
Elsevier required licence: © <2016>. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license http://creativecommons.org/licenses/by-nc-nd/4.0/



 

Performance analysis of reverse osmosis, membrane distillation, 

and pressure-retarded osmosis hybrid processes 

 

Jihye Kima, Minkyu Parkb, Ho Kyong Shonc and Joon Ha Kima,d,e,1 

 

a. School of Environmental Science and Engineering, Gwangju Institute of Science and 

Technology (GIST), Gwangju, 500-712, Korea 

b. Department of Chemical and Environmental Engineering, University of Arizona, 

Tucson, AZ 85721, USA 

c. School of Civil and Environmental Engineering, University of Technology, Sydney, 

Post Box 129, Broadway, NSW 2007, Australia. 

d. Sustainable Water Resource Technology Center, GIST, Gwangju, 500-712, Korea 

e. Center for Seawater Desalination Plant, GIST, Gwangju, 500-712, Korea 

 

 

A Manuscript for 

Desalination 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1 Corresponding author 

E-mail: joonkim@gist.ac.kr; Phone: 82-62-715-3277; Fax: 82-62-715-2434 

mailto:joonkim@gist.ac.kr


Abstract 

A performance analysis of a tri-combined process that consists of reverse osmosis (RO), 

membrane distillation (MD), and pressure-retarded osmosis (PRO) was conducted by using 

numerical approaches in order to evaluate its feasibility. In the hybrid process, the RO brine 

is partially used as the MD feed solution, and the concentrated MD brine is then mixed with 

the rest of the RO brine to be considered as the PRO draw solution. Here, the brine division 

ratio, incoming flow rate of RO, dimensions of the MD and PRO processes, and the supply 

cost of the MD heat source were considered as influential parameters. Previously validated 

process models were employed and the specific energy consumption (SEC) was calculated to 

examine the performance of the RO-MD-PRO hybrid process. The simulation results 

confirmed that the RO-MD-PRO hybrid process could outperform stand-alone RO in terms of 

reducing the SEC and the environmental footprint by dilution of the RO brine in locations 

where free or low-cost thermal energy can be exploited. Despite the need for further 

investigations and pilot-tests to determine its commercial practicability, this study provides 

insights into future directions for water and energy nexus processes for energy efficient 

desalination.   
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1. Introduction 

Demands for water and energy are dramatically increasing in both developing and 

industrialized countries. People in developing countries suffer from a lack of access to safe 

drinking water and sustenance energy sources, whereas those in industrialized countries 

consume resources more to meet increasing standards of living [1, 2]. To relieve these water 

and energy scarcity issues, water and energy nexus processes, i.e., the co-generation of water 

and energy, have received increased attention [3]. As examples, Hosseini et al. [4] analyzed a 

combined gas turbine and multi stage flash (MSF) desalination system in terms of exergetic, 

economical, and environmental aspects, and Avrin et al. [5] compared the applicability of 

coal-desalination and nuclear-desalination in China. However, despite the increase in 

research activities into water-energy nexus processes, further developments that consider 

sustainable and environmental impacts are still required. In particular, a combination of 

pressure-retarded osmosis (PRO) and membrane distillation (MD) is thought to be a 

favorable candidate as a water-energy nexus process. A recent publication by Han et al.[6] for 

instance, experimentally investigated the performance of PRO-D hybrid process through a 

lab-scale system. 

 

Investigations into PRO have resumed over the last decade due to advances in membrane 

technology, and have received considerable attention as a salinity gradient power (SGP) 

process [7]. The driving force of PRO is the chemical potential difference between a low-

saline feed solution and a high-saline draw solution. Specifically, water transfers from the 

feed side to the draw side due to osmosis phenomena, with the increased volumetric flow 

used to run a turbine to generate power [8]. PRO is mostly regarded as an environmental-



friendly and sustainable energy production process that uses seawater or concentrated 

seawater (i.e., brine from reverse osmosis (RO)) as the draw solution, while river water or 

wastewater effluent is used as the feed solution [9, 10]. The fact that there are no carbon 

dioxide emissions and that there is less periodicity to the weather conditions make this 

process even more attractive [11]. 

 

In the field of desalination, MD is another process that has re-emerged in recent research, as 

it has the benefits of both thermal and membrane technologies. In MD, water vapor is 

transferred to the permeate side through a microporous hydrophobic membrane because of 

the vapor pressure difference. There are four types of MD configurations, categorized 

according to the method for activating the vapor pressure difference: direct contact MD 

(DCMD), air gap MD (AGMD), vacuum MD (VMD), and sweep gas MD (SGMD) [12]. The 

advantages of MD include the rejection rate, which theoretically reaches 100% [13], and 

more importantly the potential to utilize the highly concentrated water. The performance of 

MD is not highly affected by the concentration of the feed water, unlike other desalination 

processes [14], which makes it possible to use MD in the treatment of high-salinity water, 

such as RO brine and shale gas wastewater.  

 

In this context, a research project entitled ‘Global MVP’ (M for MD, V for valuable resource 

recovery, and P for PRO; hereafter GMVP) was launched in Korea, planning to construct an 

RO-MD-PRO hybrid pilot plant. Here, RO, a proven and widely used technology, plays the 

main role to produce potable water, and MD then supports the water production while PRO is 

used as an energy generation or recovery process. In fact, a similar project, the ‘Mega-ton 

water system’ has been conducted in Japan [15]. A prototype PRO plant hybridized with RO 

was subsequently constructed and operated by utilizing the RO brine as the draw solution and 



wastewater effluent as the feed solution. Since the utilization of MD is the biggest distinction 

between these two projects in terms of process schemes, the design optimization of RO, MD, 

and PRO use can be a critical issue.  

 

The objective of this study is to investigate the commercial feasibility of the RO-MD-PRO 

hybrid process by using a numerical approach. As a scenario study, the concept of the GMVP 

project was adopted such that RO is the first process in the system, and is followed by MD 

and PRO in consecutive order. Previously validated RO, MD, and PRO numerical models 

were applied and combined in order to evaluate the performance of the hybrid process; the 

efficiency was then calculated in terms of the specific energy consumption (SEC). The effects 

of the division ratio of the concentrated RO brine (i.e., the brine division ratio; BDR), the 

plant dimension ratio of MD and PRO to RO, and the supply cost of the MD heat source were 

importantly considered in this study in order to explore the cost-effective design of this 

hybrid process.  

 

2. Materials and methods 

2.1. RO-MD-PRO hybrid process 

Fig. 1 illustrates the schematic of the RO-MD-PRO hybrid process. First, seawater flows into 

the RO membrane as a feed water, and a certain amount of the concentrated RO brine is then 

utilized as the MD feed solution in order to achieve higher recovery of water. Here, the same 

amount of produced water from RO flows into the other side of MD membrane as a permeate 

solution. Finally, the concentrated MD brine and the rest of the RO brine are mixed and 

supplied to the PRO process as the draw solution. Pressure exchanger (PX) are utilized for 

both RO and PRO processes, at which to recover the RO brine pressure and also to restore the 

remained pressure of PRO draw solution. In this process, the division ratio of the RO brine is 



critical, i.e., the brine division ratio (BDR), and consists of the flow rate of the MD feed 

solution (denoted as x) and that of RO brine (denoted as y) (see Eq. (1)). In Fig. 1, ,pump ROW , 

,heat MDW , ,pump PROW , and ,p PROW  indicate the rate of work done by the RO pump, MD heater, 

and PRO pump, and the energy generated by PRO, respectively. In addition, 
,p ROQ  and 

,p MDQ  are the volumetric flow rates of the RO and MD water production. The relationship 

among the terms will be described in detail in the following section. In the hybrid process, it 

is assumed that secondary wastewater effluent is used as the PRO feed solution [10], and the 

energy generated by PRO supports the operation of the hybrid process such that the total 

energy consumption can be decreased. In addition, from the four MD configurations, DCMD 

is applied due to its simplicity and frequent appearances in literature [14, 16].  

 

,

,

Flow rate of MD feed solution ( )
Brine division ratio (BDR) = 

Flow rate of RO brine ( )

f MD

b RO

Q

Q
      (1) 

 

[Fig. 1] 

 

2.2. RO model 

Water in RO is transported through a semi-permeable membrane because the hydraulic 

pressure is higher than the osmotic pressure, which can be explained by the solution diffusion 

model [17]: 

( ( ) ( ))w RO ROv A P x x                           (2) 

where wv  is the permeate flux, A  is the water permeability coefficient, ROP  is the 

hydraulic pressure applied in RO, and RO  is the osmotic pressure difference across the 

RO membrane. The hydraulic resistance of the channel walls and spacers cause a decrease of 



the hydraulic pressure along the channel, as expressed in Eq. (3) [18].  
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where K is the friction coefficient,   is the dynamic viscosity of the feed water, H is the 

channel height, and u is the cross-flow velocity of the feed water. Concentration polarization 

(CP) phenomena cannot be avoided in this membrane process, causing the diminish of 

driving force, therefore the model which reflects CP phenomena under the existence of the 

spacers was employed [19, 20]. 
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where 
Wc  is the salt concentration of membrane wall, 0c  is the bulk concentration, hdD  is 

the hydraulic dispersion coefficient, and 
jr  is the rejection rate. 

 

2.3. MD model 

When the water vapor molecules penetrate through the MD membrane, heat and mass 

transfers occur concurrently, however, the heat transfer across the boundary layers functions 

as the dominant step, as described in the following equations [21, 22]: 

( )f f f mfq h T T                             (5) 

( )p p mp pq h T T                             (6) 

( )m m mf mpq J H h T T                        (7) 

where q  is the heat flux, h  is the heat transfer coefficient, T  is the temperature, J  is the 

mass flux across the membrane, and H  is the latent heat of water. The subscripts f , p , 

and m  indicate the feed side, permeate side, and membrane, respectively. Under steady state 

conditions, the three heat fluxes can be equal based on principle pertaining to the 



conservation of energy [21].  

 

The mass transfer can be described as a linear function of the vapor pressure difference 

between the feed and permeate sides, referred to as the dusty gas model [12]. 

 
0 0( ) [ ( , ) ( , )]m mf mp m mf mf mp mpJ C p p C p T c p T c               (8) 

where mC  is the mass transfer coefficient, p  is the 

vapor pressure, and 
0 ( , )p T c  is the vapor pressure of the substance at a temperature T and a 

concentration c. The Antoine equation and the correlations can be used to estimate the vapor 

pressure of feed and permeate solutions [23, 24]. The mass transfer coefficient mC  

reflecting the combined Knudsen and molecular diffusion mechanisms can be expressed as 

[25]:
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where mC  is the mass transfer coefficient, and p  is the vapor pressure difference across 

the membrane. The Greek letters  ,  , and   refer to the porosity, tortuosity, and  

thickness of membrane, respectively. In addition, M is the molar weight of water, R is the 

gas constant, aveT  is the average temperature of the feed and permeate membrane surface, 

kD  is the Knudsen diffusion coefficient, r is the pore radius, waD  is the molecular diffusion 

coefficient, and ap  is the air pressure.  



 

In the RO-MD-PRO hybrid process, the RO brine is utilized as the MD feed solution; 

therefore, the effect of CP should be considered as in the case of RO. Assuming the 100% 

rejection rate of MD membrane and applying the film theory, CP can be expressed as follows 

[26]: 
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where mfc  is the concentration of the membrane surface facing the feed solution, fc  is the 

bulk concentration of the feed solution, ck  is the mass transfer coefficient, and  is the 

density of the feed solution. In addition, changes of thermos-physical properties such as 

thermal conductivity, heat capacity, density and viscosity due to the presence of salt in the 

feed solution were considered [24]. Then, in order to simulate a large-scale system, the 

spatial variation of the concentration and cross-flow was considered; further explanations on 

how to numerically solve the equations will be provided in Section 2.5. 

 

2.4. PRO model 

The driving force of PRO is negatively affected by both the internal CP (ICP) and external 

CP (ECP). Changing the hydraulic conditions such as by increasing the cross-flow velocity 

can partially help minimize the ECP. However, the mitigation of ICP phenomena is almost 

impossible since enhanced mixing has little influence inside the support layer. The permeate 

water flux obtained by considering the ICP is described as Eq. (14), which is derived from the 

solute mass balance [27]. 
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where D is the diffusivity coefficient of the solute, S is the membrane structure parameter, B 



is the solute permeability coefficient, ac  is the concentration at the active layer surface, 
ic  

is the concentration at the active layer and support layer interface, and ,b feedc  is the 

concentration of the bulk feed solution. Due to the existence of ECP, ac  is not equal to 

,b feedc , and can be expressed as Eq. (13), based on the film theory [28]: 
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where ,b drawc  is the concentration of the draw solution in the bulk region, and k is the mass 

transfer coefficient. Substituting Eq. (14) into Eq. (13) becomes 
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In addition, the spatial distributions of the concentration and cross-flow velocity along the 

channel were employed in order to simulate a practical large-scale process [29].  

 

2.5. Modelling procedure 

Fig. 2 illustrates the flow chart used to evaluate the performance of the RO-MD-PRO hybrid 

process. Simulations of the RO, MD, and PRO processes were conducted in consecutive 

order and the specific energy consumption (SEC) was calculated at the end of each process. 

Here, only the procedure for the MD simulation is introduced in further detail, since the 

procedures for the RO and PRO processes can be found elsewhere [29].  

 

In the MD process, it is not possible to measure the concentration and temperature at the 

membrane surface, resulting in the need to obtain arbitrary initial values of mfT  and mfc . 

These initial values were then used to calculate the average temperature aveT  according to 



Eqs. (4), (5), and (9). The updated values of mfT  and mfc  were obtained by solving Eqs. 

(6), (7), and (12), and the updated values were then replaced with the previously estimated 

values. This iteration procedure was repeated until the error value met the criterion.  

 

After each simulation of the hybrid processes was completed, the SEC was calculated using 

Eq. (16). The SEC is widely used in stand-alone RO processes as the relation between energy 

consumption and water production [30]; therefore, the equation was slightly modified to 

reflect the characteristics of the RO-MD-PRO hybrid process. 
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where 
,f ROQ  is the volumetric flow rate of RO feed water, 

,b ROQ  is the volumetric flow rate 

of RO brine, 
,PX RO  is the PX efficiency of RO, 

pC  is the heat capacity, 
fV  is the 

volumetric flow rate of MD feed solution, 
f  is the density of MD feed solution, 

,f MDT  and 

,b ROT  are the temperatures of MD feed solution and RO brine, PROP  is the applied hydraulic 

pressure of PRO, 
,d PROQ  is the volumetric flow rate of PRO draw solution, 

,PX PRO  is the 

PX efficiency of PRO, 
,turbine PRO  is the efficiency of hydro-turbine for PRO, 

,p PROQ  is the 

volumetric flow rate of permeated water in PRO. It should be noted that the energy required 

to chill the MD permeate solution was not considered in the current study assuming the 

identical temperatures for RO and MD permeate side. 



 

[Fig. 2] 

 

2.6. Simulation conditions 

The conditions used to simulate the hybrid process are summarized in Table 1. The 

concentration of the MD feed solution remains steady at about 76 g/L NaCl in most cases, 

resulting from the no change in RO feed concentrations; there are slight variations shown in 

Section 3.2 when different RO influent flow rates were applied. However, the concentration 

of the PRO draw solution continually varied according to the BDR. In both MD and PRO, the 

streams flowing on each side of the membranes have identical flow rates (i.e., feed and 

permeate solutions for MD and draw and feed solutions for PRO). As the influent flow of 

MD feed solution and PRO draw solution is restricted by the amount of RO brine, the RO 

plant should be larger than the MD and PRO plants; assume here that the dimensions of the 

MD and PRO plants are half of the RO plants unless otherwise mentioned (Section 3.3). To 

avoid the underestimation of other parameters caused by the dominant effect of the MD heat 

cost, it was also assumed that renewable energy or low-grade heat can be complimentarily 

utilized, except incorporating the required energy to heat feed solution (Section 3.4). In the 

whole simulations, however, cooling cost for the MD permeate solution was excluded due to 

the assumption of identical temperature at RO and MD permeate side. The Van’t Hoff 

equation was used to calculate the osmotic pressure in RO and PRO, and the membrane 

properties of each process were obtained from previous literature [8, 18, 31].  

 

[Table 1] 

 

2.7. Sensitivity analysis  



Latin hypercube (LH) sampling and the one-factor-at-a-time (OAT) method (denoted as LH-

OAT) was employed to determine the dominant parameters on the performance of the RO-

MD-PRO hybrid process, from among the influential parameters. For the sensitivity analysis, 

seven input parameters were used, which included: the pressure applied in RO, cross-flow 

velocity of RO, BDR,  cost sharing ratio of MD heat source, concentration of PRO feed 

solution, pressure applied in PRO, and plant dimension ratio of MD and PRO compared to 

RO plant. Note that linked parameters such as the cross-flow velocity of MD and PRO, and 

concentrations of the MD feed and PRO draw solutions, which are concurrently the output of 

the prior processes and inputs of the following processes, were not considered. In the LH-

OAT method, the sensitivity analysis is performed in a loop, with the beginning point of each 

loop being set by the LH sampling. Then, a partial effect for parameter ( ,i jS ) around LH 

sample point j  could be calculated using Eq. (17) [32, 33].  
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where M is the model function of the SEC, f indicates the fraction by which the parameter is 

changed, and i  and p  denote each parameter and the final parameter, respectively. The 

average of the partial effect of each loop is regarded as the sensitivity value. Therefore, the 

most dominant parameters of the RO-MD-PRO hybrid process are those having the highest 

sensitivity value. 

 

3. Results and discussion 

3.1. Performance of the stand-alone RO process 

For a comparison, the performance simulation of a stand-alone RO process was conducted 

under the given conditions in Table 1 and the results were summarized in Table 2. In brief, 



the recovery rate was 49.7%, i.e., the water production and brine flow rate were 995 m3/d and 

1005 m3/d, respectively. The SEC was approximately 1.914 kWh/m3, which represents the 

efficiency of the stand-alone RO process.  

 

[Table 2] 

 

3.2. Influence of BDR 

In the RO-MD-PRO hybrid process, influent conditions of the MD and PRO processes such 

as concentration and the flow rate are dependent on the BDR (i.e., x/y in Eq. (1)). To 

investigate the impact of BDR on the hybrid process performance, we varied the BDR values 

from 0.0 to 1.0. For example, if the BDR equals 0.1, 10% of the RO brine flows into the MD 

feed side, whereas all the RO brine is utilized as the MD feed solution when the BDR is equal 

to 1.0. The RO-PRO hybrid process with no MD is expressed as BDR equals 0.  

 

As can be seen in Fig. 3(a), the recovery rate did not vary much, especially at the lower BDR 

values, because it solely depends on the total amount of water produced. Since water 

production is not a primary MD contribution, but rather RO, the recovery rate remained 

similar unless the influent flow rate was varied, resulting in a recovery rate increase of 

approximately 5% that was obtained by increasing the BDR values. Furthermore, the effect 

of BDR on the performance of the hybrid process in terms of the SEC and power generation 

is shown in Fig. 3(b). If the BDR value is increased, the driving force of PRO increased by 

obtaining a higher portion of the concentrated MD brine than RO brine, eventually leading to 

a decrease of the SEC in the hybrid process. A maxiumum SEC was ~1.6 at a BDR of 1.0, 

which was a 17% reduction compared to the stand-alone RO process. It is worth pointing out 

that the SEC sharply decreased even at a BDR of 0, which is the RO-PRO hybrid. 



 

[Fig. 3] 

 

3.3. Influence of RO influent flow rate  

The MD and PRO flow rates significantly depend on the influent flow rate from RO. Hence, 

the impact of RO influent was investigated by varying the feed flow rate from 2000 m3/d to 

6000 m3/d.  

 

Fig. 4 compares the SECs at various RO influent flow rates, in which an increase in the 

influent flow has a negligible effect on the SEC in the stand-alone RO. However, there is a 

striking difference in the hybrid processes, for both RO-PRO and RO-MD-PRO. Regardless 

of the RO influent flow rate, the SEC decreased with an increase in the BDR, as described in 

the previous section. Interestingly, the extent of SEC decrease from the feed flow rate 4000 

m3/d to 2000 m3/d was larger than that from 6000 m3/d to 4000 m3/d. The low SEC at the 

lower RO influent flow rate (2000 m3/d) would be due to there being a lower energy 

consumption to drive the PRO draw solution. 

 

[Fig. 4] 

 

The concentration of the RO brine ranged from 74 g/L to 76 g/L at various incoming flow 

rates. Therefore, direct discharge without attenuation of the salt content would adversely 

influence the receiving water bodies. In addition to the SEC reduction, the second advantage 

of utilizing a hybrid process lies in the dilution effect of the concentrated RO brine. As can be 

seen in Fig. 5, it is clear that the hybrid process has high potential to dilute the RO brine. 

Specifically, a maximum of 50% dilution was achieved in the BDR of 0 (i.e., RO-PRO 



hybrid configuration), and the effect then slightly decreased with a further BDR increase, 

resulting from the more concentrated incoming draw solution for PRO. Moreover, varying 

the RO influent flow rate did not significantly influence the water quality of the final 

discharge. 

 

[Fig. 5] 

 

3.4. Influence of MD and PRO plant dimension  

Due to the consecutive order processed, the dimension of the ratio between process sequences 

can be an important parameter for determining the efficiency of the hybrid process. In 

addition, the effects of RO plant dimension can propagate through both the MD and PRO 

processes. Therefore, to verify the effect of plant dimensions, we varied the dimension of MD 

and PRO plants from 10% to 60% relative to the RO plants, and then estimated the SEC and 

concentration of the final discharge. The maximum dimension of the MD and PRO plants 

was restricted to 60% of the RO to ensure that a sufficient amount of water was provided to 

these plants.  

 

The impact of dimension variation of the MD and PRO plants on the SEC at BDR values of 

0.1, 0.5, and 1.0 is expressed in Fig. 6. At a BDR of 0.1, the SEC is primarily dependent on 

the PRO plant dimension. For example, the energy consumption is minimized by increasing 

the PRO plant because the increase in energy generated by PRO. Meanwhile, if the PRO 

plant dimension is fixed, the SEC is only varied by the energy generation of PRO ( ,p PROW ) 

and water production of MD ( ,p MDQ ), as can be seen in Eq. (16). Additional water production 

can be obtained by increasing the MD plant dimension. However, any reduction in the 



volumetric flow of PRO draw solution causes a decrease in the energy generation of PRO. As 

the PRO energy generation has a greater influence than the water production by MD, 

increasing the MD plant dimension results in a negative impact on the SEC. No significant 

variation of SEC was observed by changing the MD plant dimension when the BDR equals 

0.5. However, it was found that the dimension of both MD and PRO plants almost 

equivalently influenced the SEC at a BDR value of 1.0; the entire amount of RO brine flow 

was initially utilized as MD feed solution, thus the performance of PRO was directly 

determined by the conditions of MD outflow.  

 

[Fig. 6] 

 

3.5. Influence of supply cost of MD heat source 

Despite the importance of the MD heat supply, it was assumed that the required energy in 

MD can be supplied free of charge in the previous sections in order to prevent an 

underestimation of other parameters influencing the hybrid process. In reality, however, the 

supply conditions of the MD heat source can be determined by the geographical location, i.e., 

the energy cost and the potential to utilize the waste heat are highly reliant on local policies 

and the market economy in specific countries. Therefore, we considered three scenarios by 

varying the cost of the MD heat supply: 1) utilization of the MD heat source for free, 2) 5% 

cost sharing of the MD heat cost, and 3) 10% cost sharing of the MD heat cost. The cost 

sharing ratio was limited up to 10% because the results are already economically unfavorable. 

 

Fig. 7 illustrates the effect of MD heat supply cost at various BDRs. The SEC ranged from 

1.61 kWh/m3 to 1.78 kWh/m3 under the scenario that free energy is available. However, it 

dramatically increased if the supply cost needs to be paid. Further increases of the SEC were 



observed according to increases in the BDR because more energy was required to heat the 

increased MD flow rates. Similar to this assumption, it was demonstrated that the expense of 

the MD heat supply dominantly influenced the performance of the hybrid process. Therefore, 

the utilization of a free heat source such as waste heat is strongly desired in order to apply 

MD in a commercial-scale hybrid plant. 

 

[Fig. 7] 

 

3.6. Sensitivity analysis of influential parameters  

A sensitivity analysis was conducted to identify influential performance parameters based on 

the SEC of the RO-MD-PRO hybrid process. The employed simulation conditions are as 

follows: for RO, the applied pressure ranged from 40 bar to 70 bar, and the cross-flow 

velocity was 0.05 m/s to 0.13 m/s. The temperature difference between the MD feed and 

permeate solutions ranged from 20 ℃ to 50 ℃, while in PRO, the feed concentration ranged 

from 0.5 g/L to 2.5 g/L and applied pressures from 15 bar to 30 bar were applied. The BDR 

and cost sharing ratio of the MD heat source were both varied from 0 to 1, and the PRO and 

MD plant dimension s was varied from 10% to 70% of that for RO. 

 

The ranking of sensitivity index of each influential parameter is shown in Table 3. The cost 

sharing ratio of MD heat source ranked the first, indicating that energy required for MD 

significantly influences the total energy consumption in the hybrid process, as was discussed 

in Section 3.4. The sensitivity index also confirmed the importance of BDR. The parameters 

relevant to RO, including hydraulic pressure and cross-flow velocity, had a relatively high 

rank, suggesting that RO plays a main role in this hybrid process due to its location and plant 

dimension; located prior to the other processes and has larger dimensions. More importantly, 



the results of the sensitivity analysis suggested that further optimization of specific 

parameters is critical in order to make the RO-MD-PRO hybrid process more favorable.  

  

[Table 3] 

 

4. Conclusions 

The RO-MD-PRO hybrid process was introduced as a novel design for a water-energy nexus 

process and its feasibility was investigated by numerical approaches. Various influencing 

parameters were considered, including: the BDR, influent flow rate of RO, dimensions of 

MD and PRO processes, and supply cost of the MD heat source, with the performance of the 

hybrid process then evaluated using a modified SEC equation. The main conclusions drawn 

were as follows: 

 

• The RO-MD-PRO hybrid process can outperform a stand-alone RO process in terms 

of its ability to reduce the SEC and mitigate harmful impacts on the marine 

environment caused by concentrated RO brine. Further increases in the process 

efficiency can be obtained by re-using the final discharge water of the hybrid system 

as the feed water of RO instead of simply discharging it into the sea. 

• Increases in the BDR positively influence the efficiency of the hybrid process by 

increasing the water production by MD and the energy generation of PRO due to the 

higher osmotic pressure difference, which corresponds to the driving force of PRO.  

• The effect of the influent flow rate of RO was not significant in the final discharge 

concentration, though it was in the SEC. Lowering the feed flow rate reduced the 

SEC, indicating that an investigation of the optimal influent conditions is still 



required.  

• At lower BDR values, the SEC was significantly influenced by the PRO plant 

dimension. However, both the MD and PRO plant dimensions almost equally 

influence the efficiency of the hybrid process as the BDR is increased, resulting from 

the increasing contribution of the MD process. 

• The supply cost of the MD heat source plays a dominant role in determining the 

efficiency of the hybrid process. If the required energy consumed cannot be 

reimbursed, the RO-MD-PRO hybrid configuration will be unfavorable for any BDR 

value. Therefore, it is recommended to utilize the RO-MD-PRO hybrid process in 

locations where free or low-cost thermal energy can be exploited.  
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Figure captions 

 

Fig. 1. Schematic of RO-MD-PRO hybrid process with seawater as the RO feed water and 

wastewater effluent as the PRO feed solution. 

 

Fig. 2. Flow chart of the RO-MD-PRO hybrid modelling procedures. 

 

Fig. 3. Comparison of RO-MD-PRO hybrid process performances at various BDRs: (a) total 

water production and recovery rate, and (b) SEC and power production. 

 

Fig. 4. Effect of RO influent flow rate on the SEC at various BDRs. 

 

Fig. 5. Effect of RO influent flow rate on the concentration of final discharge water at various 

BDRs. 

 

Fig. 6. Effect of MD and PRO plant size on the SEC at various BDRs: (a) BDR=0.1, (b) 

BDR=0.5, and (c) BDR=1.0. 

 

Fig. 7. Effect of MD heat supply cost at various BDRs. 
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Tables captions 

 

Table 1. Simulation conditions. 

 

Table 2. Summary of simulation results (RO influent flow rate: 2000 m3/d). 

 

Table 3. Sensitivity results of influencing parameters. 

 

 

 

 

 

 

 

 

 

 

 

  



Table 1. Simulation conditions. 

 
Parameter Value 

RO 

Channel length 7 (m) 

Channel height 6 × 10
-4

 (m) 

Channel width 37 × 20 (m) 

Feed concentration 38 (g/L) 

Influent flow rate 2000 (m3/d) 

Hydraulic pressure 65 (bar) 

Rejection rate 99 (%) 

Temperature 25 (℃) 

PX efficiency 95 (%) 

Number of segments 100 

MD 

Channel length 7 (m) 

Channel height 6 × 10
-4

 (m) 

Channel width 37 × 10 (m) 

Feed temperature 60 (℃) 

Permeate temperature 25 (℃) 

Number of segments 100 

PRO 

Channel length 7 (m) 

Channel height 6 × 10-4 (m) 

Channel width 37 × 10 (m) 

Feed concentration 1.0 (g/L) 

Hydraulic pressure 20 (bar) 

Temperature 25 (℃) 

PX efficiency 90 (%) 

Turbine efficiency 80 (%) 

Number of segments 100 

 

 

 

  



Table 2. Summary of simulation results (RO influent flow rate: 2000 m3/d). 

Parameter Value 

Produced water flow rate 995 (m3/d)  

Recovery rate 49.7 (%) 

RO brine flow rate 1005 (m3/d) 

RO brine concentration 76 (g/L) 

SEC 1.914 (kWh/m3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Table 3. Sensitivity results of influencing parameters. 

Parameter Sensitivity index for SEC Rank 

Cost sharing ratio of MD heat source 1371.2 1 

RO hydraulic pressure 1098.6 2 

Brine division ratio (BDR) 1001.6 3 

RO cross-flow velocity 754.9 4 

PRO hydraulic pressure 526.2 5 

PRO feed concentration 110.1 6 

Plant size ratio of MD and PRO 

compared to RO 
28.16 7 

 

 


