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1. Introduction 24 

Generally, Industrial wastewater is an aqueous discharge due to the use of water or cleaning 25 

activities in an industrial manufacturing process [1]. Industrial activities generate 26 

wastewaters that varies so significantly in pollution characteristics, and each sector of 27 

industry produce its own combination of pollutants [2]. These industrial wastewaters may 28 

contain heavy metal ions, organic compounds, nutrients, colouring matters, pesticides, 29 

endocrine disruptive compounds, and some other toxic materials. As a result, these 30 

Industrial effluents should be efficiently treated to protect the environment, aquatic life and 31 

humans from intoxication. In addition, due to continuing increase in water shortages and 32 

environmental protection concerns, industrial effluent treatment for reuse in the process 33 

has been accepted as a sustainable option to address these problems [3].  34 

Ceramic membrane-based treatment system is one of the emerging technologies of treating 35 

wastewater that have attracted remarkable interests for the industrial wastewater 36 

treatment over the past two decades. The ceramic unit has many benefits over polymeric 37 

membranes like high durability, superior chemical, mechanical and thermal stability, 38 

bacteria resistance, ability of back flushing and ease of cleaning and sterilization [4-6]. 39 

However, there are still challenges for this technology, particularly in optimising capital and 40 

fabrication cost, improving  selectivity and antifouling properties, enhancing packing 41 

densities, and  applying experimental research results to large-scale applications [7, 8]. 42 

This paper reviews the studies and investigations conducted on the application of pressure-43 

driven ceramic membranes for the treatment of industrial effluents. The paper begins with a 44 

brief discussion about ceramic membrane materials and manufacturing followed by a 45 

review of the previous laboratory analysis and case studies about the efficiency of this 46 
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system in the treatment of wastewaters from different industries. It also covers the 47 

challenges and future trends in ceramic membrane technology for industrial wastewaters 48 

filtration. Finally, the paper concludes with key findings and recommendations. 49 

2. Ceramic Membrane Technology 50 

2.1 Ceramic Membrane Materials 51 

In terms of separation process, a membrane is described  as a selective barrier to separate 52 

two phases and it can limit the transport of various elements [9]. There are different  53 

categories of membranes based on their materials,  such as: 1) polymeric membrane 2) 54 

ceramics membrane  3) liquid membrane, and 4) ion exchange membrane [10]. Ceramic 55 

membranes for the purpose of wastewater treatment belong to the oxide ceramic 56 

membranes which are mainly made of Al, Si, Ti or Zr oxides, and silicon carbide (SiC) and 57 

covers the range from Microfiltration (MF) to Nanofiltration(NF). Different oxides have 58 

different performance and chemical and hydrothermal stability depending on the 59 

operational environment conditions, and therefore can be chosen based on the specific 60 

application requirements because each oxide has a different surface charge in solution [11-61 

13].  62 

Desired ceramic membranes for industrial effluent  filtration are mainly  porous asymmetric 63 

structures consisting of a porous support layer , intermediate layer(s)  and  a thin skin top 64 

layer with different densities depending upon the desired molecular weight cut off (MWCO) 65 

of the ceramic membranes. All layers can be made of the same material which is called 66 

integral or of different materials, which in this case is called composite ceramic membranes 67 

and both of them has been used for the filtration of industrial effluents. Figure 1 illustrates 68 

the scanning electron microscope(SEM) of the cross-section of a asymmetric composite 69 

http://www.lenntech.com/Periodic-chart-elements/Al-en.htm
http://www.lenntech.com/Periodic-chart-elements/Si-en.htm
http://www.lenntech.com/Periodic-chart-elements/Ti-en.htm
http://www.lenntech.com/Periodic-chart-elements/Zr-en.htm
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ceramic membrane structure made from different materials [14].Composite ceramic 70 

membranes properties and selectivity can be customized by applying different materials in 71 

different layers; however, their fabrication process is multi-step and complex [11, 12, 15]. 72 

 73 

 74 

 75 
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 78 
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 80 

 81 

Fig 1.  SEM of the cross-section of an asymmetric composite ceramic membrane 82 

(reproduced from [14] with permission from the Royal Society of Chemistry) 83 

2.2 Ceramic Membrane Configurations and Their Fabrication Methods 84 

2.2.1 Membrane Configurations  85 

For practical applications, membranes need to be configured into packages that are called 86 

membrane modules. They provide a large surface area for an effective feed stream filtration 87 

[9]. Ceramic membranes are configured with either a flat geometry and/or cylindrical 88 

shapes and of different packaging, volume ratio and materials type to address different 89 

operational situations. For the purpose of industrial effluents filtration, cylindrical 90 

configuration with single and multi-channel tubes and hollow-fibres are more suitable 91 

because of easier sealing of the elements, higher mechanical stability, and better capability 92 

to handle higher cross -flow velocities compared to flat geometry [8, 12]. However, because 93 
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of ceramic brittleness, optimising the packing densities of ceramic modules in order to 94 

reduce the overall footprint of installed treatment unit in operating environment is one of 95 

the main concerns of researchers and ceramic membrane manufacturers [12].  Figure 2 96 

shows some photographs of commercially available flat sheet, tubular and hollow-fibre 97 

geometries for ceramic membranes. 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

Fig 2.Product photographs of commercial (a) Flat-sheet membrane (reproduced from [16] 107 

by permission of © KERAFOL Keramische Folien GmbH), (b) Tubular ceramic membranes 108 

(reproduced from [17] by permission of TAMI industries) (c) Ceramic hollow–fibre 109 

Membrane (reproduced from [18] by permission of i2m manufacturing company) 110 

In recent years, commercial ceramic membrane manufacturers have tried to improve the 111 

packing densities of ceramic membrane modules. Table 1 lists some current ceramic 112 

MF/UF/NF suppliers. Pall®Membralox® developed asymmetric multi-channel tubular 113 

alumina MF with pore sizes ranging from 0.1-1.4 µm and zirconia Ultrafiltration (UF) with 114 
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pore sizes ranging from 20-100 nm in a unique hexagonal monoliths module to obtain a high 115 

packing density up to 240 m2/m3. However, large pressure drop for permeate flow across 116 

the monolith is a technical limitation that restricts the diameter of monoliths than can be 117 

used [12, 19, 20]. In order to address this problem, Veolia Water Technologies introduced 118 

the CeraMem® technology that effectively overcomes the pressure drop problem by 119 

mechanical modification to the monoliths. Multiple permeate conduits that conduct 120 

permeate through the feed passageways to the permeate collection zone at the end of 121 

module were added within the monolith [12, 21]. More recently, TAMI industries 122 

Introduced Isoflux ™ with flower-like tubular geometries  of 8, 23 and 39 channels with 123 

membrane filtration area ranging  from 0.2-0.5 m2
.  This allows  for  a stable permeate flux 124 

on each point of the membrane independent on the position of measurement which can be 125 

beneficial for food processing and bio industry [22]. Hollow-fibre module utilizes  tubes with 126 

small diameter generally between 2-4 mm thereby compact configuration with highly 127 

effective membrane filtration area can be obtained [12]. Furthermore, Fraunhofer IGB 128 

introduced a laboratory scale wet-spinning process for the production of porous asymmetric 129 

ceramic membranes in capillary module with the  outer diameters ranging from 0.5 to 4mm 130 

which can improve the packing density of ceramic membranes in hollow-fibre 131 

configuration[23]. However, under real operational condition severe fouling and fibre 132 

breakage may occur [24]. In recent years, there have been a lot of research on packing 133 

density improvement of ceramic membrane modules where good results have been 134 

achieved. However, there still an ongoing requirement to design more space-effective 135 

modules  by fabricating narrower hollow-fibres with an appropriate mechanical strength to 136 

reduce the ceramic membrane footprints as much as possible in large scale installation. 137 
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As mentioned earlier, ceramic membranes find frequent use in industrial wastewaters 138 

treatment, and different ceramic membrane materials and modules have been produced 139 

worldwide, and many investigations has been conducted to improve the packing densities of 140 

ceramic membranes. Yet, commercially available ceramic membranes are still 141 

proportionately more difficult to fabricate compared to polymeric membranes and their 142 

investment cost is higher than polymeric types. The usage of ceramic membranes has 143 

therefore been limited in many real industrial applications and polymeric membranes have 144 

dominated the industrial effluents treatment market for decades [25].  145 

 146 
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Table 1: Some Commercially available ceramic membranes for Industrial effluents filtration 147 

Company Product Geometry Designation 
Material of 

Membrane 
Pore size/ MWCO 

Available 

Length(s)-

(mm) 

Number of 

Channels 

Outer 

Dia 

(mm) 

Channel 

Dia(mm) 
Ref 

 

TAMI 

Industries 

 

 

INSIDE CéRAM™ 

 

Tubular 

MF 

UF 

Fine UF 

- - 

580, 850, 

1020, 

1178 

7,8,11,19,23,25,37, 

39,93 
25,41 

1.6,2.5,3.5,

3.6, 

4.6,5.5,6 

[26] 

Filtanium™ Tubular 

MF 

UF 

Fine UF 

- - 580, 1178 8,23,39 25 2.5,3.5,6 

Isoflux™ Tubular MF - - 1020,1178 8,23,39 25 2.5,3.5,6 

      Eternium™ 
 

Tubular - - - 1178 7,8,23 25 3.5,6 

atech 

Innovations 

GmbH 

atech Ceramic 

membranes 
Tubular MF & UF 

MF: 

α-Al2O3,TiO2, 

ZrO2 

 

UF: 

TiO2,ZrO2,Al2

O3 

MF: 

1.2,0.8,0.4,0.2,0.1 µm 

 

UF: 0.05 µm, 

150,100,20, 10, 5, 

1 KDa 

1000,1200

, 

1500 

1,7,19,37,61,85, 

211 

10,25.4,

30,41, 

52,54 

2,2.5,3.3, 

3.8,4,6,8,16 
[27] 

Pall 

Corporation 

Pall® Membralox® 

IC 

Tubular 

(Hexagonal) 
MF&UF 

MF:α-Al2O3 

UF: ZrO2 

MF:0.8,0.2 µm 

UF:100,50,20 nm 
1020 48 38,43 4 [28] 

Pall 

Corporation 
Pall® Membralox® 

Tubular 

(Hexagonal) 
MF&UF 

MF:α-Al2O3 

UF: ZrO2 

MF:1.4,0.8,0.5, 

0.3,0.1 µm 

UF:100,50,20 nm 

1020 19,37 
28,31 

38,43 
3,4,6 [29] 
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 148 

Table 1: Continued 149 

Veolia Water 
Technologies 

CeraMem® Tubular MF& UF 

MF: 

mixed oxide, 
α-Al2O3,SiC,TiO2 

UF: 

SiC, SiO2,TiO2 

MF:0.1,0.2,0.5 

µm 

UF:0.01,0.005µm 
, 50 nm 

864 - 142 2,5 [30] 

ItN 
Nanovation 

AG 
CFM Systems® Flat sheet MF α-Al2O3 0.2 µm 

L=530 

W=6.5 

H=110 

21 - 3 [31] 

Meidensha 
Corporation 

Ceramic flat sheet 
membrane 

system 
Flat sheet MF α-Al2O3 0.1 µm 

L=1046 

W=12 

H=281 

- - - [32] 

LiqTech 
International 

Inc. 
CoMem® Conduit Tubular - SiC - 865 - 146 3 [33] 

LiqTech 
International 

Inc. 
CoMem® Tubular - SiC - 305,1016,1178 - 25 3 [34] 

Inopor® 
Ceramic inopor® 

membrane 
Tubular NF 

Support 
Layer:Al2O3 

 
Membrane 

Layers: TiO2 or 
SiO2 

MWCO: 
750 ,600,450 Da 

 
1200 1,4,7,19,31 

10,20, 
25,41 

3,3.5,6,6.1,
7,15.5 

[35] 

Cembrane 
Cembrane 
Ceramic 

membrane 
Flat sheet MF SiC 0.1 µm 

L=532 

W=11 

H=150 

- - - [36] 

 150 
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2.2.2 Fabrication Techniques 151 

Figure 3 shows the conventional multi-step process of fabrication of composite ceramic 152 

membranes. The choice of method in shaping, heat treatment, and layer deposition 153 

processes depends on the application and membrane configuration [11, 12, 15, 37]. One of 154 

the main difficulties associated with conventional fabrication processes is the strengthening 155 

of ceramic powders and suspensions which requires high sintering temperatures and long 156 

sintering times, where consequently grain growth and decomposition of ceramics may occur 157 

[38]. In recent years, The combined Phase-inversion and sintering technique has been used 158 

as an alternative method for producing wide range of  ceramic membranes including flat 159 

sheet, hollow-fibre and tubular configurations [39-50]. This method has shown remarkable 160 

advantages over conventional methods. Firstly, it is known as one step fabrication process 161 

to produce asymmetric ceramic membranes because one heat treatment session is 162 

required. Secondly, due to formation of finger-like micro-channels associated with this 163 

technique, significant reduction in mass transfer resistance for permeation flux can be 164 

observed during operations [12, 48]. This technique consists of preparation of a suspension 165 

containing ceramic particles, organic solvent, polymer binder and water. Due to 166 

solvent/non-solvent exchange induced phase inversion process, solidification of ceramic 167 

suspension occurs and ceramic particles are immobilized by spinning or casting depends on 168 

required geometry. Finally, the membrane precursors formed with this method go through 169 

a one-step heat treatment to remove all organics and strengthen mechanical properties [12, 170 

40, 50]. Current research has made remarkable progress in determining the effects of 171 

different parameters on final selectivity and mechanical strength of ceramic membranes 172 

produced by this method. Kingsbury et al. (2009), Tan et al. (2001) & Wei et al. (2008) found 173 

that the pore size and selectivity of the final membrane is highly affected by size distribution 174 
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of ceramic particles in the suspension. They succeeded to achieve various MWCs in the 175 

range of hollow-fibre MF and UF by applying different alumina and zirconia particle sizes in 176 

the suspension. In addition, they realized that changes in ceramic to polymer binder ratio 177 

have different effects on the mechanical strength of the membrane [40, 44, 45]. Kingsbury 178 

et al. (2009) & Tan et al. (2011) studied the morphology of different asymmetric alumina 179 

hollow-fibres made by combined phase-inversion and sintering. Two basic sub-structures 180 

including finger -like and sponge- like have been observed within the membrane cross 181 

section. They found that by changing spinning process parameters including viscosity of the 182 

spinning suspension, bore fluid composition and flow rate, hollow- fibre morphology can be 183 

varied remarkably [40, 51]. On the other words, variation in spinning parameters leads to 184 

different dimensions of the finger-like and sponge-like sub-structures, consequently 185 

different morphologies will be generated. 186 

 As a result, combined phase-inversion and sintering technique has a great potential to 187 

produce ceramic membranes for industrial wastewater treatment applications. However, 188 

one of the main drawbacks of this technique is high sintering temperature which has an 189 

adverse effect on surface porosity and mechanical strength of resultant ceramic 190 

membranes. Advanced sintering methods such as Controlled sintering process by using 191 

polyethersulfone (PESf) as a pore structure stabilizer [46], microwave sintering [52-55], 192 

spark plasma sintering [56-59] and high frequency induction heat sintering [60-62] have 193 

been introduced for inhibiting grain growth during ceramic powder consolidation and for 194 

reducing the sintering process temperature and time. Despite remarkable advantages of 195 

these advanced sintering methods over conventional sintering techniques such as large 196 

energy saving, better grain distribution and enhanced mechanical properties of produced 197 

ceramics [52, 53, 55], controlling  grain growth during sintering process  is still a major issue, 198 
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which makes nanostructured ceramics hard to fabricate [38].  Therefore, further 199 

investigations are still needed to introduce non-complex and economical fabrication 200 

methods with lower temperatures of sintering and shorter processing times to minimise the 201 

problem of grain growth, and makes the production of nanoceramics with lowest grain size 202 

possible. 203 

 204 
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Fig 3.  Conventional fabrication of composite ceramic membranes(Adapted from [12]) 222 
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3. Application for the Treatment of Industrial Wastewaters 226 

One of the most serious environmental issues in the world is the existence of harmful and 227 

toxic pollutants in industrial wastewaters. The major industrial categories are mining, food, 228 

pulp and paper, textile, petrochemicals and pharmaceuticals. All of the mentioned 229 

industries produce wastewaters that  have adverse impacts on each components of the 230 

environment such as water bodies, soil, air, human and the ecosystem [63]. Therefore, 231 

having a reliable wastewater treatment technology is important as it helps in reducing 232 

harmful impacts associated with industrial wastewaters. Due to economic and technical 233 

limitations of conventional wastewater treatment methodologies, many industries turn to 234 

membrane technologies to perform more reliable wastewater treatment operations. Among 235 

the various membrane materials, ceramic membranes have been gaining attentions for 236 

industrial wastewaters treatment because of their robustness and lower operational costs 237 

compared to polymeric membranes. However, despite the advances achieved in this 238 

technology, the potential of ceramic membranes for industrial wastewater treatment has 239 

not yet been fully realised. Ceramic membrane systems still require improvement in terms 240 

of investment cost, packing densities, selectivity and antifouling properties to satisfy future 241 

harsh operating conditions. It is  crucial to review the investigations  of the application of 242 

this technology to treat  different industrial effluents to give a clear vision for the future [4]. 243 

It is therefore, the objective of this section to review some case studies and laboratory 244 

analysis of the application of ceramic membranes in some major industrial sections such as 245 

textile, pulp and paper, petrochemicals, mining, food, and pharmaceuticals to realize 246 

advantages , challenges, and prospects in ceramic membrane technology for industrial 247 

wastewaters filtration . 248 

 249 
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3.1. Pulp and Paper Industry 250 

Pulp and paper industry depends heavily on a massive amount of water and its quality in the 251 

various stages of manufacturing processes. The manufacturing process mainly includes 252 

wood pulping and production of paper and generates wastewaters containing huge amount 253 

of pollutants depending upon the stage of the process. Generally, these pollutants are 254 

characterized by chemical oxygen demand (COD), biochemical oxygen demand (BOD), 255 

suspended solids (SS), level of toxicity, and colour [64]. The amount of pollutants discharge 256 

can also change significantly even at the same manufacturing process due to the use of 257 

various chemicals and seasonal variations. To protect human health and environment, many 258 

government agencies are forcing the paper industry around the world to treat wastewaters 259 

to comply with the environmental guidelines and standards before discharge. In addition, 260 

due to shortage of freshwater sources in some countries and increased legislation demands 261 

[65-67], the pulp and paper industry use advanced water treatment systems for effluent 262 

treatment and reuse it in manufacturing process. In the last two decades, membrane 263 

separation technologies have attracted more attention as an unconventional method for 264 

the treatment of the paper mill effluent. Successful demonstrations of membrane 265 

technology in treatment of wastewaters generated in paper manufacturing processes have 266 

been reported by researchers and paper manufacturing companies. 267 

Ceramic membranes have been proposed for the treatment of pulp mill wastewater 268 

because of their remarkable chemical, thermal and mechanical stability under harsh 269 

operational conditions. Compared to polymeric MF, UF, and NF membranes [65-71], 270 

ceramic membranes can be  cleaned with variety of harsh cleaning agents when fouling or 271 

scaling occurs , and solid  performance over longer periods of operations can be guaranteed 272 
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because of the nature of ceramics that have a combination of stronger bonds which is  273 

partially ionic and partially covalent [12, 72]. Several studies have been conducted to 274 

evaluate the performance of various ceramic membranes to treat pulp and paper industry 275 

wastewaters. Table 2 illustrates an overview of some investigations evaluating the 276 

application of ceramic membranes to treat effluents from pulp and paper mills. As shown in 277 

Table 2 , mainly α-Al2O3 ceramic membranes with a selective separation layer of TiO2 or 278 

ZrO2 which are easily available in market with different pore sizes and MWCOs under 279 

various operational parameters have been applied in the experiments. Nataraj et al.(2007) 280 

developed a pilot plant which was a combination of α-Alumina tubular ceramic MF followed 281 

by Electrodialysis (ED) technology for the first time to treat real effluent samples from a 282 

paper mill with a COD concentration of 390 mg/L [73]. Their finding showed that ceramic 283 

MF plus ED hybrid process was capable to recover 80 percent of wastewater, while the 284 

remaining retentate could be used as a biomass. Their proposed plant was found to be more 285 

beneficial because the ceramic MF pretreatment could tolerate higher temperature of 286 

discharged wastewaters around 60 °C. Fouling during filtration was not severe and was 287 

reversible by membrane cleaning using hydrochloric acid and sodium bisulfate. Ebrahimi et 288 

al.(2015) employed two different multi-stage ceramic membrane process including hybrid 289 

Al2O3 MF followed by Al2O3/TiO2 UF and Al2O3/TiO2 UF followed by TiO2 NF to treat alkaline 290 

bleaching effluent from sulfite pulp production with 10600 mg/L COD concentration [74]. 291 

Experiments were focused on investigating the suitability of ceramic tubular membrane 292 

systems as another possibility to conventional wastewaters treatment methods applied in 293 

paper mills. A comparison between two ceramic membrane processes showed that in terms 294 

of separation efficiency, the two-stage process employing MF plus UF was the best option 295 

for an efficient treatment of the bleaching effluent. More than 35 % of COD and 70% of 296 
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remaining lignin level was reduced by applying the mentioned configuration. Also, 297 

approximately 186 and 140 L/m2h of permeate flux were observed for ceramic MF and UF 298 

respectively. Membrane fouling is reduced significantly by applying ceramic MF prior to the 299 

UF stage. On the other hand, flux decline over time was observed during the UF/NF process.  300 

It was concluded that by applying hybrid ceramic MF/UF configuration, the volume of 301 

untreated bleaching effluent discharged from paper mills, would remarkably be reduced 302 

when applied to large-scale operations. 303 

The other important application of ceramic membrane processes is recovering valuable 304 

materials from pulp and paper wastewaters. Researchers [75-84] employed various MF/UF/ 305 

NF ceramic membranes to treat and extract the lignin from black liquor generated in wood 306 

pulping process (Table 2). Black liquor is one of the waste streams in the paper production 307 

and is generally characterized by BOD, COD, dissolved inorganic compounds, lignin 308 

derivatives and bark particles. Lignin separated from black liquor during ceramic membrane 309 

filtration can be used as biofuel, dispersant, blinder, emulsifier and precursor for carbon 310 

fibres [75]. According to studies [75-85], by changing the MWCO of ceramic membranes, the 311 

molecular mass of lignin can be controlled during fractionation. Jönsson et al.(2008) 312 

employed hybrid ceramic UF membrane followed by polymeric NF membrane to compare 313 

lignin fractionation efficiency of the combined system with the direct polymeric NF [78]. 314 

Based on their results, a higher purity of lignin was achieved by applying ceramic UF 315 

pretreatment before polymeric NF stage. Furthermore, Žabková et al.(2007) used Al2O3-TiO2  316 

tubular UF ceramic membranes with 1,5, 15 KDa MWCOs to efficiently recover vanillin from 317 

lignin/vanillin mixture of various concentrations [86]. 318 

The application of ceramic MF membrane for the pretreatment of paper mill effluents prior 319 

to RO has been investigated by Pizzichini et al.(2005) [87]. The wastewater contains 1089 320 
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ppm of COD, 330ppm of SS and 435ppm total organic carbon (TOC). Their results showed 321 

that applying ZrO2 ceramic MF with MWCO of 0.14 µ as a pretreatment step prior to RO can 322 

guarantee higher steady state flux rate around 150-200 L/m2 h and less fouling indexes 323 

compared to all other polymeric MF and UF membranes investigated in their experiments. 324 

Integrating ceramic MF pretreatment followed by RO post treatment allowed the reuse of 325 

more than 80% of effluents as pure water, and it demonstrated the good potential to 326 

develop a large-scale industrial process appropriate for providing a large portion of water 327 

recovery, with an excellent chemical composition. 328 

According to investigations mentioned in Table 2, there was no evidence of irreversible 329 

fouling observed when various cleaning methods such as washing and rinsing with tap 330 

water, permeate, deionized water, Alkaline and acid cleaning (NaOH and HCl solutions) were 331 

used for membrane cleaning. Approximately between 80-98 percent of pure water flux is 332 

restored by proposed cleaning method for MWCOs ranging from 1kDa to 20 KDa whereas  333 

for polymeric membranes , only up to 80% of pure water flux can be restored by a 334 

combination of rinsing and chemical cleaning [84, 88]. 335 

Based on the surveys presented in Table 2, applying ceramic MF/UF pretreatment can 336 

guarantee reasonable turbidity, COD, BOD and SS reduction in paper mill effluents. Using 337 

ceramic MF or UF pretreatment is beneficial in terms of obtaining stable operations and 338 

producing feed water of satisfactory quality for the NF and RO post treatments. Ceramic 339 

membranes are appropriate in dealing with aggressive and harsh environment due to high 340 

mechanical and chemical stability and higher durability compared to polymeric membranes. 341 

Recently, TAMI industries, one of the most prominent companies in the field of ceramic 342 

membrane manufacturing, introduced INSIDE CeRAM™ ranging from MF to fine UF with    343 
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non-circular multi-channel tubular geometries and with membrane filtration area varying 344 

from 0.16-0.6 m2 for the treatment of coating effluent in the paper industry [89]. However, 345 

the high capital cost and lower packing densities due to fragility of ceramics compared to 346 

polymeric membranes are the key challenges for many large-scale pulp and paper 347 

operations. Many pulp and paper plants around the world suffer from lack of space that 348 

may restrict the ceramic membrane unit installation. The capital cost of the ceramic 349 

membranes varies with the MWCO of the membrane. Typically, cost increases with the 350 

increase of membrane selectivity in terms of MWCO. Arkell and co-workers reported that 351 

the cost of TiO2 NF ceramic membranes with 1KDa MWCO is about 2000 €/m2 [75]. The cost 352 

decreased to 470 €/m2 for Al2O3–TiO2 Ceramic UF with 20kDa MWCO [75]. Moreover, the 353 

cost of UF ceramic membranes is about 33 times more than the polyamide RO membrane 354 

but their lifetime is longer. As an example , in one of the industrial installation of ceramic 355 

membranes unit in Japan, there was no report on the replacement of ceramic membrane 356 

unit after 16 years of successful operations [90]. Due to ongoing importance of ceramic 357 

membrane process for wastewater treatment purposes, the future researches may focus on 358 

developing wider range of cheaper inorganic membranes by introducing new fabrication 359 

technologies and new modules design to offer higher filtration capacities for employing in 360 

paper plants. Also, from technical and economical point of view, a feasibility study on the 361 

integration of ceramic membrane system with other physico-chemical treatment methods 362 

seems necessary [70]. 363 

 364 

 365 

 366 
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 367 

Table 2: an overview of some investigations evaluating the application of ceramic membranes to treat effluents from pulp and paper mills. 368 

Operational Parameters 
Feed Source& 

parameters 
Membrane characteristic MWCO/Pore size Flux Rejection efficiency Cost Ref. 

Pressure:1-5 bar 
Temp: 25°C 
Feed circulation velocities: 0.7, 
1.3 and 1.8 m/s 

First caustic extraction stage of a 
Kraft pulping Mill 

Tubular Ceramic UF with 
an active layer of ZrO2 

MWCO of 10000 Da 35-87 kg/m2h 
Colour separation:59-74% 
TOC:49-53% 
TS:17% 

- [91] 

Pressure:1-5 Bar 
Temp: 25°C 
Feed circulation velocities: 0.7, 
1.3 and 1.8 m/s 

First caustic extraction stage of a 
Kraft pulping mill 

Tubular ceramic MF plus 
UF with an active layer of 

ZrO2 

MF: Avg. pore Dia of 
0.14 µ 

UF: MWCO of 
10KDa 

53-78 kg/ m2h 
Colour separation:39-52% 
TOC:28-36% 
TS:10-14% 

- [91] 

Pressure :4 bar 
Temp:25°C and 60 °C 

Real effluent samples from West 
Coast paper mills, India 
Conductivity (mS/cm) :10.78 
TDS (mg/L): 6046, Lignin (mg/L): 50 
DOM (mg/L): 9.166, 
COD (mg/L):390 BOD (mg/L) :35 

α-alumina Tubular Ceramic 
MF +ED 

MF: 20 kDa MWCO 
and pore size of 

1.5µm 

113 L/ m2h at 25◦C 
 
121 L/ m2h at 60◦C 

Conductivity (mS/cm): 0.5 
TDS (mg/L) :250, Lignin (mg/L) :5 
DOM (mg/L) –, COD (mg/L) – 
BOD (mg/L) – 

- [73] 

Transmembrane 
pressure(TMP):2-20 bar, 
Temp:90 °C 
CFV: 4–2 m/s 

Untreated Kraft black liquor 
TDS (g/L) :183 ± 2.7 
Total hemicelluloses (g /L) :3.56 ± 
0.12, Total lignin (g/L): 63.8 ± 1.3 

TiO2 Ceramic NF MWCO:1KDa Avg.: 159 L/ m2h 
Retention of lignin 
and hemicelluloses :80 % 

Membrane 
Price:1000€m2 [75] 

TMP :2 bar, Temp 90°C 
CFV of 5 m/s 

Untreated Kraft black liquor 
TDS (g/L): 183 ± 2.7 
Total hemicelluloses (g/L) :3.56 ± 
0.12, Total lignin (g/L): 63.8 ± 1.3 

Al2O3–TiO2 Ceramic UF MWCO:20K Da - 
TDS (g/L): 176 ± 6.3 
Total hemicelluloses (g/L) :2.12 ± 0.06 
Total lignin (g/L) 57.6 ± 2.4 

Membrane Price: 
470 €m2 

[75] 

TMP:3,5, 7 Bar 
Temp:30±2°C 

 

Untreated Kraft black liquor from 
wood pulping 

α-alumina tubular ceramic 
UF/NF membranes with an 

inner layer of either TiO2 
or ZrO2 

MWCO: 1 KDa, 
5KDa, 15 KDa 

52 L/ m2h for 15 KDa 
12-25 L/ m2h for 1KDa 
30-75 L/ m2h for 5KDa 

Retention of organics between 
60-70% 

- [76] 

Pressure:0.1-0.6 MPa 
Temp: 25-80°C 
Flow speed: 1m/s 

Untreated Kraft black liquor 
Feed Lignin concentration (g/L) 

: 48.8-78.6 
ZrO2 ceramic UF/NF 

MWCO: 1 KDa, 
5KDa, 15 KDa 

TMP MWCO, and temp 
all affect the flux 

Permeate lignin concentration(g/L) : 
15.9-33.8 

 
- [77] 

UF : 
TMP:100KPa,Temp: 90 °C 
CFV:5m/s 
NF: 
TMP:2.5MPa,Temp: 60 °C 
CFV:4m/s 

Hardwood Black liquor 
TDS: 17 % wt. Ash(g/L):0.44 
Lignin(g/L):59 , 
Hemicelluloses(g/L) :609 

Hybrid Ceramic UF and 
polymeric NF 

MWCO of UF: 15kDa 
 

MWCO of NF: 1 KDa 

CFV, TMP temp all affect 
the flux 

UF permeate: 
TDS:16 %, Ash(g/L):0.47, 
Lignin(g/L):54 
Hemicelluloses(g/L):2.5 
NF permeate: TDS:11%, Ash(g/L):0.61 
Lignin(g/L):13, Hemicellulose(g/L):0.3 

Production cost of €33 
per tonne of lignin-UF 

and NF investment 
costs:(3300 and 2000 

€/m2) respectively 

[78] 

TMP:200kPa 
Temp:90°C 

Black liquor 
TDS: 22% wt. Lignin(g/L):62 
Ash content :43% 

Al2O3-TiO2 UF 
ceramic membrane 

MWCO of UF: 15kDa 
Avg. flux rate between 

110-160 l/ m2h 
Approx. 35% lignin retention 

Avg. 20 € per MWh of 
calorific value of the 

lignin fuel 
[79] 

Temp:150 °C 
Kraft black liquor 
Lignin(g/L): 55.9-61.9 

 
ceramic UF membrane 

MWCO of UF: 5 and 
15kDa 

- Approx. 70% lignin retention - [80] 

MF: 
TMP:2-4 bars,Temp:120°C 
CFV:4 m/s 
UF: 
TMP: 2 bars,Temp:70-85°C 
CFV:5-8 m/s 

Black Liquor 
Dry solids content:40.6-40.8% 
Total carbohydrate content : 
(g/kg DS):20-38 , 
lignin (g/kg DS):337-389 

MF/UF ceramic 
Membranes 

MWCO:300k Da-
15kDa 

 
MF pore size:0.2 µm 

- 

Dry Solids content:27.6-37.9 % 
Total carbohydrate 
content(g/kgDS):9-23, lignin(g/kg 
DS):242-399 

- [82] 
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Table 2: Continued 370 
For 5 KDa 
TMP:400 kPa,Temp:90°C 
CV:3.6 m/s 
For 15 KDa 
TMP:100k Pa, Temp:90°C 
CV:4.5m/s 

Kraft black liquor 
Total dry substance(TDS):16 wt.% 
Lignin content (g/L) :56 
Inorganics (g/L) :37 

UF 
ceramic membrane 

MWCO of UF: 5 and 
15kDa 

 

flux rate 451 L/ m2h for 
5kDa and 951 L/ m2h for 

15 kDa 

66% lignin recovery for 5 KDa and 
28% for 15 kDa 

- [81] 

TMP:155 kPa 
pH:8.5-12.5 
 

Lignin/Vanillin mixture 
lignin/vanillin mixture with 
different concentrations (g/L): 
60/6-60/5-5/0.5-20/2 

Al 2O3-TiO2 Tubular UF 
ceramic membrane 

MWCO of UF: 1,5 
and 15kDa 

 

14 L/ m2h for 5kDa and 4 
L/ m2h for 1kDa for 60/6 

mix 

Best rejection of lignin observed by 
using 60/6 g/L lignin/vanillin mixture 
and by employing 1 KDa MWCO at 
pH :12.5 

- [86] 

- 

Black liquor 
TDS (Total dissolved solids):10.3 % 
Inorganics:77% 
Organics:23% 
Lignin:17% 

TiO2 Tubular UF 
ceramic membrane 

MWCO of UF: 5,10 
and 15kDa 

 
- 

Permeate parameters: 
TDS:6.71-9.48 % 
Inorganics:82.6-92% 
Organics:8.05-17.4% 
Lignin:16.9-81.5% 

- [83] 

TMP:200kPa 
Temp:32±2 ,63±3°C 
CFV:1.2 m/s 

Black liquor 
TS(g/L):82-92 
COD(g/L):75-89 
Lignin(g/L):26 

α- Al2O3 tubular ceramic 
MF membrane 

Pore size:0.2µm-
0.8µm 

Avg. flux 200 and 400 L/ 
m2h at Temp 32±2°C and 

63±3°C  respectively 

Approx. 80 % of lignin retention 
achieved 

 
- 

[84] 
 

TMP: 1 or 2 bar 
Temp:60 °C, 
CFV :4–5.6 m/s 
 

Alkaline bleaching effluent 
COD(mg/L): 10,400 
TOC(mg/L):4000 
Na(mg/L): 2430 

Hybrid Al2O3 MF and          
Al2O3/TiO2 UF 

MF: 0.1 μm,         
0.14 μm, 0.2 μm 

UF: 5 kDa, 20 kDa, 
0.05 μm 

For MF and UF 186 and 
140 L/ m2h respectively 

Using 0.1μm MF and 20-kDa UF 
 
COD removal 35%-45% 
Lignin removal:60-73% 
 

- [74] 

TMP: 2 bar 
Temp:60 °C, a l 
CFV :0.3 m/s 

 

Alkaline bleaching effluent 
COD(mg/): 10,400 
TOC(mg/L):4000 
Na (mg/L): 2430 

Hybrid Al2O3/TiO2 UF 
And TiO2 NF 

UF: 5 kDa, 20 kDa, 
0.05 μm 

 
NF:1 KDa 

UF Flux between 36.2 to 
5.1 L/ m2h after 6 hours 

Using UF, 20 kDa and 
NF, 1 kDa 
 
COD removal 35%-40% 
Lignin removal:45-66% 

- [74] 

MF: 
TMP:11 bar, Temp:30°C 
Feed flow: 4200 L/h 
 

Raw Paper mill effluent 
SS (ppm):345,COD(ppm):1089 
TOC(ppm): 435 
Conductivity(µS/cm):2940 

Tubular ZrO2 Ceramic MF 

 
 

MF MWCO:0.14 µm 
 
 

150-200 L/m 2 h 

MF permeate: 
SS (ppm):0 
COD (ppm O2):891, TOC(ppm):361.4 
Conductivity(µS/cm):2760 
 

- [87] 

 371 
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3.2. Textile Industry 372 

The textile processing is one of the oldest and largest consumers of water. Textile 373 

production is complex and involves spinning, weaving, dyeing, printing, finishing and 374 

garments manufacturing. In almost all these stages of textile processing, wastewater is 375 

generated. The characteristics of these wastewaters depends on the type of process but in 376 

general it produces wastewaters of great chemical complexity and diversity including many 377 

dyes and chemicals containing trace and heavy metals such as Cr, As, Cu and Zn, non-378 

biodegradable highly persistent organics and pesticides. Therefore, due to existence of 379 

persistent organics and poor biodegradability, advanced treatment processes are required, 380 

especially when the goal is reusing the treated wastewater [92-94]. For this reason, 381 

membrane technology can be considered as an efficient candidate for providing high quality 382 

permeates.  383 

Many investigations have been conducted to study the application of different polymeric 384 

membranes either alone [95-104] or in combination with other techniques such as 385 

electrocoagulation [105]  or biological treatment in the form of membrane bioreactor (MBR) 386 

[106-111]  for the  treatment of textile wastewaters, and for the  recovery of dyes and salts 387 

[112-116]. However, in recent decades, ceramic membrane separation has attracted 388 

significant interest to treat textile effluents because of their reliable performance even in 389 

rough operational conditions [103, 117-126]. Table 3 illustrates an overview of some studies 390 

evaluating the performance of ceramic membranes to treat textile wastewaters .From 391 

technical point of view, reasonable reduction of BOD, COD, TDS, turbidity, SS, and moderate 392 

to high rejection of dye was achieved by applying Al2O3/TiO2/ZrO2 ceramic membranes with 393 

MWCOs ranging from 1KDa to 500KDa. Generally, low operating pressure was observed 394 
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during experiments, while rejection rate and permeate flux could be modified by choosing 395 

the right cross flow velocity (CFV) and MWCO and operational conditions. Different methods 396 

including washing with tap, deionized, permeate, and alkaline and acid solutions were used 397 

for membrane cleaning. Around 90% flux recoveries was achieved after employing the 398 

cleaning protocols. As shown in Table 3, Alventosa-deLara et al. (2012) investigated the 399 

effectiveness of commercial multi-channel tubular ZrO2-TiO2 ceramic UF membranes in the 400 

removal of dye from the synthetic coloured feed solution. Based on their findings, at 401 

optimal operating conditions (CFV: 2.53 m/s and TMP: 4 bar) a significant dye rejection of 402 

about 95% was achieved [117]. In a similar study, Zuriaga-Agustí et al.(2014) achieved about 403 

93% and 98.5%  removal of dye and of organic matters  respectively  by applying tubular 404 

ZrO2-TiO2 ceramic UF membranes regardless of operational conditions [121]. Jedidi et al. 405 

(2011) employed ceramic MF membrane fabricated from mineral coal fly ash with average 406 

pore size of 4.5 µm to treat textile dyeing effluent with 3440 mg/L COD concentration. 407 

Approximately 74.5% and 99% of COD and turbidity reduction are achieved by using their 408 

proposed process [123]. Bhattacharya et al.(2010) used untreated sulphur black wastewater 409 

with 3910 mg/L COD concentration as a feed solution to study the efficiency of tubular 410 

multi-channel α-alumina and clay ceramic MF for dye and COD removal. 99% and 80% of 411 

dye and COD removal was achieved respectively [124]. Zebić Avdičević et al. (2017) achieved 412 

98% of dye rejection by applying ZrO2 ceramic UF with MWCO of 1 KDa [120] whereas only 413 

62-79% of dye removal was achieved by applying TiO2-ZrO2 UF ceramic membrane with 414 

MWCOs ranging from 30 to 150 KDa [119]. The application of tubular ZrO2 ceramic UF 415 

membrane for the pretreatment of biologically treated textile effluent prior to NF was 416 

investigated by Fersi and Dhahbi (2008) [103]. The effluent contains 329.4 mg/L of COD and 417 

4240 mg/L of TDS (Table 3). Although the polymeric NF obtained more than 90% removal of 418 
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colour and turbidity, adding ceramic UF pretreatment resulted in steady-state operation 419 

with longer constant and stable flux compared to direct polymeric NF membrane. 420 

Ceramic membranes have been also applied for the fractionation of the salt-dye mixtures 421 

for resource recovery from the textile effluents. Ma et al. (2017) used multi-channel tubular 422 

tight UF ceramic membrane with TiO2/ZrO2 skin layer and porous Al 2O3 support with 423 

MWCO of 8.8 KDa and pore size of 1.16 nm to treat synthetic negative-charged dye solution 424 

with NaCl and Na2SO4. Based on their results, ceramic membrane was efficient to purify high 425 

salinity dyeing effluent for salts and dyes recovery with more than 98% rejection of dye and 426 

less than 10% and 30% rejection of NaCl and Na2SO4 was achieved respectively [118]. Lima 427 

et al. employed ceramic membranes with average pore size of 0.14µm and 0.6µm to treat 428 

simulated textile wastewater sample prepared by deionized water and 0.25g/L indigo 429 

powder. About 100% percent of Indigo dye retention was observed in their experiments 430 

[122]. 431 

As an industrial example, in 2004, Societe d'Impression d'Hem(SIH), one of the major textile 432 

companies in France, installed Pall Membralox®ceramic ultrafiltration unit with a total 433 

filtration area of 432 m2 in combination with biological treatment to treat its effluent with 434 

10000-15000 mg/L COD concentration. The new installation was capable to recycle about 435 

50% of the treated effluent for use as washing water for the printing machines which led to 436 

significant reduction in city water consumption consequently, remarkable reduction in 437 

operational cost [127]. 438 

 439 

As mentioned before, due to existence of persistent organic pollutants (POPs) in textile         440 

effluents which are highly persistent in terms of biodegradability, and also with large 441 

variation in produced wastewater composition in different stages, treatment of textile 442 
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effluent is a complex process and advanced techniques are necessary [93]. Technically, 443 

employing ceramic MF and UF as the pretreatment steps before NF and RO is the best 444 

option to textile wastewaters, which contains high concentrations of COD/BOD and TDS. 445 

Ceramic membrane pretreatment was found reducing the upstream membrane 446 

replacement frequency because of their superior chemical stability and resistance to harsh 447 

cleaning agents. However, high investment cost limits their application in large-scale textile 448 

plants.  In perspective of dyes and salt recovery, using tight ceramic UF membranes seems 449 

to be a better option in comparison with dense polymeric NF for the rejection of divalent 450 

salts such as Na2SO4. In summary, more focus need to be devoted in the development of 451 

cost-effective ceramic membranes with appropriate permeability and high filtration capacity 452 

for large scale textile operations. In fact, future research should focus on lowering the 453 

capital cost of ceramic membranes to make it more competitive to polymeric membranes. 454 

Life cycle cost assessments that includes Investment cost versus long-term operating cost of 455 

ceramic membranes is necessary to determine if installing such a large-scale ceramic 456 

membrane in potential textile plants can be a viable and profitable proposition. Coupling 457 

ceramics membranes with polymeric NF/RO membrane for the treatment of wastewaters 458 

with high organic and inorganic should be considered with design optimization to reduce 459 

the capital and operating costs. 460 

 461 
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Table 3: an overview of some investigations evaluating the application of ceramic membranes to treat effluents from textile industry 462 

Operational Parameters 
Feed Source& 

parameters 
Membrane characteristic 

MWCO/Pore 
size 

Flux Rejection efficiency Cost Ref. 

TMP:4 bar 
Temp: 25°C 
CFV:2.53 m/s 

Synthetic coloured solution with 50 
mg/L dye concentration 

Conductivity (µS/cm):44.35 

Multi-channel tubular 
ZrO2–TiO2 Ceramic UF 

MWCO of 150 
kDa 

255.86 L/m2h Significant dye rejection around 95% - [117] 

TMP:3-13 bar 

Biologically treated textile effluent 
from an activated sludge plant 
Conductivity (µS/cm) :8620 
COD (mg/L) :329.4 
TDS (mg/L): 4240 

Tubular ZrO2 ceramic UF 
followed by flatsheet 

polyamide NF 

UF Pore size:50 
nm 

NF pore 
size:2nm 

At 11 bar TMP 
and VRF between 
1-2.77:40-45 
L/m 2h 

Adding ceramic UF pretreatment before polymeric NF 
process guaranteed steady state operation with longer 
constant and stable flux compared to direct NF 

- [103] 

TMP:1-3 bar 
Temp:25°C 
CFV: 3 m/s 

Synthetic negative-charged dye 
solution with both inorganic salts 

NaCl/Na2SO4 

Multichannel tubular tight 
UF ceramic membrane 

with TiO2/ZrO2 skin layer 
and porous Al2O3 support 

MWCO:8800 Da 
Pore 

size:1.16nm 

15-70 L/m 2h 
For TMP between 
1 to 3 bar 

Rejection of dye molecules: >98 % 
Rejection of NaCl<10% 
Rejection of Na2SO4<30% 
Efficient to desalinate high salinity dyeing effluent and 
recover salts and dyes 

- [118] 

TMP:2-20 bar, Temp:30°C 
CFV: 3,4,5 m/s 

Actual samples from a textile factory 
Conductivity (µS/cm) :2450-7780 
COD (mg/L) :960-2525 
Turbidity (NTU):35.84-83.34 
 

Multichannel tubular TiO2-
ZrO2 UF ceramic 

membrane 

MWCO:30,50,1
50 KDa 

90-160 L/m2h 
depending on CFV 
and MWCOs 

Rejection efficiency (%) 
COD:62-79 
Color:62-79 
Turbidity > 99 
For all MWCOs with the lowest CFV, higher removal of 
conductivity and COD achieved. 

- [119] 

Temp:20±1 °C and 50±1°C 
CFV:1,2,3 m/s 
 

Raw mercerization wastewater 
Conductivity (µS/cm) :75100 
TOC (mg/L) :499.20 
Turbidity (NTU):14.60 
TDS(mg/L):20957 
TSS(mg/L):100 
 

Tubular multichannel 
ceramic UF 

500KDa: with Al2O3, 
TiO2,ZrO2 active layer 

2KDa: ZrO2 active layer, 
Al2O3 support layer 

1KDa:ZrO2 active layer 

MWCO: 500, 2 
and 1 kDa 

Raw effluent flux 
with 1 KDa 
membrane: 

29.01 L/m 2h at 
the beginning 

28.67 L/m 2h at 
the end 

Best rejection efficiency achieved by 1KDa MWCO at 
CFV:3m/s ant Temp:20°C 
SS:92% 
Turbidity:98% 
Color:98% 
TOC:53% 

- [120] 

Temp:25±1 °C 
CFV: 3 m/s 
TMP:1,2,3 bar 

Simulated textile wastewater sample 
with various CMC concentrations 

Tubular multichannel TiO2-
ZrO2 ceramic UF 

 

MWCO: 150 
and 50 kDa 

88.57-289.96 
L/m 2h depends 
on MWCOs and 

CMC 
concentrations 

Removal efficiency regardless of operational conditions: 
Organic matter:98.5% 
Dye:93% 

- [121] 

Pressure :3 bar 
 

Simulated textile wastewater sample 
prepared by deionized water and 
0.25g/l indigo powder 
Turbidity ≥1000 

Ceramic membranes 

Avg.pore size 
diameter of 
0.14μm and 

0.60μm 

 
Permeate Indigo concentration: 0 

Turbidity:2-4 
- [122] 

Pressure :1 bar 
 

Textile dyeing effluent 
Conductivity (µS/cm) :6.16 
Turbidity (NTU):45.5 
COD (mg/L) :3440 

ceramic MF membrane 
made of mineral coal fly 

ash 

Avg.pore size 
diameter of 4.5 

μm 
100 L/m2h 

Permeate quality: 
Conductivity (µS/cm) :5.38 
Turbidity (NTU):0.58 
COD (mg/L) :880 

- [123] 

TMP:0.4-1.2kg/cm2 

Untreated sulphur black wastewater 
Conductivity (µS/cm) :36.9 
Turbidity (NTU):5912 
COD (mg/L) :3910 
TSS(mg/L):5550 
TDS(mg/L):20200 
Dye concentration(mg/L):890 

Tubular multichannel 
α-Alumina and clay 

ceramic MF 

Apparent 
porosity 36% 

 

 

 

 
Dye removal :99%, 
COD reduction:80% 

- [124] 

 463 
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3.3. Petrochemical Industry 464 

Petrochemicals are chemical products obtained from gas and petroleum processes. They 465 

generate a large volume of wastewater  comprising of organic and inorganic materials with 466 

different compositions including oil compounds, dissolved formation minerals, production 467 

solids and  production chemical compounds [128]. Effluents from petrochemical industry is 468 

one of the major polluter of aquatic life, and to comply with existing environmental policies 469 

and guidelines around the world, these wastewaters that contain a wide range of 470 

contaminants must be treated properly before discharging to the environment. Besides, the 471 

demand to reuse treated water has led petroleum industry to look for advanced efficient 472 

methods for treating petrochemical effluents [129]. 473 

Several research studies have been carried out to evaluate the performance of ceramic 474 

membranes in treatment of petrochemical effluents. Table 4 illustrates an overview of some 475 

studies assessing the efficiency of ceramic membranes to treat oily wastewaters. Madaeni 476 

et al. (2012) applied γ-Al2O3 ceramic MF with nominal pore size of 0.2 µm to treat coke-477 

contaminated effluent derived from a petrochemical plant with 2210 mg/L COD 478 

concentration. At 15 bar pressure and 70 °C temperature, 100%  of coke removal and 479 

around 72% of COD reduction was achieved [130]. Based on the good laboratory results 480 

achieved by the abovementioned study, Salehi et al.(2014) conducted some cost analysis to 481 

evaluate economic feasibility of applying 19 channel γ-Al2O3 ceramic MF with 91 capacity 482 

housing unit as a pretreatment method of coke-contaminated wastewaters. The designed 483 

unit was almost 100% efficient in coke removal under operating condition of 70 °C 484 

temperature and 15 bar pressure. A total capital investment of 535300USD was estimated 485 

by the study, and break-even point (BEP) and payback period (PBP) were near 3% and 2 486 

years respectively. This results confirmed the γ-Al2O3 ceramic MF unit applicability as an 487 

https://en.wikipedia.org/wiki/Product_%28chemistry%29
https://en.wikipedia.org/wiki/Petroleum
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economic potential pretreatment method for the removal of coke from petrochemical 488 

wastewaters [131]. In another feasibility study, Ghidossi et el.(2009) employed an on board 489 

continuous industrial scale treatment system composed of 19 channel ZrO2–TiO2 ceramic UF 490 

membrane with MWCO 300kDa in treatment of oily wastewater originating from passenger 491 

ships. From a technical point of view, a permeate flux of more than 100 L/m2 h with 97% 492 

hydrocarbon removal was achieved by the proposed system. From the economic point of 493 

view, a satisfactory result was obtained where the cost of treated effluent by the proposed 494 

system was 250000€ per year for each passenger ship. In addition, the amount of 495 

wastewaters that are to be treated onshore was remarkably reduced by a factor of six. Also, 496 

the investment cost which was about 70000€ per ship, covered in a short period of time    497 

[132]. Abadi et al.(2011) employed tubular α-Al2O3 ceramic MF with a minimum pore size of 498 

0.2 µm to treat oily wastewater samples taken from a refinery plant with 26 mg/L oil and 499 

grease content. Based on the experimental results, permeate quality met the national 500 

discharge standards in Iran after treatment with the proposed system where  85%, 100%, 501 

and 98.6 % reduction of oil and grease content, total suspended solids (TSS) and turbidity 502 

were achieved respectively [133]. Yang et al. (b) (2011), used synthetic oil in water emulsion 503 

mixed with powdered activated carbon (PAC) as a feed solution to study the removal 504 

efficiency and fouling behaviour of ceramic α-Al2O3 MF in the presence of PAC.  The study 505 

showed that applying PAC had no effect on the removal of TOC with about 96% of TOC 506 

removal was achieved by using oily emulsion either alone or dosed with PAC. However, 507 

using PAC was an effective way to improve the permeation flux and reduce fouling  as it 508 

provides mechanical scouring effect [134]. In another investigation, Yang et al (a) (2011), 509 

applied kaolin/MnO2 bi-layer composite on ceramic Al2O3 MF to form dynamic membranes, 510 

and to enhance the separation performance in treatment of oily wastewaters. Based on the 511 
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experimental results, the proposed dynamic membranes achieved the best oil separation 512 

performance under various operational parameters, and high permeate flux and oil 513 

retention ratio of 99% was observed. However, the fabricated dynamic membranes were 514 

only effective in neutral or alkaline conditions due to vulnerability of MnO2 particles in acidic 515 

conditions [135]. Mullite and mullite –alumina ceramic MF manufactured from cheap kaolin 516 

clay and α-alumina powder with average pore size of 0.289 µm is used by Abbasi et al. 517 

(2010), to treat synthetic oily wastewaters with 510 mg/ L COD concentration. As shown in 518 

Table 3, at the best operating conditions (pressure: 3bar, CFV: 1.5m/s and Temp: 35°C) 519 

mullite–alumina ceramic membrane with 50% alumina content was the most suitable  520 

option where  90 % removal efficiency with moderate 104L/m2h permeate flux was 521 

obtained. [136]. In another similar study, Nandi et al. (2010) evaluated the performance of 522 

MF ceramic membranes fabricated from various cheap inorganics such as quartz, feldspar, 523 

kaolin, boric acid, sodium carbonate and sodium metasilicate to treat synthetic oil-in-water 524 

emulsions. By applying this self-made membrane, oil removal of 98.8% was achieved [137]. 525 

Despite the advantages of membrane technology over conventional treatment techniques, 526 

there are some problems associated with membrane filtration of effluents generated during 527 

petrochemical operations. One of them is oil droplets accumulation on the membrane 528 

surface, which leads to formation of a concentration polarization layer, which consequently 529 

results in permeation flux reduction. Another major challenge is membrane fouling due to 530 

complex fouling characteristics of petrochemical effluents [128]. Over the past decades, 531 

many investigations have been conducted to reduce membrane fouling and enhance 532 

permeation flux. Surface modification [138, 139], enhancing shear stress at the membrane 533 

surface by applying pulsed flow [140, 141], turbulence promoters [142, 143], vibrating 534 

membranes [144, 145] and ultrasound cleaning [146] are some techniques that have been 535 
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used by researchers to achieve better removal efficiencies and reducing fouling and 536 

concentration polarization. However, compared to the efficiency of polymeric membranes 537 

either alone or as a part of MBR systems [147-151], ceramic membranes offer better 538 

stability in petrochemical industry operational conditions. They can be cleaned more easily 539 

and greater longevity. Polymeric membranes can be easily degraded and fouled during 540 

treatment of petrochemical wastewaters specially when waxes and asphaltenes are present, 541 

and may require regular replacement [12]. According to Table 4, ceramic MF and UF has 542 

been successfully applied for the removal of coke from coke-contaminated petrochemical 543 

wastewaters. Ceramic MF and UF gives permeate of high quality with above 95% of oil 544 

rejection efficiency. Moreover, ceramic MF/UF has been  applied to treat one of the most 545 

complex oily wastewaters called flowback and produced water generated from oil and gas 546 

drilling and hydraulic fracturing operations [152, 153]. Ceramic MF/UF is a reliable 547 

technology for the treatment of produced water compared to polymeric membranes 548 

because of the complex foulant profile of produced water compared to other types of 549 

natural or synthetic oily effluents. Produced water contains various type of dissolved 550 

minerals and salts [154]. Veolia Water technologies employed CeraMem®  ceramic 551 

membranes at 60 locations to treat flowback and produced water and reuse them in the 552 

shale oil operations as fracking water, reducing mains water demand [155, 156]. However, 553 

according to Ji (2015), there are only over 75 commercial ceramic units worldwide for oily 554 

effluent treatment compared to more than 3000 polymeric MF/UF installations [128]. These 555 

limited number of ceramic membrane units proves that  scaling up results from bench scale 556 

to large scale applications is due to high capital cost of ceramic membranes specially for 557 

large effluent volumes. Future studies should focus on developing precise predictive models 558 

that will allow investigating the applicability of experimental results in real large industrial 559 
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operations. The main objectives of future investigations in this area should focus on 560 

improving packing densities, fabrication and coating techniques, antifouling properties, 561 

water permeability and oil separation efficiency of ceramic membranes as well as cost 562 

effectiveness [128]. 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 
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Table 4: an overview of some investigations evaluating the application of ceramic membranes to treat effluents from petrochemical industry 582 

Operational  
Parameters 

Feed Source& 
parameters 

Membrane 
characteristic 

MWCO/Pore size Flux Rejection efficiency Cost Ref. 

Pressure:15 bar 
Temp: 20-80°C 
CFV: 2m/s 

Coke- contaminated Samples from a 
petrochemical company 
Turbidity (NTU) :251 
TDS (mg/L): 265 
TSS (mg/L):27, 
COD (mg/L):2210 BOD (mg/L) :225 
VOC in 550 °C (mg/L):17 

Γ- Al2O3 based 
ceramic MF 

Nominal pore size 
of 0.2 μm 

The flux was increased by increasing 
feed temp. 
 
80% of flux recovery observed by 
proposed cleaning by NaOH 

Turbidity (NTU) :13 
TDS (mg/L): 32 
TSS (mg/L):11 
COD (mg/L):640 BOD (mg/L):55 
VOC in 550 °C (mg/L):12 

- [130] 

Pressure:15 Bar 
Temp: 80°C 
 

Coke-contaminated effluent from a 
petrochemical company 
Turbidity (NTU) :251 
TDS (mg/L): 265 
TSS (mg/L):27, 
COD (mg/L):2210 BOD (mg/L) :225 
VOC in 550 °C (mg/L):17 
Coke content (wt.%): 0.1 

19 channel γ-Al2O3 
based ceramic MF 
with 91-capacity 

housing 

Channel diameter 
4mm 

Min. permeated water 
flux:500L/m2h 

Almost 100 percent efficient in 
coke removal 

Economic Evaluation 
based on 19-channel 

membrane for large scale 
application 

Total capital investment 
:535300 USD 

BEP: 3% 
PBP:2 years 

[131] 

TMP :1.25 bar 
Temp:32.5°C and 60 °C 
CFV:2.25 m/s 

Samples derived from a refinery plant 
Turbidity (mg/l) :21 
TOC (mg/L): 141 
TSS (mg/L):92 
Oil and grease content (mg/L):26 

Tubular α-Al2O3 

ceramic MF 
Min. pore size of 

0.2 µm 
Water flux: 500L/m2h 

Turbidity (mg/l) :0.3 
TOC (mg/L): 7 
TSS (mg/L): Trace 
Oil and grease content 
(mg/L):4 

- [133] 

TMP:2.6-3.3 
Temp:20 °C 
 
 

Oily wastewater samples from passenger 
ships 
Turbidity (NTU) :150-250 
Dry matter (g/L): 12-14 
Conductivity (mS/cm):17-20 
Hydrocarbon (ppm):35 
 

ZrO2–TiO2  ceramic 
UF membrane 

MWCOs: 0.1µm 
and 300 kDa 

Permeate flux: 100 L /m2 h 

MWCO 0.1 µm: 
Turbidity (NTU) :60 
Dry matter (g/L): 9.8 
Conductivity (mS/cm):17.1 
HC(ppm) <1 
MWCO 300 KDa: 
Turbidity (NTU) :59 
Dry matter (g/L): 7.3 
Conductivity (mS/cm):18.7 
Hydrocarbon (ppm) <1 

Scale up 19 channel 
membranes with MWCO 
300-kDa composed of 19 

channels was 
economically attractive 

250,000€ per year was the 
cost of treated effluent by 

the proposed system 

[132] 

Pressure 3 bar 
Temp 35 °C 
CFV :1.5 m/s 
 

Synthetic oily wastewater 
TSS(mg/L):60, TDS(g/L):25 
COD(mg/L):510, TOC(mg/L):1000 
Turbidity(NTU):89 

Mullite and mullite 
alumina MF with 
50% and 75% of 

alumina 

Avg. pore size: 
0.289 µm 

Permeate fluxes 
Mullite :72 L /m2h 
Mullite –alumina (50%):104L/m2h 
Mullite –alumina (75%):244 L/m2h 

Removal efficiencies: 
Mullite ceramic MF: ~ 94% 
Mullite –alumina (50%): ~90% 
Mullite –alumina (75%): ~81% 

 [136] 

TMP:0.69 bar 
Temp:25 °C 

 

Synthetic oil-in-water emulsion 
Oil concentration(mg/L):250 

ceramic membrane 
prepared from 
cheap inorganic 

substances 

82.67 percent 
pores with 

diameter between 
0.1 to 0.3 µm 

19.3 L/m2h 98.8% oil rejection efficiency - [137] 

Pressure :1 bar 
Temp 35 °C 
CFV :4.5 m/s 
 

Synthetic oil-in-water emulsion with 
powdered activated carbon 
 
P-xylene (mg/L):3000 
TOC(mg/L):3817 

 

Ceramic 
α-Al2O3-ZrO2 MF 

Nominal pore size: 
0.2 µm 

Pure water flux: 
1344 L/m2h 

Flux enhancement observed by 
dosing emulsion with powdered 

activated carbon because of 
scouring effect 

96% TOC and P-xylene removal 
efficiency 

- [134] 

TMP:1-2 bar 
Temp 10-40 °C 
CFV: 1 m/s 

Synthetic oily wastewater 
 

Ceramic Al2O3 MF 
coated with 
Kaolin/MnO2 

Nominal pore size: 
1.0 µm 

Permeate flux 
120.1 L/m2h at 10°C 
153.2 L/m2h at 40°C 

99.9% of oil retention at 10°C 
98.2% of oil retention at 40 °C 

- [135] 
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3.4. Food Industry 583 

The food industry consumes a massive amount of water. It is used as an ingredient of their 584 

products, in production processes, general cleaning, and sanitation and disinfection 585 

purposes. Depending on the operation processes and type of products, the volume and 586 

characteristics of these effluents can vary and sometimes difficult to predict. Generally, they 587 

are characterized by high BOD and COD plus oils, fats and nutrients. In addition, 588 

micropollutants including hormones, surfactants, antibiotics, and pesticides may be present. 589 

Consequently, effluents from food industries are a threat to the environment and 590 

appropriate treatment systems are required to remove undesirable components before 591 

discharge or reuse [157-159]. 592 

Ceramic membranes are important processes in food industry. They can be used for a 593 

variety of purposes such as treatment  and clarification of effluents  generated during  dairy, 594 

juice, beverage, beer, wine, vinegar , sugar, olive, corn, soy sauce, meat, poultry and 595 

seafood production processes [160-176]. Ceramic MF and UF have received a lot of 596 

attention in the treatment of food industry wastewaters because of their long-term solid 597 

performance in these applications over the polymeric membranes [12]. Table 5 shows the 598 

results of some investigations evaluating the application of ceramic membranes to treat 599 

effluents from food industry. Several studies have been conducted to evaluate the efficiency 600 

of ceramic MF fabricated from natural clay and Al2O3/ZrO2/TiO2 materials in treatment of 601 

food industry effluents. Kumar et al.(2016) applied cheap ceramic MF membranes 602 

fabricated from clay materials with  a pore size of 0.309 µm to treat raw diary waste water 603 

with a COD concentration of 1462 mg/L. Based on their results, the COD concentration in 604 

permeate was reduced to 135 mg/L which was below the acceptable limit of permeate 605 

stream (<200 mg/L) [160]. As compared to similar studies done for the treatment of dairy 606 



33 

wastewater with polymeric membranes [177-179], good results were obtained in terms of 607 

COD removal,  with 91% of COD reduction achieved by the use of this system, while for 608 

polymeric MF, UF and NF membranes the rejection rate was between  78% and 98%. 609 

However, low-pressure operation of around 2.07 bar with a steady state flux was observed 610 

during experiments using ceramic MF. On the other hand, testing with polymeric NF 611 

membranes, resulted to pressure reaching about 10 bar in some experiments. This suggests 612 

MF ceramic membranes option is more energy efficient than polymeric membrane which is 613 

a trade-off between the capital and operation costs. Hart et al. (1988) examined the 614 

possibility of employing bench-scale ceramic Al2O3 MF membrane for the treatment of 615 

poultry scalder and chiller waters for reuse purposes. Based on the experimental results, 616 

ceramic MF with 0.2-0.45 µm pore size was an appropriate treatment method, and the 617 

permeate quality met the standards to reuse where the permeate turbidity was less than 618 

1NTU from the 0.2 µm filter. However, their study suggested that longer term operations 619 

using commercial scale equipment are necessary to achieve a reliable information and make 620 

a precise financial analysis [161]. Değermenci et al. (2016) applied α-Al2O3/ZrO2 ceramic MF 621 

with 0.1 µm pore size in combination with biological system as a part of a jet loop MBR to 622 

evaluate the efficiency of this combined system for the treatment of high oxygen 623 

demanding olive mill effluent. The COD and initial phenol concentrations were between 624 

55730-91550, and 2439-4509 (mg/L) respectively (Table 5). COD and a total phenol removal 625 

of 93% and 87% were achieved respectively. The removal efficiency remained almost stable 626 

by using combined ceramic MF and jet loop bioreactor even at various hydraulic retention 627 

times [162]. 628 

Li et al.(2010) and Almandoz et al.(2010) employed α-Al2O3& ZrO2 ceramic MF with pore 629 

sizes ranging from 0.14 µm to 0.75 µm for the treatment and clarification of raw rice wine 630 
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and corn syrup samples. Turbidity reduction between 91.2% to 99.6% and insoluble residues 631 

rejection of 63.9% to 99.8% were achieved depending upon membrane pore size which can 632 

be a reliable alternative over conventional technologies applied in the wine and corn syrup 633 

clarification [163, 164]. In a similar investigation conducted by Li et al. (2007), α-Al2O3 & 634 

ZrO2 ceramic MF ceramic with 0.2, 0.5, 0.8 µm of pore size has been used to remove 635 

bacteria from raw soy sauce sample. More than 99% of bacteria removal from raw soy sauce 636 

samples was achieved by 0.2µm ceramic Al2O3 MF membrane. On the other hand, the 637 

percentages of removing bacteria were 97.5% and 93.8% for 0.5µm and 0.8µm pore sizes 638 

respectively. The results  emphasized the importance of selecting membrane with an 639 

appropriate pore size in the filtration process [165]. 640 

The efficiency of ceramic MF and UF for the treatment of effluents from the seafood 641 

processing section has also been studied. Kuca and Szaniawska (2009) used 23-channel 642 

Al2O3/TiO2/ZrO2 ceramic 150 kDa MF for the removal of protein from salted wastewater 643 

originated from fish processing operations. They reported  81% protein removal from the 644 

salted wastewater [166]. In another comparable study conducted by Afonso and Bórquez 645 

(2002) , mono-tubular ZrO2-TiO2 ceramic 15 kDa UF has been applied for the treatment of 646 

wastewater originated from a fish meal plant [167]. The flux rate was found to be about 4 647 

times higher than that observed in Kuca and Szaniawska experiments (Table 5); however, a 648 

total protein rejection of only 26% was achieved.  It seems that the number of channels, 649 

MWCO and type of ceramic materials affects the protein rejection. In general, multi-channel 650 

ceramic MF membrane has higher packing density which is preferred over mono-channel 651 

element. Diná Afonso et al. (2004) compared the efficiency of ZrO2-TiO2 mono-channel 652 

tubular ceramic 15 kDa UF with multi-channel tubular Al2O3/TiO2/ZrO2 Ceramic 1KDa NF in 653 

protein removal from a fish meal plant’s wastewaters. An almost similar maximum protein 654 
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rejection of 62% and 66% were observed using ceramic UF and ceramic NF respectively. 655 

However, permeate flux was approximately 1.3 times higher in the ceramic UF than ceramic 656 

NF. This led to an economic assessment for industrial scale up based on the use of ceramic 657 

UF membranes. Based on the financial analysis results (details in table 5), applying ceramic 658 

UF for the treatment of  fish meal wastewaters was economically feasible for the purpose of 659 

proteins recovery [168]. Walha et al. (2011) used multi-channel TiO2 ceramic MF with the 660 

pore size of 0.1 µm as a pretreatment step prior to polymeric NF stage to treat raw tuna 661 

cooking juices. Compared to direct polymeric NF of tuna cooking effluent, they succeeded to 662 

improve the permeation flux by nearly 3.3 times by applying ceramic MF technique. 663 

Although ceramic MF and UF membranes are not appropriate for the rejection of low 664 

MWCO matters, they can make an impact when combined with polymeric NF membranes. 665 

Such hybrid system is typical nowadays in food wastewater treatment facilities [169]. 666 

Resistance analysis and fouling behaviour for ceramic MF and UF in food industry 667 

wastewaters have been investigated by some researchers. The membrane fouling is an 668 

inevitable phenomena that occurs due to adsorption of proteins and accumulation of 669 

unwanted compounds on the membrane surface [160]. According to studies shown in    670 

Table 5, cake filtration and pore clocking are the two main mechanisms of fouling which is a 671 

normal phenomenon in MF and UF filtration processes [163-165]. Although severe fouling 672 

observed during the filtrations  of some feed solutions by ceramic membranes, original flux  673 

almost completely recovered by cleaning processes utilizing sequential washing with 674 

chemical detergents and alkaline and acid solutions [161, 163, 167]. In addition, Kuca and 675 

Szaniawska (2009) realized that changes in pressure and pH in a laboratory scale have 676 

different effects on the fouling behaviour of ceramic membranes used for the treatment of 677 

salted effluents from fish processing operations. The effect of TMP ranging between 0.5 to 2 678 
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bar (Table 5) was negligible on membrane fouling; however, the lowest fouling observed at 679 

pH equals to 9 [166]. 680 

Ceramic membranes have been applied practically in various sections of food industry for 681 

treatment of effluents. As an example, Isoflux™ ceramic MF membranes made by TAMI 682 

industries have been successfully applied to more than 50 plants around the world for 683 

various purposes in dairy industry such as bacteria reduction in milk and cheese brine and 684 

miscellar casein separation from milk. Isoflux ™ membranes offer better selectivity 685 

efficiency and higher permeation flux over polymeric membranes whereas milk fractions 686 

could not successfully obtained due to large pore size distribution [180, 181]. Tetra Alcross® 687 

Bactocatch and Atech Innovations GmbH products  are two other  manufacturers of 688 

commercial ceramic membrane systems which successfully applied their products 689 

worldwide for the removal of bacteria and spores from milk , polishing filtration of citrus 690 

fruit juice, production of glucose from sorghum, clarifying beverages , and production of 691 

sugar syrup [182, 183]. 692 

As mentioned before, a specific problem associated with the filtration of food processing 693 

wastewater is the accumulation of unwanted compounds on the membrane surface that if 694 

improperly washed may become a source of harmful bacteria [184]. The application of 695 

ceramic membrane technology can guarantee food hygiene due to its ease of cleaning and 696 

sterilization [185]. Moreover, ceramic membranes were successfully applied for milk and 697 

other dairy productions fractionation. However, traditional polymeric membranes cannot 698 

achieve similar proper results due to wide pore size distribution which causes transmission 699 

of components that should be retained through the larger pores, and retention of 700 

components that should be passed by smaller pores. Despite the successful application of 701 

ceramic membranes in laboratory scale and some commercial systems, there is a major 702 
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limitation to the industrial scale implementation of ceramic membranes in food industry 703 

due to their high capital cost. In addition, a better understanding of fouling mechanisms by 704 

analysing the interactions between various ceramic materials and the wide variety of 705 

foulants that exists in food processing effluents can result in more stable long-term 706 

operations and lower operational costs [12]. 707 

 708 
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Table 5: an overview of some investigations evaluating the application of ceramic membranes to treat effluents from food industry 709 

Operational  
Parameters 

Feed Source& 
parameters 

Membrane 
characteristic 

MWCO/Pore size Flux Rejection efficiency Cost Ref. 

Pressure:2.07-4.14 bar 
Temp: 25°C 
Cross flow rate: 5.55-
22.2 m/s × 10-7 

Raw diary wastewater 
Conductivity (mS/cm): 853 
Total suspended content (mg/L): 976 
TSS (mg/L):254, TDS (mg/L):722 BOD 
(mg/L) :758, COD (mg/L):1462 

Low cost tubular 
ceramic membrane 

fabricated from natural 
clay materials 

pore size: 
0.309 µm 

Avg. permeate flux: 
9.3 L/m2h 

COD (mg/L):135 
91 % of COD removal 

Membrane Cost: 
69 $/m2 

[160] 

Pressure :1 Bar 
Temp: 15-52°C 
 

Poultry chiller and scalder water and 
frankfurter chiller brine 
Total solids (%): 0.14 -15.7 
Ash (%): 0.048-14.07 
Nitrogen (%) :0.009-0.025 
Fat (%): 0.02-0.05 

Al2O3 based ceramic MF 
pore size: 

.02-.45 µm 
Avg. permeate flux: 

110-440 L/m2h 

Total solids (%): 0.07-14.75 
Ash (%): 0.04-13.96 
Nitrogen (%) :0.003-0.025 
Fat (%): 0.014-0.025 
Turbidity (NTU):<50 –with manty less than 1 

- [161] 

Pressure:0.8-2.8 bar 
Temp: 25°C 
Cross flow rate:20-65 
L/min 

Olive mill wastewater 
COD (mg/l) :55730-91550 
BOD(mg/L):29930-38600 
TOC (mg/L): 18620-23454 
Conductivity (mS/cm): 10.04-12.01 
Total phenol (mg/L):2439-4509 

Jet loop 
MBR using 

α-Al2O3 –ZrO2 Ceramic 
membranes with 37 

channels 

Pore size:0.1 µm 

Avg. permeate 
flux:0.9 L/m2h for 

0.418 m2 of 
membrane surface 

area 

COD removal:91-93% 
Total phenol removal:80-87% 
 

- [162] 

TMP:1 bar 
Temp: 15±3°C 
CFV:1.10 m/s 

Raw rice wine samples 
Total insoluble solids (g/L):12.7 
Crude protein (g/L):10.8 
Turbidity (NTU): 35.3 

α-Al2O3 & ZrO2 Ceramic 
MF 

Pore size: 
0.2-0.5 µm 

18-33 L/m2h 
Total insoluble solids (g/L):0.7-1.2 
Crude protein (g/L):2.56-4.32 
Turbidity (NTU): 2.12-3.10 

- [163] 

TMP:0.5 bar 
Temp: 60°C 
CFV:0.5 m/s 

Corn Syrup 
Turbidity (g/ L BaSO4):1.343 
Insoluble residues (%w/w):0.332 
Total proteins:(%w/w):0.1 

Composite tubular 
ceramic MF fabricated 
from alumina-silicate 

materials 

Pore size: 
0.5 ,0.75,0.14 µm 

Permeate flux: 
77.5-136.2 L/m2h 

Turbidity reduction:97.4-99.6% 
Insoluble residues rejection:63.85-99.75% 
Total Protein Rejection:70-80% 

 [164] 

TMP:1 bar 
Temp: 22±3°C 
CFV:0.58 m/s 

Raw soy sauce 
Turbidity(NTU):18.7 
Total solids(kg/L):0.38 
TN (g/100mL):1.74 
Total bacterial count 3200 

α-Al2O3 & ZrO2 Ceramic 
MF 

Pore size: 
0.2,0.5,0.8 µm 

3.5-12 L/m2 h 
Highest flux: 

0.2 µm(α-Al2O3) 
Lowest flux:  

0.8µm(α-Al2O3) 

Raw soy sauce permeate 
Turbidity(NTU):0.813-1.61 
Total solids(kg/L):0.26-0.31 
TN (g/100mL):1.64-1.70 
Total bacterial count 30-200 
>99% bacteria removed from raw soy sauce 

- [165] 

TMP:0.5 to 2 bar 
Temp:20°C 
CFV:4 m/s 
 

Salted wastewater from fish industry 
BOD (mg O2/dm3):2050-7980 
COD(mg O2/dm3):4250-14600 
Protein (wt.%):0.1-2.5 

23 channel 
Al2O3/TiO2/ZrO2 

Ceramic MF 
MWCO:150k Da Flux:19.1-27 L/m2h 

Protein Rejection:81% 
BOD:72% 
COD:60% 

- [166] 

Pressure: 4 bar 
CFV:4 m/s 
Temp:20 °C 
 

Effluents from a fish meal plant 
ZrO2- TiO2 mono- 

tubular ceramic UF 
MWCO:15 k Da 95.4 -97.7 L/m2h 

Total proteins rejection:26% 
Oil and grease rejection:40% 
Total solids rejection:4.1% 
UF with lower MWCO or NF is recommended 
for efficient protein removal. 

- [167] 

Pressure :3-4 bar 
Temp:21 °C 
CFV:3-4 m/s 

Effluents from a fish meal plant 
Total Solids (g/l) :24 
Volatile solids (g/l):18.9 
Total proteins (g/l) 15.5 
Oil and grease (g/l) 1.21 

Mono-tubular 
ZrO2–TiO2  UF 

membranes 
MWCO:15 KDa 30.1-38.9 L/m2h Protein Rejection:49-62% 

A plant handling 
10 m3/h of effluent: 

NPV:160000 USD 
Interest rate of return 

:17% 
Payback time: 8 years 

[168] 

 710 
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Table 5: Continued 711 

Pressure :3-4 bar 
Temp:25 °C 
CFV:3-4 m/s 

Effluents from a fish meal plant 
Total Solids (g/l) :24 
Volatile solids (g/l):18.9 
Total proteins (g/l) 15.5 
Oil and grease (g/l) 1.21 

19 channel tubular 
Al2O3/TiO2/ZrO2 

Ceramic NF 
MWCO:1 KDa 22.3-32 L/m2h Protein Rejection :63-66%  [168] 

MF: 
Pressure:2 bar 
Temp:25 °C 
CFV:3.1 m/s 
NF: 
Pressure 35 bar 
Temp:40°C 
CFV:2.5 m/s 

Raw tuna cooking juices 
Turbidity(NTU):496±7 
SS(g/L):2.1±0.1 
COD (g/L):23.5±0.7 
Dry matter(g/L):147.7±3 
 

Multi-channel TiO2 

ceramic MF followed by 
polymeric NF 

MF Pore size 
:0.1µm 

 

MF/NF :90-100 L/m2h 
NF:30 L/m2h 

Retention of inorganic compounds:70-76 % 
Permetation flux significantly increased by 
applying ceramic MF pretreatment 

 [169] 

TMP:1.75 
Temp:50 °C 

Rinsing water from bottle washing 
machine 
COD (mg/L):240-580 

Al2O3 Ceramic MF Pore size :0.2µm 40 -160 L/m2h 
Turbidity retention :99% 
COD rejection:30% 

 [170] 
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3.5. Pharmaceutical 731 

Water is an inevitable component in pharmaceutical manufacturing operations, and it is 732 

widely used in different stages of processing, from formulation to production of drugs for 733 

use as medications. The wastewaters generated in different stages contain a wide variety of 734 

organic and inorganic compounds and impurities. In addition, removal of pharmaceutically 735 

active compounds (PhACs) and endocrine disrupting compounds (EDCs) from generated 736 

wastewater is essential and has become one of the major concerns in recent years. 737 

Improper and insufficient treatment of pharmaceutical effluents may cause PhACs return to 738 

human body through water cycle which can lead to irreversible consequences. EDCs are also 739 

known to disrupt the human endocrine system [186, 187]. It is estimated that many 740 

wastewater treatment systems are not designed to remove specific compounds, making 741 

them inefficient at removing pharmaceutical compounds before effluents are discharged to 742 

the environment. Therefore, the Pharmaceutical industry requires a robust and high quality 743 

wastewater treatment system to meet the discharge limits. [188]. 744 

The application of MF, UF and NF polymeric membranes either alone or as a part of MBR 745 

has been studied in pharmaceutical industry for various purposes. These include removing  746 

of organic compounds and endocrine disruptors from the pharmaceutical effluent, 747 

separating and recovering of antibiotics from the pharmaceutical wastewater, and isolation 748 

and purification of biologically active compounds such as viruses and enzymes [9, 189-199]. 749 

However, polymeric membranes are sensitive to aggressive cleaning agents, so they cannot 750 

be efficiently sterilized and should be replaced at more frequently. 751 

The applicability of ceramic membranes is increasing in pharmaceutical industry due to  its 752 

better capability in terms of repeated steam sterilization and ease of cleaning with harsh 753 

chemicals  compared to polymeric membranes [8, 200]. Hydro Air Research Italia membrane 754 
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systems are operating successfully for antibiotic recovery by using ceramic membrane  in 755 

fermentation broth clarification step before multistage RO which ensures excellent protein 756 

removal and high permeate flux [201]. GlaxoSmithKline a British pharmaceutical company 757 

replaced polymeric membranes with Star-Step™ ceramic membrane system supplied by 758 

Mantec filtration. It consists of 4 banks of 8 housing with 108 ceramic membrane unit in 759 

each housing of 208 m2 membrane area at its antibiotic drug processing plant. Several 760 

economic advantages such as less maintenance requirement, longer membrane life span, 761 

energy saving by using star-shaped flow channels and easier membrane cleaning were 762 

observed by replacing polymeric membranes with ceramic units that led to the reduction in 763 

operating costs. From the technical point of view, the ceramic unit represented remarkable 764 

filtration performance,  doubling the flux of previous polymeric membrane system [202]. 765 

Inopor GmbH, one of the suppliers of ceramic membranes for the purpose of liquid 766 

filtration, applied ceramic UF in the treatment process for “water for injection” in 767 

pharmaceutical industry. Ceramic UF has to be installed to prevent the growth of 768 

microorganisms that would lead to contamination of piping system and the purified water 769 

after electrode ionisation stage in pharmaceutical industries [37]. Polymeric membranes are 770 

not appropriate for this purpose due to low resistant against organism and disinfection by 771 

steam. Inopor® ceramic membrane showed excellent efficiency for this requirement [37]. 772 

 773 

In summary, application of ceramic membranes in pharmaceutical section have the benefits 774 

of being frequently bio inert, persistent against bacteria and can withstand repeated 775 

chemical and steam sterilization at high temperatures which polymer membranes may fail 776 

to tolerate [6, 200]. Employing ceramic UF as a part of hybrid system for generating 777 

ultrapure “water for injection” for medical liquids including heat exchange, reverse osmosis, 778 

https://en.wikipedia.org/wiki/Pharmaceutical_industry
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membrane degasification and electrode ionisation can appropriately prevent the growth of 779 

microorganisms and pollution of piping system where the application of polymeric 780 

membranes is not possible due to poor resistance against periodic steam sterilization. 781 

However, very selective concentrations and recovery of vitamins, enzymes and antibiotics is 782 

another subject of interest in pharmaceutical industry and most of the ceramic membranes 783 

show poor selectivity properties. Future research in this industry sector may focus on 784 

introducing new polymer-ceramic composite membranes which can guarantee high 785 

selectivity and great tolerance to aggressive conditions. Introducing new polymers with high 786 

selectivity for the purpose of coating on ceramic nanofilters with lower MWCOs below 787 

450Da maybe an efficient way for complete separation of pharmaceutics with complex 788 

structures out of wastewater [8, 37]. 789 

 790 

3.6. Mining Industry 791 

Acid mine drainage (AMD) is the most common water pollution issue in the mining industry. 792 

It is produced when rock containing sulfur-bearing minerals is exposed to oxygen and water. 793 

Typically, AMD is characterized by low pH, high specific conductivity and high 794 

concentrations of heavy metals and other toxic elements [203-205]. If AMD is left untreated 795 

and gets to nearby water systems such as rivers, streams or lakes, it can contaminate 796 

surface and groundwater and may disturb the reproduction system of aquatic life. It also 797 

affects metal and concrete structures by corrosion, and can raise water treatment costs. 798 

Consequently, the development of cost-effective and efficient treatment solutions for the 799 

AMD problem has been the subject of many researches during recent years. 800 

Some investigations have been published on wastewater treatment and recovery of heavy 801 

metals from the mining effluents by various pressure-driven polymeric UF/NF and RO 802 
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systems [206-219] , and has shown that polymeric NF and RO have quite similar efficiency in 803 

the removal of heavy metals from mining effluent. However, applying polymeric NF due to 804 

higher flux, acceptable rejection efficiency and, lower energy consumption was more 805 

appropriate than RO at comparatively low-temperatures. On the other hand, using RO is 806 

preferable over polymeric NF at high temperature conditions [208, 217, 219]. Membrane 807 

fouling, however, is the major challenge for using polymeric membrane in harsh 808 

environment such as mining wastewater treatment. In contrast, ceramic membranes may 809 

be an appropriate alternative over polymeric membranes due to their significant chemical, 810 

mechanical and thermal stability under harsh operating condition like what is expected in 811 

actual mining operations. As an example, Blackhawk Colorado AMD treatment facility 812 

replaced tubular polymeric membranes with ceramic membranes in 1995, and were still in 813 

service till 2013 which proved the durability of ceramic membranes compared to polymeric 814 

membranes lifespan  ranging between 6 to 9 months [220]. Another successful example of 815 

commercial application of ceramic MF system is the new wastewater treatment plant 816 

installed in 2009 at the Upper Blackfoot Mining Complex located in Montana, USA. 817 

Compared to high density sludge clarifier system installed at this facility, ceramic MF could 818 

operate at very acidic condition which is an advantage for AMD treatment. Lower pressure 819 

operations, smaller footprints, lower chemical consumption, labour and power costs were 820 

some significant improvements achieved by replacing the clarifier system by ceramic 821 

MF[220, 221]. Liqtech International Inc. installed fifteen particle removal and six dewatering 822 

systems using CoMem® SiC ceramic membrane with 25 and 146 mm outer diameter (OD) in 823 

one of the largest mining operations in Europe. Particle removal system was placed in a 99X 824 

glassfiber reinforced plastics multihousing in racks of 6 housings, and the dewatering system 825 

was placed in a single polypropylene housing in racks of 6 housing. The actual membrane 826 
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capacity was 960 m3/h and the proposed system could remove heavy metals as required 827 

and stable permeability and steady state permeation flux were observed during operations. 828 

However, there is no information available in supplier website regarding cost analysis [222]. 829 

In addition, based on Mine Waste Technology program 2002 annual report, Stewart 830 

compared investment and operating cost of 1136 L/min polymeric and ceramic membrane 831 

systems. The capital cost of 1136 L/min ceramic membrane system was about 1900000 USD 832 

while for the polymeric membrane system with the same capacity, the capital cost was 833 

about 1800000 USD which was only about 5% cheaper compared to ceramic membrane 834 

system. On the other hand , the annual operating cost of 1136 L/ min ceramic membrane 835 

system was about  55 % less than the similar capacity polymeric membrane system due to 836 

lower maintenance cost of ceramic membranes which is a big difference (about 260000 and 837 

470000 USD/year for  ceramic and polymeric units respectively) [220]. 838 

A review of previous commercial scale application of ceramic membranes in treatment of 839 

harsh mining effluents proves that ceramic membranes afford specific advantages in this 840 

application like long-term durability, ease of cleaning, better chemical and mechanical 841 

stability and lower annual operational cost compared to polymeric membranes. However, 842 

the main disadvantages of ceramic membranes are high fabrication costs of ceramic 843 

components and  high capital cost associated with installation of commercial scale ceramic 844 

membrane units in mine sites [6]. Future development should be based on new ceramic 845 

components with reasonable fabrication cost and appropriate permeability which can 846 

handle stable and steady state operations even under harsh conditions faced in mining 847 

operations and more space-effective ceramic membrane modules with smaller footprints [8, 848 

12]. The main problems associated with the treatment of AMD are managing the large 849 

amount of sludge, which arises during treatment process, and various chemical processes 850 
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with complicated behaviour and various reaction rates in AMD. A design an appropriate 851 

hybrid system by combining ceramic MF/UF and other chemical and mechanical techniques 852 

such as electrocoagulation and high shear reactors  for reducing treatment sludge rates of 853 

chemical reactions in AMD should be considered in future researches [220, 223, 224]. 854 

 855 

4. Ceramic Membrane Reactors for Advanced Oxidation Processes (AOPs) 856 

 857 

AOPs are a group of chemical oxidation processes designed to remove natural organic 858 

compounds (NOM) and decompose of persistent non biodegradable organics in wastewater 859 

through reactions with hydroxyl radicals (OH). OH generation is possible through different 860 

techniques including ozone, H2O2, ultraviolet (UV), Fenton reaction, electrolysis and 861 

photocatalysis [225]. 862 

Although membrane filtration is an effective technique for removal of wide range of toxic 863 

elements from the wastewaters, it has limited ability to remove some dissolved organics, 864 

especially in the range of MF/UF. Therefore, combined membrane separation with AOP in a 865 

reactor as a single system looks like an appropriate solution to provide flexibility and 866 

improve the limitations of both AOPs and membranes [225, 226]. However, one of the 867 

major drawbacks associated with advanced oxidative membrane reactors is conflict of 868 

hydroxyl radicals and membrane polymers [225]. Consequently, researchers have tried to 869 

develop various ceramic membrane reactors for AOPs to overcome the Incompatibility issue 870 

between hydroxyl radicals and membrane polymers. In addition, ceramic membranes are 871 

more resistive to UV radiation whereas polymers may deteriorate easily [226-228]. 872 

Ozonation, which refers to the application of ozone in wastewater treatment, is one of the 873 

advanced oxidation processes involving the production of very reactive oxygen species that 874 

https://en.wikipedia.org/wiki/Hydroxyl_radicals
https://www.sswm.info/glossary/2/letterr#term1107
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are able to attack and degrade a wide range of organic pollutants in the wastewaters  [226, 875 

229]. This method has been successfully combined with ceramic membrane filtration 876 

process for more effective treatment of industrial complex wastewaters and efficient 877 

removal of organic toxics. Majority of investigations has been applied ozonation either as 878 

pre-treatment stage for removal of toxic organics prior to the membrane filtration step 879 

[230, 231]or post-treatment stage to treat both permeate and retentate [232-237]. 880 

However, studies about advanced ozone ceramic membrane reactor as an integrated 881 

process is limited in literature. A few works successfully demonstrated the use of inorganic 882 

membranes and ozonation in a hybrid reactor to achieve higher TOC removal with minimum 883 

amount of ozone usage [238-240]. Further work is required to address the high energy 884 

consumption and toxicity issue associated with ozone generation [229] to make this method 885 

an economic and reliable alternative for removal of organic pollutants from industrial 886 

effluents in large-scale operations. Figure 4 illustrates an ozone membrane reactor. 887 

Numbers 1 and 2 on the Figure Indicate alumina capillary membrane and zeolite membrane 888 

unit respectively. 889 

 890 

 891 

 892 

 893 

Fig 4. Ozone membrane reactor (reproduced from [241] with permission from the Journal of 894 

Membrane Science) 895 
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Researchers widely studied reactor configuration that is called photocatalytic ceramic 896 

membrane reactors (PMRs). It consists of a ceramic membrane module as a second stage 897 

and photocatalytic reactor as an OH generator in an integrated hybrid process. Successful 898 

laboratory-scale applications of this method in the removal of organics including 899 

pharmaceutical pollutants and drugs from wastewaters have been reported by [242-250]. 900 

Studies were mostly done in a laboratory scale because of high cost of UV source. Finding 901 

and developing cost effective alternatives to replace UV such as sun as a cheap source of 902 

light to generate efficient OH radicals will allow the potential of scale up for industrial large 903 

scale operations [251]. Additionally, mechanisms of transformation of organics in PMRs and 904 

the possibility to separate the  reaction zone from the separation zone  is not fully realized 905 

so far. Comprehensive studies are still required to determine these kind of  mechanisms 906 

which have a great significance on the overall system performance[226, 251]. Innovation  in 907 

the usage of nanoparticles immobilized in ceramic materials can further prevent 908 

photocatalyst degradation cause by irradiation and leads to a continuous operation in the 909 

system[251]. Figure 5 shows a schematic diagram of photocatalytic membrane reactor 910 

system with immersed UV-A lamps which is used in Sarasidis et al.(2014) experiments [249]. 911 

 912 

 913 
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 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

Fig 5. Photocatalytic membrane reactor with immersed UV-A lamps (reproduced from [249] 922 

with permission from the Chemical Engineering Journal) 923 

Another promising combined configuration is electrochemical advanced oxidation processes 924 

(EAOPs) integrated with membrane modules as a hybrid reactor. Actually, the membrane 925 

unit has two roles in the system. It acts as electrode for electrochemical process and 926 

membrane for filtration [226]. From technical and economic point of view, this process 927 

seems to be a better choice compared to PMRs. it is capable of complete mineralization of 928 

persistent organics and production of high quality effluent because of generation of large 929 

quantities of hydroxyl radicals during the electrolysis. In addition, reactive electrochemical 930 

membranes do not require UV for OH generation and relatively inexpensive unlike PMRs 931 

[226]. However, industrial adoption of this technique depends on improved understanding 932 

of factors such as influence mechanism of organic and inorganic ions on performance of 933 

electrochemical membranes. Optimisation of operating parameters such as permeate flux, 934 

pressure, flow rate, pH and temperature leads to maximizing the efficiency of the hybrid 935 
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system[226]. Introducing cost effective doping techniques to produce ceramics with high 936 

electrical conductivities seems to be a promising way for the production of electrode 937 

materials with high mechanical resistance which efficiently generate high yields of hydroxyl 938 

radicals [252-254]. 939 

 940 

5. Ceramic Membrane Cost analysis 941 

It is very important to consider the type of application and fouling potential of feed 942 

wastewater for economic analysis of ceramic membranes. In terms of capital expenditure, 943 

commercially available ceramic membranes are three to  10  times more expensive than the 944 

polymeric membrane modules and hence many companies prefer polymeric option in their 945 

new installations [255, 256]; however, in aggressive operational environment the ceramic 946 

membrane may be a better alternative for wastewater filtration because of the remarkable 947 

reduction in operational costs. Normally the operating cost of an industrial scale membrane 948 

system is originated from the power and energy cost required to maintain a steady state 949 

long term permeate flux, the cost of membrane replacement, the cost of chemical and 950 

reagent required for membrane cleaning, and some of the costs such as worker’s wages. 951 

Longer life span ,  ease of cleaning by high temperature steam sterilization and other 952 

potential unconventional method such as using electric and magnetic fields, and the ability 953 

to recover initial permeability and water flux by back flushing and proper cleaning, are all 954 

reasons that ceramic membranes have reduced operating cost than polymeric membranes 955 

[12]. Nanostone Water Inc. developed a ceramic versus polymeric cost model to estimate a 956 

total of 10 years’ operating expenses based on pilot data collected from various industrial 957 

wastewater reuse plants using UF/MF membranes. Overall, the ceramic membrane reduced 958 

operating costs by 55 %  [257]. Despite superior characteristics of ceramic membranes 959 
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including high chemical, thermal and mechanical stability, ease of cleaning with various 960 

methods and longer lifespan, the high material cost of ceramic membranes which is around 961 

500-2000 USD/m2 compared to 50-400 USD/m2 of polymeric membranes [255, 258-262], is 962 

the main drawback of applying this system in large scale industrial applications. The focus of 963 

future research should be in the development of cheap ceramics membrane for industrial 964 

applications including cheaper manufacturing and material costs. This could be achieved by 965 

incorporating new nanomaterials in membrane manufacturing technology. Utilizing 966 

engineered nanoceramic materials with improved hardness and mechanical and thermal 967 

strength for use in ceramic matrix composites will enhance the performance of ceramic 968 

membranes technically and economically. However, industrial scale application of nano-969 

enabled ceramic membrane technology by industry may take years [263] because a lot of 970 

research need to be done to improve the current sintering methods [38]. 971 

6. Summary: 972 

Ceramic membranes have outstanding features over polymeric membranes because of their 973 

remarkable robustness, ease of cleaning and high membrane life. However, there are still 974 

challenges in the application this technology for industrial effluents filtration that needs to 975 

be addressed in future researches. From the previous literature review conducted, it is 976 

deduced that the number of industrial scale application for the treatment of industrial 977 

effluents by ceramic membranes in comparison with laboratory investigations is very 978 

limited. This is due to its high capital cost, which encourages the industry shareholders to 979 

use polymeric systems for their liquid filtration purposes. Reducing ceramic membranes 980 

investment cost by introducing new fabrication processes will most likely make ceramic 981 

membranes an economically competitive alternative to polymeric membranes for many 982 
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industrial scale applications. In the future, developing Ceramic nanofilters with lower 983 

MWCOs and with the ability to control pore size distribution may offer significant 984 

advantages in certain operating cases such as recovery of valuable materials in various 985 

industrial sections. Introduction of advanced sintering methods with low sintering 986 

temperature and short sintering times for the fabrication of nanoceramics can prevent the 987 

decomposition of ceramics, which will consequently lead to enhancing mechanical 988 

properties of ceramics as well as financial saving. Extensive studies are still required to 989 

improve AOPs by ceramic membrane reactors. Minimizing toxicity issue associated with 990 

ozone generation, developing cost-effective ceramic membranes with high resistance 991 

against irradiation to apply in photocatalytic ceramic membrane reactors, and producing 992 

ceramics with high electrical conductivity to apply as reactive electrochemical ceramic 993 

membranes in a hybrid reactor are some suggestions for future research and development 994 

in this category. 995 

From the review of past studies, it can be concluded that the number of investigations done 996 

by ceramic membranes in the mining and pharmaceutical sections is more limited in 997 

comparison to the other industry sectors. This may be due to the complex nature of 998 

pharmaceutical wastewaters and AMD. Future research efforts should focus on further 999 

investigation of the application of various ceramic membranes with different pore sizes 1000 

either alone or in combination with other physico-chemical techniques in treatment of 1001 

pharmaceutical and mining effluents to guarantee steady state long-term operations 1002 

without any or minimum requirement for membrane replacement. 1003 
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