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Abstract: The long awaited Australian Standard test methods to detect alkali-silica reactivity (ASR) of 
aggregates: AS 1141.60.1 accelerated mortar bar test (AMBT) and AS 1141.60.2 concrete prism test 
(CPT); were published in September 2014. Both test methods were adopted correspondently from the 
ASTM 1260 and ASTM C1294 test methods but with different performance limits leading to a new 
class of slowly reactive aggregates. This paper reviews international and Australian research which 
supported these new performance limits. It also reviews and examines the value of these testing 
methods in predicting the ASR of aggregates in field-exposed large concrete blocks and a limited 
number of concrete structures. The outcomes may lead to a consideration of the hierarchy of these 
two test methods. 
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1. Introduction 

There main types of tests for evaluating the alkali-silica reactivity (ASR) of aggregates are accelerated 

mortar bar test (AMBT), concrete prism test (CPT) and field testing. Recently, Standards Australia CE-

012 Aggregate and Rock for Engineering Purposes Committee has published two new standard test 

methods to detect potential ASR: 

AS 1141.60.1-2014 Potential alkali-silica reactivity - Accelerated mortar bar method (AMBT) [1] and 

AS 1141.60.2-2014 Potential alkali-silica reactivity - Concrete prism method (CPT) [2] 

Accelerated mortar bar test (AMBT) is a rapid test method applied to determine the potential alkali-

silica reactivity of aggregates by testing mortar specimens. In general, the procedure of mortar bar 

testing involves casting mortar bars (normally in the size of 25 x 25 x 285 mm) and curing for 24 hours 

in least relative humidity of 95%. Afterwards, mortar samples are kept in potable water and heated up 

to 80°C and then mortar bars are put in the solution of 1N NaOH that is already at 80°C for 24 hours. 

After that, the initial length of mortar bars is measured as the zero reading. Until the next reading, 

samples remain in 1N NaOH for a period of time which can be 10, 14, 21 or 28 days according to the 

different standards and test methods. 

During the development of the Standard AS 1141.60.1, three alternative AMBT methods namely the 

fixed flow (RMS T363 [3] or VicRoads CR376.03 [4]), fixed water-to-cement ratio (ASTM C1260 [5]) 

and fixed free water-to-cement ratio (RILEM AAR-2 [6]) were considered. The committee finally 

agreed to adopt the fixed water-to-cement ratio method because of the more conservative mortar mix 

composition in ASTM C1260 compared to the fixed flow method [7,8], reduced variability due to 

difficulty in determining the surface saturated dry condition (SSD) of crushed aggregates or flow 

measurement [9], and the possible benchmarking to international research data [10] and international 

proficiency program [11].  

The procedure of Standard AS 1141.60.1 is adopted from the ASTM C1260. In a recent study, 

Fournier et al [11] investigated the proficiency of different AMBT test procedures, including the 

American ASTM, Canadian CSA and the European RILEM test methods. It should be taken into 

account that the test procedure for ASTM and CSA tests are similar. As can be seen from Table 1 

coefficients of variation of AMBT methods showed lower variation in the 14 days expansion for the 

ASTM + CSA methods compared to the RILEM test results; however, similar variations in the 28 days 

expansion were observed for all three test methods. By considering the 10 and 21 days limits for 



 

2 

 

measuring the expansion of mortar samples in AS 1141.60.1, the outcome of Fournier et al 

investigation well support the adoption of ASTM procedure.  

 

Table 1: Statistical analysis of different accelerated mortar bar test [11] 

Test age Method of testing 
Number of 

results 
Mean 
[%] 

Standard 
deviation 

Coefficient of 
variation [%] 

Min 
[%] 

Max 
[%] 

14 
days 

ASTM 26 0.375 0.043 11.6 0.307 0.486 

CSA 24 0.374 0.055 14.8 0.206 0.451 

ASTM + CSA 50 0.375 0.049 13.1 0.206 0.486 

RILEM 3 0.291 0.071 24.5 0.230 0.369 

28 
days 

ASTM 26 0.591 0.067 11.3 0.450 0.725 

CSA 24 0.571 0.064 11.2 0.470 0.700 

ASTM + CSA 50 0.582 0.066 11.3 0.450 0.725 

RILEM 3 0.547 0.065 11.9 0.500 0.621 

 
In addition, Thomas and Innis [12] stressed the usefulness of various tests may be judged on the 

basis of the ease of testing, the repeatability or precision of the outcomes, the time taken to complete 

the test and , ultimately, the ability of the test to predict behaviour in the field. 

Concrete prism test (CPT) is considered a more reliable test method than the accelerated mortar bar 

tests by literature. The reason why CPT test may provide a better measure for determining ASR 

compared to the AMBT test is that the CPT test samples are prepared by concrete mix, and kept in 

less aggressive conditioning and lower temperature for a longer period of time. Moreover, CPT 

samples are larger in size (normally in the size of 75 x 75 x 285 mm). Another difference between CPT 

and AMBT test is related to the procedure of providing the available alkali for ASR reaction. While in 

the AMBT test mortar bars are kept in NaOH solution whereas in the CPT test the alkali content  in the 

concrete was arbitrary raised during mixing. For example the ASTM C1293 test measures the 

expansion of concrete prisms with a cement content of 420±10 kg/m³ and a dry mass of coarse 

aggregate per unit volume of concrete equal to 0.70±0.02 of its dry-rodded bulk density with a water to 

cementitious material ratio (w/cm) of 0.42 to 0.45 by mass. The cement has a total alkali content of 

1.25% of Na₂Oeq equivalent by mass of cement. Specimens are placed in a container stored in a 

38.0±2°C. Expansion measurements are performed up to 52 weeks for CPT samples. In addition, for 

samples prepared with supplementary cementitious materials (SCMs) to mitigate potential ASR, it is 

recommended in CSA to extend the test duration up to 104 weeks. Standard AS 1141.60.2 is adopted 

from ASTM C 1293 [13] procedure however there are differences in the interpretation of test results 

between both standards. 

Field testing (Outdoor exposure) provides the most realistic condition for ASR testing. The outdoor 

exposure can simulate the temperature and moisture cycling. In addition, by conducting field tests, 

samples with larger dimensions can be casted that are closer to the scale of real structures. In 

addition, outdoor samples can be evaluated for longer periods of time (5 to 20 years).  

It is implied by the literature [14] that the best method to determe whether an aggregate is potentially 

reactive or innocuous is to study the history of aggregates field performance.  An aggregate can be 

used in concrete provided that satisfactory field performance was achieved and the cement content 

(the total alkali content of the cement) should be the same or higher in the field concrete than that 

proposed in the new structure. The outdoor field exposed concrete should be at least 10 years old. In 

addition, the exposure conditions of the field concrete should be at least as severe as those in the 

proposed structure [14]. 

2. Performance Limits 

In both the AMBT and CPT methods, expansion limits after a particular period are used to 

indicate/classify the potential reactivity of aggregates tested. These expansion performance limits 

were derived from research and field experiences with the use of a wide range of aggregates. 

2.1. Accelerated Mortar Bar Test (AMBT) 



 

3 

 

Shayan and Morris [7] compared accelerated mortar bar expansion of 18 aggregates of known service 

record, based on the RMS T363 and ASTM C1260, and found lower expansion of the RMS mortars 

than the corresponding ASTM mortars for reactive aggregates. The lower expansion of the RMS 

mortars might be due to the lower water/cement ratio in the range of 0.40-0.42 in RMS T363 

compared to 0.47 used in the ASTM method. The mortar bar expansions are similar for the less 

reactive aggregates possibly because they consume less alkali and are not affected by the differences 

in supply of alkali in the two methods. They found both test methods and their corresponding 

expansion limits to be capable of assessing the alkali reactivity of non-reactive or very reactive 

aggregates. However for slowly reactive aggregates, both methods can be used provided that the 

RMS expansion limits, reproduced in Table 2, are used to interpret the reactivity of the aggregates. 

It was also found that the two methods would produce similar assessments for the effectiveness of fly 

ash in controlling ASR expansion for all except the very reactive aggregates. For such reactive 

aggregates, both methods could be used to obtain expansion curves but the RTA limits were 

recommended for the interpretation of the adequacy of the amount of fly ash used in controlling the 

expansion. 

 
Table 2: Aggregate reactivity classification in accordance with RTA T363 [7] 

Mortar Bar Expansion in 1M NaOH (80°C) [%]  
Classification 

10 days 21 days  

< 0.10* < 0.10*  Non-reactive 

< 0.10* ≥ 0.10*  Slowly reactive 

≥ 0.10* (much greater than) ≫ 0.10*  Reactive 

* For naturally occurring fine aggregates the limit is 0.15% 

 

The non-mandatory appendix in ASTM C1260 provides guidance to the interpretation of test results 

with the following expansion limits: 14-day expansions of less than 0.10% to be indicative of 

―innocuous‖ behaviour whereas 14-day expansions of more than 0.20% are indicative of ―potentially 

deleterious‖ expansion. Aggregates with 14-day expansions between 0.10% and 0.20% are known to 

be innocuous and deleterious in field performance, and supplemental information in the form of 

petrographic examination or identification of alkali reaction products in specimens after tests, or field 

service record can be used in the assessment of the performance. It is noted in the same appendix 

that some granitic gneisses and metabasalts have been found to be deleteriously expansive in field 

performance, even though, their expansion in the test was less than 0.10%. 

 
Table 3 Comparison of ASTM and AS mortar bar expansion limits 

ASTM C1260  AS 1141.60.1 

Interpretation 14 days  Classification 10 days 21 days 

Innocuous < 0.10%  Non-reactive - < 0.10% 

Uncertain 0.10 to  0.20%  Slowly reactive < 0.10% < 0.30% 

Potential deleterious ≥ 0.2*%  Reactive ≥ 0.10%          or         ≥ 0.30% 

 

ASTM C1260 performance limits are compared with the Australian Standard AS 1141.1 limits in Table 

3. The AS 1141.60.1 classifies aggregates with 21-day expansion below a lower limit of 0.10% to be 

non-reactive, and those with 10-day expansion equal or greater than the lower limit of 0.10% or 21-

day expansion equal or greater than the upper limit of 0.30% to be reactive. For aggregates with 10-

day expansion below the lower limit of 0.10% but 21-day expansion equal to or exceeding the lower 

limit of 0.10% but not exceeding the upper limit of 0.30% to be a ―slowly reactive‖ aggregate. Note that 

the lower limit applicable to natural sand is 0.15%. 

2.2  Concrete prism method (CPT) 

The non-mandatory ASTM appendix states that an aggregate might reasonably be classified as 

potentially deleteriously reactive if the average expansion of three concrete specimens is equal to or 

greater than 0.04% at one year. CSA indicated similar 0.04 expansion for determining ASR however, 
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compared to the non-mandatory ASTM approach CSA has a more definitive approach  (ASTM C1293 

[13], CSA A23.2-27A-02 [15]). It is also suggested in CSA A23.2-28A-02 that the amount of pozzolan 

or slag used in combination with an aggregate is a least the minimum needed to prevent excessive 

expansion in field concrete if the average expansion is less than 0.04% at two years [16]. Similarly, the 

Standard ASTM C1293 confirmed the two years test duration. 

In Australia, Standard AS 1141.60.2 uses essentially the same concrete mix proportion and test 

method as the ASTM C1293 but classifies an aggregate with a prism expansion of less than 0.03% at 

52 weeks as ―non-reactive‖ and an aggregate with a prism expansion equal to or greater than 0.03% 

at 52 weeks as ―potentially reactive‖. The lower expansion limit is considered more conservative as it 

was adopted from the RMS T364 which tests concrete with a higher adjusted cement alkali of 1.38% 

of Na₂Oeq equivalent. For mitigation, the standard does not state any particular limit but refer to 

classification contained in the supply agreement. 

2.3  Hierarchy of test methods 

There has been no agreed hierarchy of the two Australian Standard test methods. RMS T363 noted 

that some glassy basalt may cause excessive mortar bar expansion, due to the production of fine 

glassy particles in the fine aggregate grading required for mortar bars. The reactivity of coarse 

aggregate of the same source needs to be verified, because the glassy phase within compact coarse 

basalt aggregates may not be accessible to alkali and may not cause excessive concrete expansion. 

Concrete prism tests in accordance with RMS T364 or concrete block tests may be required for this 

purpose. 

3. Australian and International Research 

3.1  Consistency of AMBT & CPT reactivity classification 

3.1.1 Improved AMBT performance limits in AS 1141.60.1 

Table 4 presents alkali-silica reaction data from the investigation conducted by Stark [17]. ASTM 

C1260 limits were applied to check the potential alkali-silica reactivity of aggregates within two weeks. 

According to the ASTM C1260 limits, aggregates showing 14-day expansions exceeding 0.1% should 

be classified as being potentially deleterious aggregates and were labelled ―reactive‖ in Table 4. 

Moreover, aggregates that showed 14-day expansions lower than 0.1% were classified as 

―innocuous‖.  

Table 4 Comparison of ASTM and AS mortar bar expansion  

ID Rock type Field Performance 
Expansion ASTM 

1260 
AS 

1141.60.1 10 Days 14 Days 21 Days 

1 Granitic Volcanic Reactive 0.713 0.867 1.035 Reactive Reactive 

2 Granitic Volcanic Reactive 0.375 0.424 0.5 Reactive Reactive 

3 Argillite Reactive 0.354 0.418 0.511 Reactive Reactive 

4 Chert, Quartzite Reactive 0.328 0.409 0.515 Reactive Reactive 

5 Chert, Quartzite Reactive 0.246 0.314 0.416 Reactive Reactive 

6 Granitic Gneiss Reactive 0.239 0.309 0.385 Reactive Reactive 

7 Quartzite Reactive 0.17 0.225 0.312 Reactive Reactive 

8 Chert, Quartzite Reactive 0.116 0.177 0.27 Uncertain Reactive 

9 Chert, Quartzite Reactive 0.073 0.106 0.142 Uncertain Slow-Reactive 

10 Granitic Gneiss Reactive 0.065 0.096 0.132 Innocuous Slow-Reactive 

11 Granitic Gneiss Reactive 0.064 0.086 0.124 Innocuous Slow-Reactive 

12 Metavolcanics Reactive 0.052 0.082 0.115 Innocuous Slow-Reactive 

13 Limestone Innocuous 0.029 0.026 0.035 Innocuous Innocuous 

14 Dolomite Innocuous 0.066 0.066 0.077 Innocuous Innocuous 

15 Gabbro Innocuous 0.029 0.044 0.066 Innocuous Innocuous 

16 Mixed Siliceous Innocuous 0.181 0.278 0.329 Reactive Reactive 

17 Gabbro Innocuous 0.061 0.075 0.157 Innocuous Slow-Reactive 

The last column demonstrates the interpretation of the results based on the Australian Standard 

criteria. As can be seen, the AS 1141.60.1 limits provided a significant better understanding of the 

aggregates performance. ASTM C1260 failed to provide the correct interpretation for the performance 
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of aggregates No 8 to 12. However, the Australian Standard criteria showed the reactivity of those 

aggregates and classified them as ―reactive‖ or ―slow-reactive‖. Overall, the ASTM C1260 limit failed to 

classify 6 aggregates correctly out of the total 17 tested aggregates (aggregate no 8-12 and 16). On 

the contrary, the Australian limits failed to provide a correct performance only for two aggregates (no 

16 and 17). From the given data, it is found that the Australian limits provided a more accurate 

understanding of the aggregates ASR performance.  

Table 5 presents another set of data from the research conducted by Touma in The University of 

Texas at Austin [14]. Datasets presented in Table 5 includes mortar and concrete expansion test in 

accordance with the ASTM C1260 and C1293, respectively. Tests were conducted to evaluate 15 

types of aggregates while the field performances of aggregates were known. As can be seen from 

Table 5 the ASTM C1260 (mortar test) failed to provide the correct interpretation for the performance 

of aggregates (8, 9, 10, 12 and 14). However, the Australian Standard criteria indicated a correct 

reactivity performance for some of those aggregates and classified them as ―reactive‖ or ―slowly-

reactive‖. Overall, the ASTM C1260 limit failed to classify 6 aggregates correctly out of the total 15 

tested aggregates. In contrast, the Australian limits failed to provide a correct performance for only two 

aggregates (No 12 and 14). From the given data it is concluded that the Australian limits for mortar 

test provide a more reliable understanding of aggregates ASR performance.  

 

 Table 5 Comparison of ASTM and AS mortar bar and concrete prism expansion  

ID Aggregate 

Expansion [%] 
Field 

Performance 

Classification 

Mortar Concrete 
52-week 

ASTM 
C1260 

AS 
1141.60.1 

ASTM 
C1293 

AS  
1141.60.2 11-day 14-day 21-day 

1 Rhyolite 0.21 0.24 0.31 0.073 Reactive Reactive Reactive Reactive Reactive 

2 Rhyolite 0.27 0.29 0.34 0.107 Reactive Reactive Reactive Reactive Reactive 

3 Quartzite, sandstone, limestone 0.75 0.79 0.89 0.379 Reactive Reactive Reactive Reactive Reactive 

4 Rhyolite, andesite 0.83 0.91 1.04 0.411 Reactive Reactive Reactive Reactive Reactive 

5 Argillite 0.28 0.31 0.39 0.085 Reactive Reactive Reactive Reactive Reactive 

6 Pink granite, quartz, chert 0.23 0.28 0.39 0.051 Reactive Reactive Reactive Reactive Reactive 

7 Quartz, chert 0.19 0.26 0.40 0.043 Reactive Reactive Reactive Reactive Reactive 

8 Feldspar, quartz,  chlorite 0.09 0.11 0.16 0.046 Reactive Uncertain Slowly-Reactive Reactive Reactive 

9 Quartz, granitic rock 0.11 0.15 0.25 0.040 Reactive Uncertain Reactive Reactive Reactive 

10 Quartzite, pyroxene, sericite 0.14 0.17 0.24 0.053 Reactive Uncertain Reactive Reactive Reactive 

11 Dolomite 0.02 0.02 0.03 0.022 Innocuous Innocuous Innocuous Innocuous Innocuous 

12 Glacial deposit, shale 0.38 0.25 0.44 0.025 Innocuous Reactive Reactive Innocuous Innocuous 

13 Natural siliceous and glassy 0.18 0.25 0.34 0.060 Reactive Reactive Reactive Reactive Reactive 

14 Natural siliceous 0.20 0.42 0.53 0.022 Innocuous Reactive Reactive Innocuous Innocuous 

15 Rhyolite, andesite 0.33 0.36 0.46 0.064 Reactive Reactive Reactive Reactive Reactive 

 

3.1.2 Consistency of both CPT classifications with field performance 

The concrete prism test results for expansion of prisms in 52 weeks showed the ASTM C1293 criterion 

could accurately decide on the reactivity performance of aggregates. Using the ASTM C1293 0.04% 

expansion limit, all 15 aggregates were classified correctly regarding their performance. Similarly, the 

Australian Standard AS 1141.60.2 limit provided correct reactivity performance for all the aggregates. 

Results showed that there is no difference in the outcome of using the AS 1141.60.2 expansion limit 

(0.03 expansion over 52 weeks) and the ASTM C1293 expansion limit (0.04 expansion over 52 

weeks). In addition, the assessment of data indicated a more reliable outcome for concrete prism test 

compared to the mortar bar test for both ASTM and the Australian test methods. 

3.1.3 Relative value of AMBT and CPT methods 

It is reported by Lane [18] that Alkali-silica reaction has been a major cause of the deterioration for 

several concrete structures in Virginia. Lane examined the occurrence of the reaction in several 

Virginia structures. Table 6 summarised the reactivity performance for the 13 aggregates. As can be 

seen the aggregate evaluation based on the ASTM C1260 provided a correct decision on reactivity of 

some of the aggregates. 
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Table 6 Comparison of ASTM mortar bar expansion and field performance 

ID Rock Type Field Performance 
Expansion 
14 Days 

ASTM 
1260 

1 Dolomitic Limestone Undetermined 0.23 Reactive 

2 Argillaceous Dolomite Innocuous 0.09 Innocuous 

3 Diabase Innocuous 0.13 Reactive 

4 Quartzose Sand Undetermined 0.09 Reactive 

5 Quartzose Gravel Undetermined 0.12 Reactive 

6 Quartzose Sand Reactive 0.19 Reactive 

7 Quartzose Gravel Reactive 0.32 Reactive 

8 Metarhyolite Reactive 0.39 Reactive 

9 Qartzite Undetermined 0.30 Reactive 

10 Acrch Marble Calc Chist Reactive 0.17 Reactive 

11 Granite Gneiss Suspected 0.17 Reactive 

12 Granite Gneiss Reactive 0.07 Reactive 

13 Greenstone Metabasalt Reactive 0.08 Reactive 

 

Except for aggregate No 3 there is no disagreement between the field performance and ASTM C1260 

mortar test results. For some aggregates with unknown field performance, ASTM C1260 classified 

them as ―reactive‖. However, the only notable drawback from the ASTM C1260 test is that it is 

significantly conservative and as can be seen from Table 6 ASTM C1260 labelled performance of the 

most unknown aggregates as ―reactive‖. 

The National Aggregate Association (NAA) performed the ASTM C1293 and ASTM C1260 tests on 

several aggregates. Results of this testing program was reported by Touma  [14]. As can be seen from 

the listed results in Table 7 there is no strong correlation between the outcome of ASTM C1260 and 

C1293. For 12 aggregates, results of ASTM C1260 test could not confirm the evaluation of ASTM 

C1293. In addition, for 8 aggregates there is a conflict between ASTM C1260 and C1293 

interpretation. It is noted that the interpretation of test results at 14 days resulted in a conservative 

interpretation and led to labelling several aggregates as ―reactive‖. In addition, except for one 

aggregate (aggregate No 14), all other results showed that there is no difference in the outcome of 

using the AS 1141.60.2 expansion limit (0.03 expansion over 52 weeks) and the ASTM C1293 

expansion limit (0.04 expansion over 52 weeks). It can be noted that the lower expansion limit based 

on the Australian CPT method did not make difference in the interpretation of the test results. 

 
Table 7 Comparison of ASTM and AS mortar bar and concrete prism expansion  

ID Rock type 

Expansion [%]  Classification 

Mortar 
14 days 

Concrete 
1year 

 
ASTM 
C1260 

ASTM 
C1293 

AS 
1141.60.2 

1 Limestone 0.252 0.083  Reactive Reactive Reactive 

2 Siliceous, Dolomite 0.227 0.009  Reactive Innocuous Innocuous 

3 Dolomite, Siliceous 0.159 0.020  Uncertain Innocuous Innocuous 

4 Limestone 0.285 0.015  Reactive Innocuous Innocuous 

5 Limestone 0.335 0.070  Reactive Reactive Reactive 

6 Siliceous 1.061 0.196  Reactive Reactive Reactive 

7 Limestone 0.041 0.016  Innocuous Innocuous Innocuous 

8 Siliceous 0.210 0.012  Reactive Innocuous Innocuous 

9 Siliceous 0.139 0.018  Uncertain Innocuous Innocuous 

10 Siliceous 0.250 0.012  Reactive Innocuous Innocuous 

11 Siliceous 0.678 0.026  Reactive Innocuous Innocuous 

12 Siliceous 1.072 0.016  Reactive Innocuous Innocuous 

13 Siliceous 0.080 0.008  Innocuous Innocuous Innocuous 

14 Dolomite, Limestone, Siliceous 0.154 0.038  Uncertain Innocuous Reactive 

15 Siliceous 0.279 0.007  Reactive Innocuous Innocuous 

16 Siliceous 0.316 0.005  Reactive Innocuous Innocuous 
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A research conducted by Berube [19] showed that even though the AMBT test was capable of 

detecting numerous of reactive aggregates, it was too severe for many aggregates that have 

performed well when tested using the concrete prism method and that have performed well in the field.  

Accordingly, it is stated that the ASTM C1260 should not be applied for rejecting aggregates.  

3.1.4 Effect of different performance limits in AS 1141.60.2 and ASTM C1293 

Test results from Berube [19] investigation are presented in Table 8. It can be seen that the ASTM 

C1293 CPT could accurately predict the field performance of reactive aggregates. In addition, except 

for one aggregate (aggregate No 9) there is no conflict between the interpretation of AS 1141.60.2 and 

ASTM 1293. This outcome confirm the fact that the AS 1141.60.2 lower limit provides no difference in 

the interpretation of test results. 

 

Table 8 Comparison of ASTM (CSA) and AS mortar bar and concrete prism expansion  

ID Aggregate type 
Field 

performance 

Expansion [%]  Classification 

AMBT 
14 days 

CPT 
52 weeks 

 
ASTM 
1260 

ASTM 
1293 

AS 
1141.60.2 

1 Andes i te Innocuous 0.26 0.02  Reactive Innocuous Innocuous 

2 Anorthosite Innocuous 0.04 0.02  Innocuous Innocuous Innocuous 

3 Basalt Innocuous 0.03 0.01  Innocuous Innocuous Innocuous 

4 Charnockite Innocuous 0.02 0.01  Innocuous Innocuous Innocuous 

5 Hornfel Innocuous 0.22 0.02  Reactive Innocuous Innocuous 

6 Hornfel Innocuous 0.23 0.01  Reactive Innocuous Innocuous 

7 Diorite Innocuous 0.02 0.01  Innocuous Innocuous Innocuous 

8 Gabbro Innocuous 0.20 0.02  Uncertain Innocuous Innocuous 

9 Granitic gneiss Innocuous 0.05 0.03  Innocuous Innocuous Reactive 

10 Granite Innocuous 0.02 0.01  Innocuous Innocuous Innocuous 

11 Greywacke Innocuous 0.19 0.02  Uncertain Innocuous Innocuous 

12 Greywacke Innocuous 0.20 0.01  Uncertain Innocuous Innocuous 

13 Potsdam sandst Reactive 0.07 0.07  Innocuous Reactive Reactive 

14 Phonolite Innocuous 0.02 0.02  Innocuous Innocuous Innocuous 

15 Quartzite Innocuous 0.01 0.01  Innocuous Innocuous Innocuous 

16 Chloritic schist Reactive 0.19 0.05  Uncertain Reactive Reactive 

17 Siliceous shale Reactive 0.34 0.09  Reactive Reactive Reactive 

18 Syenite Innocuous 0.01 0.01  Innocuous Innocuous Innocuous 

19 Rhyolitic tuff Reactive 0.35 0.25  Reactive Reactive Reactive 

20 Rhyolitic tuff Reactive 0.25 0.09  Reactive Reactive Reactive 

21 Rhyolitic tuff Reactive 0.27 0.05  Reactive Reactive Reactive 

22 Granitic sand Innocuous 0.02 0.01  Innocuous Innocuous Innocuous 

23 Lithic gravel/sand Innocuous 0.26 0.02  Reactive Innocuous Innocuous 

24 Carb sandstone Innocuous 0.12 0.02  Uncertain Innocuous Innocuous 

 

Figure 1 is plotted based on the shown data in Table 8. It shows the effectiveness of the CPT results 

compared to AMBT results. CPT recognised most of the known reactive aggregates (aggregates Nos 

13, 16, 17, 19, 20 and 21 are reactive based on field performance), however, it did not misclassify 

other ―innocuous‖ aggregates as ―reactive‖.  

it can be seen that the AMBT has a conservative and incorrect interpretation for some aggregates 

such as No 1, 5, 6 and 23 which resulted in classifying these aggregates as ―reactive‖, while they are 

not reactive. On the other hand, the grey highlighted area of Figure1 implies that most of the 

aggregates classified ―uncertain‖ were ―innocuous‖, except for aggregate No 16. Moreover, aggregates 

No 13 labelled innocuous by AMBT test while it is a reactive aggregate based on field performance and 

CPT results. Although AMBT is not a time-consuming test compared to the CPT, it is a good measure 

only for highlighting the innocuous aggregates. AMBT is conservative and due to the aggressive 

nature that this test has, it labels some innocuous aggregates as ―reactive‖ or ―uncertain‖, accordingly, 

no aggregate is suggested to be rejected by this test. It is suggested that the complementary CPT 

data could provide a more reliable understanding of aggregates reactivity. Another shortcoming of the 

ASTM AMBT test is the 14-day limits. These limits could not provide any clear classification for several 
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numbers of aggregates. In that case, other testing methods such as CPT or field data would be 

required for a reliable decision-making.  

 
Figure1: CPT vs AMBT test results [19]  

Ideker et al. [10] recently reported expansion data of ASTM C1260, ASTM C1293 and exposure 

concrete blocks made from 8 fine aggregates and 17 coarse aggregates as presented in Table 9. The 

mortar bar and concrete prism results were calibrated to those obtained from the large 710x380x380 

mm concrete blocks exposed outdoor at the University of Texas in Austin. 

 

Table 9  Comparison of ASTM, AS, and exposure block results 

ID Mineralogy 

Expansion [%]  Classification 

AMBT 
14-day 

CPT 
1-year 

Field block 
Exposure² 

 
ASTM 
1260 

ASTM 
1293 

AS 
1141.60.2 

Field 
Exposure 

F1¹ Mixed quartz/chert/feldspar 0.64 0.586 1.239  Reactive Reactive Reactive Reactive 
F2 Mixed quartz/chert sand 0.31 0.119 0.991  Reactive Reactive Reactive Reactive 
F3 Quartz sand 0.29 0.057 0.487  Reactive Reactive Reactive Reactive 
F4 Quartz 0.28 0.059 0.575  Reactive Reactive Reactive Reactive 
F5 Quartz 0.17 0.038 0.333  Uncertain Reactive Innocuous Reactive 
F6 Tan dolomite carbonate 0.02 0.014 -  Innocuous Innocuous Innocuous Reactive 
F7 Mixed quartz/chert sand 0.29 0.207 1.363  Reactive Reactive Reactive Reactive 
F8 Mixed sand/gravel 0.29 0.111 0.582  Reactive Reactive Reactive Reactive 
C1 Chert & quartzite 0.02 0.129 0.212  Innocuous Reactive Reactive Reactive 
C2 Tan dolomite carbonate 0.33 0.112 0.315  Reactive Reactive Reactive Reactive 
C3 Limestone 0.11 0.055 0.141  Uncertain Reactive Reactive Reactive 
C4 Tan dolomite (marble) 0.14 0.020 0.119  Uncertain Innocuous Innocuous Reactive 
C5 Mixed quartz/chert 0.09 0.085 0.133  Innocuous Reactive Reactive Reactive 
C6 Tan dolomite (marble) 0.02 0.006 -  Innocuous Innocuous Innocuous Reactive 
C7 Limestone 0.37 0.204 0.379  Reactive Reactive Reactive Reactive 
C8 Mixed mineralogy gravel 0.31 0.144 0.368  Reactive Reactive Reactive Reactive 
C9 Chert 0.0 0.149 0.212  Innocuous Reactive Reactive Reactive 
C10 Rhyolite volcanic rocks 0.82 0.159 0.421  Reactive Reactive Reactive Reactive 
C11 Granodiorite & metadacite 0.08 0.086 0.220  Innocuous Reactive Reactive Reactive 
C12 Quartzite 0.14 0.163 0.183  Uncertain Reactive Reactive Reactive 
C13 Quartzite 0.12 0.098 0.271  Uncertain Reactive Reactive Reactive 
C14 Granite & quartzite gravel 0.23 0.097 0.294  Reactive Reactive Reactive Reactive 
C15 Rhyolite/mixed quartz 0.40 0.158 0.191  Reactive Reactive Reactive Reactive 
C16 Granite, meterhyolite 0.06 0.047 0.056  Innocuous Reactive Reactive Reactive 
C17 Greywacke 0.44 0.162 0.225  Reactive Reactive Reactive Reactive 
¹ F= fine aggregate and C= Coarse aggregates, ² Na₂Oeq=1.25 
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It was found that the AMBT was a good indicator of reactivity of some aggregates; however, the 

concrete prism test could provide a more reliable evaluation of the most aggregates. In some cases, 

the results from the CPT disagreed with those from the AMBT. Ideker indicated that in no reported 

cases of deleterious expansion in the field, concretes containing aggregates that have passed the 

ASTM C1293 [10]. This evidence supports the better correlation between the reactivity diagnosed by 

CPT and reactivity in field exposure. 

It is possible to re-evaluate the expansion data based on the performance criteria recommended in 

AS1141.60.2. It was found that except for aggregate No F5, the proposed AS1141.60.2 would have 

classified all aggregate in a similar classification. However, the lower of the CPT limit from 0.04% to 

0.03% would have made no different to the prediction. The results do not support the use of the lower 

0.03% limit in the draft AS1141.60.2. They also show the exposure blocks to be a very useful 

calibration tool for the laboratory test methods. 

3.2  Australian (AS) classification 

In Australia, Shayan [20] tested five Australian aggregates with field evidence to be slowly-reactive 

using two accelerated mortar bar test methods. The ASTM C1260 classes them as non-reactive or 

uncertain while the RTA T363 correctly classified such aggregates as slowly-reactive aggregates. It 

was suggested that the Australian acceptance limit of <0.1% expansion at 21 days of storage in 1 M 

NaOH solution at 80ºC be adopted by ASTM C1260 or that its 14-day expansion limit be lowered from 

0.10% to 0.08%. The 300mm cube blocks showed large expansion or map-cracking usually after more 

than 1 year of exposure.  

 

Table 10 Summary of data from Shayan [20] 

Structure Prism Expansion after 1 year Comments 

Australian Railway sleepers. Gneissic 
granite rocks which produced about 0.10% 
expansion at 21 days in the AMBT 

Prism in 50ºC in water 
0.06% with 1.4% alkali 
0.09% with 1.9% alkali 

300mm cube Block in 50ºC in water 
0.12% with 1.4% alkali 
0.18% with 1.9% alkali 

Canning dam, WA. Gneissic granite rocks Just >0.05% 
Blended cements: 44%HVFA, 42%FA/4.2%SF triple 
blend shown to reduce expansion below 0.04%. 

Dam 1 gneissic quartz gravel.  
Tests conducted on 3 reactive quartz 
gravels No 1-3 

No 1 just < 0.03%  
No 2 & 3 well < 0.03% 
RTA T363 classified 
aggregate 
 No 1-3 as reactive. 

Aggregate No 1 blocks in 38ºC in water showed low 
expansion at 1 year but increased significantly at 2 
years. 

Dam 2 gneissic granite containing strained 
and microcrystalline quartz. 

No CPT results. Reactive aggregate as tested by RTA T363. 

Dam 3 phyllite aggregate UY Prism 0.019% at 1 year 
410kg/m3 cement with 1.76% alkali Block 0.117% at 
1 year 

 

Accordingly, the one-year concrete prisms test duration might not be enough for classifying the 

aggregates and may need to be extended. Results of the prism tests and field performances are 

summarised in Table 10. Using supplementary cementitious materials (SCMs) in mix designs is a 

common practice nowadays.  It is important to take into account that the ASTM C1293 recommended 

to extend the CPT duration to two years when SCMs are applied for mitigating the ASR. The two 

years test duration provides a more reliable time framework for evaluating the effect of the mitigation 

on slowly-reactive or reactive aggregates. This duration is supported by the observations of Shayan 

[20]. 

3.3  Slowly reactive aggregates 

The term of slowly-reactive aggregate has been introduced since 90s and is extensively used through 

literature [7,17,19–26]. However, lack of an existing proper test method or test limits for detecting ASR 

is observed throughout previous studies. It is significantly important to apply a reliable ASR test 

method, which can provide expansion limits for classification of aggregates as ―non-reactive‖, ―slowly 

reactive‖ or ―reactive‖ [20].  
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Some studies have shown the field evidence regarding the inability of ASTM 1260 14-day limit 

(expansion greater than 0.10%) for detecting slowly-reactive aggregates [27]. The failure in detecting 

slowly-reactive aggregate could cause serious damage to concrete structures in long-term. In 

Australia, it is reported that metha-basats or granitic gneisses cause serious damage to major 

structures [20]. In addition, studies in the United States showed that the slowly reactive aggregates 

could pass the existing AMBT tests but result in failure in field structures. These aggregate mostly 

included quartzites, gneisses, and schists [17]. For this reason, the AMBT test needs to be revised 

when slowly reactive aggregates are tested [28]. 

The proposed procedure should be rapid, requiring preferably not more than 28 days. Also the 

procedure should reliably discriminate between innocuous and slowly reactive as well as highly 

reactive aggregates [17]. In one study, it is recommended to extend the AMBT test duration  up to 90 

days  and with the expansion limit of 0.20% to correctly classify the slowly-reactive aggregates [28]. 

Another suggested method is amongst the RILEM methods particularly the AAR-4 reactor method, 

which claimed to be as the proper method for identifying the reactivity of the slowly-reactive aggregate 

[23].  

The Standard AS 1141.60.1 applies new limits to detect the ―slowly-reactive‖ aggregates. The current 

CCAA research found numbers of aggregates as ―slowly-reactive‖. The clear limits of AS 1041.60.1 

classified these aggregate ―slowly-reacted‖ instead of classifying them as ―uncertain‖. The slowly 

reacted aggregates can be utilised in concrete production while the proper ASR mitigation such as 

addition of SCMs to mix design is selected. In the case of slowly-reacted detection, it is suggested by 

this paper that the mitigation solution be tested by conduction the AS 1141.60.2 over the period of 2 

years. This suggestion is supported by literature as it shown the CPT test could provide a more 

reliable performance of aggregates and the two years duration of testing will present if the applied 

mitigation is effective to control the prism expansion to lower than 0.03%. 

Test results proved that the proposed limits could distinguish between some innocuous and slowly-

reactive aggregates. The Australian test method limits will enable the designer and concrete producer 

to distinguish slowly-reactive aggregates and safely use them in mix design by including the proper 

mitigation strategy. This approach is more efficient in term of asset management and provides a wider 

access to resources (local aggregates), which guarantees a more sustainable production of concrete. 

It is suggested by this research that the Australian test framework needs to provide an agreed 

hierarchy of the two Australian Standard test methods. This can help resolving issues when there is a 

conflict between the AS 1141.60.1 AMBT and AS 1141.60.2 CPT classifications. 

4.  Conclusions 

Evaluation of the international and Australian test results by the Australian mortar bar (AS 1141.60.1) 

and concrete prism (AS 1141.60.2) tests support reliability of both tests for determining the alkali-silica 

reactivity (ASR) of most aggregates and can be actively used by local industry. 

Both the Australian and ASTM mortar bar tests are quick and reliable means for determining non-

reactive (innocuous) aggregates. However, the evaluation procedures of these test methods were 

found to be conservative and should not be applied for rejecting aggregates. In addition, international 

data for aggregates with known field reactivity showed that the Australian 1141.60.1 AMBT evaluation 

procedure is more reliable compared to the ASTM 1260 14-day limits. 

Literature showed that the concrete prism test (CPT) has a better correlation with the performance of 

aggregates in field. The majority of international data showed that for cases which there are conflicts 

between AMBT and CPT classifications, the recommended approach was to accept the CPT test 

results. In addition, literature indicated that the 1-year expansion duration may not be sufficient, 

especially if supplementary cementitious materials (SCMs) are used for mitigating the ASR. In this 

case, it is suggested to extend the duration concrete prism testing up to two years in AS 1141.60.2 

CPT test results indicated that there is no conflict between the Australian and ASTM CPT 

classifications. Although the Australian test procedure applies the lower 1-year expansion limit of 0.03, 
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however, there is no significant change observed in the outcomes of the both procedure. For this 

reason, it is suggested that the selected 1-year expansion limit of 0.03% may be increased to 0.04%.  

There is a need for an extensive examination of available Australian and International data so that an 

agreement can be reached on the hierarchy of the two Australian Standard test methods. This can 

help resolving issues when there is a conflict between the AS 1141.60.1 AMBT and AS 1141.60.2 

CPT classifications. 
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