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ABSTRACT 
A great challenge of research and development activities 
have recently highlighted in segmenting of the skin cancer 
images. This paper presents a novel algorithm to improve the 

segmentation results of level set algorithm with skin cancer 
images. The major contribution of presented algorithm is to 
simplify skin cancer images for the computer aided object 
analysis without loss of significant information and to 
decrease the required computational cost. The presented 

algorithm uses k-means clustering technique and explores 
primitive segmentation to get initial label estimation for 
level set algorithm. The proposed segmentation method 
provides better segmentation results as compared to standard 

level set segmentation technique and modified fuzzy c-
means clustering technique. 
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1. Introduction 
 
Segmentation is an essential issue in digital image 
processing and is used both for image description and as an 
important step before classification. The segmentation 
algorithms are generally based on similarity, which can be 
categorized as; thresholding [1], template matching [2], [3], 
region growing [4], edge detection [5], and clustering [6].  
Clustering is a process of classifying a set of objects into 
classes with similar characteristics. It has been widely 
applied in many areas such as image processing [7], [8], 
machine learning [9],[10], pattern recognition [11]-[13], data 
mining [14]-[16], statistics [17], [18]. Recently clustering 
algorithms found crucial applications in medical imaging 
field [19].  
Among clustering algorithms, k-means is the most popular 
one due to its simplicity and fast running speed. K-means is 
known as a simple and fast numerical, non-deterministic, 
unsupervised and iterative method which has proved to 
provide good clustering results [20]-[23].  
Level set method is another powerful and robust 
segmentation technique which is flexible under challenging 
conditions. It depends on both extrinsic and intrinsic factors 
such as intensity and curvature, respectively [24][25]. 
Different researchers [26][27]indicated that level set method 
may decrease the mutability of complex segmentation tasks  
 

 
in medical applications. They mentioned the flexibility of 
level set techniques cause to lengthen computation time 
and consequently will limit its application in medical 
area. In some other works [28][29],the level set algorithm 
has been proposed to not be used merely for classification 
purposes.  
In traditional level set methods, initialization extensively 
plays an essential role in curve evolution process. Re-

initialization of level set function is significantly used as a 
numerical remedy to keep the curve evolution more stable 

and achieve effective results. Though, as pointed out by 

Gomes, many presented re-initialization schemes provide 
undesirable results along with increased computational 

cost [30]. On the other hand, it is becoming significantly 

obvious that none of the methods alone are adequate and 
that the application of different approaches will clear 

various aspects of data to be explored [31]-[34]. Thus, 
this work attempts to incorporate the strength of two 

techniques and overcome the disadvantages. Here, an 

implicit joint k-means-level set algorithm for classifier 
decision boundaries is presented. It applies k-means 

algorithm to get initial label estimation for level-set 

algorithm. In short, the contribution of this work is to 
propose a new and creative segmentation algorithm for 

development of the medical expert systems for achieving 
increased precision in diagnosis. The algorithm increases 

the accuracy of segmentation while decrease the 

computational cost.  
The performance of proposed algorithm of level set 
classification is tested and compared using a data set 
comprising of forty skin cancer images.  The parameters 
for performance evaluation include False positive error, 
Hammoude distance, True detection rate and Similarity. 
The results showed that the proposed approach is quite 
competitive with many classifiers that are being employed 
in practice.  
The rest of this paper is structured as follows: We shortly 

go over the k-means framework in Section 2. In Section 3, 

the proposed algorithm is explained in detail. Experiment 

results are demonstrated in Section 4, and Section 5 is 

assigned to conclusion. 

 

2. The Basic K-means  
 

K-means algorithm is a clustering algorithm which firstly 
presented by MacQueen in 1967[35]. This algorithm 
divides the pixels into k clusters and heavily relies on 

 Proceedings of the IASTED International Conference
Biomedical Engineering (BioMed 2014)
June 23 - 25, 2014 Zurich, Switzerland

DOI: 10.2316/P.2014.818-072 89



selecting the number of clusters k and initial cluster 
centroids vi, i = 1, ... 2, k. The centroids of clusters are 
calculated based on the average of pixel intensities in each 

cluster. These initial centers effectively influence on number 
of iterations in k-means algorithm. After calculating the 

centroids vi, the distance of pixels and centres are estimated 

and each pixel xj is iteratively assigned to the closest cluster 

as in equation 1. 

dij=||xj-vi|| (1)  
The matrix of U with the membership values are determined 
by 

U=|uij| (2)  
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The cluster centres are updated by computing the mean of 
each cluster as in equation 3. 
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This process is repeated till it reaches the center values same 
as the prior values since it indicates the current values are 
the optimal results.  
This algorithm optimize the objective function Jw (U, v) in a 
manner that kn 
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It is spotted that the algorithm is sensitive to cluster 
initialization and distance measure [19][20][36]. 
 

3. The Level Set Framework 

 
Level set algorithms, firstly presented by Osher and Sethian 
[37, 38], offer an impressive implementation of curve 
evolution. This approach is based on enchasing contour C as 
the zero level set of the graph of a higher dimensional 
function Ø(x, y, k), as in equation 5  

Ck= {(x, y) l Ø(x, y, k) =0}                       (5)  

Where k represents an artificial time-marching parameter, 
and then evolves the graph as moves pursuant to the 
prescribed flow. Therefore, the level set can change topology 
and expand singularities as remains smooth and preserve the 
form of a graph.  
In this manner, the curve evolution is defined as equation 6.  

∂c/∂k=VN (6)  
Where V is the speed of curve evolution, N is the normal 

vector of inward unit. From Ø(Ck, k), the following equation 
is achieved: 

(∂Ø/∂k) +▼Ø ● (∂c/∂k) =0 (7)  
According to the level set function definition described 

above, the vector N may be written as N= -▼Ø/||▼Ø||. Then it 

can be implemented corresponding to curve evolution  
equation (8):  

 
∂Ø/∂k=V||▼Ø|| (8) 
  

The initial level set function is generated using the initial 
given curve. In addition, the function requires to be re-
initialized consecutively during the update process which 
generally takes a lot of computing time. 

 

4.  The Proposed Active Contour Tracking 

Method 

 
The presented method seeks a new target location t1 in 
the current frame exploiting the k-means procedure and 
initializing the level set segmentation algorithm from the 
location t0 of the target in prior frame. The weighs are 
computed based on the scale of bandwidth h centered at 
t0. In other word, the initial curve of each sample is set up 
and evolved based on the target location t0 obtained by 
the k-means algorithm. The energy function is refined 
using the previous knowledge of target model achieved by 
k-means. The presented active contour tracking algorithm 
is explained in detail as follow. 
 

4.1 The Proposed Algorithm 
 
As described above, k-means clustering algorithm needs 
K clusters which should be initialized manually. The 
number of clusters is 3 in this paper because the skin 
cancer images are expected to be clustered into less or 
equal to 3 parts consisting the background (skin), tumor, 
and possible extra parts. That is, the first cluster is named 
cluster 1 and the last one is cluster 3. Since the skin 
cancer image is gray-scale image in which the minimum 
intensity value is equal to 0 and the maximum intensity 
value is equal to 255, the centroid of cluster 1 is 0 and the 
centroid of cluster 3 is 255. Equation 9 indicates the 

calculation of centroid in cluster k, Ck 

Ck=rand*255   (k = > 1 and k < =3) (9) 

Input: The original skin cancer image  
Output: Initial Segmented image 
 

1. Initialize centroid of clusters randomly   
2. loop while CTr=CTr-1  

 
-
 If CTr=CTr-1, then disk,i=|CTk-Iij| for all pixels 

-
 Assign pixels to the closest distance 

-
 Estimate the new centroid for 3 clusters ctk=Avg(Ik) 



 
End loop  

3. The segmented skin lesion is achieved at location t1 
with the scale of h 

 
CTr:  Cluster centroid at round r 
Iij:  Pixel in an image 

Algorithm 1.K-means clustering with 3 clusters 
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Algorithm 1 shows the total procedure of k-means clustering 
of this paper. After determining the initial centroid values of 
the clusters, the pixels are distributed to one of 3 clusters 
which the centroid value is the most closest to that pixel 
intensity. The centroids of clusters are updated by the mean 
intensity values of its pixels. This process is repeated till 
reaching the constant value. The target segmented location 
t1 achieved by this algorithm is used to initialize the level set 
algorithm. This segmented result is converted to binary for 
feeding the level set algorithm.  
For each sample ti

k
 in level set framework, we initialize a 

curve by a target segmented location t1 with the scale of h 
achieved by k-means segmentation algorithm. Hence we 
evolve the curve using level set algorithm upon the time 
k, Ik , and the target model t :  

Ck
i
 =evo (sk

i
, Ik, t) = Sk

i
(M)   (10) 

Where Sk indicates the contour at time k and iterates M 
times  to  the  direction in which the energy function   
Eimg is reduced  

Eimg=ER(c1,c2,∂) (11)  
Where c1, c2 indicate positive constant, ∂ is the indicator of 
regions (∂= 1 lesion, ∂= -1 background)  
By the end of this process, the true target segmentation is 
achieved which includes the energy smaller than other 
samples in evolution process. Therefore, the algorithm of 
this process is illustrated in Algorithm 2. 

 
Input: target segmented location t1with a scale of h 
achieved by k-means segmentation algorithm 
Output: True target segmentation t2 
 

1. Initialize a curve by a target segmented location t1   
2. Run curve evolution in M iterations toward the direction 

of energy reduction   
3. Calculate the weights  
4. If the (t2-t1) <  ε and mark t2 as the result  

 
Algorithm 2. Level set segmentation algorithm initializing 

by k-means clustering algorithm 
 

5. Experiment Result 

 
In this section, the proposed method is tested on 40 images 
taken from digital cameras In order to demonstrate our 
improved method, multiple algorithms have been run upon 
the same condition. The first algorithm is the traditional 
level set (TLS), proposed in [38], the second is modified 
fuzzy c-means clustering (FCM) [39] in two cut off (sw=0, 
cut between the small and middle class, sw=1, cut between 
the middle and large class), and the last one is the proposed 
method of this paper.  
The original images are initially segmented into 3 clusters 
for accurate evaluation of lesion area in the image. As this 
image is used as the curve evolution of level set algorithm, it 
should be converted to binary image and used to feed the 
level set algorithm. Figure 1 shows the segmented results 
achieved by our proposed method (k-means-level set 

(KLS)). 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. a) Original Image b) Initial k-means 

segmentation c) Converting the segmented image to 

binary d) Segmented result of our proposed algorithm 

after initializing the level set segmentation technique 

by k-means algorithm 
 
To perform the comparison of our segmented results with 
the ground truth images which have been segmented 
manually by the experts, let SR and GT indicate the result 
of automatic segmentation method and the ground truth 
segmentation, respectively. Figure 2 indicates this 
comparison. 
 
 
 
 

 
 

 

 

 

 

 

 

 
Figure 2. Comparison of ground truth image with the 

segmented image by proposed algorithm a) Ground truth 

image b) Segmented result c) Pixels in segmented lesion as 

well as ground truth (Subscription of “a”, “b” images) 

 

Figure 3 demonstrates the results achieved by “modified 
fuzzy c-means clustering” method which has been applied 
to compare with our proposed method. 
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Figure 3. Modified fuzzy c-means clustering in two cut-off 

position a) Original image b) Otsu thresholding c)  
FCM (sw=0) d) FCM (sw=1) 

 
Figure 4 shows the comparison which has been done 
between our proposed method (KLS), TLS, FCM (sw=0) 
and FCM (sw=1). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.Comparison of a) proposed segmentation method b) 

traditional level set method c) modified fuzzy c-means 

clustering (sw=0) d) modified fuzzy c-means clustering 

(sw=1) 
 

Four different metrics of Border error, Similarity, 

Hammoude distance and Rms error are used to quantify the 

boundary differences. Each metric is calculated between the 

segmented results achieved by TLS, KLS, FCT (sw=0) and 

FCT (sw=1) with ground truth images (manually segmented 

images by experts). Table1 shows the statistical comparison 

of algorithms by these metrics. As it is obvious from 

table 1, the average border error, Hammoude distance 

and Rms error between the ground truth and segmented 

images in KLS is the lowest and similarity is the highest 

among others. It shows the better performance of KLS 

than others. 

 
Table 1  

Comparison of Proposed method, TLS, FCT (w=0), 
FCT (w=1) by the Border error, Similarity, 

Hammoude distance and Rms error  
 TLS KLS FCT FCT 
   (sw=0) (sw=1) 

Border error 0.176912 0.075871 0.124453 0.550871 
     

Similarity 0.810429 0.953229 0.892076 0.458453 
     

Hammoude 0.447771 0.301471 0.391818 0.676335 
distance     

Rms Error 0.335165 0.198329 0.278412 0.656047 
     

 
For detecting whether our proposed method has 

statistically significant difference from others, one-way 

analysis of variance (ANOVA) as a statistical inference is 

applied with a .05 significance level. It is known as a 

popular and powerful tool which is robust to non-

homogeneity of the data [40]. The anova test will 

compare all forty border errors between TLS 

segmentation results and ground truth with all forty 

border errors between KLS segmentation results and 

ground truth with all forty border errors between FCT 

(sw=0) segmentation results and ground truth and finally 

with all forty border errors between FCT (sw=1) 

segmentation results and ground truth. The purpose is to 

find out how significant is the results of our method as 

compared to other methods. In other word, determine if 

our method has significantly decreased the border error as 

compared with other methods. The same process is 

performed for other three metrics as well. Table 2, which 

demonstrate One- way ANOVA results of the skin cancer 

image data, give evidence to the results achieved above in 

table 1. It represents mean values of Border error, 

Similarity, Hammoude distance and Rms error metrics on 

forty experiments by KLS and TLS, KLS and FCT 

(sw=0), and KLS and FCT (sw=1) achieved by 1-way 

anova test. As it can be seen in table 2 on the first column, 

all the mean values are less than 0.05, which shows the 

significant difference between KLS than TLS. In second 

column mean values of Rms error shows the significant 

difference between KLS and FCT (sw=0), while the other 

metrics shows although there are improvement (according 

to table 1), it is not significant. The mean values of third 

column show the significant difference between KLS and 

FCT (sw=1). 
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Table 2  
Anova test on Border error, Similarity, Hammoude 

distance and Rms error between the “proposed method 
and TLS”, “KLS and FCT (w=0)”, “KLS and FCT 

(w=1)”  
 KLS , TLS KLS , FCT KLS, FCT 
  (sw=0) (sw=1) 
    

Border error 0.0073 0.1332 4.53E-10 
    

Similarity 0.0068 0.0638 1.92E-10 
    

Hammoude 0.0236 0.1352 5.82E-06 
distance    

    

Rms Error 0.0211 0.0376 2.77E-10 
     
The figure 5 shows the comparative view and difference of 

Border error, Similarity, Hammoude distance and Rms 
error by KLS and TLS, KLS and FCM (sw=0), and KLS 
and FCM (sw=1) have been achieved by Anova test. 
  
As noticed before, another contribution of this paper 

achieved is computational time which significantly 

reduced in compare with TLS method. Table 3 indicates 

the comparison results. 
 

Table 3  
Comparison of Elapsed time between proposed 

method and TLS  
 TLS KLS 
   

Computational time 0.731007 0.716403 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Difference of Border error, Similarity, Hammoude distance and Rms error of KLS and TLS, KLS and 

FCM (sw=0), and KLS and FCM (sw=1) 
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Table 3  
Anova test on Elapsed time of KLS and TLS  

KLS, TLS 
 

Computational time 0.0384 

 
The figure 6 shows the difference of computational cost 
between KLS and TLS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.Comparison of computational cost of KLS and 

TLS by Anova test 
 
Using a joint algorithm, we indicated that the combination 
of k-means and level set for skin cancer segmentation 
outperforms the commonly used classification methods 
such as level set and modified fuzzy c-means clustering, 
in two cut off (sw=0, sw=1), in terms of accuracy. 
 
6.  Conclusion  

The structuring of an effective segmentation for medical 
expert systems to assist medical doctors is the purpose of 

this research. The joint k-means-level set algorithm is 

proposed. The algorithm employs the k-means 
segmentation result to initialize level set clustering 

technique to improve the segmentation results. The 

precursory along with the conclusive results are much 
stimulating. As the reader may note, this segmentation 

architecture is being proposed in such a way that assures 
the accuracy and effectiveness on its results. In this work, 

the images data and pathologists ' interaction helped a lot 

to achieve a good system performance. The experiments 
have been performed on forty images to evaluate the 

efficiency of proposed algorithm. Four metrics of Border 

error, Similarity, Hammoude distance and Rms error were 
used for this purpose. The promoted results show the 

successful performance of our proposed method when 
compared to traditional level set segmentation method 

and modified fuzzy c-means clustering, in two cut off 

(sw=0, cut between the small and middle class, sw=1, cut 
between the middle and large class). To approve our 

improved results, ANOVA test has been applied for 

assurance. Additionally, the proposed algorithm can 
easily be retargeted to apply in other domains of interest. 
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