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Abstract— Autonomous Underwater Vehicle-Manipulator 

Systems (AUVMS) operating in shallow waters or near-surface 

environments may be exposed to wave disturbances which will 

cause undesired motion of the end effector. This paper presents 

a method to maneuver the manipulator joints and counteract 

undesired motion of the vehicle body, in order to maintain a 

steady end-effector position in the inertial frame. An 

Autoregressive (AR) model is used to predict vehicle motion, 

and then combined with Model Predictive Control (MPC) to 

optimize joint motion. Simulation was conducted using real 

data to verify the efficacy of this method.  

I. INTRODUCTION 

Autonomous Underwater Vehicle-Manipulator Systems 
(AUVMS) operating in near-surface environments may be 
subject to wave disturbances which affect the efficacy of their 
control. The motion induced on the vehicle body and 
manipulator will impede the ability of the end effector to 
maintain a steady pose in the inertial frame required for 
intervention tasks, such as object handling, surface cleaning, 
and inspection in the environment. The high frequency and 
stochastic nature of water flow means reactive control for 
task error may not be sufficient. If we can predict how waves 
will affect the motion of the vehicle body, then we ought to 
be able to maneuver the manipulator joints to counteract this 
motion. 

AUVs have previously been developed for observational 
tasks in deep sea environments where water currents may be 
large but predominantly time-invariant. However, there has 
been increasing development of AUVs with manipulator 
systems designed to interact with the objects in its 
surroundings. Notable examples include the GIRONA500 
[1], TRIDENT [2], and SAUVIM [3][4][5]. 

The effects of wave disturbances on control of 
manipulators on non-inertial platforms have hitherto been 
largely concerned with robots operating on ships. The main 
challenge pertains to the nonlinearity and stochastic nature of 
water currents, making it difficult to predict and counteract. 
Several methods have been employed to forecast wave 
motion, such as treating waves as a Gaussian process with 
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linear relationships between disturbance observations [6], 
using superposition of sinusoidal waves, and autoregression 
[7]. Autoregressive (AR) models are such that an observation 
of    is regressed on values of      . This ability to predict 
future events based on historical data is particularly useful for 
processes with no identifiable deterministic model that is 
otherwise regarded as stochastic; i.e. waves. 

Model Predictive Control (MPC) is a control method 
known for its robustness to uncertainty and disturbances. It 
has been successfully applied to path planning of AUVs 
while incorporating uncertainty in the future hydrodynamic 
disturbances [8][9]. MPC optimizes an objective function by 
considering the total cost of future states and controls at a 
horizon of N future steps. Therefore, it is a useful method 
when knowledge of future conditions is available for 
consideration in the control plan. However, path-planning of 
AUVs with MPC operate on the basis of stable and/or 
previously mapped deep ocean currents. This may be invalid 
for near-surface operation. 

The utility of AR models, coupled with its predictive 
abilities, make it a suitable choice for integration with MPC. 
Its diversity is exemplified in disturbance prediction and 
rejection of feed flow rates in chemical processing [10], 
climate control within buildings, whilst factoring in weather 
forecasts [11], and rigid body dynamics by eliminating 
tremor in microsurgery via teleoperation [12]. 

Wave disturbance to manipulators on ship platforms has 
also been modeled with AR [7]. Waves in ocean swell can 
induce large inertial forces on manipulator joints. Forecasts 
of waves were used to reduce torque loads on joints, and the 
cost-to-go function in which the manipulator utilized the ship 
motion to initiate its own. Heave amplitudes experienced in 
this scenario were on the order of magnitude of 1m, at a 
frequency of approximately 0.25Hz. Pitch angles were of 0.2 
radians in amplitude at roughly 0.5Hz. Because of this low 
frequency, forecast intervals of 0.5s were sufficient. 

Conversely, small AUVMS operating near the water’s 
surface may experience wave disturbances of a much higher 
frequency, and may be much more erratic. This necessitates 
more frequent forecasting. This paper applies AR to predict 
vehicle body motion as a disturbance to the end-effector on a 
kinematic level (as opposed to dynamics). This in turn will 
translate to task error that will obstruct accurate and smooth 
motion required for precision intervention operations. By 
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sufficiently predicting the vehicle body motion, model 
predictive control is then used to move the manipulator joints 
to eliminate this disturbance and keep the end effector steady 
in the inertial frame. 

II. PROBLEM DESCRIPTION & FORMULATION 

A. Problem Scenario 

An AUVMS is currently being developed to conduct 
cleaning and inspection on submerged bridge support 
columns (piles). The exterior of bridge piles must be 
inspected regularly for cracks, spalling, and corrosion to 
make an assessment of its structural integrity. Biofouling 
such as oysters, mussels, and seaweed which grow on the pile 
surface must be removed before a detailed inspection can be 
performed. 

 

Figure 1. Model of the AUVMS for bridge pile cleaning and inspection. 
 

Cleaning is currently done by human divers using high-
pressure water. This presents a hazard to human safety, as 
well as being a physically laborious task. Furthermore, the 
underwater environment makes it difficult for humans to 
maneuver, and vision can often be impaired. Automating this 
process eliminates risks to humans, as well as making the 
process more productive and efficient. 

The density of biofouling is densest in shallow waters up 
to the intertidal zones, i.e. near the water’s surface [13][14]. 
Effective removal of biofouling requires a steady tool off-set 
distance and angle of attack relative to the pile surface. 
Waves in these environments can be erratic and of high 
frequency, making it difficult for the AUVMS to maintain a 
steady end-effector pose. Furthermore, water flow patterns 
vary greatly in direction and magnitude around the 
circumference of the pile [15]. These may induce large 
disturbances to the vehicle body. This in turn will affect the 
ability of the end-effector to maintain an accurate position, 
and hence impair cleaning operations. 

B. Kinematics of the AUVMS 

The Submerged Pile Inspection Robot (SPIR) consists of 
a holonomic body with 8 thrusters to move in to position in 
front of a pile. Two under-actuated arms are then used to help 
secure the vehicle to the pile whilst a third cable-driven, 
6DOF manipulator is to conduct high-pressure water 
cleaning. It is assumed the arms will maintain proximity to 
the pile, but ultimately be inadequate at keeping the vehicle 
rigid. 

The position and orientation of the end effector     with 
respect to the inertial frame {I} can be expressed through the 
spatial relationships of the body frame {B}, the base of the 
manipulator {O}, and the end effector frame {E}. Kinematic 
control can be expressed in terms of vehicle body velocities 
and the manipulator joint velocities (1). The reader is directed 
to [4] and [16] for further information on deriving kinematic 
equations. 

 

Figure 2. Reference frames on the AUVMS used for kinematics. 
 

The end effector velocity is expressed as: 
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Where  ̇ and   are the manipulator joint velocities and the 

body velocities respectively. The terms     
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represent the velocity transformation jacobians from the 
inertial to end-effector frame, and inertial to body frame 
respectively: 
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The term  ( ) is the manipulator Jacobian, and θ, ϕ 

represent the vehicle pitch and roll respectively. Singular 

configurations of    (  ) are avoided by aligning the body 

coordinate frame in such a way that     whilst the vehicle 

is upright in normal operation. The matrix M contains 

displacement vectors between frames, transformed to the 

inertial frame {I}: 
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III. AUTOREGRESSION 

A. Predicting vehicle body motion with AR 

A standard regression is one in which a response variable 
  is regressed on a predictor variable  . In autoregression, 
observations of    are regressed on previous 
observations     . In other words, the process is regressed 
upon itself. An AR(p) model of order p takes the form: 

    ∑     (  )    
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Where      (   
 ). 

A predictive model of control disturbance can be 
produced by solving a least-squares optimization problem. 
The objective is to minimize the Mean Squared Error (MSE) 

between n prior disturbances       and predicted values  ̂    
in the optimization process: 
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And n ≥ p + 1. 

Solving for α, the estimated control disturbance at time k 
is then given by: 
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             (3) 

 

Predictions at k+N steps in the future can be made by 
substituting predicted values at time k, k+1, … , k+N-1 in to 
the AR(p) model. 

B.  Advantages to Autoregression 

Previous attempts at modelling wave disturbance have 
considered Gaussian, linear processes [6], and superposition 
of sinusoids [7] to name a few. However, AR holds a few 
advantages for this application. It is a simple linear model 
that, in the case of vehicle body motion, requires minimal 
data points (n < 20) in order to produce accurate forecasts. 
And by incorporating manipulator joints in to the state and 
control space (8), it is theoretically possible to predict and 
control for disturbance to the manipulator. 

C. Determining values for n, p 

Accuracy of the AR model depends on p - the order of the 
model/number of α coefficients, and the number of prior 
constraint equations (n – p). For example, an AR(2) model 
requires a minimum of n = p + 1 = 3 data points to produce a 
prediction using 1 constraint equation. 

Values of n from 10 to 15 were found to be the most 
accurate, depending on the value of p. Interestingly, values of 
n > 20 decreased the accuracy of forecast models. This 
implies that only the most recent motion data is useful in 

producing forecasts due to the erratic and constantly 
changing water surface conditions. 

Fig. 3 shows forecasts from 3 AR models compared to 
vehicle motion data. AR has been noted as being inaccurate 
over long term forecasts [6]. However, as indicated in Fig. 3, 
it is sufficiently accurate within a forecast horizon of less 
than 0.5 seconds. Predictions for surge, sway, and heave are 
also more accurate than roll, pitch, and yaw motion. This has 
also been noted in [7]. 

 

Figure 3. Forecasts from different orders of AR versus vehicle heave (top), 

and pitch (bottom) versus true motion 

IV. MODEL PREDICTIVE CONTROL STRATEGY 

A. Mathematical Modelling 

We consider a discrete time system of the form: 

 ̂              ̂       (4) 
 

Where  ̂   is our expected state at the next time step based 

on predicted disturbance  ̂ from (3). 

A general, discrete-time system is often written in the 
form: 

                 

           
 

In which    is assumed to be zero-mean Gaussian white 
noise. From (2) and (3) we can see that this parameter has 

been subsumed in to  ̂  of (4) and hence this convention is 
implicitly retained. If      , this can be abbreviated to: 
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Where    is our observation of the true state, and    is the 
true, as-of-yet unknown control disturbance at the previous 
time step. Assuming that    ,      and that B is square 
and invertible, the previous control disturbance can be 
determined by: 
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B. Development of the system model 

We can define our state vector as: 
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Then following the form of (4) 
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C. Model Predictive Control 

We wish to control the state of the end effector     to 

some desired state      , with consideration for the effect that 

future disturbances will have on achieving this goal. Model 
Predictive Control (MPC) is pragmatic for this situation 
because of its ability to optimize the control plan for N future 
predictions. By factoring in forecasts of vehicle body motion, 
the model can devise the optimal control strategy to counter 
these disturbances, whilst adhering to any costs and strict 
constraints. 

We first measure the current end-effector pose at the 
current time      , and solve the MPC problem to return the 

optimal control      : 
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Within this optimization problem, the AUVMS body 

velocity control    is set to zero. Waves at the surface of the 
water may be frequent and erratic. Furthermore, water flow 
around piles is turbulent and highly irregular [15]. Due to the 
time delay in the dynamic response of the vehicle control, we 
assume that it will be insufficient in nullifying these 
disturbances completely. Consequently, vehicle stability is 
solved as a separate problem. This also reduces complexity of 
the aforementioned optimization problem. In either scenario, 
any motion of the body is viewed as disturbance by the 

control method; hence we constrain the joint manipulators to 
counter its effect. 

The cost function ℓ consists of 3 terms. The first term is 
the sum of the distance squared between the desired position 
and the expected position at the next time step (as a function 
of the predicted disturbance): 

           ‖        ̂       ‖
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The second term represents a cost for the error between 
the expected orientation of the end effector and the desired 
orientation: 

           (  )
  (11) 

In which the angle error     is given by: 
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Where R is a rotation matrix as a function of the end-effector 
attitude     . 

Lastly, we consider               as the sum of the 
squared accelerations of the manipulator joints, which ensure 
smooth motion of the manipulator and end-effector. 
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Where the acceleration is given by: 
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Finally, the total cost function is expressed as: 
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Cost function weightings     were chosen heuristically. 

Generally,          to avoid situations where the 

optimization will trade off large attitude error to reduce 

position error. Values of [      ]  
[     ] appeared to be sufficient. 

V. PROCESS OF THE END-EFFECTOR POSITION CONTROL 

A general process of the end effector position control is 
given in Fig. 4. A desired state is first defined somewhere 
within reach of the manipulator. If there is a difference 
between the desired state and the current known state, then 
the joint velocities are optimized to achieve it with 
consideration for any predicted disturbances. 

After moving, the current state is then measured against 
the expected state. From this, prior disturbances can be 
determined. This is then added to a finite history of data. Old 
disturbance data is discarded as more recent information is 
acquired. Because of this moving window of prior 
disturbance, the AR model is constantly updated. This gives 
it the ability to adapt to changing external conditions. 



  

 

Figure 4. Process for kinematic control with AR and MPC 

VI. SIMULATION AND RESULTS 

A. Scenario and assumptions 

Real data was collected from an IMU sitting on a small 
vessel floating in a large body of water. Waves were 
generated to create a disturbance. This data was then fed 
through the simulation as    in (9). The kinematic model was 
simulated in MATLAB. As such, it is difficult to estimate the 
computational cost for real-time applications. Future work 
will involve conversion of the algorithm in to C++ and 
running it on limited hardware to verify its feasibility. 

A few assumptions were made when transferring the data 
to the simulation. Firstly, we assume that the AUVMS can 
maintain adequate heading towards the desired target. Ergo, 
large yaw velocities were scaled down. It is also assumed that 
the average position of the body over time does not move 
from its initial state i.e. velocities have a mean of 0. It is also 
assumed that there is full knowledge of the AUVMS body 
pose in the inertial frame at any given time. 

An arbitrary location was specified in the body frame {B} 
at time t=0. An arbitrary pose within reach of the manipulator 
was then defined as the goal in the task space. Using the 
control algorithm, the simulated AUVMS is expected to 
maintain this end-effector pose indefinitely. The simulation 
was run for 5 seconds, with sampling and forecasting 
frequencies of 20Hz. Manipulator joint velocities were 
capped at 1.2 rad/s. 

B. Results of the simulation 

 

Figure 5. End-effector position over time:  using no prediction and control 

(blue), versus AR(2) and MPC with N=3 (red). 
 

Fig. 5 shows the position of the end-effector in the inertial 
frame throughout the simulation. As a baseline, no prediction 
method and no model predictive control was used. In this 
manner, the manipulator simply tries to correct for error from 
the target after deviation has already occurred. In 
comparison, AR(2) prediction and MPC with a prediction 
horizon of N = 3 shows greatly improved accuracy. 
Simulations show a reduction in mean position error of 88% 
(Table 2). Furthermore, the variance was reduced by over 
half. This means the AR prediction model improves accuracy 
as well as certainty of the end-effector position at any given 
time. 

It was noted by Becker et al [12] that AR models can 
reduced unwanted tremor in tele-operated surgical robots by 
47% compared to a last-value predictor of disturbance. These 
simulations confirm a similar efficacy of AR over last-value 
predictions, in which an AR(2) model reduces error by 
approximately 65% using MPC. 

The distance of the end-effector from the target, and the 
angle-error from the desired orientation was plotted over time 
for 3 types of predictive models: no prediction, last-value, 
and AR(2) (Fig. 6). The latter two were implemented with 
MPC. Despite inaccuracies in forecasts of pitch angles (Fig. 
3), with similar observations in [7], it was found that AR still 
provides a much better reduction in rotation error than a last-
value predictor. 

 

Figure 6. (Top) Distance of the end-effector from target and (bottom) angle 

error from the desired rotation. 
 

It was also found that amongst all the AR models that 
there are diminishing returns in accuracy for longer forecast 
horizons. A horizon of N=5 improved accuracy by less than 
0.1mm than that of N = 3 across all orders of AR. In the case 
of AR(4), it was found that accuracy began to decrease as the 
prediction horizon increased. It can be seen in Fig. 3 that 
forecasts of AR(4) diverge further over time from the true 
data compared to lower order models. This is likely due to 
the additional coefficients in the AR(4) model generating 
higher-order polynomials in the forecasts, which deviate from 
the true motion over time. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, it was shown that an autoregressive model 
of AUVMS body motion in rough water can be used to 
produce predictions of future body motion. Simulations were 
run in which these predictions were integrated in to model 

1. Start 

2. Get desired end effector position 𝜼𝑒𝑒 𝑑 

3. Measure current end effector position 𝜼𝑒𝑒   

4. Get optimal control 𝒖  

5. Move to next state �̂�𝑒𝑒 𝑘   

6. Measure actual state 𝜼𝑒𝑒 𝑘   

7. Calculate prior disturbance 𝒅𝑘 

8. Fit AR model 

9. Forecast next disturbance �̂�𝑘 

10. Input to control optimization (Step 4) 

11. Repeat 



  

predictive control of an AUVMS end-effector. In doing so, it 
was shown that the joints of a manipulator can be used to 
cancel out unwanted motion caused by the vehicle body, and 
thus keep the end effector relatively stationary in the task 
space. An AR(2) model was found to be the simplest model 
for the most accurate disturbance prediction, with greater 
efficacy than a last-value predictor. 

The outcomes of this research lead to multiple avenues 
for continued verification and development. Firstly, there is 
the concern for computational costs when running online on 
the AUVMS. This algorithm will need to be implemented on 
a real system to assure feasible solution times and memory 
consumption. 

Future model development will also involve more robust 
kinematic control. This will include trajectory tracking under 
similar conditions in order to carry out cleaning of a pile 
surface, and utilization of redundant kinematics for joint-limit 
and singularity avoidance. Dynamic effects may also need to 
be accounted for. However, the 6DOF manipulator is cable 
driven and predominantly made of plastic. Therefore, effects 
such as inertia and torque loads are likely to be minimal. 

Finally, we intend to implement this model predictive 
control method on the AUVMS prototype. Experimental 
testing can then be conducted both in laboratory settings, and 
during on-site trials to substantiate its accuracy and 
robustness in different operating conditions. 
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APPENDIX 

TABLE 2. SIMULATION RESULTS FOR DIFFERENT PREDICTION MODELS AND 

DIFFERENT FORECAST HORIZONS OF MODEL PREDICTIVE CONTROL. 

N 
Prediction 

Model 

Mean 

Position 

Error 

(mm) 

Std. Dev. 

Angle 

Error 

(deg) 

Std. 

Dev. 

1 

None 16.78 5.98 4.54 2.24 

Last Value 10.50 4.35 4.82 2.34 

AR(2) 9.46 4.06 4.58 2.24 

AR(3) 9.50 4.11 4.61 2.25 

AR(4) 9.44 4.01 4.56 2.24 

3 

None 14.01 5.14 1.63 1.09 

Last Value 5.99 2.29 1.63 1.31 

AR(2) 2.07 1.68 0.73 0.67 

AR(3) 2.07 1.64 0.74 0.68 

AR(4) 2.23 1.65 0.69 0.64 

5 

None 14.07 5.13 1.80 1.14 

Last Value 5.86 2.21 1.57 1.24 

AR(2) 1.98 1.36 0.69 0.50 

AR(3) 2.00 1.31 0.72 0.55 

AR(4) 2.36 2.05 0.77 0.56 
 

Notation for the AUVMS kinematic equations: 

 I, B, O, E: Inertial, Body, Base, and End-Effector frames respectively. 

     [
    
    

]  [
[   ] 

[   ] 
] : End effector pose in I. 

   [
  
  
]: Vehicle pose in I 

   
 : Rotation matrix from I to B 

   
 : Rotation matrix from I to O 

  ⃑   : Displacement from B to O with respect to B. 

  ⃑   : Displacement from O to E with respect to O 

    (  ): Angular velocity transformation 
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