stimulation [22, 23].

In addition to the well-recognized role played by adenylate cyclase in mediating the EP₂ and EP₄-mediated cellular signalling responses to ligands, other pathways have been reported. A notable example is the activation of T-cell factor (TCF) signalling via glucogen synthase kinase-3 (GSK-3), the enzyme responsible for phosphorylating and thus destabilizing β-catenin. GSK-3 can be inactivated by phosphorylation, this process can be induced by EP₂ and EP₄-mediated cellular signalling [22, 24, 25]. The common canonical signalling pathway starts with the Wnt ligand binding to the Frizzled receptor. Dishevelled is then recruited and results in the inhibition of the kinase activity of GSK-3. Active GSK-3 promotes the instability of β-catenin via phosphorylation and thus addition of ubiquitin, leading to degradation by the proteasome. When stable, β-catenin can interact with TCF DNA-binding factors to form a transcriptionally active complex that can alter gene expression. The involvement of EP₂ and EP₄ in this pathway was implicated by Fujino et al. [22] through utilization of TCF-responsive luciferase reporter genes in HEK293 cells transfected with human EP₂ and EP₄ receptors. They showed that activation of these receptors with the ligand PGE₂ can activate TCF signalling. Furthermore, stimulation of reporter genes with PGE₂ was aligned with phosphorylation of GSK-3, PI3K/Akt and activation of TCF signalling. Moreover, EP₂ receptor signalling occurred primarily through a PKA-
dependent pathway, while EP₄ receptors activate TCF signalling primarily by a PI3K-dependent pathway [22].

Additional studies provide further evidence linking stimulation of EP₄ receptors with the PI3K pathway. PGE₂ treatment leads to PI3K-dependant phosphorylation of extracellular signal-regulated kinase (ERK). This PI3K-dependent pathway can only be induced by EP₄ receptors, not EP₂ receptors [26]. As EP₂ and EP₄ receptors differ in their agonist-induced internalization and desensitization and since internalization of GPCRs has been described to be associated with a transactivation of the mitogen-activated protein kinase (MAPK) pathway there may be a link between the activation of ERK and the selective internalization [26-28].

As outlined earlier, phosphorylation of CREB was originally be shown to occur via the classical cAMP-dependent PKA pathway, but further experiments with pharmacological inhibitors proposed that PKA is not the only kinase with the ability of phosphorylating CREB after EP₂/EP₄ ligation. Phosphorylation of CREB was reported to linked to increased PI3K activity after activation of the ERKs and Akt signalling pathways [29-31]. Fujino et al. tested the phosphorylation of CREB after activation of EP₂ and EP₄ receptors and studied the activation of cAMP/PKA- and the PI3K-dependent signalling pathways. They showed that the mechanism of phosphorylating CREB is in EP₂-expressing cells mostly cAMP/PKA-driven, while the mechanism in EP₄-expressing cells involves a PI3K-dependent pathway. They further stated that stimulation of EP₄ receptors via PGE₂ negatively regulates the activity of PKA. Using H-89, a pharmacological inhibitor of PKA, it was shown that an inhibition of PKA decreases the phosphorylation of CREB in EP₂-expressing cells, but not in EP₄ [31]. However, Clarke et al. stated in 2005 [32] that H-89 is rather unsuitable as a tool for pharmacological research as it is quite non-selective. Instead, they transfected human airway smooth muscle (ASM) cells with an
adenovirus vector containing the PKA inhibitor, PKIα [32] and showed that EP2 and EP4 signalling occurred via the PKA-pathway, not via the PI3K pathway [32]. These data question the involvement of the PI3K pathways in ligand-mediated cellular signalling via EP2/EP4 receptors and further investigations are warranted.

C. EP3 receptor

1. Receptor

Amongst all the EP receptor family members, the EP3 receptor is the only one known to express various isoforms [1]. It is understood that cows have four EP3- receptor isoforms called EP3A, EP3B, EP3C and EP3D [33]. The bovine EP3D is homologous to the human EP3D whereas the human EP3A receptor is a homolog of the mouse EP3α isoform [4]. Additionally, there are two more isoforms known in mice which are EP3β and EP3γ [33]. Rabbits express five isoforms named EP3-72A, EP3-74A, EP3-77A, EP3-80A and EP3-NT [34]. According to Israel and Regan [35], there have been ten different mRNA splicing variants identified in humans, resulting in eight different EP3 isoforms, named EP3-I, EP3-II, EP3-III, EP3-IV, EP3-V, EP3-VI, EP3-e and EP3-f [36]. Among the isoform EP3-I there are three different splice variants which vary in the 3′-untranslated region, termed EP3-Ia, EP3-Ib and EP3-Ic. The nomenclature of the EP3 isoforms is not uniform and different publications have sometimes used different terms for the same isoform. Table 1 attempts to harmonize the nomenclature for the various EP3 receptor isoforms.

Table 1. Human EP3 receptor isoform nomenclature

<table>
<thead>
<tr>
<th>Carboxyl-terminal domains [2], [37]</th>
<th>Nomenclature according to Kotani et al. [38] [37]</th>
<th>Nomenclature according to Schmid et al. [39]</th>
<th>Nomenclature according to Regan et al. [4]</th>
</tr>
</thead>
</table>

11
As detailed in Table 1, the EP3 isoforms differ in the amino acid sequence of the C-terminal region. Across the seven transmembrane helices of all EP3 isoforms, the first 359 amino acids are identical. However the carboxyl terminal of each isoform differs, being 6 to 65 amino acids long [40]. Thus, as a consequence of different mRNA splicing variants, the resulting protein isoforms have distinct signal transduction pathways [39].

<table>
<thead>
<tr>
<th>Sequence</th>
<th>EP3-I</th>
<th>EP3a</th>
<th>EP3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRYHTNNYASSSTSLPC</td>
<td>EP3-II</td>
<td>EP3c</td>
<td>EP3D</td>
</tr>
<tr>
<td>EEFWGN</td>
<td>EP3-VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRKRRRLREQEWFQGN</td>
<td>EP3c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRKRRRLREQEMGPDPGR CFCHAWRQVPRTWCSS HDREPCSVQLS</td>
<td>EP3-V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMGPDGRCFCHAWRQ VPRTWCSSHDREPCSV QLS</td>
<td>EP3-VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRKRRRLREQSLR LRYRGQLHIVGKYKPIVC</td>
<td>EP3e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRKRRRLREQAPLLPTPT</td>
<td>EP3f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIDPSRFCAQPFRWFLD LSFPAMSSHQPQLPTL ASFKLLLREPCSVQLS</td>
<td>EP3f</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Signalling

In humans, the EP₃ receptor isoforms can be Gᵢ-, Gₛ-, Gᵦ- or G₁₂/₁₃-coupled [35], with the main signalling pathway for EP₃ considered to occur in a Gᵢ-mediated manner [41]. Because of this, ligand engagement of the EP₃ receptor (via either the endogenous ligand PGE₂ or other EP₃-agonists) can result in a myriad of intracellular signalling pathways: some of these will be summarized below.

One of the major outcomes of activation of the EP₃ receptor is inhibition of adenylate cyclase and reduction of cAMP levels via Gᵢ and enhancement of intracellular Ca²⁺ [1, 41]. Schmid et al. [39] also reports that EP₃a, EP₃b and EP₃c enhance Ca²⁺ concentration and EP₃d, EP₃e and EP₃f reduce cAMP via Gᵢ.

The MAPK pathway can also be activated via EP₃ receptor isoforms. In cells transfected with human EP₃A, PGE₂ was shown to stimulate MAPK activity dose-dependently in a manner linked to Gᵢ-protein activation [42]. The EP₃-II and EP₃-III receptors (expressed in HEK293 cells) can also trigger a MAPK-dependent transcriptional activation, although different signalling intermediaries are involved [35]. However, in contrast to the central role played by MAPK after activation of EP₃-II and EP₃-III, PGE₂ activation of EP₃-la caused a negligible phosphorylation of ERK [35].

Other second messengers have also been shown to be involved in EP₃ activation: i.e. engagement of EP₃A₁, EP₃C and EP₃D in primary human keratinocytes leads to an increase in diacylglycerol and ceramide production [43]. EP₃ receptors have also been shown to be constitutively active although isoform specific differences exist: while EP₃-I and EP₃-II are not significantly constitutively active, EP₃-III and EP₃-IV do exhibit constitutive activity [40].
Small changes in amino acid sequence have also been shown to result in changes to signal transduction. For example, activation of the EP$_3$.V and EP$_3$.V1 receptors (mainly detected in human uterus) results in production of cAMP via EP$_3$.V1, but not via EP$_3$.V receptor [36]. Interestingly, both receptors feature nearly the same amino acid sequence with the exception of nine amino acid residues [36] – see Table 1. The different carboxy termini of the EP$_3$ isoforms have also an impact on the respective receptor’s internalization in response to PGE$_2$. Furthermore, the isoforms are internalized by different mechanisms. Under influence of PGE$_2$, the EP$_3$.I receptor is internalized most rapidly and completely whereas EP$_3$.II, EP$_3$.V, EP$_3$.V1 and EP$_M$ are only internalized to a certain extent. Moreover, EP$_3$.II is internalized independently of β-arrestin. Usually, β-arrestin binds to phosphorylated serine or threonine in the C-terminal tails. An explanation for why the EP$_3$.III and EP$_3$.IV isoform are not internalized could be due to their comparatively short carboxy termini and the absence of the amino acids serine and threonine [36]. The consequence of different rates of receptor internalization impacts on the physiological functions of the various members of the EP$_3$ receptor isoform family [37].

II. **Selective and non-selective EP agonists and antagonists**

The design of potent and selective agonists and antagonists are essential research tools in prostanoid biology. For many years now, classification of the prostanoid receptors has been based mainly on the pharmacological actions of agonists and antagonists. However, in some cases, the selectivity of the pharmacological agents may have been limited. The following sections will summarize some of the commonly used agonists and antagonists for each member of the EP receptor family and provide an assessment of their selectivity.
A. EP₁ receptor agonists and antagonists

1. EP₁ agonist: ONO-DI-004

ONO-DI-004 [(17S)-2,5-ethano-6-oxo-17,20-dimethyl PGE₁] from Ono Pharmaceuticals is a derivate of PGE₁ and a selective EP₁ agonist [44]. In CHO cells expressing EP receptor subtypes [45], the K_i values have been shown to be 0.15 µM for the EP₁ receptor and >10 µM for other EP receptor subtypes. However, ONO-DI-004 appears to have only moderate affinity with the receptor, and its agonist effects have been demonstrated to be dependent on species and tissues.

2. EP₁ antagonist: ONO-8711

ONO-8711 is a competitive antagonist at EP₁ receptors that has been shown to inhibit PGE₂-induced increases in cytosolic Ca$^{2+}$ concentration with inhibitory concentrations of 0.21 µM for mouse EP₁ and 0.05 µM for human EP₁ receptors [46]. In terms of pharmacological profile, ONO-8711 has K_i values of 1.7 nM at mouse EP₁ and 0.6 nM at human EP₁ receptors expressed in CHO cells, while K_i values of 67 nM for mouse EP₃ and 76 nM for human TP receptors were reported. K_i values for other prostanoid receptors were >1,000 nM [46].

3. EP₁ antagonist: ONO-8713

ONO-8713 is a selective EP₁ antagonist that is similar to ONO-8711 but with greater selectivity for the EP₁ receptor. Tested in CHO cells stably expressing different EP receptor subtypes, ONO-8713 has K_i values of 0.3 nM for both the human and mouse EP₁ receptor and >1,000 nM for all other prostanoid receptors. This is in comparison to ONO-8711, where the K_i value for mouse and human EP₁ receptor is 1.7 and 0.6 nM, respectively, and 67 nM and 76 nM for mouse EP₃ and human TP receptor, respectively [46, 47]. Thus, ONO-8713 is more selective and potent than ONO-8711.
4. **EP₁ antagonist: GW848687X**
GW848687X is a potent and selective EP₁ receptor antagonist developed by GSK. Due to its favourable profile in models of inflammatory pain it was selected as development candidate [48]. It is a competitive antagonist at the EP₁ receptor with a pA₂ of 9.1 and a selectivity >400-fold for EP₁ receptor to other EP receptor subtypes, DP and IP receptors. It has 30-fold selectivity over the TP receptor, while not characterized at the FP receptor [48].

5. **EP₁ antagonist: SC-51089**
SC-51089 is an acylhydrazide developed by the Searle group that was considered to be a potential clinical candidate as an analgesic but was subsequently dropped from the development pipeline when issues around its metabolism appeared, i.e. release of hydrazine [49]. In 293E/CRE-SEAP reporter cells expressing human EP₁ receptor, SC-51089 had a pK_B value of 6.9 (K_B of 115 nM) but no activity at the DP receptor [50]. Abramovitz et al. [51] utilized radioligand binding assays in HEK293 cells expressing EP receptors and found K_i values of 1,332±187 nM for EP₁, 17,500 ±6,122 nM for EP_{3-III}, 1,175 nM for TP and >100,000 nM for other prostanoid receptors [51]. These results are approximately one order of magnitude lower than that determined by Durocher et al. [50].

6. **EP₁ antagonist: SC-51322**
SC-51322 is the most potent of the Searle series of EP₁ receptor antagonists [52] with pK_B values of 8.8 (K_B of 1.60 nM) in 293E/CRE-SEAP cell reporter assays [50]) and a K_i value of 13.8 nM in the radioligand binding assay [51]. These are compared to K_i values of 698±122 nM for EP_{3-III} and 507±47 nM for TP receptors, with K_i for other prostanoid receptors >10,000 nM. These data show that SC-51322 has high affinity for EP₁ with a selectivity of 50-fold over EP₃ and TP, and essentially no activity at the other prostanoid receptors.
7. **EP₁ antagonist: SC-19220**

SC-19220 is a dibenzoxazepine hydrazide derivative and one of the oldest prostanoid receptor antagonists. In 1971 Sanner et al. described the inhibitory effect of SC-19220 on PGE₂-induced contraction of guinea pig isolated ileum [53]. At doses between 0.3 and 300 µM, SC-19220 acted as a competitive antagonist in isolated guinea pig gastric muscle [54]. SC-19220 was also shown to antagonize PGE₂-induced contractions mediated by the EP₁ receptor in guinea pig trachea [55]. In a radioligand binding assay in cells expressing the human EP₁ receptor [6], SC-19220 was shown to compete for [³H]-PGE₂-specific binding with an IC₅₀ value of 6.7 µM. SC-19220 has no binding affinity to human EP₂ receptors expressed under the same conditions [11]. However, SC-19220 has no affinity for the mouse EP₁ receptor, suggesting that there are some species differences [15].

B. **EP₂ receptor agonists and antagonists**

There are two main classes of EP₂ receptor agonists available: those molecules that are structurally related to the endogenous ligand PGE₂ (see 1-4) and the pyridyl-sulfonamines (see 5 & 6). While EP₂ receptor agonists have been available for some time, more selective and potent antagonists for the EP₂ receptor have emerged recently.

1. **EP₂ agonist: Butaprost**

Butaprost is one of the older synthetic EP₂ receptor agonists, being less potent than the native PGE₂ with a Ki of 2,400 nM [56]. In terms of selectivity, the Ki for EP₁,₂ and EP₄ are higher than 10,000 nM [56]. The ester group of butaprost is rather unstable and the free acid form metabolite is more potent (with an EP₂ receptor Ki of 73); but butaprost does activate IP receptors as well [57]. The free acid and the methyl ester forms of butaprost have been shown to be 2- and 30-fold less potent than the natural ligand PGE₂ at the EP₂ receptor [56].
2. **EP₂ agonist: 9b-Chloro-16-hydroxy-17,17-trimethylene-o-nor-PGF₂**

The 16-hydroxy-17,17-trimethylene 9beta-chloro PGF₂ derivative, a product of Ono pharmaceuticals, has been reported to be a potent EP₂ receptor agonist with K_i for the EP₂ receptor of 3.3 nM [58]. It is specific for EP₂ receptors and shows nearly the same potency as PGE₂ in functional assays [58, 59].

ONO-AE-259 shows a high binding affinity for EP₂ with K_i of 1.7 nM, a 22-fold higher affinity than PGE₂ for the EP₂ receptor. It also shows 700-1,500-fold selectivity for EP₂ over other prostanoid receptors, namely EP₁, 3, 4 and IP [58, 59]. This specific agonist is often used to define EP₂ receptor-mediated effects experimentally in *in vitro, ex vivo* and *in vivo* models. For example, *in vitro*, ONO-AE1-259 can increase cytosolic cAMP levels in human ASM cells and significantly inhibit ASM cell migration [60].

4. **EP₂ agonist: AH13205**

AH13205 is a relatively non-selective EP₂ receptor agonist with a comparatively low potency. Tani *et al.* published the following K_i values: EP₁ receptor 2,800 nM, EP₂ receptor 320 nM, EP₃ receptor 49 nM, EP₄ receptor 2,200 nM [58]. Early studies by Nials *et al.* in 1993 [61] showed that AH13205 relaxes airway smooth muscle from cats and guinea pigs *in vitro* and works as a potent bronchodilator in guinea pigs on inhalation. Despite its promising preclinical profile it did not appear to have any bronchodilator activity in humans [61] and is largely superseded by other agonists.
5. **EP2 agonist: CP-533536**

CP-533536 is a highly potent and selective EP2 agonist with a high binding affinity for the EP2 receptor (Kᵢ of 50 nM) and good selectivity, i.e. CP533536 is 16-fold higher selective for EP2 than DP and 50 to 60-fold higher selective for EP2 to EP₁,₃,₄ and IP receptors.

6. **EP2 agonist: CP-544326**

CP-544326 is at least 270 times more selective for human EP2 receptors, compared to other human EP receptors: i.e. receptor affinity to EP2 is 10 nM, while the affinity to EP₁,₃ and EP₄ is higher than 3,200 nM [62]. In rat and human cells expressing EP₂, CP-544326-mediated cAMP production with average EC₅₀ of 1.9 nM and 2.8 nM, respectively [62]. This was similar to that observed for PGE₂ (EC₅₀=2.6 nM) [62].

7. **EP2 antagonist: AH-6809**

AH-6809 is one of the longest used EP receptor antagonists. AH-6809, previously considered as an EP₁ antagonist, was proven to have affinity to EP2 as well [63]. It was characterized as being non-selective, having similar affinity for EP₂, EP₃ and DP [51]. Abramovitz et al. [51] demonstrated the following binding affinities for AH-6809 in assays using HEK293 cells expressing EP receptors: Kᵢ (EP₁) 1,217±98 nM, Kᵢ (EP₂) 1,150±36 nM, Kᵢ (EP₃) 1,597±140 nM and Kᵢ (DP) 1,415±104 nM. Despite the relatively weak antagonistic activity and a rather non-selective profile, AH-6809 is commercially available and has been commonly used for probing EP2 receptor function, due to unavailability of other selective EP2 antagonists for some time.

8. **EP2 antagonist: PF-04418948**

PF-04418948 is azidotine-carboxylic acid derivative and selective EP2 antagonist developed by Pfizer. It has performed well in EP2 antagonist affinity and potency experiments in cell systems and in vivo analysis in rodent models [64]. Investigators reported that PF-04418948 inhibited
PGE₂-induced increase in cAMP in cells expressing EP₂ receptors with a functional K_b value of 1.8 nM and also reversed PGE₂-induced relaxation in the mouse trachea with an IC₅₀ of 2.7 nM [64]. Given orally, PF-04418948 attenuated the butaprost-induced cutaneous blood flow response in rats [64]. PF-04418948 is a EP₂ selective antagonist (IC₅₀ (EP₂) is 16 nM while IC₅₀ (EP₁, 3, 4, IP, DP) >10,000) [64] and the compound has little activity against a diverse panel of GPCRs and ion channels at concentrations much higher than needed to antagonize EP₂ receptors [65]. Birrell et al. [66] have also conducted further investigations that demonstrate the selectivity profile of PF-04418948 using functional bioassay systems. They tested PF-04418948 in a range of tissue-based assays to confirm selectivity against the native EP₂ receptor: testing the EP₂ receptor in mouse and guinea pig isolated tracheal tissue, EP₁-mediated responses of guinea pig isolated tracheal tissue, EP₃ receptor-mediated responses of guinea pig isolated vagal tissue and EP₄ receptor-mediated contraction of rat and human isolated tracheal tissue [66]. They showed that PF-04418948 only acted as an antagonist in EP₂-mediated events, competitively inhibited relaxations of murine and guinea pig trachea induced by the EP₂ agonist ONO-AE1-259 and the endogenous ligand PGE₂. Notably, the affinity of the compound was not equal in the two preparations, the guinea pig trachea showed atypically low affinity compared to the mouse. The authors interpret the data as a question whether the guinea pig trachea is a usable EP₂ receptor assay system [66]. In summary, PF-04418948 may be the long needed tool for further discoveries about the EP₂ receptor, as research about this subtype of EP receptor was hampered due to the lack of a specific antagonist.

9. **EP₂ antagonist: TG6-129, TG4-155, TG6-10-1**

Emory University has published a novel class of EP₂ antagonists, structurally distinct from PF-04418948. TG4-155 has an EP₂ Schild K_B of 2.4 nM and displays selectivity for EP₂ over EP₁,
EP3, EP4 and IP (550-4750-fold) but only 14-fold selectivity against the DP1 receptor. TG6-10-1 has an EP2 Schild K_B of 17.8 nM and shows a 300-fold selectivity against EP3, EP4 and IP receptors, but only 100-fold selectivity against EP1, FP and TP receptors and only 10-fold selectivity against DP1 receptor [59, 67]. TG6-129 was developed by Emory University as another lead component for another class of EP2 antagonists. The compound shows nanomolecular potency and competitive antagonism for the EP2 receptor. Unlike TG4-155 and TG6-10-1, TG6-129 has shown high selectivity against DP1 (1660-fold) and EP4 receptors (440-fold), but only 22-fold selectivity against the IP receptor [59, 68]. Although the selectivity of these compounds is not as high as PF-04418948, these compounds provide another option to further research about EP2 receptor and its role in health and disease.

C. **EP3 receptor agonists and antagonists**

Given that the EP3 receptor has a number of isoforms, many of the pharmacological studies designed to determine the selectivity and potency of agonists and antagonists against the EP3 receptors have also explored the relative efficacy against some of the important isoforms.

1. **EP3 agonist: Sulprostone**

Sulprostone (16-phenoxy PGE$_2$) is a synthetic selective EP1 and EP3 agonist [69]. In radioligand binding assays, performed in HEK293 cells expressing EP receptors, Sulprostone has K_i values of 0.35±0.11 nM for EP$_3$-III, 198±10 nM for FP, 107±15 nM for EP$_1$ and >7,740 nM for EP$_4$, EP$_2$, DP, IP and TP [51]. Okada et al. [70] examined the contractile actions of prostanoid analogues on longitudinal smooth muscles of the murine gastric fundus and ileum, where tensions induced by sulprostone (10 µM) were 126±5 and 95±5% respectively. These values were significantly greater than those induced by another EP3 agonist (ONO-AE-248: see 3 below), leading the authors to suggest that sulprostone may act on other receptors in addition to EP3 [70].
2. **EP3 agonist: Misoprostol**

Misoprostol is a methyl ester analog of PGE\(_1\). Misoprostol (methyl ester) showed \(K_i\) values of 10,249 ±1343 nM at EP\(_2\), 319±15 nM at EP\(_3\), 5,499±1102 nM at EP\(_4\) and 35,675±9,577 nM at EP\(_1\) receptors, while misoprostol (free acid) has \(K_i\) values of 34±5 nM at EP\(_2\), 7.9±1.0 nM at EP\(_3\), 23±2 nM at EP\(_4\) and >10,000 nM at EP\(_1\) receptors: measured in radioligand binding assays, performed in HEK293 cells expressing EP receptors [51]. The de-esterification of misoprostol (methyl ester) produces drastic changes in the pharmacological profile with changes in affinity and selectivity for EP receptors: affinity changes of at least 350-fold at EP\(_2\), 40-fold at EP\(_3\) and 250-fold at EP\(_4\) receptors; modified selectivity from EP\(_3\) preferable to equipotent at EP\(_2\), EP\(_3\) and EP\(_4\) [51].

ONO-AE-248 is a selective EP\(_3\) agonist with close structural similarities to PGE\(_2\), being O-dimethylated at position 11 and 15 [11,15-O-dimethyl-PGE\(_2\)]. Binding affinities of ONO-AE-248 were tested on CHO cells transfected with mouse EP-receptors 1-4 and have shown a \(K_i\) value of 15 nM for the mouse EP\(_3\) receptor. The \(K_i\) values for other mouse EP-receptors are >3,700 nM, confirming that ONO-AE-248 is specific for EP\(_3\). Furthermore, the agonistic activity of ONO-AE-248 at the EP\(_3\)-receptor is 5.2 nM whereas it is >10,000 nM for the other three EP-receptors [44]. ONO-AE-248 induced dose-dependent contractions in human pulmonary artery rings with pEC\(_{50}\) value of 6.34±0.35 [44]. In contrast, in human pulmonary veins, ONE-AE-248 did not cause any contraction; this was considered due to the absence or presence of EP\(_3\) receptors in the selected tissue [44]. *In vitro*, ASM cell migration, assessed by a chemotaxis assay, showed that ONO-AE-248 acts as a modest, but significant chemoattractant and enhancer of baseline cell migration [60].
4. **EP3 agonist: M&B28767**

M&B28767 is a relatively non-selective agonist for EP3. It shows best binding affinities to the human EP3 and EP4 receptors, but also binds to the other two EP receptors as well. K_i (EP1)=508 nM, K_i (EP2)=1,370 nM, K_i (EP3)=0.3, K_i (EP4)=24 nM [71]. *In vitro*, Kiriyama et al. performed radioligand binding assays in CHO cells expressing mouse EP receptors, showing K_i values of 0.68 nM for mEP3 receptor, while 120 nM and 124 nM for mEP1 and mFP receptors, respectively [15]. Perhaps M&B28767 demonstrates greater utility as a mEP3 receptor agonist? Accordingly, M&B28767 and sulprostone were compared in an experimental model examining morphine withdrawal ‘jumps’ caused by naloxone in morphine-dependant mice. M&B2767 produced an inhibitory effect on morphine withdrawal jumps at lower doses than sulprostone [72]. M&B28767 can also exert differential effects on EP3 isoforms: M&B28767 was shown to increase basal cAMP level and inhibited the forskolin-induced increase in the cAMP level induced via EP3γ stimulation, while and decreasing both the basal and forskolin-elevated cAMP level induced through EP3α and EP3β [73].

5. **EP3 agonist: TEI-3356**

TEI-3356 is an isocarbacyclin analogue and a selective antagonist for EP3 receptor. Pharmacological characterizations of TEI-3356 was performed with $[^3]$H-PGE2 binding assays to test receptor affinity in CHO cells stably expressing EP receptors: TEI-3356 shows IC$_{50}$ values of 33 nM for EP1, 450 nM for EP2 and 0.1 nM for EP3 on displacement of $[^3]$H-PGE2 binding and 90 nM for IP on displacement of $[^3]$H-iloprost binding [74]. TEI-3356 (IC$_{50}$= 0.01 µM) is stated as being a less potent EP3 agonist than M&B28767 (IC$_{50}$= 0.001 µM), but showing higher selectivity for EP3 than M&B28767 [74].
6. **EP₃ agonist: GR63799X**

GR63799X was demonstrated in a radioligand binding assays performed in CHO cells expressing mouse EP receptors to have high selectivity for the mouse EP₃ receptor with K_i values of 1.9 nM for mEP₃ and 480 nM for the mEP₄ receptors [15].

7. **EP₃ antagonist: ONO-AE3-240**

ONO-AE3-240 was developed by Ono Pharmaceuticals as a selective EP₃ antagonist. Binding affinities were tested with radioligand competition-binding assays and Amano et al. have published K_i values for EP₁ (590 nM), EP₃ (0.23 nM), EP₄ (58 nM), FP (1,500 nM) and >10,000 nM for EP₂, DP, TP and IP [75]. This selective antagonist has been used to implicate a role for EP₃ receptor-mediated signalling in tumor development and angiogenesis. This was demonstrated in mice, where subcutaneously injected dilutions of ONO-AE3-240 inhibited tumour growth and angiogenesis in a sarcoma model typified by new vessel growth [75].

8. **EP₃ antagonist: L-826266**

L-826266 is a selective EP₃ antagonist from Merck Frosst, Canada. Maher et al. have shown that PGE₂ mediates cough via the EP₃ receptor using a range of *in vitro* and *in vivo* techniques utilizing the EP₃ receptor antagonist L-826266 [76]. *In vivo* studies showed that L826266 attenuated the depolarization to PGE₂ in the isolated guinea pig vagus nerve and significantly inhibited the PGE₂-induced depolarization of mouse vagus nerve (64.8±2.8%), while also showing similar effects in human vagus nerve [76]. Guinea pigs were exposed to an aerosol of PGE₂ in *in vivo* studies, where the use of EP₃ antagonist L826266 significantly decreased the number of coughs in response to aerosolized PGE₂ [76]. However, L-826266 is unable to distinguish between the EP₃ receptor splice variants, according to Oliva et al. [77].
9. **EP3 antagonist: CM9**

Binding studies performed with CM9 in a wide range of cells, including human osteosarcoma cells expressing human EP3C and EP3E and DP receptors, rat EP3A and EP3C receptors as well as CHO cells expressing hEP3A, hEP1, hEP2 and hTP receptors and HEK293 cells expressing hEP4, hFP and hIP receptors. Collectively, these data demonstrate that CM9 shows K_i values of 0.21±0.17 nM in hEP3A, 0.24 nM in hEP3E, 0.25±0.03 nM in rEP3A, 0.78±0.17 in rEP3C and 570 nM in hTP. K_i values of CM9 on the other prostanoid receptors are >2,390 nM [78]. These data shows that CM9 is a suitable tool for the evaluation of a broad range of EP3 receptor isoforms.

10. **EP3 antagonist: DG-041**

DG-041 is selective EP3 antagonists developed by deCODE Chemistry to serve as a novel antiplatelet agent, as it shows significant antiplatelet activity with only minimal impact on bleeding time. *In vitro* pharmacology was published by Singh *et al.* [79]: DG-041 shows good selectivity in radioligand [³H]-PGE2 displacement binding assay with IC₅₀ values of 4.6 nM for EP3, 4,169 nM for EP2, 8,039 nM for EP4, 14,414 nM for IP and >20,000 nM for EP1. Thus, DG-041 shows more than 1,000-fold selectivity for the EP4 receptor over other prostanoid receptors [79].

D. **EP4 receptor agonists and antagonists**

The discovery and utility of selective EP4 agonists and antagonists has advanced since 2000, when Abravotiz *et al.* stated “there are no selective agonists or antagonists for EP4…” [51]. Today, there are many selective EP4 agonists and antagonists commercially available and these will be summarized below.
1. **EP₄ agonist: TCS2510**

TCS2510 was developed in the early 2000’s by the Merck Frosst as a chemically modified analogue of PGE₂ containing a lactam and a tetrazole structure [80]. Billot et al. [80] measured potency and selectivity over other prostanoid receptors in HEK293 transfectants and measured binding properties in cell cAMP assays. The K_i of TCS2510 for the EP₄ receptor was 1.2±0.2 nM, while the K_i to the other prostanoid receptors was >13,000 nM. TCS2510 is a full agonist in the cell efficacy assay with an EC₅₀ of 2.5±1.0 nM, and this was comparable to the EC₅₀ of PGE₂ itself (EC₅₀=3.0± 0.4 nM) [80].

2. **EP₄ agonist: Compound 9b**

Serono Research Institute published and tested analogs of PGE₂ with introduction of diene groups at the ω-side chain [81]. Using receptor binding assays on membranes prepared from HEK293 cells expressing EP₁-⁴ receptors, they identified compound 9b as having potency for the EP₄ receptor ($K_i= 4$ nM, EC₅₀= 0.1 nM), but also affinity to the EP₂ receptor ($K_i= 60$ nM, EC₅₀=35 nM). Compound 9b had low affinity for EP₁ and EP₃ receptors (both $K_i > 10,000$ nM)[81].

Competitive radioligand binding assays performed by Kabashima et al. [82] measured the K_i values for ONO-AE1-734 as 0.7 nM for EP₄, 56 nM for EP₃, and 620 nM for EP₂. The rest of the prostanoid receptors have K_i more than 10,000 nM [82].

ONO-AE1-329 is selective agonist of the EP₄ receptor that is widely used in research. In 2000, Suzawa et al. tested binding affinities of different EP receptors expressed in CHO cells and reported: K_i (EP₁)>10 μM, K_i (EP₂)=2.1 μM, K_i (EP₃)=1.2 μM, K_i (EP₄)=0.0097 μM [45]. A
number of the experimental models have examined the efficacy of ONO-AE1-329 as a relaxant, but species differences exist. ONO-AE1-329 caused relaxation of human airway muscle (76.2±8.6% of maximum relaxation to 100 mM papaverine) with a pK_i for the EP$_4$ receptor of 8.0 [83]. Benyahia et al. showed similar effects of ONO-AE1-329; it induced potent relaxation of human bronchial preparations ($pEC_{50}=7.0±0.3$) and vasodilatation in human pulmonary veins [84]. The compound was also able to cause substantial relaxation of rat tracheal strips (36.7±4.0% of maximum relaxation to 100 µM papaverine) [83]. Notably, EP receptor-mediated relaxation of human airway muscle differs compared to the animal models. While bronchial relaxation in guinea pigs, mice and monkeys relies more on EP$_2$-receptor signals, while human and rat bronchial relaxation is mediated via EP$_4$ receptor [83]. ONO-AE1-329 has also been used on cells: Luschnig-Schratl et al. have shown that ligation of EP$_4$ receptors can inhibit eosinophil function [85], while Aso et al. have demonstrated that it enhanced release of IL-8 by human pulmonary microvascular endothelial cells via EP$_4$ [86].

5. **EP$_4$ agonist: L-902688**

L-902688 is a selective EP$_4$ agonist that was shown to relax human bronchial muscle ($pEC_{50}=7.8±0.2$) and induce dilatation of human pulmonary vein preparations [84]. Used in experiments by Foudi et al. [87] L-902688 induced potent vasodilatation of the human pulmonary vein in manner similar to that of the native ligand PGE$_2$ ($pEC_{50}=8.1±0.1$ compared to $pEC_{50}=7.2±0.2$, respectively). The introduction of a 6-tetrazole ring to the molecule prevents β-oxidation [88].

ONO-AE3-208 has K_i values obtained by a competitive radioligand binding assay of: 1.3 nM for EP$_4$, 30 nM for EP$_3$, 790 nM for FP, 2,400 nM for TP and more than 10,000 nM for the other prostanoid receptors [82]. It has been shown to be an effective EP$_4$ antagonist in functional
assays as ONO-AE4-208 was able to inhibit relaxation of human airway muscle caused by PGE\textsubscript{2} and the EP\textsubscript{4} agonist ONO-AE1-329 (pA\textsubscript{2}=8.1±0.2 and 8.8±0.3, respectively) [83].

7. **EP\textsubscript{4} antagonist: GW627368X**

GW627368X is a benzene sulphonamide developed by GSK and characterized as a potent and selective antagonist of EP\textsubscript{4} receptors with additional human TP receptor affinity [89]. The compound is reported to be without any agonist or antagonist activity for prostanoid EP\textsubscript{2}, EP\textsubscript{3}, IP and FP receptors, and while binding to human prostanoid TP receptors, but not to the TP receptors of other species.

8. **EP\textsubscript{4} antagonist: AH23848**

AH23848 has been widely used as an EP\textsubscript{4} antagonist and played an essential role in the early pharmacological definition of the EP\textsubscript{4} receptor. In competitive binding assays performed in 2000, it was shown to have a K_i of 2,690±232 nM for EP\textsubscript{4} [90]. More recently it was confirmed to have a comparatively low affinity antagonist at both the EP\textsubscript{4} and TP receptors (pK_i 4.9-5.6 and 6.2, respectively) [83]. Although it was the prototype of EP\textsubscript{4} antagonist its use has been largely overtaken by more selective and potent antagonists [88].

9. **EP\textsubscript{4} antagonist: CJ-023423**

CJ-023,423 is a potent and selective prostaglandin EP\textsubscript{4} receptor antagonist with antihyperalgesic properties from Pfizer. In radioligand binding studies using membranes prepared from HEK293 cells stably expressing human EP\textsubscript{4} or rat EP\textsubscript{4} receptors, CJ-023,423 displaced $[^3\text{H}]$-PGE\textsubscript{2} binding with an IC\textsubscript{50} value of 14±4 nM and 27±1 nM, respectively [91]. CJ-023,423 was 200-fold more selective for the human EP\textsubscript{4} receptor than other prostanoid receptors, showing IC\textsubscript{50} >20 µM for EP\textsubscript{1,2,3}, FP, IP and TP and IC\textsubscript{50} of 4.3 µM for DP [91]. These results suggest that CJ-023,423 is a
competitive antagonist for human and rat EP₄ receptors and in \textit{in vivo}, orally given doses of CJ-023,423 reduced thermal hyperalgesia induced by intraplantar injection of PGE₂ [91].

Pfizer’s CJ-042794 could be seen as an improvement on CJ-023423 based on potency. In \textit{in vitro} pharmacological characterization utilizing binding assays in membrane samples of HEK293 cells overexpressing human EP receptors CJ-042794 displaced \([^3]\text{H}\)-PGE₂ binding to each receptor EP₁, EP₂, EP₃, and EP₄ at 5.0 nM, 5.5 nM, 2.8 nM, and 0.4 nM, respectively, and the binding affinity of CJ-042794 was at least 200-fold more selective for human EP₄ receptor than for other human receptors [92]. Moreover, when the selectivity of the antagonist was tested toward 63 proteins, CJ-042794 did not show any affinity to these GPCRs, transporters and ion channels [92].

11. **EP₄ antagonist: MF-766**

MF-766 was designed by Merck Frosst and Colucci \textit{et al.} [93] utilised the rat adjuvant-induced arthritis model to demonstrate \textit{in vitro} potency and selectivity: high affinity at the EP₄ receptor \((K_i 0.23 \text{ nM})\) and good selectivity against other prostanoid receptors with 7,000-fold higher affinity for EP₄ receptors (closest was DP₁ with a \(K_i\) of 1,800 nM). It has shown to be a full antagonist with an IC₅₀ of 9.5 nM in the functional assay and the affinity to the EP₄ receptor (i.e. \(K_i\) 0.23 nM) was not significantly shifted in the presence of 10% human serum \((K_i\) now 0.34 nM). The authors also evaluated the pharmacokinetic profile in rats and beagle dogs and MF-766 showed good pharmacokinetic properties with high oral bioavailability (74-86%) and low to moderate clearance rate (half-life was between 2.6 and 4.6 hours) [93].

L-161982 (also known as EP₄A) contains a diaryl-acylsulfonamide structure and in radioligand binding assays in HEK293 cells expressing human and rat EP₄ receptors have binding affinities (K_i) of 0.024 µM and 0.032 µM, respectively [94]. Affinities (K_i) to the other EP receptors are 1.9 µM for human EP₃ and 0.7 µM for human TP receptors: this shows a selectivity of roughly 30-fold for the human EP₄ receptor. L-161982 is at least 200-fold more selective for rat EP₄ than the other rat EP receptor subtypes [94]. L-161982 has been utilized to implicate a role for EP₄ in bone anabolic effects of PGE₂ in RP-1 periosteal cells [95]. Clarke et al. have used L-161982 as a pharmacologically active antagonist in human airway smooth muscle cells to inhibit the augmentation of cytokine release by EP₄ agonism [32].

The pharmacological characterisation of BGC20-1531 was published in 2009 [96] and showed that BGC20-1531 was able to displace $[^3]$H-PGE₂ from human recombinant EP₄ receptor with a pK_i of 7.9±0.1. This antagonist showed negligible affinity to other prostanoid receptors: measured pK_i values were EP₁ < 5, EP₂ < 5, EP₃ < 5, EP₄ 7.9, TP < 5, DP 5.6 and IP < 5, showing that BGC20-1531 has good affinity and selectivity for the human recombinant EP₄ receptor [96]. The affinity and potency demonstrated in cell lines expressing human EP₄ receptors (pK_i=7.9 and pK_b=7.6) were comparable with the results of the *ex vivo* assays (pK_b=7.6 - 7.8).

III. Transgenic mice

A real step-change in the field commenced when transgenic mice in which the genes for each of the four EP receptors has been knocked-out began to be utilized in the respiratory context. The Narumiya lab from Kyoto University [19] were first to generate the mice by homologous
recombination [97] and the mice known as $Ptger1-/-$, $Ptger2-/-$, $Ptger3-/-$, $Ptger4-/-$ lack the EP\textsubscript{1}, EP\textsubscript{2}, EP\textsubscript{3} and EP\textsubscript{4} receptors. The first reports that used in the respiratory space came in Maher et al. [76], who combined a pharmacological approach (using selective EP\textsubscript{3} receptor antagonists) and prostanoid receptor–deficient mice to clearly implicate the EP\textsubscript{3} receptor as mediating PGE\textsubscript{2}-induced cough. Since that time, these mice have been used in a number of key studies that provide notable in vivo proof-of-concept data. For example, prostanoid receptor-deficient transgenic mice have been used to show that EP\textsubscript{4} receptor activation is responsible for the anti-inflammatory activity of PGE\textsubscript{2} [98] and to implicate EP\textsubscript{2} and EP\textsubscript{4} receptors in PGE\textsubscript{2}-induced microvascular leak [99]. Further studies that utilize these mice are warranted.

IV. Role and function of EP receptors in lung health and disease

EP receptors have been identified in playing a critical role in chronic respiratory diseases, including asthma and COPD. In the following sections we will highlight some notable examples where EP receptor agonists and antagonists, or prostanoid receptor-deficient mice, have been utilized to implicate EP receptors in pathophysiological processes in respiratory conditions. Moreover, these tools have highlighted novel pharmacotherapeutic strategies and targets that could yield beneficial outcomes in the future.

A. Migration of airway smooth muscle cells

In addition to regulating airway calibre and mediating bronchospasm, ASM cells fulfil different tasks such as proliferation resulting in hypertrophy and hyperplasia, as well as contribution to airway inflammation through the synthesis of a range of different mediators [100]. A subset of EP receptors has been demonstrated as being present in human ASM cells: i.e. the mRNA of EP\textsubscript{2}, EP\textsubscript{3} and EP\textsubscript{4} are detected in human ASM cells, while EP\textsubscript{1} mRNA was not represented in this type of cells [101-103]. Migration is also an important function of ASM cells that may have
significant impact on asthma pathogenesis. PGE\(_2\), and the selective EP\(_2\) agonist ONO-AE1-259 and EP\(_4\) agonist ONO-AE1-329 were shown to decrease migration of human ASM cells induced by platelet-derived growth factor BB \textit{in vitro} [60]. This process occurs via activation of cAMP/PKA. Thus, it follows that since activation of EP\(_2\) and EP\(_4\) receptors attenuate ASM cells migration [60], selective EP agonists may represent novel pharmacotherapeutic strategies to reverse or prevent development of airway remodelling in asthma.

B. Airway microvascular leak

Airway microvascular leakage has been clinically shown to be an early sign of asthma impairment, even when no signs of inflammation, such as increased cellular influx, had yet developed [104]. Moreover microvascular leak has also been shown to exist in COPD [105]. In 2016, Jones \textit{et al.} [99] utilized mouse and guinea pig allergic asthma models to demonstrate the influence of EP\(_2\) and EP\(_4\) receptors on microvascular leakage. Activating the EP\(_2\) and EP\(_4\) receptors with PGE\(_2\), or selective agonists ONO-AE1-259 (EP\(_2\)) and ONO-AE1-329 (EP\(_4\)) induces microvascular leakage. In contrast, the response to PGE\(_2\) was greatly decreased when the EP\(_2\) and EP\(_4\) receptor was knocked out in \textit{Ptger2}\(^{-/-}\) and \textit{Ptger4}\(^{-/-}\) mice, respectively [99].

C. Pulmonary blood vessels

By engaging with different prostanoid receptors, prostaglandins can exert differential effects in the pulmonary vasculature, including both vasoconstriction [106] and vasorelaxation [87]. Among the four EP receptors, only EP\(_1\) and EP\(_4\) were found in smooth muscle cells of human pulmonary veins [87]. Vasoconstrictive activity of EP\(_1\) receptors was proven by use of 17-phenyl-PGE\(_2\), sulprostone (a non-selective EP\(_1\) and EP\(_3\) agonists) and iloprost, a PGI\(_2\) analogue and agonist at the IP-and EP\(_1\) receptors. The antagonist AH6809 (DP/EP\(_1\)/EP\(_2\) receptor antagonist) and SC19220 (EP\(_1\) antagonist) reversed the agonists’ effect on human pulmonary
veins [106]. Additionally, EP\(_1\) antagonists (ONO-8711, ONO-8713) reversed sulprostone-induced contractions in human pulmonary vessels [44]. On the other hand, the selective EP\(_4\) agonists ONO-AE1-329 and L-902688 induced relaxation of human pulmonary veins while the selective EP\(_4\) antagonist GW627368X led to vasoconstriction. Thus, it follows that EP\(_2\) receptors induce vasoconstriction [44, 106], and EP\(_4\) receptors mediate vasorelaxation in human pulmonary veins [87], although other non-EP prostanoid receptors are involved. The situation is different in human pulmonary arteries where vasoconstriction is mediated via EP\(_3\) and TP receptors. This was confirmed by the use of the EP\(_3\) agonist ONO-AE-248 and the TP-antagonist BAY u3405 [44].

D. Mast cell degranulation

Mast cells are recruited to the lung in asthma and are critical for the initiation and perpetuation of inflammation and disease pathogenesis [107-109]. Mast cells degranulate in an asthma attack in an IgE-mediated manner and notably, PGE\(_2\) has been shown to inhibit IgE-mediated release of histamine in cultured human lung mast cells (HMLC) *in vitro* [110]. More precisely this process is mediated via activation of the EP\(_2\) receptor. This was proven in experiments using several EP agonists and antagonists where only the EP\(_2\) agonist butaprost was able to inhibit histamine degranulation from HLMC whereas sulprostone (EP\(_1\)/EP\(_3\) agonist), 17-phenyl-trinor-PGE\(_2\) (EP\(_1\) agonist) and agonists of DP, FP, IP or TP failed to inhibit the histamine release [111]. AH6809 (a DP, EP\(_1\), EP\(_2\) antagonist) was able to antagonize the inhibitory effect of PGE\(_2\). The EP\(_4\) antagonist AH23848 did not succeed in inhibiting the effect of PGE\(_2\) on HLMCs [111]. In 2013, Kay *et al.* extended their earlier study to reappraise the effects of PGE\(_2\) on HLMC degranulation because at this point in time more selective EP\(_2\) and EP\(_4\) agonists and antagonists were available. Non-selective (PGE\(_2\), Misoprostol), selective EP\(_2\) agonists (ONO-AE1-259, AH13205,
butaprost-free acid), selective EP$_2$ antagonists (PF-04418948, PF-04852946), selective EP$_4$ agonists (L-902,688, TCS251) and selective EP$_4$ antagonists (CJ-042794, L-161,982) were utilized in the study [112]. The outcome was that while IgE-dependent histamine release in HLMC can be mediated by both EP$_2$ and EP$_4$ receptor, EP$_2$ receptor-mediated release predominates. A number of other interesting observations were made in this study [112]: the EP$_2$ selective receptor agonist ONO-AE1-259 behaved as a partial agonist relative to PGE$_2$; HLMCs express mRNA for EP$_2$ and EP$_4$ receptors, while the human mast cell line LAD2 doesn’t and expresses EP$_3$ instead; and the inhibitory effect of selective EP$_4$ agonist L-902,688 could not be reversed by specific EP$_2$ and EP$_4$ antagonists leading to the conclusion that L-902,688 influences the degranulation of HLMC via another unknown mechanism [112].

In 2015, Säfholm et al. [113] investigated the relationship between mast cell degranulation and bronchoconstriction in human small airways ex vivo in order to more directly investigate the correlation between mast cell activity and muscular bronchial activity. Säfholm et al. used intact sections of human small airways in order to mirror the processes in the human body more precisely and showed that PGE$_2$ mediates bronchorelaxation via EP$_4$ receptor and bronchoconstriction via the TP receptor. Furthermore, PGE$_2$ inhibits IgE-mediated release of histamine and other mediators. Using the EP$_2$ receptor antagonist PF-04418948 it was shown that the inhibiting effect of PGE$_2$ on mast cell degranulation occurs via activation of EP$_2$ receptors [113]. These ex vivo studies, in part, mimic the in vitro analyses where EP$_2$ receptors were shown to play an important role [111, 112].

A further study describes a protective role for PGE$_2$ in exercise-induced bronchoconstriction. Because of hyperventilation while exercising a loss of airway water occurs leading to a higher osmolality in the bronchi. This augmented osmolality in airway surface liquid is thought to cause
activation of mast cells and subsequent bronchoconstriction [114]. To mimic the effects of exercise on airway fluid osmolarity, mannitol was used as a hyperosmolar stimulus [114, 115]. Utilizing the EP₂ (AH6809) and EP₄ (AH23848) antagonists, PGE₂ was shown to prevent hyperosmolar mast cells activation via EP₂ and EP₄ receptors [115]. Taken together, we can conclude that EP₂ and EP₄ agonists can exert beneficial actions in exercise-induced bronchoconstriction by reduction of human mast cell activity caused by higher osmolarity in the bronchi [115].

E. Bronchodilatation

In human airways, inhalation of PGE₂ results in a bronchodilatation [116]. Excitingly, the selective EP₄ receptor agonist ONO-AE1-329 can also lead to relaxation of human airways [83]. Moreover, the selective EP₄ receptor antagonist ONO-AE3-208 reversed the bronchodilatation achieved with PGE₂ and ONO-AE1-329. The same was observed in rat trachea [83]. In other species, specifically guinea pig, mouse and monkey, relaxation of trachea was mediated by the EP₂ receptor. This emphasizes important species differences and underscores that processes in animal models are not always congruent with processes in the human body [83].

The role of EP₄ receptors in mediating bronchodilatation was confirmed in human bronchial preparations by Benyahira et al. [84], where histamine-induced contraction could be reversed by the selective EP₄ agonists ONO-AE1-329 and L-902688. In addition, the specific EP₄ antagonist GW62768X blocked PGE₂-induced relaxations of human bronchial preparations which were pre-contracted with histamine [84].

However, the conclusions made in Buckley et al. [83] and Benyahia et al. [84] differ from that of Norel et al. [117] who showed that PGE₂-induced relaxation of human airway tissue could not be reversed by the EP₄ antagonist AH23848B. Instead AH6809 (DP, EP₁, EP₂-receptor antagonist)
decreased bronchodilatation [117]. This is good example that clearly shows the importance of using selective pharmacological tools to implicate a particular EP receptor and how better reagents have become available over time. It has to be remarked that the later studies [83, 84] had more specific EP receptor agonists and antagonists available than Norel et al. [117]. The specific EP₂ receptor agonists AH13205 and ONO-AE1-259, as well as specific EP₄ agonist ONO-AE1-329, L-902688 and selective EP₄ antagonist ONO-AE3-208 and GW627368X were applied [83, 84]; whereas Norel et al. used Misoprostol, AH23848B (TP, EP₄ antagonist) and AH6809 (DP, EP₁, EP₂ receptor antagonist) which are not as specific [117].

F. Cough

Inhaled PGE₂ induces cough in humans [118, 119]. Maher et al. [76] utilized a sensory nerve activation model using isolated vagus nerves of human, guinea pig and mouse to show that depolarization after PGE₂ challenge indicated cough. When the isolated vagus nerves of guinea pigs were exposed to the selective EP₃ antagonist L826266, PGE₂-mediated depolarization due was attenuated. These data demonstrate that cough induced by PGE₂ mediated via the EP₃ receptor [76]. More recently, the Transient Receptor Potential (TRP) family of ion channels has been implicated as playing an important role as the common effectors of the cough response [120, 121] and TRP channels represent novel therapeutic targets.

G. Angiogenesis

Airway remodelling in asthma is typified by increased vascularization due to angiogenesis. This is promoted through production of vascular endothelial growth factor (VEGF) in airway resident cells. VEGF production is regulated by prostanoids. In human ASM cells, the expression of VEGF-A was increased by activation of EP₂ and EP₄ via PGE₂, ONO-AE1-259 and ONO-AE1-329 [102]. In human lung fibroblasts, Huang et al. [122] employed butaprost, ONO-AE3-248
and ONO-AE1-329 to come to the conclusion that PGE₂ induces apoptosis via activation of EP₂ and EP₄ receptors. Also in lung fibroblasts (human fetal), PGE₂ activation of the EP₂ receptor was shown to result in stimulation of VEGF production [123]. The researchers demonstrated that the interaction between the phosphodiesterase 4 inhibitor roflumilast with either PGE₂, ONO-AE1-259-01 (EP₂ agonist), or ONO-AE1-329 (EP₄ agonist), lead to an enhancement of VEGF production. The stimulatory effect of PGE₂ on VEGF production could be significantly inhibited by EP₂ antagonist AH6809. Nevertheless, a significant block of the stimulatory effect of roflumilast could only be achieved by combining EP₂, EP₃ (ONO-AE3-240) and EP₄ (ONO-AE3-208) antagonists. These data reinforce the notion that EP₂ and EP₄ receptors, and possibly the EP₃ receptor, are involved in the stimulatory effect of roflumilast in the presence of PGE₂. A further discovery was that the EP₁ antagonist ONO-8713 enhanced the VEGF release in presence of control media and PGE₂ suggesting that activation of EP₁ receptor could possibly stop VEGF release [123].

H. Senescence

Cellular senescence is considered a pathogenic feature of COPD [124]. An investigation of lung fibroblasts from COPD patients, smokers and non-smoker controls showed that lung fibroblasts of COPD patients express a higher amount of EP₂ and EP₄ receptors [125]. This was demonstrated via the use of several EP₂ and EP₄ receptor agonists (ONO-AE1-259) and antagonists (AH6809, PF-04418948, GW627368X, L-161982) which mimicked and accordingly reversed the effect of PGE₂ on lung fibroblasts. Furthermore, fibroblasts from people with COPD demonstrated enhanced senescence markers, as well as augmented COX-2, PGE₂, cytokine, chemokine, and matrix metalloproteinase expression. Notably, through enhanced PGE₂ secretion, senescent COPD lung fibroblasts exerted autocrine and paracrine effects on non-
senescent COPD lung fibroblasts via activation of the EP$_2$ and EP$_4$ receptors. This potentiating feedback loop leads to reinforcement and propagation of senescence and implicates a central role for prostanoids/EP receptors in COPD [125].

I. Airway inflammation

Inflammation drives disease progression and pathogenesis in several lung diseases and studies have shown that these pathways are driven via EP receptor ligand engagement. Of particular importance are the EP$_2$ and EP$_4$ receptors, predominately due to their links to adenylate cyclase and the ability to increase intracellular cAMP [126]. This has been demonstrated in in vitro and in vivo models of airway inflammation. In ASM cells, we [127] and others [128-131] have shown that mediators that increase cAMP (including PGE$_2$) can modulate cytokine expression in vitro. In 2000, we showed that PGE$_2$ increased cAMP in ASM cells and that this augmented cAMP has differential effects on cytokines: some were repressed, while some were augmented [127]. We [132] went onto to show that the outcome of cAMP elevation on the synthetic function of ASM cells could be explained by an understanding of the transcriptional regulation of the cytokine, viz whether the cytokine has a CRE in its 5′-promoter region (e.g. IL-6 does and hence cAMP alone will increase IL-6 secretion). Two studies by Clark et al. [101, 129] also showed that the impact of PGE$_2$ on airway inflammation in vitro could vary depending on cytokine examined. Clark et al. [129] demonstrated that the IL-1β-induced release of GM-CSF could be suppressed by PGE$_2$, ONO-AE1-259 (selective EP$_2$ agonist) and other non-selective EP$_2$ agonists, while the reverse was observed for EP$_2$ antagonist AH6890 but not for EP$_4$ antagonists (AH23848B, L-161,982). These findings lead to the conclusion that the release of GM-CSF can be inhibited by PGE$_2$ through activation of the EP$_2$ receptor [129]. A similar study investigating G-CSF discovered that PGE$_2$ increases elaboration of G-CSF which was promoted
by IL-1β. This transaction is performed by both EP₂ and EP₄ receptors. AH6809 (DP, EP₁, EP₂ antagonist) and L-161,982 (EP₄ antagonist) were not able to inhibit the PGE₂ induced G-CSF release completely. Both EP antagonists had to be added in combination in order to realize an effective antagonism [101].

However, in more recent studies we have shown that cAMP elevation can also increase anti-inflammatory proteins, namely, the MAPK deactivator and anti-inflammatory protein, MAPK phosphatase 1 (MKP-1) [133]. MKP-1 upregulation is a common response to elevated cAMP induced by a diverse range of stimuli. In ASM cells we have shown that inflammatory stimuli [134], cAMP elevating agents [133], as well as respiratory medicines such as β₂-agonists [133, 135] and phosphodiesterase 4 inhibitors [136, 137], can all increase MKP-1 via CREB-mediated pathways and perhaps offset the impact of cAMP on cytokine production. In 2016, we used selective antagonists of EP₂ (PF-04418948) and EP₄ receptors (GW 627368X) to show that PGE₂ increases production of the anti-inflammatory protein MKP-1 via cAMP/CREB-mediated cellular signalling in ASM cells and that EP₂ may, in part, be involved, although further studies are warranted [138]

Other cellular models of airway inflammation have been utilized to demonstrate the impact of EP receptor engagement in the respiratory context. Taking macrophages as a key example with relevance to lung disease, Takayama et al. [94] showed that activation of the EP₄ receptor of human macrophages via PGE₂ leads to an inhibition of cytokine production, including IL-8. More recently, Gill et al. [139] evaluated the effects of EP₂ selective (PF-04852946, PF-04418948) and EP₄-selective (L-161,982, CJ-042794) receptor antagonists on PGE₂ responses. They confirmed that the anti-inflammatory effects of PGE₂ on human lung macrophages are mediated by the EP₄ receptor [139].
In mice, intranasal lipopolysaccharide (LPS) challenge enhanced the neutrophil infiltration in bronchoalveolar (BAL) fluid which was reversed by additional application of PGE$_2$ or PGE$_2$ analogue misoprostol [140]. The reduction of neutrophils by PGE$_2$ was mimicked by EP$_4$ selective agonist ONO-AE1-329 and blocked by the EP$_4$ receptor antagonists GW627368X or ONO-AE3-208. LPS-induced pulmonary vascular leakage was reversed by PGE$_2$ or ONO-AE1-329 (specific EP$_4$ receptor antagonist). Hence the conclusion drawn was that the infiltration of neutrophils in \textit{in vivo} models of airway inflammation can be inhibited by activation of EP$_4$ receptors [140].

Finally, the \textit{in vivo} studies with the prostanoid receptor-deficient mice have been conducted. In 2015, Birrell \textit{et al.} [98] performed murine respiratory models with EP$_{1-4}$ receptor knock-out mice (\textit{Ptger1-4$^{-/-}$}), challenged either with LPS (as an innate stimulus), ovalbumin (as an allergic response, mimicking asthma) or cigarette smoke (as an inhaled pollutant, mimicking COPD). The outcome of this experiment was that increased levels of eosinophils (especially in ovalbumin-challenged mice) and elevated levels of neutrophils in LPS and smoke treated mice were found in the BAL of \textit{Ptger4$^{-/-}$} mice. There were no significant changes in the number of inflammatory cells found in the BAL in the EP$_{1-3}$ receptor knock-out mice. Coupled with cell-based assay systems, where murine and human monocytes were treated with LPS to stimulate cytokine production, PGE$_2$ exerted a concentration-dependent repression. The repressive effects of PGE$_2$ could be mimicked by the selective EP$_4$ agonist ONO-AE1-329 but not by the selective EP$_{1-3}$ agonists ONO-D1-004, ONO-AE1-259 and ONO-AE-248. These findings led the authors to assert that PGE$_2$ activated EP$_4$ receptors in the lung exert anti-inflammatory effects [98].

\textbf{V. Summary and future directions}
Targeting EP receptors represent a fast developing sector in research, especially in lung health, with exciting scope for development of efficacious pharmacotherapeutic agents in the future. The discovery of specific means to manipulate the EP receptor with agonists and antagonists, or through the use of genetically-modified prostanoid receptor–deficient mice, has resulted in more precise research results whereby the individual functions of EP receptors in specific tissues have now been clearly defined. A key example is the EP4 receptor that has been now firmly entrenched as a target to induce bronchodilatation [83] and reduce inflammation [98]. Another key message that has emerged is the species differences in EP receptor-mediated cell signalling pathways. This is best highlighted in the example of the EP2 receptor, where selectivity profiling and functional bioassays demonstrate distinct differences between commonly-used experimental models [66].

In summary, PGE2 is an important bioactive prostanoid that has both ‘bad’ and ‘good’ effects because of myriad interactions with EP1-4 receptors [3]. With the advent of more selective means to target individual EP receptors, comes the opportunity to precisely promote the beneficial effects of prostanoids while minimizing the unwanted effects. Although research challenges remain (such as understanding how the prostanoid receptors themselves are upregulated or desensitised, and the impact of cell signalling cross-talk on functional outcome), there is no doubt that novel and specific molecules targeting individual prostanoid receptors (or even isoforms) may represent efficacious drug entities in the future. Drug delivery through aerosolization technology may enable us to deliver these novel medicines (alone or in combination with current medicines) to the right place in the lung to achieve maximum benefit while minimize systemic effects. Thus, selectively targeting EP receptor-mediated cell signalling pathways will likely yield positive implications for lung health and disease in the future.
Disclosure statement: The authors’ work cited in this review has received support from the NHMRC (Australia). NNR was supported by an International Postgraduate Research Scholarship.

Conflict of interest: The authors declare no conflict of interest.

Authorship contribution statement: LFL and LP co-wrote the review with initial input from NNR and guidance and editing from AJA.
References

[129] D.L. Clarke, M.G. Belvisi, M.C. Catley, M.H. Yacoub, R. Newton, M.A. Giembycz, Identification in human airways smooth muscle cells of the prostanoid receptor and

