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Abstract- This paper proposes a new, efficient and powerful heuristic-hybrid algorithm using 14 

hybrid differential evolution (DE) and particle swarm optimization (PSO) techniques (DEPSO) 15 

designed to solve eight optimization problems with benchmark functions and the multi-area 16 

economic dispatch (MAED), reserve constrained MAED (RCMAED) and reserve constrained 17 

multi-area environmental/economic dispatch (RCMAEED) problems with reserve sharing in 18 

power systems operations. The proposed hybridizing sum-local search optimizer, entitled 19 

HSLSO, is a relatively simple but powerful technique. The HSLSO algorithm is used in this 20 

study for solving different MAED problems with non-smooth cost function. The effectiveness 21 

and efficiency of the HSLSO algorithm is first tested on a number of benchmark test functions. 22 

Experimental results shows the HSLSO has a better quality solution with the ability to converge 23 

for most of the tested functions. 24 
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 28 

1. Introduction 29 

Economic load dispatch (ELD), optimal power flow (OPF) and optimal reactive power dispatch 30 

(ORPD) nonlinear problems are some of the most important optimization problems in power 31 

system operation and planning for allocating generation to the committed units [1-2]. They have 32 

been resolved using many proposed optimization mathematical methods and modern heuristic 33 

algorithms such as Hopfield neural network [1, 3], a modified harmony search algorithm 34 

(MHSA) [4], genetic algorithm (GA) [5], real-coded GA (RCGA) [6], particle swarm 35 

optimization (PSO) [7], a proposed efficient scheme in [8] for clearing of energy and reserves in 36 

multi-area markets, an immune algorithm (IA) with power redistribution [9], a new modified 37 

differential evolution (MDE) [10], cuckoo search algorithm (CSA) [11], iteration PSO with time 38 

varying acceleration coefficients [12], a hybrid DE algorithm based on PSO algorithm (DEPSO) 39 

[13], PSO for  dynamic ELD problem [14], information gap decision theory (IGDT) to help the 40 

distribution network operators (DNOs) [15], risk-constrained self-scheduling of GenCos 41 

generation companies (GenCos) optimizers [16], a new continuous method of quick group search 42 

optimizer (QGSO) [17], imperialist competitive algorithms (ICA) for multi-objective OPF 43 

problems [18], tribe-modified DE (Tribe-MDE) for solving multi-objective 44 

environmental/economic dispatch (EED) [19], real coded chemical reaction algorithm (RCCRA) 45 

[20], stochastic programming [21], firefly algorithm (FFA) for multi-objective EED  considering 46 
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wind power penetration [22], hybrid ICA algorithm with sequential quadratic programming 47 

(HIC-SQP) [23], a new hybrid method for OPF problem with non-smooth cost functions [24], 48 

combination of chaotic DE and QP (quadratic) [25], bacterial foraging algorithm (BFA) [26], 49 

quantum PSO method [27], multi-objective CSA [28], a novel stochastic approach [29], DE 50 

based dynamic decomposed strategy [30],  a new hybrid algorithm for practical optimal dynamic 51 

load dispatch (DLD) [31], self-adaptive learning charged system search algorithm (SALCSSA) 52 

[32], solving stochastic OPF incorporating electric vehicles and offshore wind farm [33], 53 

colonial competitive differential evolution (CCDE) technologies [34], and etc. The main 54 

objective of ELD and OPF problems is the effective management of electrical energy generation 55 

by minimizing the total fuel cost of power generation units of a single area, while satisfying 56 

various system and operating constraints [35- 37]. The multi-area economic dispatch (MAED), 57 

reserve constrained multi-area economic dispatch (RCMAED) and reserve constrained 58 

environmental/economic dispatch (RCMAEED) problems [38-41] are an extension of ELD 59 

problems in practical power systems, whose main objective is to determine the generation levels 60 

and the power interchange between areas to minimize the operation cost (fuel cost function) of 61 

thermal generating units in all areas of power systems while satisfying generating units power 62 

limits, system power balance, and power transmission capacity constraints of network lines [42-63 

43].  64 

The DE [44-45] and PSO [46] techniques are population-based optimization evolutionary 65 

algorithms. Enhanced versions of DE, PSO and hybrid DEPSO techniques have been 66 

successfully applied to different engineering optimization problems with the PSO techniques 67 

combining the positive features of Constrained Particle Swarm, Generating Set Search, and 68 

Complex (PGS-COM) for black-box optimization problems [47], a global review of PSO 69 
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techniques for power systems [48], and DEPSO techniques for different engineering 70 

optimization problems [49].  71 

Different optimization algorithms have been proposed for solving the MAED problem of 72 

electrical energy generations in the literature. Basu solved the MAED problem in different 73 

practical power systems using artificial bee colony optimization (ABCO) [38] and teaching-74 

learning-based optimization (TLBO) [39] with prohibited operating zones, valve-point loading, 75 

multiple fuels and tie line constraints considering transmission losses. Manoharan et al. [40] 76 

solved MAED problems using evolutionary programming methods such as the DE, PSO, real-77 

coded genetic algorithm (RGA) and covariance matrix adapted evolution strategy (CMAES) for 78 

4-, 10- and 120-unit power systems. Sudhakar et al. [41] applied Secant method to solve the 79 

MAED problem. In [42], the evolutionary programming with Levenberg-Marquardt optimization 80 

(EP-LMO) method is proposed to solve the MAED problem of a 10-unit power generation 81 

system with multi-fuel options. In [43], a PSO-based method with the traditional solver GAMS is 82 

proposed to solve the MAED problem of a large 120-unit power system. Sharma et al. solved 83 

MAED and reserve constrained MAED (RCMAED) problems using various DE methods 84 

enhanced with time-varying mutation [50] and the improved PSO method with a parameter 85 

automation strategy having time varying acceleration coefficients (PSO_TVAC) [51]. Many 86 

other heuristic search techniques have been proposed for solving economic dispatch problem, 87 

such as a pattern search (PS) algorithm [52], an improved multi-objective PSO (MOPSO) for 88 

solving multi-area environmental/economic dispatch (MAEED) problem [53], the direct search 89 

method (DSM) [54], a new recurrent DE (RDE) method [55], PSO algorithm [56], a penalty 90 

function-hybrid direct search method (PF-HDSM) for solving multi-area wind-thermal 91 

coordination dispatch (MWCD) problem [57], enhanced direct search method (EDSM) [58], a 92 
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novel approach based on harmony search (HS) algorithm [59], the optimality condition 93 

decomposition (OCD) for solving multi-area dynamic economic dispatch (MA-DED) problem 94 

[60], and different novel search approaches for solving multi-area generation scheduling such as 95 

neural networks approach [61],  traditional economic dispatch method [62], modification of 96 

MAED [63],  a new DE algorithm [64],  an embedded multi-area optimal power flow (MA-OPF) 97 

[65],   a new proposed technique [66], a decomposition methodology [67, 68], a practical 98 

approach [69],  a generalized unified power flow controller [70], and  evolutionary programming  99 

[71]. 100 

 
101 

2. Multi-area economic dispatch problems 102 

The main purpose of the MAED optimization problem in power systems is to minimize the total 103 

electrical energy generation cost for supplying loads of all areas with or without minimizing the 104 

total pollutant emissions (such as NOx and SO2 emissions) while satisfying electrical power 105 

balance constraints, electrical power generating limit constraints and transmission (tie-line) 106 

capacity constraints. The objective functions of minimizing system operation (energy generation) 107 

cost and pollutant emissions [38, 60] with valve point loading (VPL) effects and multiple fuel 108 

options [38, 39] can be written in the following form: 109 

- Minimizing system operation cost 110 

1

Min ( ( ))
N

i i

i

F P


  
(1) 

where: 111 
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 112 

2: N is the number of generation units. 113 

3: k is the fuel type. 114 

4: Pi is the active power generation of the i-th unit, ,miniP and 
,maxiP are the minimum power 115 

generation and maximum power generation limits of the i-th unit. 116 

 117 

5:  2

ik i ik i ika P b P c   is the quadratic fuel cost function for fuel type k of the i-th unit. 118 

6:  aik, bik and cik are the fuel cost-coefficients for fuel type k of the i-th unit.  119 

7: k for fuel type sinusoidal fuel cost function of VPL effectsthe is    ,minsinik ik i ie f P P    120 

of the i-th unit. 121 

8:  eik and fik are the fuel cost-coefficients to model VPL effects for fuel type k of the ith unit. 122 

Tie-line power transfer among all areas of the network plays a very important role in 123 

deciding the operating cost in multi-area networks. Taking into consideration the cost of active 124 

power transmission through each tie-line of the power system, the final objective function of the 125 

MAED optimization problem becomes [40, 50]: 126 



 

7 
 

1 1

Min Min ( ( ( )) ( ( )))
N M

T i i j j

i j

F F P f T
 

    
(2) 

where, M is the number of tie-lines among the network areas. Tj is the power flow through the j-127 

th tie-line, and fj is the cost coefficient function associated with the j-th tie-line among the 128 

network areas. 129 

- Minimizing the total pollutant emissions 130 

1

Min ( ( ))
N

i i

i

E P


  
(3) 

where: 131 

2

1 1 1 ,min 1

2

2 2 2 1 2

2

1 ,max

, fuel1,

, fuel2,
1:  ( )

...

, fuel ,

i i i i i i i i

i i i i i i i i

i i

ik i ik i ik ik i i

P P P P P

P P P P P
E P

P P k P P P

  

  

   

    


   
 

    

 132 

2: 2

ik i ik i ikP P     is the quadratic pollutant emissions function for fuel type k of the i-th unit. 133 

3: ik , ik  and ik are the pollutant emissions coefficients for fuel type k of the i-th unit.  134 

 135 

2.1. Constraints  136 

2.1.1. Area real power balance  137 

The real power balance constraints of the system for area q without consideration of network 138 

losses can be given as [50, 53]: 139 



 

8 
 

1 1

( ) ( )
q qN M

i Loadq qj

i j

P P T
 

 
   
 

   
(4) 

where Nq is the number of real power generating units for the q-th area (q=1, 2, …, M), and 140 

PLoadq is the active load demand in the q-th area and Mq is the number of tie-lines connected to 141 

the q-th area. 142 

2.1.2. Unit power generating limit 143 

The active power output of units is restricted to their lower and upper limits as: 144 

,min ,max , 1,...,i i iP P P i N    (5) 

2.1.3. Thermal generation unit's ramp-rate limits  145 

The ramp-rate limit constraints can be formulated as follows: 146 

0 0

,min ,mmax( , ) min( , )i i i i i ax i iP P DR P P P UR     (6) 

where 0

iP  is the previous output real power of the i-th generation unit, and the DRi and URi are 147 

the down and up ramp rate-limits of the i-th thermal generation unit, respectively. 148 

2.1.4. Prohibited operating zones 149 

A performance curve, i.e. input-output power generation curve, of a thermal generating unit with 150 

prohibited operating zones (POZ) has discontinuities due to physical operational limitations of 151 

the generator such as faults in the machines themselves or in the associated auxiliaries [38-39]. 152 

The discontinuous input–output power range of a generator can be formulated as follows [50]: 153 
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,min 1

1
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i

l

i i i

u l
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u

iz i i
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P P P P

P P P



  




  


  


 (7) 

where zi is the number of prohibited zones in the input-output power curve of i-th generator, k is 154 

the index of prohibited zone of i-th generator, l

ikP  and u

ikP  are the lower and upper limits of k-th 155 

prohibited operating zone of the i-th generation unit, respectively. 156 

2.1.5. Tie-line power transfer limits 157 

The tie-line real power flow (economic flow) from the q-th area to the j-th area (Tqj) should be 158 

between the limits of tie-line power transfer capacity [50]. 159 

,min ,max , 1,2,...,qj qj qj qT T T j M    (8) 

 160 

2.1.6. Area spinning reserve constraints 161 

In the q-th area of a power system, a spinning reserve is set aside in each region for the 162 

contingency prerequisite of that region (required spinning reserve) and reserve contribution, the 163 

necessary spinning reserve is fulfilled through multi area reserve sharing [53]: 164 

,

1 .

, 1,2,...,
qN

iq q req qk q

i k k q

S S RC k M
 

     (9) 



 

10 
 

where 
1

qN

iq

i

S


 is the reserve prevailing on all the generation units of q-th area, and can be 165 

considered as, max

1

( )
qN

i i

i

P P


 , 
,q reqS is the prerequisite spinning reserve in the q-th area, and 166 

qkRC  is the reserve contributed from k-th area to q-th area.  167 

2.1.7. Tie-line power transfer restrictions with contributed reserve  168 

The tie-line power transfer restrictions with allowing for contributed reserve 
qkRC is as follows 169 

[53]: 170 

,min ,max , 1,2,...,qj qj qj qj qT T RC T j M     (10) 

 171 

It is worth declaring that the control variables are self-constrained. The hard constraints of real 172 

power balance can be combined with the objective function as quadratic penalty expressions. For 173 

that reason, the objective function of different MAED optimization problems can be presented as 174 

follows: 175 

1 1 1 1

Min Min ( ( )) ( ( )) ( ( )) ( ( ) )
N M N N

T i i j j i i i Load

i j i i

F F P f T E P P P 
   

 
       

 
     (11) 

where  is an appropriate value which will be nominated by the user for the RCMAEED problem, 176 

λ is the penalty factor and PLoad is the total active load demand in the whole area. 177 

 178 

3. Hybrid DEPSO techniques 179 
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3.1. Original 
180 

differential evolution 
181 

The DE algorithm is one of the population-based optimization algorithms, which was first 
182 

proposed by Storn and Price [44-45] and has been widely applied to optimization problems in the 
183 

power systems and engineering [49].  
184 

The steps for implementing original DE algorithm are as follows [72-73]:  
185 

Step 1: Initial population: A population of NP initial solutions randomly distributed in the D 
186 

dimensional search space of the optimization problem, are initiated.Each individual is generated 
187 

as follows: 
188 

0

, ,min ,max ,minrand(0,1) ( );

1,2,..., , 1, 2,...,

Iter

j i j j j

P

X X X X

j D i N

    

 
 (12) 

where rand (0,1) is a random number between 0 and 1. 
189 

Step 2: Mutation operator: In mutation step, for each individual Xi (target vector) of the new 
190 

population, three different individuals Xr1, Xr2, and Xr3 (r1 ≠ r2 ≠ r3 ≠i) are pseudo-randomly 
191 

extracted from the population to generate a new vector as: 
192 

1 2 3( )i r r rZ X F X X     (13) 

where F ∈ [0, 2] is a uniformly distributed random number which controls the length of the 
193 

population exploration vector 
2 3( )r rX X . 

194 

Step 3: Crossover operator: After mutation step, the crossover operator, according to the 
195 

following equation, is applied on the mutation vector Zi and the vector Xi to generate the trial 
196 

vector Ui, for increasing the population diversity of the mutation vector. 
197 



 

12 
 

, ,

,

,

, if rand (0,1)

, otherwise

1, 2,..., , 1, 2,..., .

j i i j

j i

j i

P

Z CR
U

X

j D i N


 


 

 (14) 

where CR ∈ [0, 1] is known as the crossover rate which is a constant. 
198 

Step 4: Selection operator: The selection process is repeated for each pair of target/trial vectors 
199 

using the evaluation function F (Ui) to compare with the evaluation function value F (Xi), and the 
200 

better one will be selected to be a member of the DE population generation for the next iteration 
201 

( 1Iter
i

X   ). 
202 

3.2.  Original 
203 

particle swarm optimization (classical PSO with the Gbest model) 
204 

The PSO algorithm is one of the population-based metaheuristic algorithms, a powerful tool in 
205 

search and optimization [48], which is based on the swarm intelligence theory and was first 
206 

proposed by Kennedy and Eberhart [46]. In this stochastic optimization algorithm, each 
207 

individual in the swarm population, called particle, represents one solution of the optimization 
208 

problem. The i-th particle, Iter

iX  is moved by a velocity (  1 1 1 1

, 1, 2, ,, ,...,Iter Iter Iter Iter

j i i i D iV V V V    ) which 
209 

is calculated by three components: social component (
, ,

Iter Iter

j i j iGbest X  ), cognitive component  
210 

(
, ,

Iter Iter

j i j iPbest X  ), and inertia component (ω). The mathematical model of PSO algorithm can 
211 

be stated as follows [46-47]: 
212 

1

, , , ,

, ,

1 rand1(0,1) ( )

2 rand2(0,1) ( )

Iter Iter Iter Iter

j i j i j i j i

Iter Iter

j i j i

V V c Pbest X

c Gbest X

      

   
 (15) 

 
213 

1 1

, , ,

Iter Iter Iter

j i j i j iX X V    (16) 
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where  1, 2, ,, ,...,Iter Iter Iter Iter

i i i D iPbest Pbest Pbest Pbest  denotes the best position that is found so far 
214 

by the i-th particle,  1, 2, ,, ,...,Iter Iter Iter Iter

i i i D iGbest Gbest Gbest Gbest  is the global best position that is 
215 

found by all of the particles in the swarm. The constants c1 and c2 are the so-called acceleration 
216 

factors usually chosen to be 2, and the constant ω is the inertia weight. 
217 

3.3.  DEPSO1  218 

Hybrid DEPSO1 [74] algorithm using hybridization of DE/best/2/bin [72] and the classical PSO 219 

with Gbest model algorithms is proposed by Zhang and Xie. In the hybrid algorithm, DE 220 

algorithm follows PSO algorithm at each generation, with consensus on the population diversity 221 

along with the evolution and further improving the Pbest of PSO algorithm. The hybrid 222 

DEPSO1 algorithm is applied to a set of the generalized Griewank function, the Rosenbrock 223 

function and the generalized Rastrigrin function, and the results show the better performance of 224 

the DEPSO1 algorithm in comparison with DE and PSO algorithms. The DE operators are given 225 

by [74]: 226 

1 2 3 4( ) ( )i r r r rZ Xbest Gbest F Pbest Pbest Pbest Pbest       (17) 

, ,

,

,

, if rand (0,1)

, otherwise.

j i i j

j i

j i

Z CR
U

Pbest


 


 (18) 

3.4.  DEPSO2  227 

A new hybrid algorithm using DE/mid-to-better/1/bin and PSO-cf algorithm was proposed by 228 

Hao et al. [75], which can maintain the diversity of swarm and enhance the ability of global 229 

(Gbest) and local (Pbest) search using improved particle positions. The experimental results of 230 

testing the DEPSO2 algorithm for benchmark test functions showed the effectiveness of the 231 

hybrid algorithm. The DE and PSO operators of DEPSO2 are selected as follows [75]: 232 
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, 1

, 1

1

, , , ,

, ,

1 1

, , ,

,1

,

1 rand1(0,1) ( )

2 rand2(0,1) ( ) PSO

(PSO)

(DE)
2

(

j r

j r

Iter Iter Iter Iter

j i j i j i j i

Iter Iter

j i j i

Iter Iter Iter

j i j i j i

Iter Iter

j iIter

j i

Iter

V V c Pbest X

c Gbest X

Z X V

X X
Z

F X X



 



     


    


  

 
 
 
 

  
, 2 , 3,

DE

)
j r j r

Iter Iter Iter

j i X X






  

 (19) 

 233 

1

, ,

, 1

,

(DE), if rand (0,1)

(PSO), otherwise.

Iter

j i i j

j i Iter

j i

Z CR
U

Z





 
 


 (20) 

3.5.  DEPSO3 [76] 234 

In [76], Xu et al. also proposed a DE mixed with particle swarm intelligence, called DE-SI 235 

method (which is called DEPSO3 in this paper). The experimental results indicate that, for most 236 

benchmark problems, the DE-SI hybrid algorithm keeps the most rapid convergence rate and 237 

obtains the global optima compared with DE and PSO algorithms. As proposed by Xu et al. [76], 238 

the mutation and crossover operators of DE algorithm are as follows: 239 

, ,1

,

,

2 rand1(0,1) ( )if rand2(0,1)

, otherwise.

Iter Iter Iter

j i j j iIter

j i Iter

j i

X c Gbest X CR
X

X


     

 


 (21) 

3.6.  DEPSO4  240 

In reference [77], Liu et al. proposed a new hybrid-optimized cultural algorithm based on 241 

DE/rand/1/bin and PSO algorithms (namely DEPSO4). The simulation results of [77] showed 242 

that the proposed algorithm had the best solution and performed better for most test functions. 243 

The algorithm formula is given by [77]: 244 
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1

, 1 , 2 , 3 ,1

, 1

, ,

( ) if rand(0,1)

, otherwise.

Iter Iter Iter Iter

j r j r j r j iIter

j i Iter Iter

j i j i

X F X X V CR
X

X V







     
 



 (22) 

3.7. The improved hybrid DEPSO algorithms 245 

3.7.1. IDEPSO1 246 

According to the simulation results of DEPSO1 algorithm, it can be said that the DEPSO1 247 

algorithm for the benchmark functions with large dimensions, converges to a local optimal 248 

solution and thus the static result is not satisfactory and is away from the global optimum 249 

solution.  250 

In this paper, we proposed a simple change in the DEPSO1 algorithm (as shown in (20)) so it can 251 

achieve a satisfactory performance for large dimensions. 252 

In the improved DEPSO1 (IDEPSO1) the roles of ( )Xbest Gbest  and Pbest  in (17) and (18) 253 

were exchanged according to (23), and the simulation results in Tables 2 and 3 show the 254 

effectiveness of this simple change to the problems with large dimensions. 255 

 256 

, , 1 , 2 , 3 , 4 ,

,

( ), if rand (0,1)

( ), otherwise.

j i j r j r j r j r i j

j i

j

Pbest F Pbest Pbest Pbest Pbest CR

U

Xbest Gbest

     


 



 (23) 

3.7.2. IDEPSO3 257 

According the obtained experimental results from the DEPSO3 [76] algorithm for benchmark 258 

functions which are summarized in Tables 1-3, it is seen that the DEPSO3 algorithm is weak for 259 

specific problems such as third benchmark function. In the improved version of DEPSO3, called 260 

IDEPSO3, in (21), the role of Gbest was replaced with Pbest  and for rand(0,1) CR , the global 261 

best (Gbest ) was used instead of iX  value. The population move model of IDEPSO3 is shown 262 

as follows: 263 

 264 
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, , ,1

,

( ) if rand(0,1)

, otherwise.

Iter Iter Iter

j i j i j iIter

j i Iter

j

X F Pbest X CR
X

Gbest


    

 


 (24) 

3.7.3. IDEPSO4  265 

With a simple change and no extra cost in population move equation (22) of DEPSO4 algorithm, 266 

a more powerful improved hybrid algorithm can be achieved, called IDEPSO4. The population 267 

move equation of IDEPSO4 is described as follows: 268 

 269 

1

, 1 , 2 , 3 ,1

, 1

, ,

( ) , if rand(0,1)

rand(0,1) , otherwise.

Iter

j r j r j r j iIter

j i Iter

j i j i

Pbest F Pbest Pbest V CR
X

Pbest V







     
 

 

 (25) 

3.8.  The proposed hybridizing sum-local search optimizer (HSLSO)  270 

In this hybrid sum-local search optimizer (HSLSO), the sum differential evolution with particle 271 

swarm optimizer (SDEPSO) based DEPSO2 [75] is used along with the local (Pbest) optimal 272 

value in DE crossover operator. We can use the (19) and (20) of DEPSO2 for HSLSO algorithm: 273 

1 1

, ,

,
,

,

(DE) (PSO)
, if rand (0,1)

2

, otherwise.

Iter Iter

j i j i

i j
j i

j i

Z Z
CR

U

Pbest

  


 



 (26) 

Fig. 1 shows the flowchart of the proposed HSLSO algorithm. 274 
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by                    and                  (Eq. 16) 
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,
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Iter
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Z PSO

 1

,
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j i
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Yes

No
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 275 

Fig. 1. Flowchart of HSLSO algorithm. 276 

 277 

 278 

4.  Performance test of HSLSO on benchmark functions 279 

In the experiments, several multi-modal and uni-modal benchmark test functions were chosen for 280 

testing the HSLSO and comparing it with other hybrid DEPSO algorithms. All of the benchmark 281 

functions are listed as follows: 282 

1) Sphere function, 
2

1

1

D

j

j

f x


  with xj ϵ [-100, 100] and f(x) =0. 283 

2) Quadric function, 

2

2

1 1

jD

i

j i

f x
 

 
  

 
   with xj ϵ [-100, 100] and f(x) =0. 284 
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3) Rosenbrock’s function, 
1

2 2 2

3 1

1

(100( ) ( 1) )
D

j j j

j

f x x x






     with xj ϵ [-2.048, 2.048] 285 

and f(x) =0. 286 

4) Rastrigin’s function, 
2 2

4

1

( 10cos(2 ) 10)
D

j j j

j

f x x x


    with xj ϵ [-5.12, 5.12] and f(x) 287 

=0. 288 

5) Noncontinuous Rastrigin’s function, 289 

 

2 2

5

1

( 10cos(2 ) 10)

1
,

2
, 1,2,...,

(2 ) 1
,

2 2

D

j j j

j

j j

j

j

j

f y y y

x y

y for j D
round x

y




  




 
 




 with xj ϵ [-5.12, 5.12] and f(x) =0. 290 

 291 

6) Ackley’s function, 292 

) =0.x(f32.768, 32.768] and -[ ϵ jxwith  

2

6

1

1

1
20exp( 0.2 )

1
exp( cos(2 )) 20

D

j

j

D

j

j

f x
D

x e
D







  

  





  293 

7) Weierstrass function, 294 

 

max

7

1 0

max

0

cos(2 ( 0.5))

cos( ) , 0.5 3 max 20.

D k
k k

j

j k

k
k k

k

f a b x

D a b a b k





 



 
    

 

     

 



 with xj ϵ [-0.5, 0.5] and f(x) =0. 295 

8) Exponential function, 
2

8

1

exp( 0.5 )
D

j

j

f x


     with xj ϵ [-1.0, 1.0] and f(x) =-1. 296 
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The Mean, Best and standard deviation (Std) index values for the hybrid DEPSO algorithms of 297 

each benchmark test function over 30 runs with optimization variable dimension equal to 10, 50 298 

and 100 (10-D, 50-D, and 100-D) are presented in Tables 1, 2, and 3, respectively, which shows 299 

that the HSLSO algorithm is statistically superior to most of the other hybrid DEPSO and 300 

IDEPSO algorithms. The used parameter values for all hybrid DEPSO algorithms in the 301 

experiments are selected as: the initial population size NP = 2.5D, number of iterations Iter = 302 

20,000, F=2rand (0, 1) for the hybrid algorithms proposed in other references [74-77] and F= 303 

2(0.5-rand (0, 1)) for the hybrid algorithms proposed in this paper, and crossover rate CR=0.5. 304 

The results indicate that HSLSO algorithm is suitable for solving the employed test function 305 

optimizations with better performance than most of other algorithms for most of the test 306 

functions; particularly for larger dimensions, the hybrid algorithm responds very well. For five of 307 

the benchmark test functions including Sphere, Rastrigin’s, Noncontinuous Rastrigin’s , 308 

Weierstrass, and Exponential test functions, HSLSO algorithm obtained the global optimum 309 

solution with Mean =0.0, and Std =0.0. And also, a simple comparison of HSLSO algorithm with 310 

two standard PSO algorithms in the recent literature is given in Appendix. 311 

Table 1. Comparison of the simulation results for D=10. 312 

Function Index 
Algorithms 

DEPSO1 DEPSO2 DEPSO3 DEPSO4 IDEPSO1 IDEPSO3 IDEPSO4 HSLSO 

f1 

Best 0.0 0.0 5.2895e-033 2.9029e+03 0.0011 0.0483 1.8520e-241 0.0 

Mean 0.0 0.0 0.0114 5.6213e+03 58.8331 0.2448 1.5709e-237 0.0 

Std 0.0 0.0 0.0362 1.8152e+03 74.5253 0.1917 0.0 0.0 

f2 

Best 2.3878e-130 8.0888e-205 36.9353 5.3041e+03 0.0082 2.7136 9.4565e-049 0.0 

Mean 3.2576e-123 1.9956e-191 642.2169 6.8059e+03 757.8297 8.0906 2.5901e-044 0.0 

Std 8.2012e-123 0.0 773.0697 1.5283e+03 1.3265e+03 4.4774 4.9682e-044 0.0 

f3 

Best 0.0 8.1964e-010 3.3318 210.4062 5.4669 2.3497 1.2787e-013 7.6395e-020 

Mean 0.79732 0.7973 17.1286 275.2018 17.8329 6.2164 2.9729e-010 2.2191e-016 

Std 1.6809 1.6809 22.7084 49.4059 19.3227 1.8242 8.6022e-010 4.0830e-016 

f4 

Best 0.0 0.0 1.9599 78.3083 2.6083e-06 1.8623e-06 0.0 0.0 

Mean 3.1358 0.392 42.5274 203.0712 8.9173 5.0388e-05 0.0 0.0 

Std 4.8183 0.6852 76.9012 68.8529 8.7947 8.0750e-05 0.0 0.0 

f5 

Best 0.0 0.0 9.0625 74.7382 8.2893e-07 6.9180e-07 0.0 0.0 

Mean 0.0 0.5 69.9063 175.2241 6.5444 2.1334e-05 0.0 0.0 

Std 0.0 0.7071 68.3498 60.0366 15.8 1.9761e-05 0.0 0.0 

f6 

Best 8.8818e-016 8.8818e-016 3.2224 17.0196 1.4257 0.1054 8.8818e-016 8.8818e-016 
Mean 0.1155 3.3751e-015 6.6094 17.6188 2.1285 0.3371 4.0856e-015 8.8818e-016 
Std 0.3653 1.7161e-015 3.591 0.5103 0.923 0.1783 1.1235e-015 0.0 

f7 Best 0.0 0.0 2.6419 9.8117 0.4261 0.3546 0.0 0.0 
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Mean 2.1e-04 6.4277e-06 5.7135 10.9352 1.7869 0.4605 0.0 0.0 

Std 6.6408e-04 2.0326e-05 1.4247 0.687 1.1844 0.0676 0.0 0.0 

f8 

Best -1.0 -1.0 -1.0 -0.8345 -1.0 -1.0 -1.0 -1.0 

Mean -1.0 -1.0 -1.0 -0.7446 -1.0 -1.0 -1.0 -1.0 

Std 0.0 0.0 0.0 0.0493 0.0 0.0 0.0 0.0 

 313 

 314 

Table 2. Comparison of the simulation results for D=50. 315 

Function Index 
Algorithms 

DEPSO1 DEPSO2 DEPSO3 DEPSO4 IDEPSO1 IDEPSO3 IDEPSO4 HSLSO 

f1 

Best 2.1012e-162 8.633e-209 0.0017 1.12098e+04 5.0899e-213 1.9745e+03 3.0644e-026 0.0 

Mean 1.6187e-159 
3.9535e-

204 
78.7089 9.65e+05 2.8712e-200 2.2458e+03 7.5424e-026 0.0 

Std 4.0673e-159 0.0 222.4663 7.8985e+03 0.0 239.1772 5.4667e-026 0.0 

f2 

Best 3.0127e-04 1.2893e-16 5.5785e+03 1.43690e+03 3.8078e-016 8.2963e+03 72697 1.9786e-152 

Mean 0.0011 5.2835e-15 2.0325e+04 1.63187e+05 1.3418e-014 1.2071e+04  7.8334e+04 4.6483e-149 

Std 9.1008e-04 9.4065e-15 9.7133e+003 1.5035e+004 2.9665e-014 2.8873e+03 4.5637e+03 7.6904e-149 

f3 

Best 0.2144 2.1158 43.3163 1.1755e+04 2.5534e-09 143.7027 30.9549 9.7480 

Mean   9.1054   3.8951 89.8648 1.3898e+04   2.3739 163.5496 31.6758 12.6106 

Std 5.2880 1.3811 40.2577 1.1260e+03 1.7545 15.2909 0.4605 2.2078 

f4 

Best 31.3575 0.9799 148.2584 5.6576e+03 30.3776 52.4316 0.0 0.0 

Mean 82.0187 13.0657 365.8380 6.6263e+03 69.5741 76.3394 0.0 0.0 

Std 35.2097 8.9945 187.0932 657.9707 28.2801 14.4461 0.0 0.0 

f5 

Best 2.0 1.0 219.1250 5.0107e+03 0.0 38.8786 5.5968e-026 0.0 

Mean 25.4 9.90 395.2688 6.2760e+03 0.5 58.4317 8.0905e-017 0.0 

Std 26.9946 6.8710 163.9032 712.3232 0.8498 12.7038 2.5576e-016 0.0 

f6 

Best 1.1551 1.8652e-14 10.2675 20.6509 2.5797 8.6144 3.2863e-014 8.8818e-016 

Mean 1.7390 1.0570 12.6168 20.7883 3.0793 9.0531 6.3771e-014 8.8818e-016 

Std 0.3800 0.8375 1.2762 0.080 0.3875 0.2856 2.1839e-014 0.0 

f7 

Best 2.6344 0.0875 28.1509 78.9128 1.2644 25.8683 8.5265e-014 0.0 

Mean 7.4560 1.0364 36.2182 84.6735 4.5173 27.8957 2.6716e-013 0.0 

Std 2.9257 0.9412 4.7922 2.8798 1.6148 1.3868 1.4333e-013 0.0 

f8 

Best -1.0 -1.0 -1.0 -0.0071 -1.0 -0.9303 -1.0 -1.0 

Mean -1.0 -1.0 -0.9981 -0.0036 -1.0 -0.8966 -1.0 -1.0 

Std 0.0 0.0 0.0032 0.0015 0.0 0.0149 0.0 0.0 

 316 

Table 3. Comparison of the simulation results for D=100. 317 

Function Index 
Algorithms 

DEPSO1 DEPSO2 DEPSO3 DEPSO4 IDEPSO1 IDEPSO3 IDEPSO4 HSLSO 

f1 

Best 2.4684e-88 
2.5175e-

126 
9.0717 2.3704e+05 1.3782e-107 1.1494e+04 1.4660e-07 0.0 

Mean 1.5679e-86 
3.7729e-

125 
984.6936 2.5606e+05 2.5730e-103 1.2170e+04 2.2939e-07 0.0 

Std 3.4748e-86 
3.4236e-

125 
985.7990 1.1912e+04 6.8237e-103 556.6970 5.8201e-08 0.0 

f2 

Best 2.2655e+03 7.9922e-04 3.1744e+04 5.0484e+05 0.2763 4.0530e+04 2.9939e+05 1.0171e-119 

Mean 8.5776e+03 0.0029 3.8764e+04 5.79187e+05 2.7102e+03 5.6475e+04 3.43609e+05 1.7258e-116 

Std 4.6410e+03 0.0019 5.6591e+03 5.4717e+04 2.9463e+03 8.1895e+03 2.7408e+04 1.8868e-116 

f3 

Best 47.8718 44.4778 156.5041 2.7715e+04 36.0573 598.7444 90.4093 7.1697 

Mean 74.8912 47.5198 241.6502 3.1559e+04 62.8081 674.7838 91.1971 55.1356 

Std 25.8379 2.2638 62.7884 2.5600e+03 29.1964 61.2077 1.2698 13.2934 

f4 

Best 183.2444 23.5184 469.4335 1.4557e+04 445.8552 314.6328 2.1573e-09 0.0 

Mean 425.8638 41.6469 721.4407 1.5546e+04 1.0651e+003 382.6508 7.1986e-09 0.0 

Std 166.8864 14.4110 185.1772 663.5110 514.1258 61.4573 3.5334e-09 0.0 

f5 

Best 71.0 29.0 526.1250 1.2888e+04 0.0 268.2701 40.2331 0.0 

Mean 208.90 41.10 1.0855e+03 1.4624e+04 150.60 342.4116 49.9680 0.0 

Std 157.1669 10.7543 404.0017 885.6257 264.3689 47.9663 7.8527 0.0 

f6 Best 3.5237 2.1404 12.9831 20.7819 4.8729 11.3171 8.2351e-05 8.8818e-016 
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Mean 5.1746 2.4650 14.9261 20.9181 8.7829 11.8329 9.1188e-05 8.8818e-016 

Std 1.4038 0.3748 0.9275 0.0645 3.5860 0.3432 5.5450e-06 0.0 

f7 

Best 28.6819 6.5584 68.6311 170.0688 17.5815 71.8828 0.1321 0.0 

Mean 35.4578 9.1751 82.8843 177.4577 21.9614 75.8958 0.1410 0.0 

Std 4.4921 2.3480 8.9549 3.6109 3.7215 2.1531 0.0086 0.0 

f8 

Best -1.0 -1.0 -0.9980 -1.3336e-05 -1.0 -0.5856 -1.0 -1.0 

Mean -1.0 -1.0 -0.9140 -4.6770e-06 -1.0 -0.5458 -1.0 -1.0 

Std 0.0 0.0 0.0817 3.7485e-06 0.0 0.0298 0.0 0.0 

 318 

5. Implementation of the proposed algorithm for MAED optimization  319 

In this section, the method of implementing the novel HSLSO algorithm for solving the MAED 320 

optimization in different power systems will be described. The process of the HSLSO can be 321 

summarized as follows: 322 

Step 1: Set the parameters F, CR, NP, Itermax, c1 and c2, and call out the needed information for testing 323 

the system units, such as aik, bik, cik, eik, fik, ,miniP ,
,maxiP , DRi, URi, (i=1: NP) with the total active load 324 

demand PDq. 325 

Step 2: Produce the initial population matrix 
0X 

   with the following equations: 326 

 0

,minmax ,L

i i i iP P P DR  ,  

 0

,maxmin ,U

i i i iP P P UR  , 

L U

i i iP P P  , 

(27) 

0

, , (0,1) ( )
p p

L U L

j i i j i
ND

i i
N D

X P rand P P
 

          . (28) 327 

Step 3: Calculate the objective function ( )iF P  of MAED optimization problem by imposing the real 328 

power limit constraint and real power generation-demand balance for every available solution in the 329 

initial population of the algorithm. The penalty functions [24][ 59] have been used most often for the 330 

constraint-handling procedure of MAED problems and are also used in HSLSO. 331 

Step 4: Produce the new population of HSLSO using velocities of population, mutation, crossover and 332 

selection operators. 333 
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Step 5: Calculate the objective function ( )iF P  of MAED optimization problem. 334 

 Step 6: Repeat steps 4 and 5 till reaching the maximum number of iterations. 335 

6. Simulation results 336 

To evaluate the performance, effectiveness and efficiency of the hybrid DEPSO algorithms, they 337 

have been applied to MAED problems in three test power systems. These are a two-area system 338 

with four generating units, a four-area system with sixteen generating units, and a two-area 339 

system with forty generating units. All of the algorithms have been implemented in MATLAB 340 

7.0 on a PC.  341 

 342 

6.1. Test system 1: A two-area system with four generating units  343 

The test system 1 is a two-area test system with four generating units (a small-scale system) 344 

whose details are available in Ref. [54, 61], and active tie-line flow limit and active load demand 345 

are set at 200 MW and 1120 MW, respectively. The total load demand in area 1 (P1 and P2 units) 346 

is 70% and in area 2 (P3 and P4 units) is 30% [40, 50]. The experimental results of DEPSO 347 

algorithms for the test system 1 with three different crossover rates CR =0.3, 0.5, and 0.7 are 348 

tabulated in Table 4 with NP =20. The simulation results show that the DEPSO1 for  CR =0.7, 349 

DEPSO2 for CR =0.3 and 0.5, IDEPSO1 for CR =0.7, and HSLSO for  CR =0.5 and 0.7, find the 350 

best solutions with standard deviation of the best results obtained for 30 trials equal to zero for a 351 

small-scale system. The convergence characteristics of DEPSO algorithms for the best solution 352 

of CR =0.5 are plotted in Fig. 2. It can be seen that HSLSO algorithm converges faster than the 353 

other DEPSO algorithms for this test system. 354 

 355 
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 356 

 357 

 358 

Table 4. Comparison of the simulation results for test system 1 with different crossover rates. 359 

CR Index 
Algorithms 

DEPSO1 DEPSO2 DEPSO3 DEPSO4 IDEPSO1 IDEPSO3 IDEPSO4 HSLSO 

0.3 

Best 10605.0819 10604.6741 10604.6852 10607.4662 10606.1858 10605.0052 10604.6783 10604.6741 

Mean 10605.1859 10604.6741 10605.149 10612.4492 10611.6158 10605.5726 10604.7053 10604.67415 

Std 0.0897 0.0 0.4871 2.6937 6.1401 0.5312 0.0235 9.4868e-015 

0.5 

Best 10604.6772 10604.6741 10604.6962 10611.6001 10604.6741 10604.9085 10604.7322 10604.6741 

Mean 10604.6799 10604.6741 10605.196 10614.0376 10604.7516 10605.9641 10604.8006 10604.6741 

Std 0.0028 0.0 0.7776 1.5733 0.2565 0.8166 0.06 0.0 

0.7 

Best 10604.6741 10604.6741 10604.7015 10612.337 10604.6741 10605.3276 10604.7149 10604.6741 

Mean 10604.6741 10604.6746 10606.5715 10617.2091 10604.6741 10606.0265 10604.7741 10604.6741 

Std 0.0 3.6194e-016 2.3115 4.0643 0.0 0.5369 0.0503 0.0 
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 Fig. 2. Convergence characteristics of algorithms for test system 1.  362 
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The best solutions obtained from HSLSO algorithm has been compared with direct search 364 

method (DSM) [54], Hopfield neural network (HNN) approach [61], covariance matrix adapted 365 

evolution strategy (CMAES) [40], and PSO with time-varying acceleration coefficients 366 

(PSO_TVAC) [50]. Their best solutions are shown in Table 5. Ref. [40] reported a cost of 367 

10,574.0 ($/H) for CMAES method but the reported results are infeasible as they do not satisfy 368 

the area power balance constraints [50]. The performance of HSLSO and DEPSO algorithms are 369 

very good among all algorithms for finding the optimal solution of MAED problem in the small-370 

scale system. 371 

 372 

 373 

Table 5. Comparison of the simulation results for test system 1. 374 

Method P1 (MW) P2 (MW) P3 (MW) P4 (MW) T12 (MW)  gP  Cost ($/H) 

HNN [61] - - - - - - 10605.0 

DSM [54] - - - - - - 10605.0 

PSO_TVAC [50] 444.8047 139.1953 211.0609 324.9391 - 200.0000 1120.0 10604.6781 

CMAES [40]∗ 560.9383 168.9300 99.9890 290.1427 - 194.39 1120.0 10574.0 

HSLSO 445.1254 138.8747 211.9889 324.011 -199.9999 1120.0 10604.6741 

 375 

For solving reserve constrained MAED (RCMAED) problem of test system 1, the area 376 

reserves are taken as 40% of area 1 load demand (313.6 MW) for area 1 and 30% of area 2 load 377 

demand (100.8 MW) for area 2, and the tie-line limit is assumed to be 300 MW [50]. The 378 

obtained simulation results for RCMAED problem with optimal control variables using DEPSO 379 

hybrid algorithms are given in Table 6 with the obtained best CR of Table 4 and NP =50. The 380 

convergence characteristics of the objective function (optimal total fuel cost) of all hybrid 381 

algorithms are shown in Fig. 3, which is clear that most of the proposed DEPSO hybrid 382 

algorithms can converge to their optimal total fuel cost in less iterations. 383 
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 384 

Table 6. Comparison of the simulation results for reserve constrained MAED (RCMAED) problem of test 385 

system 1. 386 

 
Algorithms 

DEPSO1 DEPSO2 DEPSO3 DEPSO4 IDEPSO1 IDEPSO3 IDEPSO4 HSLSO 

P1 (MW) 369.5737 369.5737 369.6679 370.6286 369.5737 369.5965 369.5737 369.5737 

P2 (MW) 114.4264 114.4264 114.5224 113.4921 114.4264 114.5100 114.4264 114.4264 

P3 (MW) 295.9999 295.9999 295.8099 295.8795 295.9999 295.8939 295.9999 295.9999 

P4 (MW) 340.0000 340.0000 340.0000 340.0000 340.0000 340.0000 340.0000 340.0000 

T12 (MW) -299.9999 -299.9999 -299.8097 -299.8793 -299.9999 -299.8935 -299.9999 -299.9999 

Reserve 

area 1 
315.9999 315.9999 315.8097 315.8793 315.9999 315.8935 315.9999 315.9999 

Reserve 

area 2 
104.0001 104.0001 104.1901 104.1205 104.0001 104.1061 104.0001 104.0001 

Best Cost 

($/H) 
10566.9946 10566.9946 10567.0107 10567.0114 10566.9946 10567.0062 10566.9946 10566.9946 

Mean Cost 

($/H)  
10566.9958 10566.9946 10571.0405 10567.0381 10566.9946 10567.2167 10566.9946 10566.9946 

S.D. 0.0164 0.0 2.0184 0.0358 0.0 0.1841 0.0 0.0 

 387 
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 Fig. 3. Convergence characteristics of algorithms for reserve constrained MAED (RCMAED) 389 

problem of test system 1.  390 

 391 
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6.2. Test system 2: A four-area system with sixteen generating units 392 

6.2.1. Case 1: Test system 2 for MAED problem based References [59, 62] 393 

This test system is a medium-scale test system with sixteen generating units, whose parameters 394 

with active tie-line flow limit are available in Ref. [59, 62]. The active load demand are set to 395 

400 MW for area 1 (P1, P2, P3 and P4 units), 200 MW for area 2 (P5, P6, P7 and P8 units), 350 396 

MW for area 3 (P9, P10, P11 and P12 units), and 300 MW for area 4 (P13, P14, P15 and P16 units). 397 

The obtained results of DEPSO algorithms for the test system 2 with three different crossover 398 

rates are tabulated in Table 7. The simulation results show that the proposed HSLSO algorithm 399 

finds the best solution with minimum standard deviation for 30 trials, and the proposed improved 400 

DEPSO algorithms yield better results than DEPSO algorithms in this test system. Convergence 401 

characteristics of the various algorithms on test system 2 for the best solution of CR =0.5 are 402 

plotted in Fig. 4. It is observed that the convergence characteristics for various DEPSO 403 

algorithms are stable and steady. 404 

 405 

Table 7. Comparison of the simulation results for test system 2 with different crossover rates. 406 

CR Index 
Algorithms 

DEPSO1 DEPSO2 DEPSO3 DEPSO4 IDEPSO1 IDEPSO3 IDEPSO4 HSLSO 

0.3 

Best 7584.5 7338.0787 7393.1215 7765.4585 7448.365 7362.5005 7338.2339 7338.1303 

Mean 7708.75 7342.6777 7430.6659 7905.9843 8269.4694 7419.1895 7339.9968 7338.4278 

Std 129.7749 8.9864 50.1082 125.8137 436.9393 58.9327 1.7621 0.4008 

0.5 

Best 7371.4803 7338.6095 7344.7284 7915.3542 7338.0299 7368.2032 7342.3242 7337.042 

Mean 7599.7476 7340.0318 7411.8184 8173.1453 7339.7626 7419.9534 7350.7301 7337.8804 

Std 162.6943 1.6176 67.0561 158.8003 1.3896 43.1228 7.9251 0.6599 

0.7 

Best 7375.1265 7338.0188 7379.8855 7916.0613 7338.0299 7507.8628 7341.1164 7337.024 

Mean 7514.1761 7338.3982 7443.9999 7993.9544 7339.906 7755.9244 7349.2803 7338.5734 

Std 116.3733 0.4125 40.9244 66.0229 1.3896 295.8965 11.1432 0.7518 

 407 

 408 
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Fig. 4. Convergence characteristics of algorithms for test system 2. 410 

The best solutions obtained by the hybrid algorithms and the solutions reported in 411 

literature are given in Table 8. The solution obtained by the HSLSO algorithm is a feasible 412 

solution ( gP =1250.0 MW) compared with results reported in literature by methods such as the 413 

pattern search (PS) method ( gP  =1249.9982 MW) [52], PSO ( gP  =1249.95 MW), classical 414 

evolutionary programming (CEP) approach ( gP  =1247.995 MW) [56], network flow 415 

programming (NFP) ( gP  =1249.98 MW) [62], and the hybrid harmony search (HHS) method 416 

( gP =1249.29 MW) [59]. 417 

 418 

 419 

Table 8. Comparison of the simulation results for test system 2. 420 
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Area no. (PD)  PSO [56] NFP [62] CEP [56] PS [52] HHS [59] HSLSO 

1 (400 MW) 

P1 (MW) 150.00 150.00 150.00 150.0000 150.00 150 

P2 (MW) 100.00 100.00 100.00 100.0000 100.00 100.0 

P3 (MW) 67.366 66.97 68.826 66.9710 66.86 67.3848 

P4 (MW) 100.00 100.00 99.985 100.0000 100.0 100.0 

2 (200 MW) 

P5 (MW) 56.613 56.970 56.373 56.9718 57.04 57.0625 

P6 (MW) 95.474 96.250 93.519 96.2518 96.22 96.1749 

P7 (MW) 41.617 41.870 42.546 41.8718 41.74 41.8472 

P8 (MW) 72.356 72.520 72.647 72.5218 72.5 72.4505 

3 (350 MW) 

P9 (MW) 50.00 50.00 50.00 50.0020 50.0 50.0 

P10 (MW) 35.973 36.270 36.399 36.2720 36.24 36.3190 

P11 (MW) 38.21 38.490 38.323 38.4920 38.39 38.5911 

P12 (MW) 37.162 37.320 36.903 37.3220 37.2 37.3719 

4 (300 MW) 

P13 (MW) 150.000 150.000 150.0 150.0000 150.0 150.0 

P14 (MW) 100.000 100.000 100.0 100.0000 100.0 100.0 

P15 (MW) 57.830 57.050 56.648 57.0510 56.9 56.9272 

P16 (MW) 97.349 96.270 95.826 96.2710 96.2 95.8709 

Active tie-line 
power 

T12 (MW) 0.00 0.00 -0.018 0.0 0.0 0.0 

T13 (MW) 22.588 18.18 19.587 18.181 16.86 17.4643 

T14 (MW) -5.176 -1.21 -0.758 -1.210 0.0 -0.0795 

T23 (MW) 66.064 69.73 68.861 69.73 7061 70.2537 

T24 (MW) -0.004 -2.11 -1.789 -2.111 -3.11 -2.7186 

T34 (MW) -100.000 -100.0 -99.927 -100.0 -100.0 -100 

gP  1249.95 1249.98 1247.995 1249.9982 1249.29 1250.0 

Cost ($/H) 7336.93 7337.00 7337.75 7336.98 7329.85 7337.0299 

 421 

6.2.2. Case 2: Test system 2 for RCMAED and RCMAEED problems with reserve sharing 422 

based on Reference [53] 423 

The different fuel and emission characteristics data of all generators, including all 424 

generators operating limits and tie-line limits, are available in Ref. [53]. The active load demand 425 

are set to 30 MW for area 1 (P1, P2, P3 and P4 units), 50 MW for area 2 (P5, P6, P7 and P8 units), 426 

40 MW for area 3 (P9, P10, P11 and P12 units), and 60 MW for area 4 (P13, P14, P15 and P16 units). 427 

The spinning reserve requirement for the four areas are 30% of the area load demand in each area, i.e. 9 428 

MW for area 1, 15 MW for area 2, 12MW for area 3 and 18MW for area 4, respectively. Tables 9 and 10 429 

illustrate the optimal control variables characteristic for the fuel cost and emissions (Table.10) obtained 430 

using hybrid DEPSO algorithms for two RCMAED and RCMAEED problems with the obtained best CR 431 

of Table 7, respectively. The weighting factor is selected to be 120.0 for RCMAEED problem, and zero 432 

value for RCMAED problem. According to the presented results, the HSLSO algorithm has better 433 

performance than other hybrid DEPSO algorithms for RCMAED and RCMAEED problems. 434 

Table 9. Comparison of the simulation results for RCMAED problem of test system 2. 435 
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(MW) 
Algorithms  

DEPSO1 DEPSO2 DEPSO3 DEPSO4 IDEPSO1 IDEPSO3 IDEPSO4 HSLSO 

P1 (MW) 5.4643 3.1018 12.6855 12.6142 13.5198 9.6169 0.4724 11.0552 

P2 (MW) 0.3177 7.9364 8.9795 9.9933 8.5906 3.5813 7.5553 9.8604 

P3 (MW) 12.9730 10.3067 7.5249 0.1144 6.6234 4.9329 10.0875 5.4901 

P4 (MW) 11.1998 8.6684 0.7768 7.4458 1.3766 12.0000 11.9217 3.5849 

P5 (MW) 11.9464 13.7007 18.3076 24.9810 23.9531 17.5893 1.1237 2.8162 

P6 (MW) 9.7301 1.7089 5.9683 1.4095 3.4317 11.9977 11.9819 8.6228 

P7 (MW) 12.0407 18.8862 17.8618 18.8194 16.5694 19.7774 19.9529 2.0908 

P8 (MW) 16.2852 15.7602 7.8177 4.7207 6.0516 0.6361 16.9628 6.4706 

P9 (MW) 0.2927 8.6018 21.5032 16.9843 12.7645 0.9991 0.4290 2.9635 

P10 (MW) 13.3341 0.9835 3.1556 2.8846 9.9381 0.0777 1.0530 0.0500 

P11 (MW) 0.1226 6.4470 4.1346 19.2703 3.1255 29.7699 9.2074 8.5821 

P12 (MW) 26.2591 23.9569 11.2296 0.8976 14.1403 9.1460 29.3113 8.3853 

P13 (MW) 0.0957 7.7491 10.3416 0.0538 1.1532 0.2214 10.6806 6.6636 

P14 (MW) 19.7606 0.3072 19.3828 10.5401 8.0550 0.3289 18.8727 3.3023 

P15 (MW) 29.3035 29.8405 1.3674 28.1829 26.5102 29.3861 25.0099 2.4392 

P16 (MW) 10.8821 22.0311 28.9625 21.1077 24.2042 29.9163 5.3876 7.6249 

T12 (MW) -0.0197 -0.0416 0.0121 0.0434 0.0212 -0.0100 0.0235 0.0273 

T13 (MW) 0.0115 0.0121 -0.0114 -0.0226 0.0276 -0.0009 -0.0139 -0.0092 

T14 (MW) -0.0419 0.0529 -0.0346 0.1426 0.0616 0.1436 0.0341 -0.0271 

T23 (MW) -0.0097 -0.0041 -0.0231 -0.0085 -0.0114 -0.0038 0.0105 -0.0037 

T24 (MW) 0.0003 0.0185 -0.0099 -0.0245 0.0265 -0.0049 0.0198 0.0145 

T34 (MW) 0.0007 -0.0019 -0.0131 -0.0012 -0.0075 0.0020 -0.0012 -0.0057 

RC12 -0.0317 -0.0019 0.0492 0.0028 -0.0054 -0.0234 -0.0082 0.0332 

RC13 0.0105 0.0177 0.0228 -0.0147 0.0122 0.0379 -0.0079 0.0040 

RC14 0.0768 0.0071 -0.0081 -0.0005 0.0085 0.0418 -0.0413 -0.0134 

RC23 -0.0221 -0.0134 -0.0009 0.0019 0.0164 -0.0173 -0.0042 -0.0251 

RC24 0.0254 0.0130 0.0304 0.0026 0.0091 0.0306 0.0329 0.0391 

RC34 0.013 0.0076 -0.0009 -0.0041 0.0046 0.0020 0.0081 0.0049 

Reserve area 1         

Reserve area 2         

Reserve area 3         

Reserve area 4         

Cost ($\h) 2189.2012 2183.6782 2186.6061 2190.5887 2178.2986 2186.3202 2182.2914 2159.8128 

Mean         

S.D.         

 436 

Table 10. Comparison of the simulation results for reserve constrained multi area 437 

environmental/economic dispatch (RCMAEED) problem of test system 2. 438 

 (MW) DEPSO1 DEPSO2 DEPSO3 DEPSO4 IDEPSO1 IDEPSO3 IDEPSO4 HSLSO 

P1 (MW) 10.4136 12.6447 10.0196 4.9260 13.2116 12.2540 12.8502 13.6004 

P2 (MW) 4.9644 6.6592 5.1395 7.2540 6.6790 9.2143 7.5463 5.3880 

P3 (MW) 3.0067 0.1061 10.2519 10.2999 7.3117 4.0872 3.7010 5.1218 

P4 (MW) 11.5211 10.7641 4.5322 7.4911 2.7739 4.4428 5.9252 5.9299 

P5 (MW) 6.5876 16.3608 14.7624 19.5174 15.0576 24.8488 23.4908 22.6109 

P6 (MW) 9.7131 7.3302 11.7687 10.1479 4.7809 3.6403 0.6111 8.3738 

P7 (MW) 18.8575 13.6234 19.4621 4.9097 13.4996 10.4683 17.4849 8.6524 

P8 (MW) 14.9039 12.7100 4.0304 15.4238 16.6493 11.0494 8.4428 10.3437 

P9 (MW) 23.9743 12.1719 22.6546 28.6957 11.6720 13.0985 14.7230 12.2857 

P10 (MW) 6.3174 6.1967 3.8454 5.5386 10.1620 15.1976 6.2322 8.7820 

P11 (MW) 0.5079 10.4179 3.2815 2.0624 3.9674 2.6575 5.2089 7.8882 

P12 (MW) 9.1893 11.2001 10.2180 3.7338 14.2051 9.0514 13.7952 11.0352 

P13 (MW) 10.9743 7.7329 9.6932 9.9038 8.9539 10.7064 10.7395 10.9628 

P14 (MW) 16.1252 9.9463 19.5799 16.1223 19.9808 15.3404 16.7964 16.2980 
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P15 (MW) 14.3829 15.8206 22.4566 14.6359 12.7618 11.0278 13.1715 13.3964 

P16 (MW) 18.5557 26.3090 8.3138 19.4639 18.3250 22.9130 19.2884 19.3240 

T12 (MW) -0.0302 -0.0209 -0.0054 0.0394 0.0109 -0.0312 -0.0182 0.0269 

T13 (MW) -0.0005 -0.0012 -0.0023 0.0131 0.0048 -0.0141 0.0233 -0.0041 

T14 (MW) -0.0566 0.1936 -0.0535 -0.0856 -0.0320 0.0344 0.0286 0.0060 

T23 (MW) 0.0005 0.0061 0.0142 -0.0029 -0.0057 0.0044 0.0085 0.0041 

T24 (MW) 0.0410 -0.0074 0.0021 0.0056 0.0060 -0.0200 -0.0175 0.0024 

T34 (MW) -0.0141 0.0104 0.0125 -0.0044 -0.0009 -0.0037 -0.0131 0.0068 

RC12 0.0045 0.0151 -0.0332 0.0177 -0.0475 0.0272 0.0122 0.0158 

RC13 -0.0159 -0.0087 0.0125 0.0299 0.0167 -0.0003 -0.0006 -0.0008 

RC14 0.0372 0.0040 0.0855 -0.0706 0.0247 -0.0410 0.0919 -0.0587 

RC23 0.0233 -0.0005 0.0056 0.0079 0.0234 0.0142 0.0080 -0.0015 

RC24 0.0117 0.0118 0.0208 -0.0072 0.0208 0.0314 0.0071 0.0253 

RC34 0.0001 0.0026 0.0031 0.0040 0.0021 -0.0021 -0.0031 -0.0002 

Reserve area 1         

Reserve area 2         

Reserve area 3         

Reserve area 4         

Cost ($\h) 2194.6627 2182.579 2190.9533 2202.7789 2186.0603 2185.0514 2183.0054 2182.575 

Emission (ton/h) 4.0435 3.5833 4.465 4.3742 3.3776 3.5941 3.6018 3.2605 

 439 

6.3. Test system 3: A two-area system with forty generating units 440 

The test system 3 is a large-scale power system which has generating units with POZ, VPL 441 

effects, and ramp rate limits [50, 64]. The units P1 to P20 are assumed to be in area one and units 442 

P21 to P40 are in area two. The total load is 10,500MW in which 7500 MW is set as the active 443 

load demand for area 1 and 3000 MW is set as the active load demand for area 2, and the 444 

maximum transmission capacity limit between two areas is 1500 MW. The results of the 445 

proposed algorithms for the test system 3 with the crossover rate CR =0.5 are tabulated in Table 446 

11. The obtained results show that the HSLSO finds the best solution in comparison with other 447 

algorithms for the large-scale system, and the proposed improved DEPSO algorithms yield better 448 

results than DEPSO algorithms, in this test system. The convergence characteristics for the 449 

proposed DEPSO algorithms are shown in Fig. 5. It is observed that the convergence 450 

characteristic of the total fuel cost of generating units obtained by the HSLSO is slightly better 451 

than that of the other DEPSO algorithms. Table 12 compares the best solution obtained using 452 

HSLSO algorithm and DE algorithm with chaotic sequences based on logistic map (DEC2) [50, 453 
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78]. The results show that HSLSO algorithm is successfully implemented to solve the large-scale 454 

MAED problem with the generator constraints. 455 

 456 

Table 11. Comparison of the simulation results for test system 3 with CR =0.5. 457 

Index 
Algorithms 

DEPSO1 DEPSO2 DEPSO3 DEPSO4 IDEPSO1 IDEPSO3 IDEPSO4 HSLSO 

Best 125299.5631 125179.5581 127386.3364 128641.7046 125594.007 127226.188 127457.4462 125100.2621 

Mean 125474.4525 125421.1636 128757.9549 128957.7981 126238.8349 127742.0182 127744.5247 125384.4464 

Std 173.9205 157.2532 860.0746 263.9482 478.2639 378.8191 247.7480 104.2493 
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Fig. 5. Convergence characteristics of algorithms for test system 3. 460 

 461 

 462 

Table 12. Comparison of the simulation results for test system 3. 463 

DEC2 [50, 78] HSLSO 

Area 1 (PD =7500MW) Area 2 (PD =3000 MW) Area 1 (PD =7500MW) Area 2 (PD =3000 MW) 

P1 (MW) 112.8292 P21 (MW) 343.7598 P1 (MW) 110.8012 P21 (MW) 523.2792 

P2 (MW) 114.0000 P22 (MW) 433.5196 P2 (MW) 113.9997 P22 (MW) 523.2791 

P3 (MW) 97.3999 P23 (MW) 523.2794 P3 (MW) 120.0 P23 (MW) 523.2794 

P4 (MW) 179.7331 P24 (MW) 550.0000 P4 (MW) 179.7331   P24 (MW) 523.2794 

P5 (MW) 97.0000 P25 (MW) 550.0000 P5 (MW) 95.551 P25 (MW) 523.2795 

P6 (MW) 68.0001 P26 (MW) 254.0000 P6 (MW) 140.0 P26 (MW) 254.0 

P7 (MW) 300.0 P27 (MW) 10.0000 P7 (MW) 300.0 P27 (MW) 10.0001 
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P8 (MW) 284.5997 P28 (MW) 10.0001 P8 (MW) 284.5997 P28 (MW) 10.0 

P9 (MW) 284.5997 P29 (MW) 10.0000 P9 (MW) 284.5997 P29 (MW) 10.0 

P10 (MW) 130.0 P30 (MW) 47.0000 P10 (MW) 270.0 P30 (MW) 87.7997 

P11 (MW) 360.0 P31 (MW) 159.7331 P11 (MW) 94.0 P31 (MW) 188.5959 

P12 (MW) 94.0001 P32 (MW) 190.0000 P12 (MW) 300.0 P32 (MW) 159.7331 

P13 (MW) 304.5196 P33 (MW) 163.7269 P13 (MW) 304.5195 P33 (MW) 159.733 

P14 (MW) 500.0 P34 (MW) 164.7998 P14 (MW) 394.2797 P34 (MW) 164.8002 

P15 (MW) 484.0392 P35 (MW) 200.0000 P15 (MW) 484.0395 P35 (MW) 164.7998 

P16 (MW) 500.0 P36 (MW) 164.7998 P16 (MW) 484.0391 P36 (MW) 164.7998 

P17 (MW) 489.2794 P37 (MW) 110.000 P17 (MW) 489.2794 P37 (MW) 89.1143 

P18 (MW) 500.0 P38 (MW) 57.0571 P18 (MW) 489.2796 P38 (MW) 89.114 

P19 (MW) 550.0000 P39 (MW) 25.0000 P19 (MW) 549.9998 P39 (MW) 89.1134 

P20 (MW) 550.0000 P40 (MW) 511.2794 P20 (MW)   511.2791 P40 (MW) 242.0001 

T12 (MW) -1500.0000 T12 (MW) -1500.0 

gP
 

10500.0 gP
 

10500.0001 

Cost ($/H) 127344.8528 Cost ($/H) 125100.2621 

 464 

7. Conclusions 465 

In this paper, four IDEPSO techniques were proposed for solving optimal MAED, RCMAED, 466 

RCMAED with reserve sharing, and RCMAEED with reserve sharing problems. MAED problems are 467 

an extension of ELD problem in power systems, and multi-area systems considered in this study 468 

are a two-area system with four generating units, a four-area system with sixteen generating 469 

units, and a two-area system with forty generating units. The simulation results show that 470 

IDEPSO techniques, in particular HSLSO algorithm, have suitable performance in balancing the 471 

global search ability and convergence characteristics, and better performance in solution’s 472 

quality than other algorithms proposed in the literature. So, it is believed that the proposed 473 

HSLSO algorithm in this study is capable of effectively and quickly solving optimization 474 

problems in power systems. 475 

Appendix: Comparison of HSLSO with standard PSO algorithms 476 

In this section, we consider two standard PSO (SPSO) algorithms in the recent literature, including 477 

SPSO2011 [79] and modified PSO (MPSO) [80-81], for comparison with HSLSO algorithm using 478 

standard benchmark test functions such as Rosenbrock (f3), Rastrigin (f4) and Ackley (f6) functions under 479 

same conditions and with their original control parameters in the literature. The obtained optimal results 480 

after 25 runs are given in Table 13, and also the convergence characteristics of these algorithms for 481 
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Rastrigin function with D=60 are shown in Fig. 6. The HSLSO algorithm provides better optimal results 482 

with faster convergence compared to SPSO2011 and MPSO. 483 

Table 13. Comparison of the HSLSO and other algorithms for benchmark test functions. 484 

Function D 
MPSO SPSO2011 HSLSO 

Best Mean Std Best Mean Std Best Mean Std 

Rosenbrock 
30 20.7643 24.1874 13.9342 13.7951 13.8851 0.7157 12.4180 13.3847 1.0329 

60 60.1641 71.6428 38.1262 48.2355 48.8663 1.0095 43.2785 44.5325 1.1041 

Rastrigin 
30 48.3716 53.2907 23.9066 34.5925 34.5249 3.2363 0.0 0.0 0.0 

60 154.6357 282.8053 49.8403 138.0560 155.2106 11.3320 0.0 0.0 0.0 

Ackley 

30 1.479 11.5197 10.0050 
4.4409e-

015 

7.1054e-

015 

1.7763e-

015 

8.8818e-

016 

8.8818e-

016 
0.0 

60 1.5915 20.7934 18.0593 
7.9936e-

015 
0.8308 0.9788 

8.8818e-

016 

8.8818e-

016 
0.0 
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Fig. 6. Convergence characteristics of algorithms for Rastrigin function with D=60. 487 

 488 

 489 

 490 



 

34 
 

References 491 

[1] Park JH, Lee KY, Sode-Yome A. Adaptive hopfield neural networks for economic load 492 

dispatch. IEEE Trans Power Syst 1998; 13: 519–25. 493 

[2] Liang Z-X, Glover JD. A zoom feature for a dynamic programming solution to economic 494 

dispatch including transmission losses. IEEE Trans Power Syst 1992; 7 (2): 544–50. 495 

[3] Park JH, Kim YS, Eom IK, Lee KY. Economic load dispatch for piecewise quadratic cost 496 

function using hopfield neural network. IEEE Trans Power Syst 1993; 8 (3): 1030–8. 497 

[4] Jeddi B, Vahidinasab V. A modified harmony search method for environmental/economic 498 

load dispatch of real-world power systems. Energy Convers Manage 2014; 78: 661–75. 499 

[5] Walters DC, Sheble GB. Genetic algorithm solution of economic dispatch with valve point 500 

loading. IEEE Trans Power Syst 1993; 8 (3): 1325–32. 501 

[6] Damousis IG, Bakirtzis AG, Dokopoulos PS. Network-constrained economic dispatch using 502 

real-coded genetic algorithm, IEEE Trans Power Syst 2003; 18 (1): 198–205. 503 

[7] Gaing ZL. Particle swarm optimization to solving the economic dispatch considering the 504 

generator constraints. IEEE Trans Power Syst 2003; 18 (3): 1187–95. 505 

[8] Vlachos AG, Biskas PN. Simultaneous clearing of energy and reserves in multi-area markets 506 

under mixed pricing rules. IEEE Trans Power Syst 2011; 26 (4): 2460–71. 507 

[9] Aragón VS, Esquivel SC, Coello Coello CA, An immune algorithm with power redistribution 508 

for solving economic dispatch problems. Inform Sci 2015; 295: 609–32. 509 

[10] Amjady N, Sharifzadeh H. Solution of non-convex economic dispatch problem considering 510 

valve loading effect by a new modified differential evolution algorithm. Int J Electr Power 511 

Energy Syst 2010; 32 (8): 893–903. 512 

[11] Basu M, Chowdhury A. Cuckoo search algorithm for economic dispatch. Energy 2013; 60: 513 

99-108. 514 

[12] Mohammadi-Ivatloo B, Rabiee A, Soroudi A, Ehsan M. Iteration {PSO} with time varying 515 

acceleration coefficients for solving non-convex economic dispatch problems. Int J Electr Power 516 

Energy Syst 2012 42 (1): 508–16. 517 

[13] Sayah S, Hamouda A. A hybrid differential evolution algorithm based on particle swarm 518 

optimization for nonconvex economic dispatch problems. Appl Soft Comput 2013, 13: 1608–19. 519 



 

35 
 

[14] Aghaei J, Niknam T, Azizipanah-Abarghooee R, Arroyo José M. Scenario-based dynamic 520 

economic emission dispatch considering load and wind power uncertainties. Int J Electr Power 521 

Energy Syst 2013;47:351–67. 522 

[15] Soroudi CA, Ehsan M. IGDT based robust decision making tool for DNOs in load 523 

procurement under severe uncertainty. IEEE Trans Smart Grid 2013; 4 (2):886–95 524 

[16] Ivatloo BM, Zareipour H, Amjady N. Application of information gap decision theory to 525 

risk-constrained self-scheduling of GenCos. IEEE Trans Power Syst 2013; 28 (2): 1093–102. 526 

[17] Moradi-Dalvand M, Mohammadi-Ivatloo B, Najafi A, Rabiee A. Continuous quick group 527 

search optimizer for solving non-convex economic dispatch problems. Electr Power Syst Res 528 

2012; 93: 93–105. 529 

[18] Ghasemi M, Ghavidel S, Ghanbarian MM, Massrur HR, Gharibzadeh M. Application of 530 

imperialist competitive algorithm with its modified techniques for multi-objective optimal power 531 

flow problem: a comparative study. Inform Sci 2014; 281: 225-47. 532 

[19] Niknam T, Mojarrad HD, Firouzi BB. A new optimization algorithm for multi-objective 533 

economic/emission dispatch. Int J Electr Power Energy Syst 2013; 46: 283–93. 534 

[20] Bhattacharjee K, Bhattacharya A, Dey SHN. Solution of economic load dispatch problems 535 

of power systems by real coded chemical reaction algorithm. Int J Electr Power Energy Syst 536 

2014; 59: 176–87. 537 

[21] Bornapour M, Hooshmand RA. An efficient scenario-based stochastic programming for 538 

optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel 539 

cell power plants. Energy 2015; 83: 734–48. 540 

[22] Younes M, Khodja F, Kherfane RL. Multi-objective economic emission dispatch solution 541 

using hybrid FFA (firefly algorithm) and considering wind power penetration. Energy 2014; 67: 542 

595-606. 543 

 [23] Morshed MJ, Asgharpour A. Hybrid imperialist competitive-sequential quadratic 544 

programming (HIC-SQP) algorithm for solving economic load dispatch with incorporating 545 

stochastic wind power: A comparative study on heuristic optimization techniques. Energy 546 

Convers Manage 2014; 84: 30–40. 547 

[24] Ghasemi M, Ghavidel S, Rahmani S, Roosta A, Falah H. A novel hybrid algorithm of 548 

imperialist competitive algorithm and teaching learning algorithm for optimal power flow 549 

problem with non-smooth cost functions. Eng Appl Artif Intell 2014; 29: 54-69. 550 



 

36 
 

[25] Coelho LS, Mariani VC. Combining of chaotic differential evolution and quadratic 551 

programming for economic dispatch optimization with valve-point effect. IEEE Trans Power 552 

Syst 2006; 21(2): 989–96. 553 

[26] Panigrahi BK, Ravikumar Pandi V, Das S, Das S. Multiobjective fuzzy dominance based 554 

bacterial foraging algorithm to solve economic emission dispatch problem. Energy 2010; 35: 555 

4761-70. 556 

[27] Hosseinnezhad V, Rafiee M, Ahmadian M, Ameli MT. Species-based quantum particle 557 

swarm optimization for economic load dispatch. Int J Electr Power Energy Syst 2014; 63: 311– 558 

22. 559 

[28] M. Balasubbareddy, S. Sivanagaraju, Chintalapudi V. Suresh, Multi-objective optimization 560 

in the presence of practical constraints using non-dominated sorting hybrid cuckoo search 561 

algorithm. Engineering Science and Technology, an International Journal (2015), 562 

http://dx.doi.org/10.1016/j.jestch.2015.04.005. 563 

[29] Mohseni-Bonab SM, Rabiee A, Mohammadi-Ivatloo B. Voltage stability constrained multi-564 

objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic 565 

approach, Renewable Energy 2016; 85: 598-609. 566 

 [30] Mahdad B, Srairi K. Differential evolution based dynamic decomposed strategy for 567 

solution of large practical economic dispatch. 10th EEEIC International Conference on 568 

Environment and Electrical Engineering, Italy, 2011. 569 

 [31] Azizipanah-Abarghooee R. A new hybrid bacterial foraging and simplified swarm 570 

optimization algorithm for practical optimal dynamic load dispatch. Int J Electr Power Energy 571 

Syst 2013; 49: 414–29. 572 

[32] Bahmani-Firouzi B, Farjah E, Seifi A. A new algorithm for combined heat and power 573 

dynamic economic dispatch considering valve-point effects. Energy 2013; 52: 320-32. 574 

[33] Jadhav HT, Roy R. Stochastic optimal power flow incorporating offshore wind farm and 575 

electric vehicles. Int J Electr Power Energy Syst 2015; 69: 173–87. 576 

[34] Ghasemi M, Taghizadeh M, Ghavidel S, A Abbasian A. Colonial competitive differential 577 

evolution: An experimental study for optimal economic load dispatch. Appl Soft Comput 2016; 578 

40: 342-63. 579 

 580 



 

37 
 

[35] Foley AM, Gallachóir BPÓ, Hur J, Baldick R, McKeogh EJ. A strategic review of electricity 581 

systems models. Energy 2010, 35: 4522-30. 582 

 [36] Khazali A, Kalantar M. Optimal power flow considering fault current level constraints and 583 

fault current limiters. Int J Electr Power Energy Syst 2014; 59: 204–13. 584 

[37] Li YZ, Wu QH, Li MS, Zhan JP. Mean-variance model for power system economic 585 

dispatch with wind power integrated. Energy 2014; 72: 510–20. 586 

[38] Basu M. Artificial bee colony optimization for multi-area economic dispatch. Int J Electr 587 

Power Energy Syst 2013; 49: 181–7. 588 

[39] Basu M. Teaching-learning-based optimization algorithm for multi-area economic dispatch. 589 

Energy 2014; 68: 21-8. 590 

[40] Manoharan PS, Kannan PS, Baskar S, Willjuice Iruthayarajan M. Evolutionary algorithm 591 

solution and KKT based optimality verification to multi-area economic dispatch. Int J Electr 592 

Power Energy Syst 2009; 31: 365–73. 593 

[41] Sudhakar AVV, Chandram K, Jayalaxmi A, Multi area economic dispatch using secant 594 

method. J Electr Eng Technol 2013; 8(4): 744-51. 595 

[42] Manoharan PS, Kannan PS, Ramanathan V. A novel EP approach for multi-area economic 596 

dispatch with multiple fuel options. Turk J Elec Eng & Comp Sci 2009; 17(1): 1-19. 597 

[43] Singh R, Jain K, Pandit M. Comparison of PSO variants with traditional solvers for large 598 

scale multi-area economic dispatch. Chennai and Dr.MGR University Second International 599 

Conference on Sustainable Energy and Intelligent System (SEISCON 2011), Dr. M.G.R. 600 

University, Maduravoyal, Chennai, Tamil Nadu, India. July2011. 20-22. 601 

 [44] Storn R, K. V. Price KV. Minimizing the real functions of the ICEC 1996 contest by 602 

differential evolution. in Proc. IEEE Int. Conf. Evol. Comput., 1996, pp. 842–844. 603 

[45] Storn R, K. V. Price KV. Differential evolution—A simple and efficient heuristics for 604 

global optimization over continuous spaces. J Global Optim 1997; 11(4): 341–59. 605 

 [46] Kennedy J, Eberhart RC. Particle swarm optimization. in Proc. IEEE Int. Conf. Neural 606 

Netw., Perth, WA, Nov./Dec. 1995, pp. 1942– 1948. 607 

[47] E. Martelli and E. Amaldi, PGS-COM: A hybrid method for con-strained non-smooth black-608 

box optimization problems: Brief review, novel algorithm and comparative evaluation, 609 

Computers and Chemical Engineering 2014; 63, 108- 39. 610 



 

38 
 

[48] del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez JC, Harley RG. Particle 611 

swarm optimization: Basic concepts, variants and applications in power systems. IEEE Trans 612 

Evol Comput 2008; 12(2): 171–95. 613 

[49] Xin B, Chen J, Zhang J, Fang H, Peng ZH, Hybridizing differential evolution and particle 614 

swarm optimization to design powerful optimizers: A review and taxonomy. IEEE Trans Syst 615 

Man Cybern C Appl Rev 2012; 42(5): 744–67. 616 

[50] Sharma M, Pandit M, Srivastava L. Reserve constrained multi-area economic dispatch 617 

employing differential evolution with time-varying mutation. Int J Electr Power Energy Syst 618 

2011; 33(3): 753-66. 619 

[51] Sharma M, Pandit M, Srivastava L. Multi-area economic dispatch with tie-line constraints 620 

employing evolutionary approach, Int J Eng Sci Technol (IJEST) 2010; 2(3):133–50. 621 

[52] Alsumait JS, Sykulski JK, Al-Othman AK. Solution of different types of economic load 622 

dispatch problems using a pattern search method. Electric Power Compon Syst 2008; 36: 250–6. 623 

[53] Wang L, Singh C. Reserve-constrained multiarea environmental/ economic dispatch based 624 

on particle swarm optimization with local search. Eng Appl Artif Intell 2009; 22 (2): 298-307. 625 

[54] Chen CL, Chen N. Direct search method for solving economic dispatch problem 626 

considering transmission capacity constraints. IEEE Trans Power Syst 2001; 16(4): 764-9. 627 

[55] Pandit M, Srivastava L, Pal K. Static/dynamic optimal dispatch of energy and reserve using 628 

recurrent differential evolution. IET Gener Transm Distrib 2013; 7(12): 1401 - 14. 629 

[56] Jeyakumar DN, Jayabarathi T, Raghunathan T. Particle swarm optimization for various 630 

types of economic dispatch problems. Int J Electr Power Energy Syst 2006; 28 (1): 36–42. 631 

 632 

[57] Chen CL, Chen ZY, Lee TY. Multi-area economic generation and reserve dispatch 633 

considering large-scale integration of wind power. Int J Electr Power Energy Syst 2014; 55: 634 

171–8. 635 



 

39 
 

[58] Zarei M, Roozegar A, Kazemzadeh R, Kauffmann JM. Two area power systems economic 636 

dispatch problem solving considering transmission capacity constraints. Proc. World Academy 637 

of Science, Engineering and Technology 2007; 33: 147-52. 638 

[59] Fesanghary M, Ardehali MM. A novel meta-heuristic optimization methodology for solving 639 

various types of economic dispatch problem. Energy 2009; 34 (6): 757–66. 640 

[60] Soroudi A, Rabiee A. Optimal multi-area generation schedule considering renewable 641 

resources mix: a real-time approach. IET Gener Transm Distrib 2013; 7 (9): 1011 –26. 642 

[61] Yalcinoz T, Short MJ. Neural networks approach for solving economic dispatch problem 643 

with transmission capacity constraints. IEEE Trans Power Syst 1998;13(2):307–13. 644 

[62] Streiffert D. Multi area economic dispatch with tie line constraints. IEEE Trans Power Syst 645 

1995;10(4):1946–51. 646 

[63] Lasemi MA, Assili M, Baghayipour M. Modification of multi-area economic dispatch with 647 

multiple fuel options, considering the fuelling limitations. IET Gener Transm Distrib 2014; 8 (6): 648 

1098–106. 649 

[64] Wang SK, Chiou J-P, Liu CW. Non-smooth/non-convex economic dispatch by a novel 650 

hybrid differential evolution algorithm. IET Gen Transm Distrib 2007;1(5):793–803. 651 

 [65] Wu YC, Debs AS, Hansen, C. Incorporation of reactive capability curves and area 652 

interchanges in multi-area optimal power flow for operator training simulator, Int J Electr Power 653 

Energy Syst 2002; 24(2): 131-40. 654 

[66] Ahmadi-Khatir  A, Conejo  AJ, Cherkaoui R. Multi area energy and reserve dispatch under 655 

wind uncertainty and equipment failures. IEEE Trans Power Syst 2013; 28 (4): 4373–83. 656 

[67] Nogales FJ, Prieto FJ, Conejo AJ. A decomposition methodology applied to the multi area 657 

optimal power flow problem. Ann Oper Res 2003; 120 (1): 99–116. 658 



 

40 
 

[68]Wang C, Shahidehpour SM. A decomposition approach to nonlinear multi-area generation 659 

scheduling with tie-line constraints using expert systems. IEEE Trans Power Syst 1992; 7 (4): 660 

1409–18. 661 

 [69] Helmick SD, Shoults RR. A practical approach to an interim multi-area economic dispatch 662 

using limited computer resources. IEEE Trans Power Appl Syst 1985, PAS-104, (6), pp. 1400–4. 663 

[70] Suresh CV, Sivanagaraju S, Viswanatha Rao JV. Multi-area multi-fuel economic–emission 664 

dispatch using a generalized unified power flow controller under practical constraints. Arab J Sci 665 

Eng 2015; 40: 531–49. 666 

[71] Jayabarathi T, Sadasivam G, Ramachandran V. Evolutionary programming based multi-area 667 

economic dispatch with tie-line constraints. Electr Mach Power Sys 2000; 28 (4): 1165–76. 668 

[72] Das S, Suganthan PN, Differential evolution: A survey of the state-of-the-art, IEEE Trans 669 

Evol Comput 2011; 15 (1): 4 - 31. 670 

 [73] Cai Y, Wang J. Differential evolution with hybrid linkage crossover. Inform Sci 2015; 320 671 

(1): 244–87. 672 

 [74] Zhang WJ, Xie XF. DEPSO: Hybrid particle swarm with differential evolution operator. in 673 

Proc. IEEE Int. Conf. Syst., Man, Cybern., Washington, DC, Oct. 2003, pp. 3816–21. 674 

[75] Hao ZF, Guo GH, H. Huang H. A particle swarm optimization algorithm with differential 675 

evolution. in Proc. 6th Int. Conf. Mach. Learn. Cybern., Hong Kong, China, Aug. 2007, pp. 676 

1031–5. 677 

[76] Xu X, Li Y, Fang S, Wu Y, Wang F. A novel differential evolution scheme combined with 678 

particle swarm intelligence. in Proc. IEEE Cong. Evol. Comput., Hong Kong, China, Jun. 2008, 679 

pp. 1057–62. 680 



 

41 
 

 [77] Liu S, Wang X, You X. Cultured differential particle swarm optimization for numerical 681 

optimization problems. in Proc. Int. Conf. Natur. Comput., Haikou, China, Aug. 2007, pp. 642–682 

8. 683 

[78] Jain K, Pandit M. Discussion of ‘‘Reserve constrained multi-area economic dispatch 684 

employing differential evolution with time-varying mutation’’ by Manisha Sharma et al. 685 

‘‘International Journal of Electrical Power and Energy Systems’’, 33 March (2011) 753–766. Int 686 

J Electr Power Energy Syst 2012; 39: 68–9. 687 

[79] Zambrano-Bigiarini M, Clerc M, Rojas R. Standard particle swarm optimisa-tion 2011 at  688 

EC-2013: a baseline for future PSO improvements, in: 2013 IEEECongress on Evolutionary 689 

Computation (CEC), IEEE, 2013, pp. 2337–2344. 690 

[80] Jamshid A, Muttaqi KM, Azizi vahed A, Gitizadeh M. Distribution expansion planning 691 

considering reliability and security of energy using modified PSO (Particle Swarm Optimization) 692 

algorithm. Energy 2014; 65: 398–411. 693 

[81] Gitizadeh M, Azizi vahed A, Jamshid A.  Multistage distribution system expansion planning 694 

considering distributed generation using hybrid evolutionary algorithms. Appl Energy J 2013; 695 

101: 655–66. 696 

 697 

 698 
 699 

 700 
 701 
 702 


	Blank Page

