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Abstract 

 

Bank regulators have worked to develop statistical models predicting bank failures, but 

such models cannot be estimated during periods of few failures.  We address this problem 

using an alternative approach, forecasting the leverage ratio as a continuous variable that 

avoids the small sample problem.  The leverage ratio is a natural choice in this setting 

both because of its historically consistent ability to predict failures and because of 

regulators’ primary focus on bank capitalization.  Our model selection draws on both the 

earlier literature and more recent stress-testing studies.  Out-of-sample performance 

shows promise as a supplement to the standard approach.  
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FORECASTING BANK LEVERAGE: 

AN ALTERNATIVE TO REGULATORY EARLY WARNING MODELS 

 

1.  Introduction 

 An extensive and long-established literature has attempted to utilize observable 

financial ratios to estimate the probability that a given bank will fail during a specified 

future period.  Regulatory agencies, in particular, have developed internal models for this 

purpose, usually intended to be re-estimated as new financial data become available (Cole 

et al., 1995; Jagtiani et al., 2003).1  While such models have generally performed well 

when estimated during periods of numerous bank failures, an inherent challenge to this 

approach is the small sample of bank failures observed during normal times.2  In many 

such cases, researchers and regulators are constrained to rely on outdated estimates, 

despite evidence that the statistical linkages vary over time (Shaffer, 2012).   

The recent financial crisis has intensified regulators’ need to explore improved 

methods for identifying banks at risk and in need of supervisory intervention.  Newer 

studies, some prompted by the Dodd-Frank Wall Street Reform and Consumer Protection 

Act of 2010 (Dodd-Frank), have introduced stress-testing models that attempt to improve 

on the earlier methods, both by exploring additional variables and by modeling a wider 

range of outcomes than explicit failure.  These models are categorized as either top-down 

(using only publicly available bank-level data) or bottom-up (using detailed account and 

loan-level data for each bank, available only to supervisory officials).  Examples include 

                                                 
1 Some regulatory models aim at forecasting a bank’s next examination rating or the probability that its 

current rating will be downgraded (Jagtiani et al., 2003). 

2 In the U.S., not a single bank failed during 2005-2006; see Table A1 in the Appendix.  Similarly, many 

other countries have far fewer banks than the U.S. and often experience years with no bank failures. 
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Covas et al. (2014), Hirtle (2015), and Kapinos and Mitnik (2015).   

 This paper explores an approach that is not subject to the small sample problem 

and hence can be applied during any period.  Instead of estimating a logit or probit model 

to forecast the event of failure, as is commonly done, we estimate banks’ equity/asset 

ratios as a continuous variable.  Estrella et al. (2000) and Jagtiani et al. (2003) 

recommend using this ratio as a supervisory tool to identify banks in need of intervention, 

and bank regulation both in the U.S. and throughout the range of nations adhering to the 

Basel accords focuses on variations of this ratio as a primary regulatory instrument.  

Nevertheless, no previous study appears to have adopted our approach; the recent stress-

test studies have focused on other outcomes, such as net charge-off rates and components 

of pre-provision net revenue (Covas et al, 2014; Hirtle et al., 2015; Kapinos and Mitnik, 

2015).  Out-of-sample performance during the current century suggests reasonable 

potential for this method to complement the standard approach, especially when applied 

to selected quantiles of the weakest banks. 

Moreover, we document instability of the estimated coefficients over time as well 

as deterioration of predictive power over longer horizons, consistent with theoretical 

expectations and with prior empirical findings for failure forecasts, thereby confirming a 

need to re-estimate such models as new data become available.  This finding reinforces 

the need for an approach such as ours that can always be re-estimated and is not subject 

to small sample problems. 

 The remainder of this paper is organized as follows.  The next section discusses 

the conceptual background, related literature, and our empirical model.  Section 3 

characterizes our sample and reports within-sample regression estimate.  Section 4 
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extends the analysis to out-of-sample forecast accuracy, Section 5 presents several 

robustness checks and extensions, while Section 6 concludes. 

 

2.  Background and Empirical Design 

 Statistical models to predict bank failures have a long history dating back at least to 

Meyer and Pifer (1970), Martin (1977), Santomero and Vinso (1977), and many others.  The 

most common approach is to estimate a logit or probit model in which the dependent 

variable is a binary indicator of whether each bank failed during the chosen forecast horizon 

(generally one or two years) and the regressors are a vector of observable bank-specific 

financial ratios.3  The study most closely related to ours is by Jagtiani et al. (2003), who 

estimate logit and trait recognition models to predict the probability that a bank’s ratio of 

equity to assets would fall below 5.5 percent by the end of the following year.  Unlike our 

approach, however, their discrete distress model exhibits a similar vulnerability to small 

samples as logit failure models.4 

 The starting point for our model is a vector of observable financial ratios that 

numerous prior studies have shown to be related to a bank’s probability of subsequent 

failure, as listed in Table 1 and discussed below.5  As indicated in the table, recent top-

down stress-test models have also included most of these variables as regressors.  

Because the event of a bank’s failure or insolvency is closely linked to, or even defined 

                                                 
3 Some studies such as Wheelock and Wilson (2000) estimate a time-to-failure or proportional hazard 

model, and a few have explored the potential for macroeconomic variables, market information, or 

confidential examination ratings to improve the model’s performance. 

4 Because of this, Jagtiani et al. restricted their sample period to 1988-90 “in order to have a sufficient 

number of problem banks in the sample.”  Similarly, the Federal Reserve’s SEER Risk Rank model uses 

probit analysis to estimate the probability that a bank would fail or become critically undercapitalized 

during the following two years (Cole et al., 1995; Jagtiani et al., 2003). 

5 The variables in our initial list are not the only variables previously included in early warning models, but 

have the distinction of a robust track record in such studies.  In the table, the signs in parentheses denote the 

sign of the anticipated regression coefficient predicting subsequent equity/assets, as discussed below. 
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by, depletion of the bank’s equity capital, we should expect on theoretical grounds that 

variables found accurate in predicting insolvency should generally predict capitalization, 

and vice versa, where the sign of impact on the probability of failure has the opposite sign 

as the impact on equity/assets.  Consistent with this reasoning, specific theoretical 

linkages between certain regressors and equity capital support those regressors’ inclusion 

in a model of capitalization, as clarified below. 

 We then explore the potential for additional variables from the newer stress-test 

studies to improve the predictive performance of our model.  These variables include 

both bank-level and macroeconomic variables, as summarized in Table 2.   Our use of 

macroeconomic variables differs from that of the stress-test models in that we aim to 

characterize outcomes conditional on contemporaneous values of relevant 

macroeconomic measures, whereas stress-testing methods mandated by Dodd-Frank seek 

to characterize outcomes conditional on particular macroeconomic scenarios specified by 

the analyst or regulator.6  Our approach is complementary to those stress-testing methods, 

in that future crises may occur under different macroeconomic conditions than in the 

most recent crisis or than postulated by regulators, and serves as something of a 

conceptual bridge between stress-testing and the Basel capital regulations.7   

We test these variables stepwise both in-sample and out-of-sample to identify a 

robust subset of variables associated with subsequent leverage ratios, leading to two 

preferred models, which we call our Risk1 and Risk2 models; both of these models form 

                                                 
6 Also, our sample is much larger than the top-down stress-testing models:  Covas et al. (2014) studied 15 

large bank holding companies, Kapinos and Mitnik (2015) studied 156 large banks, and Hirtle et al. (2015) 

studied the 200 largest bank holding companies. 

7 Moreover, because macroeconomic conditions respond to the aggregated actions of financial institutions, 

it is formally inconsistent to assume particular values of macroeconomic variables independently of the 

underlying bank-level conditions. 
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the focus of our subsequent analysis.  Finally, because banks make strategic decisions 

(sometimes subject to regulatory constraints) when paying dividends, issuing new stock, 

or buying back their own stock – actions that directly affect subsequent capitalization 

levels – we estimate a model in which these variables augment our Risk1 model.8 

The current ratio of equity to assets has been found to be negatively associated 

with the probability of subsequent failure, either alone or in combination with other 

financial ratios (Cole and Gunther, 1995; Wheelock and Wilson, 2000; Estrella et al., 

2000; DeYoung, 2003).  We expect this variable to be positively related to the one-year-

ahead equity/asset ratio because most of the remaining regressors theoretically should 

influence changes from the existing level of leverage, rather than its absolute level.  

Recent top-down stress-test studies such as Kapinos and Mitnik (2015) likewise estimate 

dependent variables as a function of their own lag plus one or more other regressors.   

 Return on assets, which is the ratio of net income to assets, has been found to be 

negatively associated with the risk of subsequent failure (Thomson, 1991; Cole and 

Gunther, 1995; Wheelock and Wilson, 2000; DeYoung, 2003) as well as with other 

financial outcomes such as net charge-off rates and components of pre-provision net 

revenue (Covas et al, 2014; Hirtle et al., 2015; Kapinos and Mitnik, 2015).  Because net 

income can increase retained earnings (thus boosting equity/assets, ceteris paribus) while 

losses reduce retained earnings (thus reducing equity/assets, ceteris paribus), we similarly 

expect that the return on assets is positively associated with the subsequent equity ratio. 

 Various measures of credit risk, such as the ratio of net chargeoffs to total loans or 

the ratio of nonperforming loans to total loans, have been found positively associated with 

                                                 
8 We are grateful to an anonymous referee for this suggestion.  We apply this extension to our Risk1 model 

because of its superior out-of-sample performance compared to the Risk2 model, as described below. 
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risk of failure (Kolari et al., 2002) and with other financial outcomes such as components 

of pre-provision net revenue (Covas et al, 2014; Hirtle et al., 2015; Kapinos and Mitnik, 

2015).  The ratio of nonperforming loans to total loans, a more forward-looking measure 

than net chargeoffs, has been used in Cole and Gunther (1995), Wheelock and Wilson 

(2000), and Cole and White (2012).  Because nonperforming loans and chargeoffs require 

banks to replenish their allowance for loan and lease losses (ALLL) – thus reducing net 

earnings, retained earnings, and equity capital – we expect these ratios to be negatively 

related to subsequent equity ratios.  As noted below, after testing variations of these 

measures, our preferred models use the ratio of nonperforming loans to ALLL, which 

proves more sensitive than the ratio of nonperforming loans to assets or to total loans.9   

 The ratio of operating expenses to assets can be interpreted as a measure of 

management efficiency and has been found to be positively associated with risk of failure 

(Espahbodi, 1991; Fuller and Kohers, 1994; DeYoung, 2003) and with other financial 

outcomes such as net charge-off rates and components of pre-provision net revenue 

(Covas et al, 2014; Hirtle et al., 2015; Kapinos and Mitnik, 2015).  Ceteris paribus, higher 

operating expenses (or any of its components) should reduce net income, retained earnings, 

and hence equity.   Thus, higher operating expenses (total or by component) should be 

associated with lower subsequent equity ratios.  The ratio of total loans to assets is 

inversely related to liquidity but positively related to portfolio credit risk and probability of 

failure (Espahbodi, 1991; Thomson, 1991; Wheelock and Wilson, 2000; DeYoung, 2003) 

and potentially with reduced subsequent equity ratios.10  

                                                 
9 The authors are grateful to an anonymous referee for suggesting this version of the measure. 

10 Some studies have found other variables to be significant as well, such as bank size or the ratio of jumbo 

certificates of deposit to assets, commercial loans to assets, and insider loans to assets, but these variables 
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 Because equity grows with net income minus dividends paid, plus any issuance of 

new stock, minus any stock repurchases or similar transactions, we also estimate variants 

of our model controlling for dividends paid on common and preferred stock (items 

RIAD4460 and RIAD 4470, respectively, in the regulatory Call Report), net treasury 

stock transactions (RIADB510), and other “sale, conversion, acquisition, or retirement of 

capital stock” other than treasury stock transactions (RIADB509).  Our specifications that 

include these regressors will be labelled “strategic” in recognition of bank management’s 

control over these actions. 

Our strategic model augments the regressors from our Risk1 model with 

dividends on common stock / assets, dividends on preferred stock / assets, change in 

capital stock / assets, and change in treasury stock / assets.11  Because dividends reduce 

retained earnings and hence equity capital, dollar for dollar, we expect a negative 

coefficient on the dividend variables.  We expect a positive sign on the change in capital 

stock because any increase in capital stock directly increases equity capital, dollar for 

dollar.  Finally, ceteris paribus, any purchase of treasury stock under U.S. accounting 

rules will decrease a bank’s assets dollar for dollar by reducing cash, but also reduces the 

bank’s total equity capital by recording an offset on the right hand side of the balance 

sheet to reflect the purchase, thus reducing the ratio of equity / assets overall.  Therefore, 

we expect a negative coefficient on the change in treasury stock. 

 Our analysis proceeds in two steps.  First, we estimate regressions of the following 

                                                                                                                                                  
did not perform well enough in our analysis to be included in our final models.  We explore the effect of 

size separately as discussed below. 

11 The authors are grateful to an anonymous referee for suggesting these regressors.  Additionally, not 

reported in the tables for brevity, we estimated various subsets of these variables in combination with the 

Risk1 regressors, and obtained virtually identical results for each variable.   
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form: 

 KAt+1  =  t + Xt βt + εt (1) 

 

where KA is equity/assets, X is a vector of financial ratios as described above, ε is a 

stochastic error term, and t is a given year.  This step establishes within-sample statistical 

linkages between observable characteristics and the one-year-ahead equity ratio, the 

forecast horizon chosen by Jagtiani et al. (2003).  To permit the inclusion of nationwide 

macroeconomic variables, which exhibit no cross-section variation, we implement this step 

in short panel samples of two or three years to forecast equity ratios from 2002 to 2011.12   

Next, we apply the vector of estimated coefficients from each year t (2002-2009 for 

two-year panels and 2003-2009 for three-year panels) to regressors from year t+1 (2001-

2010 for two-year panels and 2002-2010 for three-year panels) to forecast KA as of year 

t+2 (2002-2011 for two-year panels and 2003-2011 for three-year panels), as shown in 

equation (2): 

 KAt+2  =  t + Xt+1 βt  (2) 

This out-of-sample step represents a potential application of the model by bank supervisors 

or analysts using the most recent available estimates and data.  We initially evaluate the 

goodness of fit of this step using three standard measures:  the correlation between actual 

and fitted values, the mean absolute error, and the median absolute error.  We also quantify 

a form of type II error in forecasting the weakest banks, as detailed in section 4 below.  We 

                                                 
12 Although our raw dataset has a panel structure, the research question posed here – how to use this 

information in one-period-ahead forecasts, as evaluated by the model’s performance in holdout samples – 

cannot be properly addressed using the full panel, but must be approached on a primarily cross-sectional 

basis, especially when evaluating the stability of parameters over time.  To test the performance of 

nationwide macroeconomic variables as used in top-down stress-test models, it is necessary to include 

some time-series component in our estimates, but there is a tradeoff between the time dimension versus the 

timeliness of the regressors.  We therefore adopt the approach described in the text.  Given the short time 

dimensions in each regression, we do not apply panel-specific estimation techniques.   
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subsequently explore robustness of the results in both of these steps with respect to banks in 

the lowest quantiles of capitalization (as being of primary supervisory concern), model 

specification, nonlinearity, inclusion of first differences, stability of coefficients over time, 

differential effects by bank size or leverage, and two types of extended lags. 

 

3.  Sample and First-Stage Results 

 We use year-end Call Report data for a nationwide sample of U.S. commercial 

banks during 1999-2011.  With regard to our research question, the largest banks are in a 

unique position for several reasons.  First, unlike community banks, they have ample 

market data available to supplement Call Report data.  Second, the very largest banks are 

subject to continual supervisory scrutiny, with “examiners-in-residence” as well as ongoing 

offsite monitoring and additional requirements under Dodd-Frank.  Third, a subset of the 

largest banks are subject to special “too-big-to-fail” treatment.  Finally, nearly all observed 

bank failures have involved banks outside the largest size class.  The first two reasons 

suggest that statistical models such as ours may be less necessary for adequate monitoring 

of the largest banks, while the last two suggest that statistical linkages among observable 

financial variables may tend to be systematically different for the largest banks compared to 

the rest of the industry.  For these reasons, our analysis below excludes the largest 100 

banks by total assets in each year.13  If our analysis proves useful for identifying problems 

in banks that pose little or no systemic risk, such a model could potentially free up 

supervisory resources to focus more on systemically important institutions; Section 5.5 will 

explore this question in more detail. 

                                                 
13 We are grateful to an anonymous referee for suggesting this sampling strategy.  We also replicated our 

analysis with the inclusion of these banks, and obtained nearly identical results. 
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 We apply additional selection criteria as summarized in Table A2 in the Appendix. 

Our final sample contains 65,460 bank-year observations.  Table 3 reports summary 

statistics for the variables used in our two preferred models, while Table A3 in the 

Appendix reports pairwise correlation coefficients among those variables.  The sample 

means conform to familiar industry norms for each variable, while the standard deviations 

indicate enough sample variation to permit a meaningful statistical test of the role of each 

variable.   Apart from the large positive correlation between non-interest income and “other 

noninterest expenses,” which is consistent with theory since heavy reliance on fee income 

normally requires a bank to invest substantial resources in the related products, the 

correlation coefficients are not large enough to suggest severe multicollinearity.   

 Tables 4 and 5 report regression estimates for the first stage of analysis, where p-

values are based on robust (White) standard errors.  The Risk1 model is estimated using 

rolling two-year panels to permit within-sample variation in nationwide macroeconomic 

variables.  The row labeled 2000 in the table uses data from 1999 and 2000 to predict 

equity/assets for 2001, and similarly for other rows.  The Risk2 model is estimated using 

rolling three-year panels for the same reason.  The row labeled 2001 uses data from 1999-

2001 to predict equity/assets for 2002, and similarly for other rows.   

The fit is quite reasonable in both specifications, with adjusted R2 values for 

individual years ranging from 0.77 to 0.85.  The smallest values are associated with 2007-

2009, during the financial crisis.14  During the years with no bank failures, 2005-2006, the 

adjusted R2 is above 0.81, suggesting some potential usefulness of the model during 

periods when conventional early warning models cannot be re-estimated.  Our models also 

                                                 
14 While some sources consider 2008 to be the first year of the crisis, documented stages of the crisis were 

already identified in 2007 (Guillén, 2009).  However, only three banks failed during 2007, so the most severe 

financial consequences of the crisis had not yet manifested themselves among banks until 2008 and beyond.   
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continue to perform reasonably well into the crisis years, contrasting with a pattern that 

many statistical models are intrinsically poor at identifying turning points.   

The signs and significance levels of the coefficients vary over time for most of the 

regressors.  Only the contemporaneous equity/asset ratio is highly significant with the 

expected sign in all years.  Several other variables are significant in multiple years, while 

some are rarely significant.  Return on assets is significantly positive, as expected, in three 

years for the Risk2 model (two years plus the full panel for the Risk1 model), but is 

significantly negative in two years for the Risk2 model.  It is most highly significant with 

the expected sign in the crisis years 2008-2009.   

Nonperforming loans / ALLL is significantly negative in three years in both 

models, as expected, but is significantly positive in at least one year (two years in the Risk1 

model).  A possible explanation for the occasional positive coefficient, not tested here, is 

that some banks may be able to anticipate high delinquencies or chargeoffs, prompting 

them to increase their loan loss reserve and reduce dividend payouts in advance.  This 

variable’s mixed performance in our model suggests that capitalization may not be the 

primary channel through which delinquencies contribute to failure. 

Total loans/assets exhibits a significantly negative coefficient in all but one year 

plus the full panel, as expected, in both models.  Among the macroeconomic variables, the 

relative change in the FHFA house price index is statistically significant at the 0.01 level in 

six of 10 years plus the full panel in model Risk1, but with an unexpected negative 

coefficient in two of those years, early in the sample period.  It performs similarly in model 

Risk2.  The coefficient on the relative change in the Dow Jones U.S. Total Stock Market 

Index is significantly positive at the 0.01 level in five years plus the full panel in model 
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Risk2, but significantly negative at the 0.05 level in one year.  In several individual years 

plus the full panel, both variables exhibit very high levels of statistical significance, with p-

values rounding to 0.0000.   

Specification Risk2 includes six additional bank-level variables from the top-down 

stress-test studies that were not reported in typical early-warning studies.  The coefficient 

on the ratio of trading account assets to total assets exhibits a negative point estimate in all 

but one year, consistent with prior theoretical expectations based on the inherent risk of 

trading activities, is statistically significant at the 0.05 level in four of those years plus the 

full panel, and is marginally significant in another year.  This variable is nonzero only for 

the larger banks in our sample. 

Two components of relative operating expense, wages/assets and the ratio of 

expenses on fixed assets to total assets, are the second most highly correlated variables in 

our sample, with a pairwise correlation of 0.60 across the full panel – likely driven by time-

series variation in the cost share of interest expenses, which declined dramatically after the 

onset of the crisis.  The wage ratio is never individually significant in the first stage of 

analysis (within-sample) but is retained in our Risk2 model because it improves the out-of-

sample predictive performance together with the fixed asset expense ratio.  The ratio of 

expenses on fixed assets to total assets exhibits a significantly negative coefficient, as 

expected, in three years. 

As noted above and in Table A3, the remaining two bank-level variables in model 

Risk2 are highly correlated across our full sample (rho = 0.85) but help improve both in-

sample and out-of-sample accuracy.  The estimated coefficient on the ratio of non-interest 

income to total assets is never significant at the 0.05 level, while the coefficient on the ratio 
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of “other non-interest expenses” to total assets is significantly positive at the 0.05 level in 

only one year and at the 0.10 level in one other year.  Both results are contrary to our initial 

expectations.   

As might be expected, current leverage is the most consistent and statistically 

significant factor in both models.  Its coefficient ranges between 0.83 and 0.92 for each 

year in each specification and is significantly less than 1 in every instance.  This implies a 

form of convergence in the leverage ratio (in the sense of Barrow and Sala-i-Martin, 1992; 

and Sala-i-Martin, 1996) and, together with the significantly positive intercepts and some 

significant coefficients on other variables, indicates that current leverage alone is not the 

best available predictor of future leverage.  Moreover, current leverage is not an unbiased 

estimator of future leverage.15  An additional observation is that its coefficient is smallest in 

the crisis years 2007-2009, reflecting the fact that average capitalization levels were 

declining over the following months. 

We next summarize the regression estimates of our “strategic” model as defined 

above.16  In this model, dividends on common stock exhibit a significantly negative 

coefficient at the 0.01 level, as anticipated, in three individual years (2005, 2006, and 

2007),  but also a significantly positive coefficient in 2003.  Dividends on preferred stocks 

show a significantly negative coefficient at the 0.05 level in one year and at the 0.055 level 

in another year.  The change in capital stock exhibits a significantly negative coefficient for 

three individual years and the full panel, contrary to expectations, indicating a pattern of 

                                                 
15 If current leverage were the best predictor of future leverage, all of the following conditions would hold:  

(a) its estimated coefficient would equal 1, apart from a secular industry-wide trend in leverage; (b) the 

estimated intercept term would equal zero, again apart from a secular trend; (c) no other variable would 

exhibit significantly nonzero coefficients.  If current leverage were an unbiased estimator of future 

leverage, the first two of these conditions would hold.  Our estimates satisfy none of these conditions. 

16 These estimates are not shown in tables for brevity, but are available from the authors.   
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reversion to the mean.  The change in treasury stock exhibits an unexpected but significant 

positive coefficient in 2007 and 2008.  The fit is good overall, with adjusted R2 ranging 

from 0.77 in 2008 to nearly 0.85 in 2002.   

Before proceeding to out-of-sample forecasts, we note that the banks of primary 

supervisory concern in our analysis are those with the lowest equity/asset ratios.  Focusing 

on this subset of banks requires discretion and caution, however, because of small sample 

sizes:  only very few banks have equity/asset ratios below any low threshold (whether zero, 

2 percent, or any similar figure).  Accordingly, there is an inherent tradeoff between fitting 

the model across all banks, to benefit from a large sample size, versus focusing only on the 

weakest banks, a subset containing few observations. 

We address this issue by the use of quantile regressions (Koenker and Bassett, 

1978).  Rather than selecting a fixed threshold value of equity/assets, we focus on banks 

with the lowest 5 percent of equity/asset values in each sample period.  This approach 

assures similar numbers of such banks in each period, mitigating the statistical problem of 

too few observations in some years, while still addressing the weakest banks.17 

In this step, we re-estimate each of our models as quantile regressions, in two ways.  

One version estimates quantile regressions for the lowest 5 percent of equity/assets, while 

the other version estimates quantile regressions for the lowest 10 percent of equity/assets.  

Both versions are subsequently applied in the out-of-sample step and evaluated on their 

ability to identify banks with the lowest 5 percent of equity/asset ratios.  While the 10th 

quantile regression will tend to mis-identify a larger number of sound banks as weak, 

                                                 
17 We are grateful to an anonymous referee for suggesting the inclusion of this focus on the lower tail of 

banks by capitalization.  Quantile regression estimates are available from the authors but not reported in 

tables here for brevity. 
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compared to the 5th quantile regression, this tradeoff is likely to be preferred by bank 

supervisors and practitioners, because the social costs of overlooking a bank that fails is 

typically higher than the cost of mistakenly devoting additional supervisory and managerial 

resources to a bank that turns out to be strong. 

 

4.  Out-of-sample Performance 

While a reasonable fit of the model is desirable, within-sample performance falls 

short of demonstrating the practical usefulness of a model in forward-looking applications, 

and are vulnerable to the econometric problem of over-fitting (Bossaerts and Hillion, 1999; 

Clark, 2004).  This problem is especially important when selecting and using models to 

inform regulatory actions and public or managerial policy (Al-Najjar and Pai, 2014).  

Accordingly, as reported in Table 6, we next compare the out-of-sample performance of 

our preferred models along with a naïve one-period-ahead benchmark using only current 

equity/assets to predict subsequent equity/assets.   

We evaluate the out-of-sample performance using an array of measures including 

correlations between actual and fitted equity/assets, mean and median absolute forecast 

errors, the percent of banks corrected predicted to be in the bottom 5 percent of 

equity/assets, and four measures of type II error (banks incorrectly predicted to be in the 

bottom tail of equity/assets, as described in more detail below).  We construct these 

measures by applying regression coefficients estimated in one period to a holdout sample 

from the following period, exactly as a regulator or practitioner would be able to apply 

these models.  While we are aware of no formal test of statistical significance that can be 

applied in this exercise, it provides a heuristically useful characterization of the model’s 
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out-of-sample predictive performance among the weakest banks that comprise the locus of 

regulatory and managerial concern.   

Two main conclusions emerge from Table 6.  First, the naïve forecast performs 

surprisingly well in many cases, consistent with prior failure analysis by Jagtiani et al. 

(2003).  Second, all 10th quantile regressions exhibit markedly superior accuracy in 

correctly predicting banks in the bottom 5 percent of equity/assets.  The naïve forecast 

shows the best correlations, ties for the best median absolute forecast errors, and narrowly 

misses having the best mean absolute forecast errors.  Conversely, the percentage of banks 

correctly predicted to be in the bottom 5 percent is nearly half again as high for each of the 

10th quantile regressions compared with any other estimates, ranging as high as 77.39 

percent for the strategic model and 76.24 percent for the Risk1 model.   

In more detail, the correlation between actual and predicted equity/assets ranges 

from 0.867 to 0.898 across our preferred specifications, based on the Risk1 model.  The 

absolute forecast errors for the Risk1 model range from 0.0085 to 0.0205 for the mean and 

from 0.0055 to 0.0174 for the median.  These figures compare favorably with the sample 

mean equity/asset ratio of 0.10457 (shown in Table 3), which is 19 times the smallest 

median absolute forecast error.   

We calculate a form of type II error as follows.  First, we determine the threshold of 

predicted equity/assets below which the model correctly identifies all banks that 

subsequently exhibit actual equity/assets among the lowest x values in the sample; we set x 

equal to 100, 75, 50, and 25 in alternate implementations of this step.  Then, for all banks 

with predicted equity/assets below that threshold, we report the number of banks 

(expressed as a percentage of the total number of banks in the lowest y percent by 
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equity/assets) that subsequently were not among the lowest y percent of banks according to 

actual equity/assets.  Table 6 lists the value of y selected for each value of x.18 

The four measures of type II error show mixed comparisons across models, with the 

10th quantile strategic model regressions ranging from best to fifth and the 10th quantile 

Risk1 regressions ranging from second to sixth.  The type II error rate is 20 to 25 percent in 

most cases and below 20 percent in a few cases.  As shown in the bottom row of Table 6, 

the naïve model performs worse than all but one of our models in each of these 

comparisons.   

Of the two quantile regression levels employed, the version motivated by 

asymmetric supervisory costs performs better out of sample according to every measure, 

except for the strategic model using the 25 bank / 2 percentile criteria.  That is, the 10th 

quantile regressions are better than the 5th quantile regressions at predicting the weakest 5 

percent of banks.  As shown in Table 6, all of our models show higher correlations between 

predicted and actual equity/assets, lower mean and median absolute forecast errors, and 

higher percentages of banks correctly identified as being among the lowest 5 percent of 

equity/assets when using the 10th quantile estimates. 

Indeed (not shown in the table), the percentage of banks correctly predicted to be 

among the weakest 5th quantile (using the 10th quantile estimates from the Risk1 model) 

ranges as high as 86.0 percent in 2006 and, not surprisingly, is lowest in the crisis years of 

2008-2009 which represent a regime shift (56.1 percent and 69.6 percent, respectively, as a 

percentage of the number of banks actually in the bottom 5 percent).  While this form of 

analysis necessarily involves a tradeoff, with a higher proportion of sound banks being mis-

                                                 
18 The authors are grateful to an anonymous referee for suggesting this direction of analysis.   
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classified as weak, the latter error rate is below 7 percent except in 2008, where it is below 

7.6 percent.  Apart from the crisis years, this model performs better during the more recent 

portion of the sample period than in the earlier years. 

Because our Risk1 model exhibits the best out-of-sample performance overall in 

Table 6, we focus on that model in additional analysis.  Table 7 reports statistics from the 

second stage of our analysis by year, in which the coefficients reported in Table 4 (relating 

years t and t-1 financial ratios to year t+1 equity/asset ratios) are applied to financial ratios 

from year t+1 to forecast year t+2 equity/asset ratios as explained above for equation (2).  

As shown in the table, the cross-sectional correlations between predicted and actual t+2 

equity/ratios range from 0.87 to 0.93, while the mean and median absolute errors range 

from 0.0075 to 0.0100 and from 0.0046 to 0.0066, respectively.  Given that the sample 

mean value of equity/assets is 0.10457, these errors are small enough to be useful to 

regulators and practitioners in monitoring the financial performance of banks and focusing 

on banks at future risk. 

The second lowest mean absolute forecast error is for 2006 leverage, while the two 

lowest median absolute errors are for 2006 and 2007 leverage – one being a year of no 

failures and the other a year that some sources identify as the first year of the crisis, 

suggesting that the model performs well at both extremes of industry performance.19  By 

contrast, this type of robustness is typically lacking among conventional early warning 

models. 

We further investigate whether the Risk1 model’s predictive performance is 

systematically different during the main years of the financial crisis, compared with other 

                                                 
19 De Haan and Poghosyan (2012) test both 2007 and 2008 as starting points of the crisis, in a banking 

study unrelated to our research question.  However, most small U.S. banks exhibited visible financial stress 

beginning in 2008.   
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sample years.  To do this, we calculate both a paired t-test and a nonparametric Wilcoxon 

rank sum test (Mann-Whitney test) for each of our three measures of forecast accuracy – 

correlation, mean absolute error, and median absolute error.  For 2008-2009 versus the 

other sample years, the correlation between actual versus predicted equity/assets is not 

measurably different according to either test, indicating that our model did not lose out-of-

sample predictive accuracy during the crisis.  For the median absolute error, the Wilcoxon 

test likewise indicates no significant difference, though the paired t-test indicates reduced 

accuracy at the 0.10 level.  For the mean absolute error, the paired t-test indicates reduced 

accuracy at the 0.01 level but the Wilcoxon test conversely indicates improved accuracy at 

the 0.05 level, during 2008-2009.  Alternate definitions of the crisis years give similar 

results, indicating no robust evidence that our model performed systematically worse 

during the crisis years.20   

Table 8 compares the actual cross-sectional mean leverage ratios for each year 

versus the ratios predicted by the Risk1 model in our out-of-sample step.  The results show 

a small but statistically significant bias in each year, though the sign of the bias varies 

across the years. 

 

5.  Robustness and Extensions 

5.1.  Alternate Model Specifications 

Next, we explore several dimensions of robustness of the model’s performance.  In 

this step, we estimate more than 50 different specifications of the model, not reported in the 

tables for brevity.  In each case, we obtain separate OLS estimates for each year as well as 

                                                 
20 Generally insignificant differences emerge using 2007 as an alternate starting date for the crisis.  The 

strongest differences are found when defining 2008-2010 as crisis years, though De Haan and Poghosyan 

(2012) suggest 2009 as an ending date for the crisis.   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 

 

for the full panel.  In most cases, individual regressors were statistically significant for only 

a few individual years, and did not result in superior out-of-sample forecasting. 

Besides exploring various subsets of the initial regressors shown in Tables 4 and 5, 

we investigate whether first differences in these variables from period t–1 to t improve the 

in-sample and out-of-sample performance.  We find no combination of first differences that 

improved the model’s predictive power overall. 

An additional step was to estimate and forecast the numerator and denominator of 

equity/assets separately, and then combine our estimates to forecast equity/assets ratios, to 

see whether additional accuracy could be obtained compared to forecasting the ratio as a 

single variable.21  Because the condition of insolvency is determined by the level of 

equity/assets, and because regulatory standards likewise focus on the level of that ratio, we 

retain our focus on levels rather than changes in this step.  In this approach, the standard 

error of the predicted ratio is not a simple function of the standard errors of the numerator 

and denominator.  These results, not reported in tables, provide substantially inferior out-

of-sample accuracy compared to our primary model reported in the previous section. 

5.2.  Model Nonlinearity 

 We also evaluate possible nonlinearity of the model with respect to our original 

regressors, by including squared terms as well as levels in various combinations and 

subsets.  The findings (not reported in the tables) indicate that the equity/assets ratio has no 

robustly nonlinear dependence on any of these variables.  A few variables exhibit 

statistically significant quadratic coefficients in a few years, but none are significant in all 

years or consistently improve out-of-sample leverage forecasting. 

                                                 
21 The authors are grateful to an anonymous referee for suggesting this step. 
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5.3.  Macroeconomic Variables 

 In addition to the macroeconomic variables listed in Table 3, we also test every 

other macroeconomic variable used in recent top-down stress-test studies, as shown in 

Table 2.  Additionally, we test state-level values of the unemployment rate and the annual 

rate of gross state product growth.  In each case, we estimate several versions:  using one 

macro variable at a time, or several together, in levels or in first differences.  In no case was 

any macro variable consistently significant across individual years or across the full panel, 

besides those reported in Tables 3-5. 

 From these steps, we conclude that our preferred model remains that reported in 

Table 4.  Its performance within sample and out of sample is not improved by alternate 

combinations of regressors, inclusion of first differences or nonlinear terms, or other 

macroeconomic variables.  

5.4.  Level of Capitalization 

 As a complement to the quantile analysis reported above, we further explore 

whether the estimated coefficients or predictive power of the model would vary in a 

continuous fashion between undercapitalized banks versus better-capitalized banks.  A 

negative answer is implied by the lack of significance of the quadratic term for current 

equity/assets, suggesting that the model is able use information from well-capitalized banks 

to augment information from the relatively few undercapitalized banks and improve the 

precision of its forecasts for the latter.  This question is motivated by the concern of 

regulators and practitioners about banks with low equity ratios. 

5.5.  Bank Size 
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 The model’s performance for banks of different sizes is another question of interest, 

because the majority of bank failures historically have occurred among smaller banks while 

concerns over systemic risk focus on potential failures or undercapitalization of the largest 

banks.  To address this question, we re-estimate our preferred model separately for small 

banks and large banks, using several alternate definitions of “small” and “large.”  One 

dividing point is the sample median bank size in total assets ($101.4 million), while an 

alternate threshold is the sample mean asset size ($242.2 million).  A third alternate 

threshold is $300 million in assets, as in Cole and White (2012), where 81 percent of our 

sample banks are smaller than this threshold.  Within-sample estimates generate 

significantly different coefficient estimates for large banks versus smaller banks at each 

threshold; Chow tests yield F-statistics that exceed 3.7 for each threshold, rejecting the null 

hypothesis of equal coefficients at a significance level better than 0.001. 

The performance of out-of-sample forecasts from this step is summarized in Table 

9.  Some differences are evident across the groups, as leverage is predicted somewhat more 

accurately for smaller banks overall.  This comparison is not solely a consequence of 

sample size, as is apparent in Panel B with equal numbers of large and small banks.  The 

correlation coefficient between actual and predicted leverage ratios ranges from 0.88 to 

nearly 0.94 for the smaller banks, and from 0.55 to 0.90 for the larger banks.  These results 

suggest that, while the model may be able to offer some help in identifying troubled large 

banks as an additional tool to supplement other approaches, its comparatively better 

performance for smaller banks may encourage its use for those institutions – especially 

given their large number and insubstantial systemic risk – thus freeing up supervisory 

resources to focus in more detail on systemically important banks. 
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5.6.  Coefficient Stability 

 We next investigate the stability of model coefficients over time, a question of 

considerable importance in view of the banking industry’s historical fluctuation between 

strong performance and crisis.  Our sample period is capable of addressing this question, 

spanning as it does two recessions, the recent crisis, and a pair of consecutive years with 

zero failures.  As a preliminary observation, the pattern of coefficient estimates in our 

Risk1 model suggests some fluctuation over time in the statistical linkages between the 

regressors and equity/asset ratios.  To explore and quantify this impression more precisely, 

we perform two types of Chow tests:  one to test whether each year’s vector of estimated 

coefficients differs significantly from that of the full panel (overall stability) and another to 

test for significant differences between the coefficients estimated for year t and those 

estimated for year t+1 (consecutive-year stability). 

 Table 10 reports the results of these Chow tests, which reject overall stability as 

well as stability across consecutive years.  Panel A of the table indicates that the one year 

most unlike the others in our sample, as well as the most unlike the following year, was 

2008, coinciding with the financial crisis.   The most significant breakpoint in our sample 

was 2007, also related to the crisis.  These results are generally consistent with previous 

findings for conventional early warning models (Shaffer, 2012), confirm the desirability of 

re-estimating such models as permitted by the arrival of new data as in Cole et al. (1995), 

and emphasize the potential usefulness of an approach such as ours that does not require 

pooling of data across numerous years to obtain usable sample sizes.   

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 

 

5.7.  Intertemporal Deterioration of Predictive Power 

We explore an additional aspect of intertemporal instability by estimating two 

further variations on our model, involving alternate lag structures.  First, we explore the 

intertemporal deterioration of predictive power by applying our existing in-sample 

coefficients to out-of-sample holdout periods in the more distant future, increasing the lag 

between the latest financial data used and the predicted equity/assets from t+1 to t+2 and 

t+3.  Second, we explore a within-sample aspect of intertemporal deterioration by using 

financial data from years t and t-1 to predict equity/assets in years t+j for j ranging from 1 

to 3.  In both cases, theoretical considerations and prior empirical studies predicting bank 

failure suggest that longer lags should be associated with poorer predictive performance. 

 Table 11 summarizes the results of these extensions.  For ease of comparison, the 

results of our original t+1 lag are reported in the top row of each panel.  In Panel A, the 

correlation between actual and predicted out-of-sample equity/asset values, averaged over 

the sample years, is close to 0.90 for each lag, but is slightly lower for successively longer 

lags as expected.  Likewise, the mean and median absolute errors are slightly but uniformly 

larger for longer lags.   In Panel B, out-of-sample predictive accuracy also deteriorates 

uniformly, but more sharply, at longer lags.  The mean absolute errors are 63 percent larger 

at t+3 than at t+1, and median absolute errors are 70 percent larger at t+3 than at t+1.  

These patterns are consistent with empirical findings for failure forecasts reported 

by Estrella et al. (2000), Cole and White (2012), and others, and suggest a need to re-

estimate this type of model frequently.  This need underscores the primary advantage of our 

approach, since traditional early-warning failure models cannot be re-estimated during 

periods of very few failures, whereas our capitalization model can always be re-estimated. 
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6.  Conclusion 

 Motivated by a dearth of bank failures in many years, as well as by regulators’ 

ongoing interest in early warning models predicting banks’ financial distress, this study has 

explored the ability of observable financial ratios to predict future leverage ratios as a 

continuous variable.  Our selection of equity/assets as the dependent variable is supported 

by prior studies such as Estrella et al. (2000) and Jagtiani et al. (2003), though the approach 

could be applied equally to any other observable dependent variable such as profitability, 

nonperforming loan ratios, liquidity, etc. 

The findings indicate some potential for this approach as a useful complement to 

conventional models forecasting banks’ failure.  Our model exhibits reasonable ability to 

forecast leverage ratios out of sample, as required for practical implementation by 

regulators or practitioners, especially when applied to selected quantiles of the weakest 

banks.  The forecasting performance is robust to variations in the included regressors, 

functional form, lags, and macroeconomic conditions.  At the same time, our preferred 

model is quite parsimonious in its data requirements. 

Large banks exhibit significantly different linkages between leverage and other 

observable financial ratios than smaller banks.  Out-of-sample forecasts are less accurate 

for larger banks than for smaller banks, but there is no apparent association between 

forecast accuracy and leverage.  Predictive performance for the crisis years is measurably 

inferior to other years, indicating a vulnerability of the model to turning points or regime 

shifts, in common with any purely statistical approach; on the other hand, other metrics 

indicate that the model is somewhat more robust to turning points or extremes of industry 

performance than we might expect. 
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 Two aspects of the estimates indicate a need to re-estimate such models frequently, 

using the most recent available data.  First, the estimated coefficients vary significantly 

from year to year.  Second, the model’s forecasting performance deteriorates over longer 

forecast horizons.  Both of these patterns are consistent with several previous studies 

predicting bank failure.  This finding supports extant regulatory practice and further 

underscores the need for our approach, which – unlike failure models – can always be 

updated regardless of industry conditions. 

Our findings suggest potential applicability of this approach to other countries, 

many of which have far fewer banks (and bank failures) than the U.S. and are therefore 

not amenable to standard early warning analysis of failures.  Future research could 

usefully explore this extension, as well as exploring the predictability of other specific 

dimensions of banks’ risk and performance. 
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Table A1:  Failed Bank List22 

 

Year Number of Failed Banks 

2000a 2 

2001 4 

2002 11 

2003 3 

2004 4 

2005 0 

2006 0 

2007 3 

2008 25 

2009 140 

2010 157 

2011 92 

 
a Refers to the period from 1 October 2000 to 31 December 2000 only. 

                                                 
22 Source: Federal Deposit Insurance Corporation (2012).  The complete list of failed banks since October 

1, 2000 can be accessed at http://www.fdic.gov/bank/individual/failed/banklist.html. 
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Table A2:  Number of Observations Retained After Sequential Application of Each 

Selection Criterion  

 

 

Banks were deleted during each period within which any of the following criteria were met:  Non-

commercial bank charter, headquartered in territories or possessions outside of actual U.S. states 

and the District of Columbia (i.e. Federal Information Processing Standard state code greater than 

56), negative loans, equity/assets greater than or equal to 50%, loans/assets greater than or equal to 

90%, equity/assets not available in the following period, or less than 10 years old (due to 

systematically abnormal financial behavior; see DeYoung and Hasan, 1998; Shaffer, 1998).  

Sample 

Selection 

Criteria 

1999-

2009 
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

Call Report 93,663 9,574 9,261 8,998 8,751 8,609 8,432 8,302 8,153 8,097 7,873 7,613 

Missing 

Observations 
88,625 9,022 8,743 8,528 8,293 8,159 8,010 7,887 7,755 7,627 7,424 7,177 

Commercial 

Banks 
82,893 8,431 8,167 7,938 7,752 7,630 7,499 7,387 7,263 7,146 6,960 6,720 

FIPS (1-56) 82,893 8,431 8,167 7,938 7,752 7,630 7,499 7,387 7,263 7,146 6,960 6,720 

Age greater 10 

Years 
70,011 7,403 7,064 6,822 6,610 6,464 6,282 6,131 5,973 5,850 5,732 5,680 

Loans greater 

Zero 
70,011 7,403 7,064 6,822 6,610 6,464 6,282 6,131 5,973 5,850 5,732 5,680 

KA less than 

50% 
69,959 7,398 7,059 6,817 6,604 6,460 6,278 6,128 5,966 5,844 5,731 5,674 

LA less than 90% 69,276 7,369 7,030 6,783 6,565 6,419 6,211 6,052 5,885 5,740 5,607 5,615 

KA (t+1) Merge 66,560 6,937 6,716 6,546 6,386 6,204 5,993 5,817 5,653 5,515 5,417 5,376 

Less largest 100 

Banks per Year 
65,460 6,837 6,616 6,446 6,286 6,104 5,893 5,717 5,553 5,415 5,317 5,276 
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Table A3:  Data Correlation Matrix 

 

 Current 

Equity/ 

Assets 

Return 

on 

Assets 

Nonperf. 

Loans/ 

Allow. 

L&L 

Losses 

Total 

Loans/ 

Total 

Assets 

Trading. 

Account 

Assets/ 

Assets 

Non-

interest 

Income/ 

Assets 

Wages/ 

Assets 

Fixed  

Asset 

Expenses/

Assets 

Other 

Non-

interest 

Expenses/

Assets 

Other 

Real 

Estate 

Owned/ 

Assets 

% Change 

in DJ Total 

US Index  

% Change  

in FHFA 

HPI 

Div. on 

Common 

Stock/ 

Assets 

Div. on 

Pref. 

Stock/ 

Assets 

Change 

in Cap. 

Stock/ 

Assets 

Change in 

Treas. 

Stock/ 

Assets 

Current Equity/ 

Assets 
1.0000                

Return on  

Assets 

0.1438* 

(0.0000) 
1.0000               

Nonperf. Loans/ 

Allow..L&L Losses 

-0.0026 

(0.5086) 

-0.1170* 

(0.0000) 
1.0000              

Total Loans/ 

Assets 

-0.2905* 

(0.0000) 

-0.0082* 

(0.0360) 

0.0280* 

(0.0000) 
1.0000             

Trading. Acct. 

Assets/Assets 

-0.0109* 

(0.0054) 

-0.0063 

(0.1070) 

0.0001 

(0.9749) 

0.0006 

(0.8787) 
1.0000            

Noninterest 

Income/Assets 

0.0534* 

(0.0000) 

0.2329* 

(0.0000) 

0.0684* 

(0.0000) 

-0.0156* 

(0.0001) 

0.0303* 

(0.0000) 
1.0000           

Wages/Assets 
0.0144* 

(0.0002) 

-0.0629* 

(0.0000) 

0.1043* 

(0.0000) 

0.0477* 

(0.0000) 

0.0133* 

(0.0007) 

0.4659* 

(0.0000) 
1.0000          

Fixed Asset 

Expenses/Assets 

-0.1284* 

(0.0000) 

-0.1674* 

(0.0000) 

0.0597* 

(0.0000) 

0.0898* 

(0.0000) 

0.0106* 

(0.0069) 

0.2910* 

(0.0000) 

0.5998* 

(0.0000) 
1.0000         

Other Noninterest 

Expenses/Assets 

0.0367* 

(0.0000) 

-0.0211* 

(0.0000) 

0.0650* 

(0.0000) 

0.0068 

(0.0824) 

0.0241* 

(0.0000) 

0.8530* 

(0.0000) 

0.3351* 

(0.0000) 

0.2301* 

(0.0000) 
1.0000        

Other Real Estate 

Owned/Assets 

-0.0512* 

(0.0000) 

-0.3104* 

(0.0000) 

0.1494* 

(0.0000) 

0.1110* 

(0.0000) 

0.0005 

(0.9039) 

0.0043 

(0.2698) 

0.0611* 

(0.0000) 

0.1024* 

(0.0000) 

0.0696* 

(0.0000) 
1.0000       

% Change in DJ 

Total US Index 

-0.0131* 

(0.0008) 

0.0085* 

(0.0304) 

-0.0143* 

(0.0003) 

-0.0270* 

(0.0000) 

-0.006 

(0.1277) 

0.0027 

(0.4868) 

0.0049 

(0.2124) 

-0.0036 

(0.3586) 

0.0046 

(0.2343) 

0.0144* 

(0.0002) 
1.0000      

% Change in 

FHFA HPI 

-0.0491* 

(0.0000) 

0.2344* 

(0.0000) 

-0.1238* 

(0.0000) 

-0.0616* 

(0.0000) 

-0.0245* 

(0.0000) 

0.0185* 

(0.0000) 

0.0156* 

(0.0001) 

0.0311* 

(0.0000) 

-0.0206* 

(0.0000) 

-0.2482* 

(0.0000) 

0.1576* 

(0.0000) 
1.0000     

Div. on Comm. 

Stock/Assets 

0.0605* 

(0.0000) 

0.2539* 

(0.0000) 

-0.0215* 

(0.0000) 

-0.0244* 

(0.0000) 

-0.0047 

(0.2335) 

0.1697* 

(0.0000) 

-0.0172* 

(0.0000) 

-0.0539* 

(0.0000) 

0.1233* 

(0.0000) 

-0.0435* 

(0.0000) 

-0.0065 

(0.0945) 

0.0156* 

(0.0001) 
1.0000    

Div. on Pref. 

Stock/Assets 

-0.0164* 

(0.0000) 

-0.0019 

(0.6201) 

-0.0009 

(0.8228) 

0.0072 

(0.0647) 

0.0008 

(0.8301) 

0.0033 

(0.3996) 

0.0067 

(0.0889) 

0.0063 

(0.1058) 

0.0004 

(0.9141) 

0.0008 

(0.8301) 

0.0044 

(0.2641) 

0.0032 

(0.4134) 

-0.0100* 

(0.0107) 
1.0000   

Change in Cap. 

Stock/Assets 

0.0380* 

(0.0000) 

-0.1234* 

(0.0000) 

0.0045 

(0.3070) 

0.0247* 

(0.0000) 

0.001 

(0.8202) 

-0.0079 

(0.0699) 

0.0035 

(0.4245) 

0.0217* 

(0.0000) 

0.0131* 

(0.0028) 

0.0164* 

(0.0002) 

0.0051 

(0.2472) 

-0.0066 

(0.1341) 

-0.0090* 

(0.0408) 

0.0066 

(0.1339) 
1.0000  

Change in Treas. 

Stock/Assets 

-0.0126* 

(0.0042) 

-0.0048 

(0.2740) 

0.0008 

(0.8601) 

0.0054 

(0.2184) 

0.0005 

(0.9143) 

0.0016 

(0.7141) 

-0.0078 

(0.0761) 

-0.0006 

(0.8831) 

0.0022 

(0.6191) 

0.0021 

(0.6302) 

-0.0031 

(0.4843) 

0.0001 

(0.9757) 

0.0038 

(0.3806) 

0.0001 

(0.9732) 

0.0024 

(0.5908) 1.0000 
 

p-values in parentheses.  Significance level:  *0.05 or better.  
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Table 1: Initial Explanatory Variables from Early Warning Studies  

(also used in recent stress test models where shown in italics) 

 

Explanatory Variable Illustrative References 

Current Equity/Total Assets (+)a 
Cole and Gunther (1995), Wheelock and Wilson 

(2000), Estrella et al. (2000), DeYoung (2003) 

Return on Assets (+) 

Thomson (1991), Cole and Gunther (1995), Wheelock 

and Wilson (2000), DeYoung (2003); Covas et al. 

(2014), Hirtle et al. (2015)b 

Nonperforming Loans / Total 

Loans (–) 

Cole and Gunther, 1995; Wheelock and Wilson, 2000; 

Cole and White, 2012; Covas et al. (2014, net 

chargeoffs by loan type), Hirtle et al. (2015, net 

chargeoffs by loan type)b 

Total Loans/Total Assets (–) 

Espahbodi (1991), Thomson (1991), Wheelock and 

Wilson (2000), DeYoung (2003); Kapinos and Mitnik 

(2015) 

Log of Total Assets (–) 

Cole and Gunther (1995), Wheelock and Wilson 

(2000), DeYoung (2003), Arena (2008), Cole and 

White (2012); Hirtle et al. (2015) 

Dividends on Common 

Stock/Total Assets(–) 
n/ac 

Dividends on Preferred 

Stock/Total Assets (–) 
n/ac 

Change in Capital Stock/Total 

Assets(+) 
n/ac 

Change in Treasury Stock/Total 

Assets (–) 
n/ac 

 
a Anticipated sign of regression coefficient in parentheses, as discussed in the text. 

b Hirtle et al. (2015) use this variable alternately as a lagged regressor or as a dependent variable. 

c We thankfully acknowledge an anonymous referee’s suggestion for these explanatory variables. 
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Table 2:  Additional Explanatory Variables Used in Top-Down Stress-Testing Studies 

 

Variable References 

Macroeconomic Variables:  

10-year Treasury yield 
Covas et al. (2014); Kapinos and Mitnik 

(2014; spread); Hirtle et al. (2015) 

3-month Treasury yield 
Covas et al. (2014); Kapinos and Mitnik 

(2014; spread); Hirtle et al. (2015) 

Civilian unemployment rate 
Covas et al. (2014); Kapinos and Mitnik 

(2014; change); Hirtle et al. (2015) 

Real GDP (growth) 
Covas et al. (2014); Kapinos and Mitnik 

(2014); Hirtle et al. (2015) 

CoreLogic or Federal Housing Finance Agency 

(FHFA) house price index 

Covas et al. (2014); Kapinos and Mitnik 

(2014; growth); Hirtle et al. (2015) 

BBB bond index yield (10-year) 
Covas et al. (2014); Kapinos and Mitnik 

(2014); Hirtle et al. (2015) 

Dow Jones Total U.S. Stock Market Index (DJI) 
Kapinos and Mitnik (2014; “DJIA 

Growth”); Hirtle et al. (2015) 

Chicago Board Options Exchange Volatility Index 

(VIX) 

Covas et al. (2014); Kapinos and Mitnik 

(2014) 

NCREIF Commercial Real Estate Index 

Covas et al. (2014); Kapinos and Mitnik 

(2014; “CREPI growth”); Hirtle et al. 

(2015)  

CPI inflation Kapinos and Mitnik (2014) 

  

Bank Variables:  

Asset growth Kapinos and Mitnik (2014) 

Loan growth Kapinos and Mitnik (2014) 

Consumer / loans (or assets) <or credit card + 

other> 

Covas et al. (2014); Kapinos and Mitnik 

(2014); Hirtle et al. (2015) 

Commercial (or residential) real estate / loans (or 

assets) 

Covas et al. (2014); Kapinos and Mitnik 

(2014); Hirtle et al. (2015) 

Deposits/assets Kapinos and Mitnik (2014) 

Other real estate owned / assets Kapinos and Mitnik (2014) 

Nonperforming loans / loans (or assets) Kapinos and Mitnik (2014) 

Trading account assets / total assets 
Kapinos and Mitnik (2014); Covas et al. 

(2014); (Hirtle uses a similar measure) 

Securities / assets (various measures) Kapinos and Mitnik (2014) 

Securitization (by type) / assets Kapinos and Mitnik (2014) 

Net interest income / assets 
Covas et al. (2014); Hirtle (as LHV and 

lagged RHV) 

Trading income / assets 
Covas et al. (2014); Hirtle (as LHV and 

lagged RHV) 

Noninterest income / assets Covas et al. (2014) 

Various measures of risk-weighted assets 
Kapinos and Mitnik (2014); Hirtle et al. 

(2015; risk-weighted assets / total assets) 

Liquidity = (cash + interest-bearing balances + 

securities + fed funds sold)/assets 

Hirtle et al. (2015) 
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Table 3:  Summary Statistics for Variables Used in our Final Models  

 

Variable Mean Standard Deviation 

Current Equity/Assets 0.10457 0.03436 

Return on Assets 0.01010 0.00942 

Nonperforming Loans/Allowances for 

Loan and Lease Losses 
0.85852 2.14410 

Loans/Assets 0.62249 0.14868 

Trading Account Assets/Total Assets 0.00015 0.00341 

Noninterest Income/Assets 0.00849 0.01750 

Wages/Assets 0.01652 0.00645 

Fixed Asset Expenses/Assets 0.00412 0.00211 

Other Noninterest Expenses/Assets 0.01000 0.01314 

Other Real Estate Owned/Assets 0.00208 0.00535 

Percent Change in Dow Jones US 

Total Stock Market Index 
0.02318 0.20130 

Percent Change in Federal Housing 

Finance Agency (FHFA) House Price 

Index (HPI), by state  

0.04055 0.05043 

Dividends on Common Stock/Assetsa 0.00664 0.01940 

Dividends on Preferred Stock/Assetsa 0.00001 0.00017 

Change in Capital Stock/Assetsa 0.00039 0.00538 

Change in Treasury Stock/Assetsa -0.00001 0.00068 

 
a Regressors for the “strategic” model are available from 2001. 
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Table 4:  Regression Results, Equation (1), Risk1 Model  

 

Year Current 

Equity / 

Assets 

Return on 

Assets 

Nonperf. 

Loans / 

ALLL 

Loans / 

Assets 

% Change 

of FHFA 

HPI 

Intercept Number  

of Obs. 

Adjusted 

R2 

1999-

2009 

0.8922* 

(0.0000) 

0.0462** 

(0.0144) 

-0.0001*** 

(0.0903) 

-0.0093* 

(0.0000) 

0.0180* 

(0.0000) 

0.0165* 

(0.0000) 
65,460 0.8156 

2000 
0.8970* 

(0.0000) 

0.0154 

(0.8111) 

-0.0002* 

(0.0000) 

-0.0177* 

(0.0000) 

-0.0068 

(0.1983) 

0.0232* 

(0.0000) 
13,453 0.8497 

2001 
0.8970* 

(0.0000) 

0.1115*** 

(0.0597) 

0.0001 

(0.6511) 

-0.0119* 

(0.0000) 

-0.0156* 

(0.0004) 

0.0189* 

(0.0000) 
13,062 0.8590 

2002 
0.8997* 

(0.0000) 

-0.0272 

(0.6398) 

0.0002 

(0.1783) 

-0.0045* 

(0.0015) 

-0.0180* 

(0.0003) 

0.0155* 

(0.0000) 
12,732 0.8439 

2003 
0.9099* 

(0.0000) 

-0.0908*** 

(0.0680) 

0.0004** 

(0.0146) 

0.0014 

(0.2289) 

0.0025 

(0.6782) 

0.0093* 

(0.0000) 
12,390 0.8156 

2004 
0.9163* 

(0.0000) 

-0.0522 

(0.1953) 

0.0006* 

(0.0003) 

-0.0027** 

(0.0234) 

0.0133* 

(0.0055) 

0.0099* 

(0.0000) 
11,997 0.8085 

2005 
0.9127* 

(0.0000) 

0.0153 

(0.7100) 

0.0002 

(0.2782) 

-0.0075* 

(0.0000) 

0.0213* 

(0.0000) 

0.0130* 

(0.0000) 
11,610 0.8172 

2006 
0.9179* 

(0.0000) 

0.0508 

(0.3174) 

-0.0001 

(0.6709) 

-0.0107* 

(0.0000) 

0.0166* 

(0.0001) 

0.0163* 

(0.0000) 
11,270 0.8118 

2007 
0.8797* 

(0.0000) 

0.0821 

(0.1729) 

-0.0006* 

(0.0007) 

-0.0118* 

(0.0000) 

0.0413* 

(0.0000) 

0.0185* 

(0.0000) 
10,968 0.7811 

2008 
0.8298* 

(0.0000) 

0.1317* 

(0.0004) 

-0.0013* 

(0.0000) 

-0.0140* 

(0.0000) 

0.0054 

(0.1917) 

0.0252* 

(0.0000) 
10,732 0.7739 

2009 
0.8555* 

(0.0000) 

0.1128* 

(0.0000) 

-0.0001 

(0.3577) 

-0.0069* 

(0.0000) 

0.0200* 

(0.0000) 

0.0185* 

(0.0000) 
10,593 0.7866 

 
Dependent variable:  one-year-ahead equity/assets ratio.  p-values in parentheses, based on robust 

(White) standard errors.  Significance levels are *0.01, **0.05, and ***0.10.  Number of observations 

shown for each year equals the sum of sample banks in that year plus those in the prior year, as 

explained in the text.  ALLL is the allowance for loan and lease losses.  FHFA HPI is the Federal 

Housing Finance Agency House Price Index, by state.  
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Table 5:  Regression Results, Equation (1), Risk2 Model  

 

Year Current 

Equity / 

Assets 

Return on 

Assets 

Nonperf. 

Loans / 

ALLL 

Loans / 

Assets 

Trading. 

Account 

Assets / 

Assets 

Non-

interest 

Income / 

Assets 

Wages/ 

Assets 

Fixed  

Asset 

Expenses/ 

Assets 

Other Non-

interest 

Expenses/ 

Assets 

Other Real 

Estate 

Owned/ 

Assets 

% Change 

in DJ Total 

US Index 

% Change 

of FHFA 

HPI 

Inter-

cept 

Number  

of Obs. 

Ad-

justed 

R2 

1999- 

2009 

0.8913* 

(0.0000) 

0.0318*** 

(0.0755) 

-0.0001 

(0.1389) 

-0.0088* 

(0.0000) 

-0.0503** 

(0.0350) 

0.0005 

(0.9841) 

0.0058 

(0.8445) 

-0.1623*** 

(0.0734) 

0.0077 

(0.8018) 

-0.0695* 

(0.0000) 

0.0026* 

(0.0000) 

0.0155* 

(0.0000) 

0.0171* 

(0.0000) 
65,460 0.8161 

2001 
0.9005* 

(0.0000) 

-0.0464 

(0.3175) 

-0.0002* 

(0.0002) 

-0.0149* 

(0.0000) 

-0.1061*** 

(0.0925) 

0.0882*** 

(0.0974) 

-0.0035 

(0.9471) 

-0.1475 

(0.4818) 

-0.0804 

(0.1788) 

0.0265 

(0.5496) 

0.0049* 

(0.0000) 

-0.0134* 

(0.0010) 

0.0235* 

(0.0000) 
19,899 0.8548 

2002 
0.8994* 

(0.0000) 

-0.0312 

(0.3766) 

0.0002 

(0.2528) 

-0.0059* 

(0.0000) 

-0.0211 

(0.6281) 

0.0969 

(0.1249) 

-0.0050 

(0.9203) 

-0.3562* 

(0.0019) 

-0.0841 

(0.1387) 

0.0883** 

(0.0298) 

0.0180* 

(0.0000) 

-0.0114* 

(0.0036) 

0.0199* 

(0.0000) 
19,348 0.8494 

2003 
0.9035* 

(0.0000) 

-0.0688** 

(0.0273) 

0.0002*** 

(0.0649) 

-0.0029* 

(0.0077) 

-0.0100 

(0.7884) 

0.0322 

(0.5754) 

-0.0016 

(0.9782) 

-0.2655** 

(0.0289) 

0.0044 

(0.8998) 

0.0975** 

(0.0116) 

0.0006 

(0.2580) 

-0.0045 

(0.3152) 

0.0144* 

(0.0000) 
18,836 0.8303 

2004 
0.9114* 

(0.0000) 

-0.0683** 

(0.0392) 

0.0005* 

(0.0013) 

-0.0007 

(0.5225) 

0.0117 

(0.7316) 

-0.0142 

(0.7868) 

0.0391 

(0.5441) 

-0.2019 

(0.1082) 

-0.0094 

(0.8024) 

0.1326* 

(0.0003) 

0.0023* 

(0.0000) 

0.0080*** 

(0.0514) 

0.0096* 

(0.0000) 
18,283 0.8160 

2005 
0.9122* 

(0.0000) 

-0.0010 

(0.9769) 

0.0002*** 

(0.0733) 

-0.0056* 

(0.0000) 

-0.0340** 

(0.0291) 

-0.0403 

(0.2576) 

0.0256 

(0.5568) 

-0.1134 

(0.2681) 

0.0292 

(0.4258) 

0.1031* 

(0.0066) 

-0.0023** 

(0.0339) 

0.0201* 

(0.0000) 

0.0123* 

(0.0000) 
17,714 0.8120 

2006 
0.9168* 

(0.0000) 

0.0315 

(0.3921) 

0.0001 

(0.4150) 

-0.0080* 

(0.0000) 

-0.0643* 

(0.0002) 

-0.0392 

(0.2786) 

0.0292 

(0.5577) 

-0.1248 

(0.1895) 

0.0652 

(0.2719) 

0.0154 

(0.6909) 

-0.0006 

(0.8574) 

0.0152* 

(0.0000) 

0.0136* 

(0.0000) 
17,163 0.8116 

2007 
0.8855* 

(0.0000) 

0.0855** 

(0.0466) 

-0.0004* 

(0.0021) 

-0.0121* 

(0.0000) 

-0.0732* 

(0.0090) 

-0.0759*** 

(0.0825) 

0.0271 

(0.6125) 

-0.1322 

(0.2280) 

0.1072*** 

(0.0938) 

-0.1110* 

(0.0025) 

0.0260* 

(0.0000) 

0.0309* 

(0.0000) 

0.0165* 

(0.0000) 
16,685 0.7960 

2008 
0.8603* 

(0.0000) 

0.1240* 

(0.0017) 

-0.0008* 

(0.0000) 

-0.0118* 

(0.0000) 

-0.0514** 

(0.0186) 

-0.0596 

(0.1755) 

-0.0234 

(0.6997) 

-0.0956 

(0.4045) 

0.1310** 

(0.0437) 

-0.1768* 

(0.0000) 

-0.0006 

(0.4556) 

0.0240* 

(0.0000) 

0.0216* 

(0.0000) 
16,285 0.7823 

2009 
0.8430* 

(0.0000) 

0.0912* 

(0.0035) 

-0.0001 

(0.3678) 

-0.0096* 

(0.0000) 

-0.0286 

(0.1901) 

-0.0499 

(0.1973) 

0.0413 

(0.4591) 

-0.4556* 

(0.0021) 

0.0210 

(0.6206) 

-0.1031* 

(0.0000) 

0.0018* 

(0.0002) 

0.0021 

(0.5619) 

0.0224* 

(0.0000) 
16,008 0.7804 

 
Dependent variable:  one-year-ahead equity/assets ratio.  p-values in parentheses, based on robust (White) standard errors.  Significance levels are 

*0.01, **0.05, and ***0.10.  Number of observations shown for each year equals the sum of sample banks in that year plus those in the prior two 

years year, as explained in the text. 
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Table 6:  Out-of-Sample Forecast Accuracy for Equity/Assets  

 

Modela Regression 

Typeb 

Average of 

2001-2011 

Correlations 

between 

Actual and 

Fitted 

Equity/Assets 

Average 

of 2001-

2011 

Mean 

Absolute 

Forecast 

Errors 

Average 

of 2001-

2011 

Median 

Absolute 

Forecast 

Errors 

Average 

Percent of 

Banks 

Correctly 

Predicted to 

be in Bottom 

5% 

Type II 

error 

(100 banks 

vs bottom 

5%)c 

Type II 

error 

(75 banks 

vs bottom 

4%)c 

Type II 

error 

(50 banks 

vs bottom 

3%)c 

Type II 

error 

(25 banks 

vs bottom 

2%)c 

Risk1 OLS 0.8980d 0.0085 0.0055 54.98% 20.00% 20.12% 20.88% 20.00% 

Risk1 0.05 0.8670 0.0205 0.0174 54.87% 20.03% 22.78% 22.98% 22.45% 

Risk1 0.10 0.8851 0.0151 0.0124 76.24% 18.67% 20.91% 21.12% 21.66% 

Risk2 OLS 0.8955 0.0098 0.0070 56.06% 19.08% 19.43% 20.98% 22.66% 

Risk2 0.05 0.8515 0.0220 0.0188 53.03% 24.32% 26.12% 29.11% 27.59% 

Risk2 0.10 0.8772 0.0161 0.0133 75.48% 20.73% 23.56% 24.46% 22.46% 

Strategic OLS 0.8926 0.0087 0.0056 56.89% 19.52% 18.46% 21.03% 19.21% 

Strategic 0.05 0.8546 0.0209 0.0177 55.86% 20.02% 22.05% 23.95% 22.58% 

Strategic 0.10 0.8752 0.0156 0.0128 77.39% 18.58% 20.54% 22.83% 22.25% 

Naïve OLS 0.9021 0.0086 0.0055 54.21% 20.28% 24.51% 25.55% 24.10% 

 
a See Tables 4-5 for regressors in Risk1 and Risk2 models.  Regressors in the “Strategic” model are 

Equity/Assets, Return on Assets, Nonperforming Loans/Allowances for Loan and Lease Losses, 

Loans/Assets, Percent Change in Federal Housing Finance Agency’s House Price Index (by state), 

Dividends on Common Stock/Assets, Dividends on Preferred Stock/Assets, Change in Capital 

Stock/Assets, and Change in Treasury Stock/Assets; this is essentially our Risk1 model augmented by four 

dynamic dividend and capital stock measures.  The sole regressor in the “Naïve” model is current 

Equity/Assets. 

b Regression Types:  OLS (Ordinary Least Squares Regression), 0.05 (5th Quantile Regression), 0.10 (10th 

Quantile Regression).  All samples exclude the 100 largest banks by assets each year. 

c Applying a threshold that identifies a fixed number of banks (100, 75, 50, or 25) in the bottom tail (5%, 

4%, 3%, 2%, or 1%), the Type II error represents the number of banks that were incorrectly predicted to be 

in the bottom tail, as discussed in the text.  The table shows the average across all sample years of incorrect 

predictions in percent of bottom tail banks. 

d Boldface entries denote any of the three best outcomes for each measure of accuracy. 
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Table 7:  Out-of-sample Forecast Accuracy by Year Based on Risk1 Model   

 

Year Correlation between 

Actual vs. Predicted 

Equity/Assets 

Mean Absolute Error 

between Actual vs. 

Predicted Equity/Assets 

Median Absolute Error 

between Actual vs. 

Predicted Equity/Assets 

2002 0.92909 0.00750 0.00500 

2003 0.90809 0.00817 0.00540 

2004 0.89467 0.00785 0.00487 

2005 0.90367 0.00802 0.00530 

2006 0.90523 0.00773 0.00460 

2007 0.89545 0.00801 0.00474 

2008 0.87560 0.00996 0.00588 

2009 0.88266 0.00988 0.00663 

2010 0.86844 0.00937 0.00618 

2011 0.91726 0.00891 0.00629 

AVG 0.89802 0.00854 0.00549 
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Table 8:  Mean Leverage, Actual versus Predicted (Out of Sample), Risk1 Model  

 

Year Mean Actual 

Equity/Assets 

Mean Predicted 

Equity/Assets 

t-test of Equal Means 

between Actual vs. 

Predicted Equity/Assets 

2002 0.10546 0.10407 8.8124* 

2003 0.10482 0.10666 -10.3192* 

2004 0.10561 0.10585 -1.2305 

2005 0.10502 0.10572 -3.5930* 

2006 0.10702 0.10488 10.9956* 

2007 0.10925 0.10699 10.4850* 

2008 0.10615 0.11021 -17.4241* 

2009 0.10424 0.10261 7.4604* 

2010 0.10429 0.10182 11.0672* 

2011 0.10818 0.10382 23.9376* 

ALL 0.10592 0.10530 10.7519* 

 

Significance levels is *0.01. 
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Table 9:  Out-of-Sample Forecast Accuracy for Equity/Assets (Large Banks versus Small 

Banks), Risk1 Model  

 

Panel A:  Large versus Small Banks (Threshold = Sample Mean = $242.2m Total Assets) 

Large Banks (15,232 Observations) Small Banks (50,228 Observations) 

Year Correlation 

between Actual 

vs. Predicted 

Equity/Assets 

Mean Absolute 

Error between 

Actual vs. 

Predicted 

Equity/Assets 

Median 

Absolute Error 

between Actual 

vs. Predicted 

Equity/Assets 

 Correlation 

between Actual 

vs. Predicted 

Equity/Assets 

Mean Absolute 

Error between 

Actual vs. 

Predicted 

Equity/Assets 

Median 

Absolute Error 

between Actual 

vs. Predicted 

Equity/Assets 

2002 0.87374 0.00721 0.00422  0.93728 0.00758 0.00513 

2003 0.82962 0.00864 0.00511  0.92287 0.00805 0.00543 

2004 0.82831 0.00780 0.00467  0.90381 0.00788 0.00496 

2005 0.87603 0.00764 0.00515  0.90532 0.00816 0.00532 

2006 0.90222 0.00650 0.00401  0.90276 0.00817 0.00488 

2007 0.85611 0.00777 0.00447  0.90132 0.00814 0.00494 

2008 0.73180 0.01117 0.00616  0.89853 0.00958 0.00593 

2009 0.80133 0.01307 0.00959  0.89514 0.00910 0.00603 

2010 0.54888 0.01142 0.00714  0.90091 0.00885 0.00588 

2011 0.89757 0.00877 0.00592  0.92271 0.00892 0.00640 

AVG 0.81456 0.00900 0.00564  0.90907 0.00844 0.00549 

 

 

Panel B:  Large versus Small Banks (Threshold = Sample Median = $101.4m Total Assets) 

Large Banks (32,730 Observations) Small Banks (32,730 Observations) 

Year Correlation 

between Actual 

vs. Predicted 

Equity/Assets 

Mean Absolute 

Error between 

Actual vs. 

Predicted 

Equity/Assets 

Median 

Absolute Error 

between Actual 

vs. Predicted 

Equity/Assets 

 Correlation 

between Actual 

vs. Predicted 

Equity/Assets 

Mean Absolute 

Error between 

Actual vs. 

Predicted 

Equity/Assets 

Median 

Absolute Error 

between Actual 

vs. Predicted 

Equity/Assets 

2002 0.90658 0.00711 0.00450  0.93813 0.00785 0.00540 

2003 0.86289 0.00813 0.00518  0.93083 0.00820 0.00557 

2004 0.87388 0.00749 0.00476  0.90141 0.00822 0.00504 

2005 0.90044 0.00747 0.00508  0.90049 0.00858 0.00559 

2006 0.90118 0.00690 0.00422  0.90236 0.00864 0.00517 

2007 0.87990 0.00755 0.00446  0.89953 0.00861 0.00521 

2008 0.81493 0.00979 0.00562  0.90673 0.01029 0.00649 

2009 0.86406 0.01051 0.00741  0.88352 0.01013 0.00634 

2010 0.79028 0.00958 0.00626  0.89653 0.00932 0.00602 

2011 0.90725 0.00854 0.00598  0.92467 0.00928 0.00641 

AVG 0.87014 0.00831 0.00535  0.90842 0.00891 0.00573 
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Panel C:  Large versus Small Banks (Threshold = $300m Total Assets) 

Large Banks (12,114 Observations) Small Banks (53,346 Observations) 

Year Correlation 

between Actual 

vs. Predicted 

Equity/Assets 

Mean Absolute 

Error between 

Actual vs. 

Predicted 

Equity/Assets 

Median 

Absolute Error 

between Actual 

vs. Predicted 

Equity/Assets 

 Correlation 

between Actual 

vs. Predicted 

Equity/Assets 

Mean Absolute 

Error between 

Actual vs. 

Predicted 

Equity/Assets 

Median 

Absolute Error 

between Actual 

vs. Predicted 

Equity/Assets 

2002 0.85695 0.00727 0.00427  0.93708 0.00755 0.00510 

2003 0.83093 0.00893 0.00522  0.92116 0.00802 0.00540 

2004 0.82510 0.00815 0.00473  0.90291 0.00782 0.00492 

2005 0.87042 0.00789 0.00527  0.90607 0.00809 0.00529 

2006 0.89761 0.00664 0.00412  0.90423 0.00802 0.00481 

2007 0.86509 0.00772 0.00460  0.89833 0.00811 0.00484 

2008 0.72914 0.01149 0.00614  0.89546 0.00958 0.00588 

2009 0.80951 0.01330 0.01009  0.89286 0.00914 0.00611 

2010 0.83838 0.01117 0.00739  0.88922 0.00892 0.00588 

2011 0.88142 0.00903 0.00614  0.92355 0.00889 0.00628 

AVG 0.84045 0.00916 0.00580  0.90709 0.00842 0.00545 
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Table 10:  Chow Tests for Stability of Coefficients over Time, Risk1 Model  

 

Panel A:  Individual Years 

 Year t versus Full Panel Year t versus Year t+1 

Year F-statistic(Degrees 

of Freedom) 

p-value F-statistic (Degrees 

of Freedom) 

p-value 

2000 25.135 (6, 65,448) 5.66×10-30 8.237 (6, 26,503) 6.25×10-9 

2001 16.732 (6, 65,448) 2.15×10-19 14.204 (6, 25,782) 3.16×10-16 

2002 21.288 (6, 65,448) 4.09×10-25 11.912 (6, 25,110) 2.13×10-13 

2003 51.740 (6, 65,448) 6.76×10-64 3.205 (6, 24,375) 3.80×10-3 

2004 31.140 (6, 65,448) 1.35×10-37 5.957 (6, 23,595) 3.12×10-6 

2005 6.357 (6, 65,448) 1.05×10-6 16.170 (6, 22,868) 1.15×10-18 

2006 39.027 (6, 65,448) 1.21×10-47 17.546 (6, 22,226) 2.22×10-20 

2007 14.410 (6, 65,448) 1.68×10-16 18.769 (6, 21,688) 6.61×10-22 

2008 100.447 (6, 65,448) 2.39×10-126 27.991 (6, 21,313) 1.67×10-33 

2009 23.752 (6, 65,448) 3.18×10-28 – – 

 

 

Panel B:  Test of Single Breakpoint at Year t 

Break Year: F-statistic (Degrees of Freedom) p-value 

2002 47.780 (6, 65,448) 7.91×10-59 

2003 25.491 (6, 65,448) 2.00×10-30 

2004 25.411 (6, 65,448) 2.53×10-30 

2005 38.765 (6, 65,448) 2.62×10-47 

2006 32.766 (6, 65,448) 1.15×10-39 

2007 65.684 (6, 65,448) 9.22×10-82 
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Table 11:  Effect of Longer Lags on Predictive Performance, Risk1 Model  

 

Panel A:  Lag Between Base Year and Holdout Year 

Lag 

in Years 

Average Correlation 

between Actual and 

Predicted 

Equity/Assets 

Mean Absolute Error 

between Actual and 

Predicted Equity/Assets, 

Averaged Across 

Sample Years 

Median Absolute 

Error between Actual 

and Predicted 

Equity/Assets, 

Averaged Across 

Sample Years 

1 0.89802 0.00854 0.00549 

2 0.89742 0.00870 0.00563 

3 0.89724 0.00873 0.00569 

 

 

Panel B:  Lag Between Financial Data and Predicted Equity/Assets 

Lag 

in Years 

Average Correlation 

between Actual and 

Predicted 

Equity/Assets 

Mean Absolute Error 

between Actual and 

Predicted Equity/Assets, 

Averaged Across 

Sample Years 

Median Absolute 

Error between Actual 

and Predicted 

Equity/Assets, 

Averaged Across 

Sample Years 

1 0.89802 0.00854 0.00549 

2 0.80266 0.01194 0.00783 

3 0.75147 0.01394 0.00932 
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