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Abstract. Architectural style classification differs from standard clas-
sification tasks due to the rich inter-class relationships between differ-
ent styles, such as re-interpretation, revival, and territoriality. In this
paper, we adopt Deformable Part-based Models (DPM) to capture the
morphological characteristics of basic architectural components and pro-
pose Multinomial Latent Logistic Regression (MLLR) that introduces
the probabilistic analysis and tackles the multi-class problem in latent
variable models. Due to the lack of publicly available datasets, we re-
lease a new large-scale architectural style dataset containing twenty-five
classes. Experimentation on this dataset shows that MLLR in combina-
tion with standard global image features, obtains the best classification
results. We also present interpretable probabilistic explanations for the
results, such as the styles of individual buildings and a style relationship
network, to illustrate inter-class relationships.

Keywords: Latent Variable Models, Architectural Style Classification,
Architectural Style Dataset

1 Introduction

Buildings can be classified according to architectural styles, where each style pos-
sesses a set of unique and distinguishing features [5]. Some features, especially
the façade and its decorations, enable automatic classification using computer
vision methods. Architectural style classification has an important property that
styles are not independently and identically distributed. The generation of archi-
tectural styles evolves as a gradual process over time, where characteristics such
as territoriality and re-interpretation lead to complicated relationships between
different architectural styles.

Most of existing architectural style classification algorithms focus on efficient
extraction of discriminative local-based patches or patterns [1, 3, 4, 8, 14]. In a
four-style classification problem, Chu et al. [3] extracted visual patterns by mod-
eling spatial configurations to address object scaling, rotation, and deformation.
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Goel et al. [8] achieved nearly perfect results on published datasets by mining
word pairs and semantic patterns, and therefore tested this approach further on
a more challenging five-class dataset collected from the internet. Zhang et al.
[20] used “blocklets” to represent basic architectural components and adopted
hierarchical sparse coding to model these blocklets. However, as argued in [17],
some patches that look totally different can be very close in the feature space,
which degrades the performance of local patches in understanding detail-rich
architecture images. One recent study showed the possibility of cross-domain
matching from sketches to building images [15], and this inspired us to employ
sketch-like features to represent the building façades.

The Deformable Part-based Model (DPM) [6] is a popular scheme that em-
ploys sketch-like Histogram of Oriented Gradient (HOG) features. DPM models
both global and local cues and enables flexible configuration of local parts by
introducing so-called deformation costs. By adopting a latent SVM (LSVM) al-
gorithm for training, the DPM-LSVM framework produces hard assignments to
the labels as classification results. However, in order to enable rational expla-
nation of the gradual transition and mixture of architectural styles, it would be
preferable to provide soft assignments and introduce the concept of probability
into the model.

In this paper, we propose an algorithm that introduces latent variables into
logistic regression, which we term “Multinomial Latent Logistic Regression”
(MLLR). MLLR is similar to latent SVM but provides efficient probabilistic
analysis and straightforward multi-class extension using a multinomial model.
MLLR overcomes some of the drawbacks of LSVM, such as dealing with imbal-
anced training data and the multi-class problem, while producing soft assignment
results.

Architectural 
Style Dataset

Multinomial Latent
Logistic Regression

Classification

0.6 0.2

Probabilistic Analysis

Fig. 1. Schematic illustration of architectural style classification using Multinomial
Latent Logistic Regression (MLLR). Given a new large-scale architectural style dataset,
we model the façade of buildings using deformable part-based models. In the middle
figure, the smaller marks that surround the larger marks represent possible latent
values for an object. The proposed latent variable algorithm simultaneously trains all
the style models given a total objective function. The resulting classifiers can provide
probabilistic analysis along with the standard classification results.
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However, one reason why few previous studies focus on this problem is a
lack of well-organized, large-scale datasets. Here, we collect a new and chal-
lenging dataset containing 25 architectural styles. The dataset possesses several
preferred properties enclosing in architectural style classification, including mul-
tiple classes, inter-class relationships, hierarchical structure, change of views and
scales. Our new dataset provides an improved platform for evaluating the per-
formance of existing classification algorithms, and encourages the design of new
ones. Fig. 1 summarizes the framework of the paper and illustrates the dataset,
algorithm, and applications.

The contributions of this paper are:

– we create a multi-class and large-scale architectural style dataset and design
several challenges based on this dataset. The rich set of inter-relationships
between different architectural styles distinguish this dataset from standard
scene classification datasets;

– we propose the MLLR algorithm, which introduces latent variables to logistic
regression, analogous to latent SVM. The algorithm simultaneously trains
classifiers for all classes. Thus, the detriment of the multi-class problem and
unbalanced training data is minimized;

– by introducing the concept of “probability” to architectural style analysis,
we analyze the inter-relationships of architectural styles probabilistically.
Specifically, besides classification accuracies, the algorithm outputs a style
relationship network and provides architectural style analysis for individual
buildings.

2 Architectural Style Dataset

An architectural style is a specific construction, characterized by its notable
features. For instance, unique features, such as pointed arches, rib vaults, rose
windows and ornate façades, make it possible to distinguish the Gothic style from
other styles. Architectural history has dictated that there are complicated inter-
relationships between different styles, including rebellion, special territoriality,
revivals, and re-interpretations. As a consequence, it is difficult to strictly classify
two styles using a standard criterion.

In order to study architectural styles and model their underlying relation-
ships, we collected a new architectural style dataset from Wikimedia5. We ob-
tained the initial list by querying with the keyword “Architecture by style”, and
downloaded images from subcategories following Wikimedia’s hierarchy using the
depth-first search strategy. The crawled images were manually filtered to exclude
images of non-buildings, interior decorations, or part of a building. Therefore,
the remaining images contained only the exterior façade of buildings. Styles with
too few images were discarded, resulting in a total of 25 styles. The number of

5 From Wikimedia commons.
http://commons.wikimedia.org/wiki/Category:Architecture by style.
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images in each style varies from 60 to 300, and altogether the dataset contains
approximately 5, 000 images6.

We propose several challenges to extensively exploit the data size and rich re-
lationships between different architectural styles in this dataset. Fig. 2 illustrates
the dataset.

Fig. 2. Illustration of the architectural style dataset. Each of the 25 styles is repre-
sented by a circle with the respective number in the middle, where different colors
indicate broad concepts, such as modern architecture and medieval architecture. The
styles are arranged according to time order, where newer ones are placed in the right
of ancient ones. Various inter-class relationships exist between the styles, e.g., lines
between circles stand for following relationships; smaller circles around large ones indi-
cate sub-categories. Typical images of the styles are shown in the background. Better
viewed in color.

– Multi-class classification. To the best of our knowledge, this dataset is the
largest publicly available dataset for architectural style classification. Other
popular datasets related to buildings do exist, such as the Oxford Landmark
dataset [14]. However, their main purpose is for the retrieval of individual
landmark buildings rather than classification of architectural styles. A dis-
cussion of the difference between “style” and “content” can be found in [7].
There are some researches on different type of art styles, such as painting [18,
21] and car designing [10], which may also provide cross-domain knowledge
from other aspects of art styles.

– Modeling inter-class relationships between styles. Various relation-
ships exist between the 25 architectural styles, e.g., following, revival, and

6 https://sites.google.com/site/zhexuutssjtu/projects/arch
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against. Styles can be roughly classified into broad concepts, such as ancient
architecture, medieval architecture and modern architecture, and thus fur-
ther be arranged in a hierarchical structure. For reference, we summarize the
relationships between different styles verified by Wikipedia. It is of interest
to explore whether computer vision algorithms can efficiently extract the
underlying inter-class relationships.

– Modeling intra-class variance within a style. The establishment of an
architectural style is a gradual process. When styles spread to other loca-
tions, each location develops its own unique characteristics. On the other
hand, each building is unique due the personalities of different architects.
Therefore, it is challenging to find common features within a style, as well
highlighting the specific design of an individual building.

– Style analysis for an individual building. When designing a building, an
architect sometimes integrates several different style elements. The building
can therefore be represented as a mixture of styles. An algorithm should be
able to model this phenomenon, e.g., show that the window is inspired by
style I and the arch by style II.

In this paper, we develop a probabilistic latent model algorithm to tackle
some of these challenges, including classification, inter-class relationships, and
individual building style analysis. Other challenges such as how to build a hier-
archy of styles and how to deal with different shooting angles remain open issues
for future study.

3 Model Description

A Deformable Part-based Model (DPM) [6] describes an image by a multi-scale
HOG feature pyramid. The model consists of three parts: (i) a root filter that
captures the outline of the object; (ii) a set of part filters that are applied to
the image with twice the resolution of the root, conveying detailed information
of the object; (iii) deformation costs that penalize deviations of the parts from
their default locations with respect to the root.

In object detection tasks, a hypothesis x represents location of the root in
the feature pyramid, and the part locations with respect to the root are treated
as latent variables z. The filter response is given by the dot product of the HOG
features and the model parameters, i.e., in the form of a score function:

sβ(x) = max
z∈Z(x)

β · f(x, z), (1)

where β is the vector of DPM parameters, Z(x) stands for all possible relative
positions between the root and parts. To introduce deformation costs, the model
is parameterized by a concatenation of all the filters and deformation weights,
and f(x, z) is the concatenation of the HOG features and the part displacements.
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(a) 

(c) (b) (d) 

Fig. 3. Visualization of the use of DPM in architectural style classification. (a)(c)(d)
show detection results for different testing images. The trained model for Gothic archi-
tectural style is shown in (b). The root model shows typical façade outline of Gothic
style buildings, and the part filters captures discriminative architectural elements such
as rose windows. Independently using each part filter cannot obtain convincing results,
i.e., red boxes indicate incorrect detections with high scores given a part filter.

To train the model parameters β, a latent SVM algorithm is adopted, whose
objective function is defined analogically to classical SVMs as:

L(D) =
1

2
||β||2 + C

N∑
i=1

max(0, 1− yisβ(xi)), (2)

where max(0, 1 − yisβ(xi)) is the standard hinge loss and C is the soft margin
parameter, which controls the weight of the regularization term. Due to the
non-convex training objective function, latent SVM is solved using a coordinate
descent framework.

Following [6], Pandey et al. [13] use DPM in a scene recognition and a weakly
supervised object localization task. They point out that scene recognition can
also be viewed as a “part-based” problem, where the root captures the entire
image and the parts encompass moveable “regions of interest” (ROIs). In their
experiments, they find that when the model is trained using the entire image
as the root, the resulting performance is not as good as expected. They remark
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that the root filter should be allowed to move, and regarding the position of the
root filter as another latent variable. We follow this setup, i.e., use a square root
filter and restrict it to have at least 40% overlap with the image.

In our implementation, we exploit DPM as the detection model and introduce
MLLR as the learning algorithm. A visualization of DPMs in architectural style
classification is shown in Fig. 3.

4 Multinomial Latent Logistic Regression

In this section, we first review the concept and notation of logistic regression and
then show the form of posterior probabilities using latent variables. By proving
the semi-concavity property of the resulting objective function, we provide a
gradient ascent solution analogous to latent SVM [6]. The training procedure
has a clear explanation based on probabilistic analysis.

4.1 Logistic Regression

Given a training set of D = {(x1, y1), ..., (xN , yN )}, where yi ∈ Y = [1, 2, ...,K],
the logistic regression models the posterior probabilities of K classes via linear
functions in x. The posterior probability has the form:

Pr(Y = k|X = x) =
exp(βTk x)∑K
l=1 exp(β

T
l x)

, (3)

where βk are the model parameters of the k-th class. We omit the bias term in
the model for brevity. Denote the entire parameter set as θ = {βT1 , ..., βTK}. The
probability of an example x belonging to a class k given model parameters θ is
defined as Pr(Y = k|X = x) = pk(x; θ).

Logistic regression models are typically fitted by maximizing the log-likelihood
function, defined as:

l(θ) =

N∑
i=1

log pyi(xi; θ). (4)

To maximize the log-likelihood function, gradient-based methods are generally
used, such as the Newton-Raphson algorithm.

4.2 Latent variables

In MLLR, each input example x is associated with a latent variable z. Let f(x, z)
be the feature vector of an example x with a latent variable z, where z ∈ Z(x),
and the Z(x) define the possible latent value set for an example x.

Consider a score function of the form:

s(x;βk) = max
z∈Z(x)

βk · f(x, z). (5)
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The score is obtained by finding the optimized latent value z that gives the
highest score to example x given a model βk. An example x is called a positive
example with respect to model βk if the respective training label y = k, and
called a negative example with respect to model βk if the label y 6= k.

The optimized latent value can then be denoted as:

z(βk) = arg max
z∈Z(x)

βk · f(x, z). (6)

Analogous to standard logistic regression, we rewrite the posterior probability
of the k-th class given an example x as:

pk(x; θ) =
exp(s(x;βk))∑K
l=1 exp(s(x;βl))

. (7)

Given that the parameter space has a large volume, the training data might be
easily overfit by MLLR; we therefore add a lasso regularizer to avoid overfitting.
The log-likelihood function then becomes:

l(θ) =

N∑
i=1

log pyi(xi; θ)− λ
K∑
l=1

|βl|

=

N∑
i=1

log
exp(s(xi;βyi))∑K
l=1 exp(s(xi;βl))

− λ
K∑
l=1

|βl|

=

N∑
i=1

s(xi;βyi)−
N∑
i=1

log

K∑
l=1

exp(s(xi;βl))− λ
K∑
l=1

|βl|, (8)

4.3 Semiconcavity

Maximizing the log-likelihood function of the standard logistic regression model
in (4) leads to a concave optimization problem. However, after introducing latent
variables to the log-likelihood function, the function is no longer concave with
respect to the model βk, due to the maximum operator in s(xi;βyi). Similar to
LSVM, MLLR has a semi-concavity property. Fixing the latent value for positive
examples, the first term in (8) is reduced to a linear function of βk, which is
concave. We thus employ gradient ascent method based on the semi-concavity
property to maximize the likelihood function.

Define l(θ, Zp) as an auxiliary function that bounds the exact likelihood
function by fixing the latent variable for each positive example, where Zp =
{zi, i = 1, ..., N} is a set of latent values specifying the positive configuration for
all the N training examples. In particular, the auxiliary function is defined as:

l(θ, Zp) =

N∑
i=1

s′(xi;βyi)−
N∑
i=1

log
K∑
l=1

exp(s′(xi;βl))− λ
K∑
l=1

|βl|, (9)
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where

s′(xi;βl) =

{
βTl f(xi, zl), yi = l.
s(xi;βl), yi 6= l.

Considering that l(θ, Zp) is a concave function, we maximize l(θ) using the
coordinate ascent method, as follows.

1. Optimize positive examples: Optimize l(θ, Zp) over Zp. For each example
xi, find the optimized latent value for its respective model βyi using (5), z∗i =
arg maxz∈Z(xi) βyi · f(xi, z) and set Zp = {z∗i , i = 1, ..., N}.

2. Optimize model parameters θ. Optimize the concave function l(θ, Zp) over
θ and all possible latent values for negative examples.

4.4 Gradient Ascent

This process is to optimize model parameters θ and the latent value for negative
examples. Although the lasso regularization term is non-differentiable, we can
compute a subgradient of (8) with respect to βk as:

∇l(βk) =

N∑
i=1

f(xi, zi(βk)) · h(xi, βk)− λ · sgn(βk), (10)

where

h(xi, βk) =

{
1− pk(xi; θ) ,xi is positive for class k.
−pk(xi; θ) ,xi is negative for class k.

The gradient ascent procedure iteratively updates model parameters and
latent variables for negative examples, as follows:

1. In the (t+ 1)-th iteration, for all training examples xi and all class models

βk, let zi(β
(t)
k ) = arg maxz∈Z(xi) β

(t)
k · f(xi, z), where yi 6= k, and zi(β

(t)
k ) = z∗i if

yi = k, where z∗i ∈ Zp
2. For all class models, set β

(t+1)
k = β

(t)
k +αt ·[

∑N
i=1 f(xi, zi(β

(t)
k ))·h(xi, β

(t)
k )−

λ · sgn(β
(t)
k )].

The form of h(xi, βk) has a clear probabilistic explanation. Similar to the
perceptron algorithm, the gradient ascent method repeatedly pushes the model
βk towards positive examples and away from negative examples. By adding a
probabilistic multiplier, the algorithm assigns a larger penalization on “hard
negative”, where pk(xi; θ) is large. For positive examples, a “hard positive” in-
dicates an example that has a smaller probability with respect to the current
model, and plays a more important role in updating the model parameters.

The training procedure is outlined in Algorithm 1.

4.5 Comparison to the latent SVM

MLLR and LSVM have many shared characteristics, such as the form of latent
variables and the semi-convexity property. These similarities enable MLLR to
incorporate existing latent variable models trained by LSVM, such as deforma-
tion part-based models. However, there are some notable differences between
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Algorithm 1 Multinomial Latent Logistic Regression Training

Input: Training examples {(x1, y1), ..., (xN , yN )}
Initial models θ = {β1, ..., βK}

Output: New models θ
for posLoop:=1 to numPosLoop do
{Relabel positive examples}
for i:=1 to N do

Optimize z∗i = arg maxz∈Z(xi)
βyi · f(xi, z).

end for
{Gradient Ascent}
for t:=1 to numGradientAscentLoop do
{Relabel negative examples}
for i:=1 to N do

for k:=1 to K and k 6= yi do
Optimize zi(β

(t)
k ) = arg maxz∈Z(xi)

β
(t)
k · f(xi, z).

end for
end for
{Update model parameters}
for k:=1 to K do

Update β
(t+1)
k = β

(t)
k + αt · [

∑N
i=1 f(xi, zi(β

(t)
k )) · h(xi, β

(t)
k )− λ · sgn(β

(t)
k )].

end for
end for

end for

MLLR and LSVM, which make MLLR more suitable for the architectural style
classification task.

First, it is argued that SVM tends to underperform when using imbalanced
training data where negative examples far outnumber positive examples [19].
The vast “background” class in the object detection framework introduces a
serious imbalance between positive and negative examples. Moreover, in LSVM,
the training process needs to fix the latent value for positive examples, while
keeping all possible latent values for negative examples. This process makes the
imbalance problem even more severe.

Second, the dominant method for solving multi-class problems using SVM
has been based on reducing a single multi-class problem to multiple binary prob-
lems. However, since each binary problem is trained independently, adopting this
strategy is problematic because it cannot capture correlations between different
classes. As a result, the output decision values are not comparable, and this is
known as the “calibration” problem. MLLR trains all classes simultaneously by
introducing a unified objective function and in this way does not suffer from the
hazard of different biases occurring with the multi-class problem and imbalanced
training data.

Finally, SVM does not provide an effective probabilistic analysis with a soft
boundary. Given an input example, the corresponding output of SVM is called
the decision value, which is the distance from the example to the decision bound-
ary. A previous work [12], in which a normalization process was proposed to
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convert the decision values of SVM to probabilistic outputs, does not provide
a genuine probabilistic explanation. MLLR produces comparable classification
results for multiple classes, and more reasonably turns them into probabilities.

5 Experiment

The experiment is presented in three steps. In the first step, we choose ten
architectural styles that are relatively distinguishable by their façades and have
lower intra-class variance. As a result, using sketch-like HOG features, DPM
can clearly demonstrate the characteristics of these styles. Second, we evaluate
the effect of a more extensive multi-class problem and larger intra-class variance
using the full dataset. Given the probabilistic results, we formulate inter-class
relationships using a style relationship map. The third part illustrates individual
building style analysis of MLLR.

5.1 Classification Task

A ten-class sub-dataset is exploited for the first classification task, most of which
have prominent façade or decoration features, such as pointed arches, the ribbed
vaults and the flying buttresses characteristics of Gothic architecture. For each
class, 30 images are randomly chosen as training images and the remaining im-
ages are used for testing, 1, 716 in total. We run a ten-fold experiment. The
proposed algorithm is denoted by DPM-MLLR. Table 1 compares the classi-
fication accuracy of DPM-MLLR with other algorithms, including GIST [16],
Spatial Pyramid (SP) [9], Object Bank [11], and DPM-LSVM [13]. DPM-MLLR
outperforms LSVM in terms of overall accuracy. It is noted that DPM and local
patch-based algorithms, such as Spatial Pyramid, have complementary prop-
erties. We therefore combine their results using a naive softmax function and
achieve the best result with nearly 70% accuracy.

Table 1. Results on the architectural style classification dataset. MLLR consistently
outperforms LSVM. Multiple features are combined by adopting the softmax function
on classifier outputs.

GIST SP OB-Partless OB-Part DPM-LSVM DPM-MLLR MLLR+SP

10 classes 30.74 60.08 62.26 63.76 65.67 67.80 69.17

25 classes 17.39 44.52 42.50 45.41 37.69 42.55 46.21

Fig. 4 shows the trained models and typical detection results of MLLR. Close
inspection of the results reveals that the models capture discriminative features
of the styles. For instance, the model representing American Queen Anne archi-
tecture detects twin gables and allows them to move within limits (in the top
of the root). Thus, the model is robust to slight view changes and intra-class
variance.
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Fig. 4. Testing results for the ten architectural styles. The first two columns visualize
the result root and part filters for each model. From top to bottom: Baroque, Chicago
school, Gothic, Greek Revival, Queen Anne, Romanesque and Russian Revival archi-
tecture. Detected root filters are displayed in red, and part filters are shown in yellow.
Better viewed in color.

American_craftsman 

American_Foursquare 

Art_Deco 

Art_Nouveau 

Baroque 
Bauhaus 

Beaux-Arts 

Byzantine 

Chicago_school 

Colonial 

Deconstructivism 

Edwardian 

Georgian 

Gothic 

Greek_Revival 

International 

Novelty 

Postmodern 

Queen_Anne 

Romanesque 

Russian_Revival 

Tudor_Revival 

Palladian 

Fig. 5. An architectural style relationship map generated by the proposed algorithm.
The confusion probability between style A and B is obtained by summing the proba-
bilities with regard to B for all images labeled by A. Only links whose weight exceeds
a given threshold are shown in the figure. Modern styles, such as Postmodern and In-
ternational style, are connected, while the links between modern and medieval styles
are weak. The figure is drawn using NetDraw [2].
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5.2 Inter-class relationships between styles

This part of the experiment is implemented on the full dataset. The 25-class
dataset has stronger intra-class invariance and is harder to distinguish purely by
the façades. The results show that algorithms that take the features of the entire
image into consideration, i.e., Spatial Pyramid and Object Bank, achieve supe-
rior performance (Table 1). DPM-MLLR has slightly lower accuracy. However,
compared to the result of the ten-class problem, MLLR outperforms LSVM by
a larger margin due to the increased number of classes. Again, the combined
MLLR-SP algorithm achieves the best result.

Despite classification accuracies, the proposed algorithm provides a proba-
bilistic style distribution for each building image. By summing the probabilities,
we obtain a probabilistic confusion matrix, which is further decomposed into a
style inter-relationship network by assigning an edge between two styles whose
confusion probability exceeds a given threshold. Fig. 5 shows the resulting re-
lationship map of the 25-class dataset. According to the set of relationships
between styles collected from Wikipedia, the proposed algorithm gets a recall of
0.66, and the average precision AP@10 is 0.51.

Unlike hard-margin confusion matrices, large values can occur in the prob-
abilistic confusion matrix under two occasions. The first is when two styles are
similar to each other, making them hard to distinguish, and the second is when
two styles appear on different parts of the same building, which is most likely
to happen when the styles spread to a same place and start to mix. We try
to distinguish these two scenarios by considering whether the optimized detect-
ing bounding boxes of the two styles frequently appear at the same location.
Experimental results show that the averaging bounding box intersection ratio
of the Queen Anne and American Craftsman styles is higher than that of the
Baroque and Colonial style (0.56 vs. 0.46), which means that the first two styles
have a similar façade and should therefore be more dependent on local parts for
classification. This phenomenon is in accordance with architectural history.

5.3 Individual building analysis

MLLR makes it possible to analyze the architectural style of a building prob-
abilistically. Fig. 6 shows two typical situations in which the algorithm gives
comparable scores for at least two styles, which correspond to the two scenarios
discussed in the previous subsection. The first is when different architectural
styles share similar features, such as pear-shaped domes in both Baroque and
Russian Revival architecture. The second scenario appears when architects de-
sign new buildings that combine several different architectural styles. For in-
stance, Fig. 6(b) shows a failed classification case in which the main body of the
building follows the Queen Anne style, while the terrace shows a strong Greek
sense. MLLR mistakenly classifies the building as Greek Revival style due to
the unusual shooting angle, which places the main body in side view. However,
MLLR discovers interesting patterns in the building that indicates a combina-
tion of different styles, and assigns probabilities for each style according to the
training set.
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Russian Revival architecture−0.27

Baroque architecture−0.28

(a)

Greek Revival architecture−0.66

gt, Queen Anne architecture−0.11

(b)

(c) (d) (e) (f)

Fig. 6. MLLR detects the optimized latent position for each class and outputs a global
list of probabilities for each class. (a) Parts shared by different styles. (b) A building
that combines several styles. (c)-(f) Typical detection results for the four styles ap-
pearing in (a) and (b), i.e., from left to right, Baroque, Russian Revival, Queen Anne
and Greek Revival.

6 Conclusions

We introduce Multinomial Latent Logistic Regression (MLLR), a latent vari-
able algorithm that uses log-likelihood as the objective function and simulta-
neously trains multi-class models. Experimental results using a new, large-scale
architectural style dataset show that the Deformable Part-based Model (DPM)-
MLLR algorithm achieves the best performance when the styles have highly
distinguishable façades. The algorithm is also competitive comparing with other
state-of-the-art algorithms, even when using a more challenging experimental
setup with large intra-class variance. The probabilistic analysis of MLLR makes
it possible to interpret inter-class relationships between architectural styles and
the combination of multiple styles in an individual building.
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