
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 
all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 



Exploring in 3D with a Climbing Robot: Selecting the Next Best Base
Position on Arbitrarily-Oriented Surfaces

Phillip Quin, Gavin Paul, Alen Alempijevic, Dikai Liu

Abstract— This paper presents an approach for selecting the
next best base position for a climbing robot so as to observe
the highest information gain about the environment. The robot
is capable of adhering to and moving along and transitioning
to surfaces with arbitrary orientations. This approach samples
known surfaces, and takes into account the robot kinematics,
to generate a graph of valid attachment points from which the
robot can either move to other positions or make observations
of the environment. The information value of nodes in this
graph are estimated and a variant of A* is used to traverse the
graph and discover the most worthwhile node that is reachable
by the robot. This approach is demonstrated in simulation
and shown to allow a 7 degree-of-freedom inchworm-inspired
climbing robot to move to positions in the environment from
which new information can be gathered about the environment.

I. INTRODUCTION

Most robot exploration strategies make use of the fact
that the robot is moving through an environment that can
be represented in 2D, even when the robot operates in a
3D world [1], [3], [7], [13], [15], [16]. This reduction in
dimensions is key in reducing computation. For example, a
robotic vacuum cleaner might represent an office floor as a
2D plane, since only objects on the floor are within its scope
of concern. When exploring the 2D plane, all positions on
the ground plane are potential locations from which the robot
can make an observation. Freespace areas are often implicitly
assumed to be space that the robot can move through. As
a result, path planning, particularly for a holonomic robot,
becomes straightforward. These assumptions do not hold for
a robot tasked with climbing through a 3D structure.

Rather than Cartesian space, some exploration strategies
operate in the robot’s configuration space (C-space). These
strategies are well suited to robot manipulators that operate
from a fixed base position [2], [4], [9], [19], or the base of
the manipulator moves on one plane (e.g. the floor).

A climbing robot which must climb the internal structure
of bridges for inspection [10], such as the one shown in Fig.
1a must be able to make use of surfaces in any orientation;
not only in determining where it can possibly move to,
but also in determining what it might see from a particular
location. Since the robot can move through 3D space but
is bound to surfaces, path planning is more complex. While
an exploration strategy for such a robot system could be
constructed almost entirely using Rapidly exploring Random

This work is supported by Roads and Maritime Services, NSW.
The authors are with the Centre for Autonomous Systems at the University

of Technology Sydney, Australia.
Phillip.Quin@uts.edu.au.

(a) (b)

Fig. 1: (a) A climbing robot navigating a 3D environment. (b) Example
attachment points (discs) on a map of known surfaces with edges between
them (dashed lines). Light grey surfaces are unsafe to attach to, dark discs
are sufficiently close to the frontier set that they belong to the set of
candidates

Trees (RRT) [18] similar to work by [5], this would involve
a large number of dimensions. At least 4 and potentially as
many as 9 dimensions are required to describe the robot’s
position and orientation, and further dimensions are required
to represent the robot’s degrees of freedom in configuration
space. Given that in 3D physical space, only the slices of the
space that represent the surfaces will be valid, this means the
vast majority of possible points in the n-dimensional space
will be invalid. An approach based on random sampling
is thus unlikely to be tractable. Similarly, evaluating each
position on a surface as a candidate for the next observation
of the environment, as done in the 2D case by [1], is unlikely
to be tractable in the 3D case.

This paper presents a novel graph-based approach to
autonomous exploration which does not limit the robots
motion to a single 2D plane, and does not assume that
the robot is holonomic for path planning purposes. Instead
of uniformly sampling in the robot’s configuration space,
computational complexity is reduced by generating candidate
robot configurations from surfaces in the map which can
then be connected in a directed graph of edges and evaluated
for potential information gain. Interleaving the increasingly
expensive but more accurate information estimation and
cost functions further reduces computational complexity by
progressively filtering candidate configurations.

The approach begins by sampling all surfaces in the
environment to determine candidate robot attachment points
represented as nodes in the directed graph. The respective

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight



strengths of A* and RRT planners are leveraged to determine
edges of the graph. A modification to traditional A* is
proposed that aims to reduce computational complexity by
simultaneously searching for multiple goals. Edge validation
is done twofold, initially using the existence of a robot
kinematic configuration between nodes. Subsequently, a RRT
planner is used to validate existence of a complete trajectory
between nodes. As a result, the proposed approach demon-
strates continuous exploration of the world, progressively
sensing regions that are non-observable from the potential
viewpoints of a robot in any configuration at the current
location. The exploration approach is described in Section
II and results from simulations are presented in Section III.
Conclusions and future work are discussed in Section IV.

II. METHODOLOGY

This paper assumes that some region of the environment
is known to the robot as a result of past observations. The
robot’s knowledge of the environment is stored in a map of
free and occupied space,Mo, and a map of known surfaces,
Ms. This approach further assumes that the set of frontiers,
F , the boundaries between known and unknown space in
Mo, has been created.

The robot is assumed to be affixed to a surface by its
“base”, which can be described by a homogeneous transform,
0Tb. The robot is able to make a series of observations whilst
its base is affixed to a surface.

Modelling the dynamics of this robot is out of the scope
of this work, and some details can be found in [17]. The
effects and impacts of robot dynamics are assumed to be
incorporated as part of determining safe attachment points
and path-planning which are referred to later in the paper.

Determining where the robot should move to next to make
a new series of observations of the environment involves
several steps:

A) Determine attachment points
B) Estimate candidate attachment point information
C) Selectand move to the next best attachment point

A. Determining Attachment Points

Ms is uniformly sampled to generate a useful distribution
of valid attachment points, A, for the climbing robot. An
example of a simple sampling strategy is shown in Fig. 1b.
Let the sampling policy be denoted, s(), and let the set of
valid attachment locations, A be returned by s(Ms).

The way in which sampled points are used to create
valid attachment points, and how these attachment points
are represented, depends on the mechanism by which the
robot adheres to the surface. Techniques exist to find footpad
placement positions in rough terrains [6]. If the robot has
a magnetic footpad that can be abstracted as a disc such
as [8], [14], then this disc abstraction can be used with
the sampled point as the center. Fig. 2a shows how the
disc, along with an orientation and normal can represent a
placement of the robot’s footpad. The normal is the cross
product between two unit vectors created from the sample
point in the direction of 2 different nearby sample points. A

predetermined set of orientations vectors (dictating footpad
direction when attached to a surface) are combined with the
point-normal pair to create a set of attachment points which
are checked for validity. If there are m point-normal pairs
sampled from the Ms, and n predetermined orientations, then
up to m× n attachments points will be added to A.

The orientation of a specific attachment point, a in A
affects which nearby attachment points are reachable by
the robot, what observations the robot can make from a,
and the adhesion safety of the robot at a (based on the
attachment mechanism and the kinematics of the robot). a
can be described as a tuple containing a point p, normal n,
orientation o, and safety value v. Unsafe attachments, with
safety values below a threshold τs, are culled from A.

Nodes are connected by creating edges. Given attachment
nodes ai and aj , an edge, ei,j , is created from ai to aj if the
distance, d between them is within the range [dmin,dmax],
where dmin and dmax are the smallest and largest transition
the robot can make, respectively. If the trajectory from a2
to a1 is the reverse of the trajectory from a1 to a2, then a
single undirected edge is sufficient to link two attachment
nodes, otherwise separate directional edges are needed.

If attachment nodes belong to distinct robot states, such as
front-footpad-attached and rear-footpad-attached, these states
preclude certain attachment nodes being connected. This
information can be used to quickly determine whether an
edge between two attachment nodes can be ignored. For
example, consider an inchworm-inspired robot which has two
footpads and moves with a flipping gait [14]. In this case,
attachment nodes belong to two distinct states with either (or
both) of the front and/or rear footpad attached, and cannot
have an edge with an attachment point of the same state.

Associated with each edge, ej,k is a robot configuration
qj,k in which the robot is attached to both aj and ak (i.e. the
robot is “straddling” aj and ak) as shown in Fig. 2b. Initially,
qj,k is unknown (i.e. is ungenerated). Each edge, ej,k is
also associated with a path pi,j,k describing a sequence of
configurations required to move from qi,j to qj,k, assuming
the robot came from ei,j . These paths are initially empty.

After an initial set, A has been generated on Ms, sub-
sequent map updates only require resampling the subset of
Ms that has changed. After each sequence of observations
from an attachment point, the updated region, ms, can be
approximated as the portion of Ms within a sphere centered
on the robot’s current attachment node and with radius equal
to the length of the robot, rl, plus the trustworthy range of
the sensor, rs.

Each a in A that is within the sphere needs to be
evaluated to check it is still valid after the map update. The
sampling function, s(ms) will generate the set of attachment
nodes, As. Attachment nodes in As that are similar to any
attachment in A are discarded. Remaining attachment nodes
in As are added to A, and edges are created between nodes
in As and any other attachments in A as required.

pdquin
Highlight



a0

a1
(nx, ny, nz)

(ox, oy, oz)

d(a0, a1)

(a)

a0 a2 a3

a1

qe2,3

e2,3e0,2

(b)

a0 a2

a1

10

?

(c)
Fig. 2: Updating the graph of attachment positions. (a) Two attachment points. (b) Attachment nodes and edges between them. The robot is shown in
configuration q2,3, which “straddles” attachment nodes a2 and a3. (c) Attachment points and the costs of moving from a0, to a1 and a2.

Fig. 3: Several methods for estimating information: Left: unknown in sphere,
Middle: raycasting from robot base [1], Right: raycasting from sensor
transforms resulting from sampled robot configurations [11].

B. Estimating Candidate Attachment Point Information Gain

We define a function, H(a) which estimates the infor-
mation score of an attachment point, a. Fig. 3 shows three
example H(a) information estimate functions. The simplest
estimate of information around a candidate attachment point
is to count the unknown voxels within a sphere of radius
rl + rl. The most expensive, but more accurate method is
to count the unknown voxels that would be covered by
a representative sampling of observations resulting from
different robot configurations at that attachment position.
Calculating H(a) for each a ∈ A would be computationally
expensive. Therefore only a randomly selected portion λ of
attachment points within rl+rl of any frontiers are evaluated.

C. Selecting and Moving to the Next Best Attachment Point

The set of candidate attachment points for which an infor-
mation value has been estimated is denoted C. To determine
which node in C is the Next Best Attachment position (NBA),
nodes in C need to be ranked in terms of utility; a measure
of a candidate’s desirability as the next location from which
exploration should occur.

Assuming the robot is currently at attachment point, a0,
the utility value, U(a,a0), of a, is a function of its informa-
tion score, H(a), and its cost, given by a function C(a,a0).
The cost of a is the sum of the costs associated with the
edges that form a connected sequence to it from a starting
node. The cost of moving from one node in the graph A to
another is bounded by a maximum value.

The cost of a sequence of edges is therefore given by
three components: 1) u, the number of edges without path
information, 2) k, the number of edges with path information,
and 3) e, the sum of the cost of known path information. The
cost of reaching the candidate attachment aj given a starting
point of ai is C(aj |ai) =< u, k, e >. The cost of an edge is
either simply (1, 0, 0) (for an unknown step), if there is no
path information for the desired route, or (0, 1, C(p)) (for a

known step) and the cost of the known path, p. If the robot’s
current position is a configuration that straddles the nodes
a3 and a0 then the path p to move to a position straddling
a0 and a1 is p3,0,1.

Summing the cost of two sequences is done by summing
each individual component. If C(a1,a0) = (u1, k1, e1), and
C(a2,a1) = (u2, k2, e2), then:

C(a2,a0) = (u1 + u2, k1 + k2, e1 + e2) (1)

Fig. 2c shows as example where the cost from a0 to a1 is
(1, 0, 0). The dashed line shows the trajectory cost of an end
effector moving from a0 to a2, while the other end effector
is at a1; this trajectory is associated with the edge from a1 to
a2. The cost from a1 to a2 is therefore (0, 1, 10). Thus, the
cost to get to a2 given a starting position of a0 is (1, 1, 10).

A cost (u1, k1, e1) is considered better than (u2, k2, e2) if:

(u1 + k1 < u2 + k2) ∧ (u1 < u2) ∧ (e1 < e2) (2)

This ensures that:

1) Shorter sequences are preferred over longer ones.
2) Given sequences of equal length, those with higher

proportion of known paths are chosen.
3) Given equal number of known paths, the smallest cost

paths should be chosen.

This ordering reflects the optional path strategy of a robot,
such as the climbing robot in our scenario, where the actions
involved in attaching and detaching to the surface take
significant periods of time.

Determining the cost to reach each candidate would be
computationally expensive and unnecessary. Instead, a vari-
ant of A* is used to find the shortest path from the robot’s
current position, s to the most worthwhile candidate. The
variant of A* differs from regular A* in the following ways:

1) All candidates with evaluated information scores above
a given threshold are simultaneously given as goals
g0, g1, . . . , gn.

2) The heuristic score for node ae is:

max
i∈[1,...,n]

U(gi,s) (3)

3) Given the robot’s starting position, s, the node cur-
rently being expanded by A*, a, the node whose

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight



heuristic score is being calculated, ah, the utility value
for a goal node, g is:

U(g,s) =
H(g)

(C(a,s) + C(ah,a) + hC(g,ah))3
(4)

where hC(a,s) is a heuristic cost estimated as the Eu-
clidean distance to the target divided by the maximum
step length of the robot. The tuple values represented
by the C() function are converted into scalar values.
In this paper, this scalar value of C() was the sum of
the u and k values of the tuple.Whilst other functions
could have been chosen, the run-time of A* in this
paper is dominated by the cost of discovering the
configuration, qi,j associated with ei,j . The number of
edges that might have configurations evaluated by A*
is proportional to the volume of a sphere whose radius
is the number of edges from the robot’s current position
to the selected candidate. The function describing the
volume of a sphere is a third degree polynomial; the
radius of the sphere is cubed. The utility function is
therefore selected to include the inverse to penalise
expanding the sphere of edges evaluated by A*.

4) When a node i is expanded, the node j at the other
end of each edge, ei,j is only added to the open set (of
nodes to consider next) if there is a “straddling” con-
figuration, qi,j , associated with the edge. If there is no
such configuration, then a configuration is generated.
If no valid configuration can be found, then the edge
is deleted, and the node at the other end is not added
to the open set.

5) If node a is expanded and it is one of the goals, but
its heuristic score is not equal to its utility, then A*
continues as if this was not a goal node, and this node’s
heuristic score is set to be its own utility, and re-added
to the open set.

6) A* terminates when it is expanding a candidate node
whose best score is itself, and not a different goal.

Once A* finds a sequence of nodes and edges from the
robot’s current position to a target node, then a path planner
such as RRT which takes the robot’s kinematics into account
[17] is used to move the robot to the new location.

If path planning is successful, the robot moves to the new
location and makes new observations of the environment.
If A* or path planning is unsuccessful, then the edge for
which no trajectory was found is either quarantined (marked
as unusable) or deleted. An edge is quarantined if the path
planner would have found a solution if unknown space
wasn’t considered as an obstacle. If discounting unknown
space still doesn’t result in a trajectory, then the edge is
deleted. Edges are un-quarantined after new observations
have been made of the environment. When A* is unable to
find a path to a goal, λ percent of the remaining attachment
points that have no information scores are evaluated and
added to the goal nodes given to A*.

The exploration approach terminates when all candidates
have had their information scores evaluated and A* still fails
to reach a target.

Robot steps

(a) The plank environment.

Previous steps Robot’s 
�nal step

Robot base

(b) The beams environment.

Fig. 4: Results of Simulation 1. The robot is shown in the start and end
positions. Attachment points are shown as red and blue discs. Blue discs
are candidate next best attachment positions. Lines from the center of the
discs represent the normals and orientations. Multiple discs occupy the same
position coordinates.

Ceiling

Floor

Upper beam

Robot starting
 location

Outer box

2.7m

6.5m

2.5m

Fig. 5: Wire frame of the environment in Simulation 2.

III. RESULTS

The approach presented in this paper is demonstrated using
several simulated environments in which a 7DOF robot [14]
must select the next best attachment position. The code was
implemented in C++ and run on a desktop computer with an
Intel i7-4770 3.40GHz processor with 16GB RAM.

Two sets of simulations were performed.

A. Simulation 1

The selection of the Next Best Attachment position was
tested in several environments. In each environment, some
surfaces and regions where already known, as was the set
of frontiers. The approach used to predict information gain
H(g), given a node g, is the second approach in Fig. 3:
counting unknown voxels traversed when raycasting in a
sphere of radius rl + rs from the robot’s base.

In the environments shown in Fig. 4, the surfaces were
sampled to form a grid with a resolution of 0.1 meters.
Edges were created between nodes in the graph if they
were between 0.4 and 0.6 meters apart. In the simple plank

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight



(a) Nodes shown as discs near the surface. Those
in blue have had H() evaluated.

(b) The robot transitioning between the upper
beam and the lower right beam.

(c) The robot in its final resting place after explo-
ration has ended.

Fig. 6: Visualisations of Simulation 2.

environment, two possible orientation were set. In the beams
environment, four possible orientations were set to allow mo-
tion in each direction. Attachment points are shown as discs.
Blue discs are candidate Next Best Attachment positions. The
normals and orientations of attachment points are shown as
lines from the center of the disc. In both environments, a path
is successfully found between the start position and a goal
position. The robot took 2.3 minutes to determine and plan
a path to the NBA in the plank environment, and a further
3.8 minutes to move to the NBA, with robot motion being
simulated at real speeds. The same tasks took 8.2 and 3.7
minutes respectively in the beam environment.

B. Simulation 2

Simulation 2 involved repeated selection of the NBA,
interleaved with observations of the environment (Local
Exploration). The exploration strategy used for Local Explo-
ration was the Nearest Neighbour Exploration Approach in
[12], suited to manipulators with a fixed base position. Fig.
5 shows the environment used, consisting of three beams
suspended within a larger box such that the robot could
physically transition between the beams but would be unable
to reach the outer surface. The sensor was modelled on a
PrimeSense depth camera, with a field of view of 43 × 57
degrees, but with an intentionally limited range of 1 meter,
to force the robot to move to new base locations in order to
explore the environment.

This simulation was performed several times, but a single
instance is presented here in detail as it is representative.
Care needs to be taken in selecting the density of the surface
sampling and the number and type of resulting attachment
nodes. Too few nodes might result in a poor NBA, or in the
inability of the robot to find paths between nodes. Large sets
of nodes will result in higher computation times.

The robot is initially placed in the environment and the
only known information is that a small volume of space
around the robot is known to be freespace. Local Exploration
takes place, then the NBA is determined using the approach
presented in Section II. As part of this process, 1 457 new
attachment nodes are created (representing both “feet” and

“hand” positions), and 28 088 edges. There are therefore only
728 candidate nodes, since exploration cannot take place
from a “hand” node.

151 of the 728 candidates (λ = 20%) have their infor-
mation scores evaluated. The evaluated nodes are shown as
blue discs in Fig. 6a, while unevaluated nodes are marked as
red discs. The line perpendicular to the disc is the normal,
and the line from the center of the disc along the surface of
the disc is the orientation of the node. The nodes’ positions
are relative to the robot’s footpad coordinate frame, and are
therefore a distance off the surface.

A* is then performed using these evaluated candidates as
goal nodes. A sequence of edges is found, comprising of at
least two edges. The path planner is given this sequence of
nodes and edges and attempts to find a valid trajectory to
those target nodes from the robot’s current position. Having
successfully arrived at a new position in the environment
from which observations can be made, the Local Exploration
stage begins again. Fig. 6b shows the robot moving from the
second to the third beam.

After the 10th instance of Local Exploration, the robot
is in the position shown in Fig. 6c. Nodes are evaluated,
A* is performed, and no path is found to any candidate
attachment point. Although A* does not find a path, 20%
of the remaining unevaluated nodes are evaluated and A*
is run again. Each subsequent run of A* is faster, since
a higher proportion of edges will have been evaluated by
previous iterations of A* and either been assigned a robot
configuration that “straddles” the nodes, or the edge will
have been deleted. This process of evaluating nodes and then
performing A* repeats until no node remains unevaluated,
and A* still finds no path from the robot position to any
desirable node, at which point exploration terminates.

There are a total of 12 586 nodes in the graph, 793 228
edges, and 485 observations were made as part of 10
occurrences of Local Exploration with the robot affixed to
different locations in the environment.

The total number of voxels within the larger box is its
volume (6.5m × 2.5m × 2.7m), divided by the volume of
a single voxel (0.053m3), or approximately 351 000 voxels.

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight



0 200 400
0

0.2

0.4

0.6

0.8

1

Number of Observations

In
fo

rm
at

io
n 

re
m

ai
ni

ng

(a)

0

0.5

1

1.5

2

x 10
4

Iteration of Node Evaluations

In
fo

rm
at

io
n 

es
tim

at
es

(b)

Fig. 7: (a) Estimated information remaining over time. (b) Box plot of
estimated information of evaluated nodes at each iteration (blue: 25-75th
percentile, red: outliers). Green shows the selected attachment point. Vertical
lines separate occurrences of Local Exploration.

This is an overestimate of the total information that should
be able to be captured by the robot. Fig. 7a is a plot of the
amount of unknown information within the outer box over
time, showing the effectiveness of the exploration approach
in observing the majority of the environment. At the end of
exploration, only 70 064 unknown cells remain within the
outer box; 80% of the volume has been explored.

Fig. 7b shows the estimated information values of each
evaluated node at each timestep that a Next Best Attachment
point was selected. The fact that the estimated information
values of each evaluated node follows the same trend as
that of the information in Fig. 7a validates its use as an
information metric.

Exploring 100% of the volume is impossible. The sensor
range is such that the corners of the outer box are unobserv-
able from any position on the beams. The configuration of
the beams also means that the robot cannot, from one side,
completely reach around to freely observe all of the regions
of space on the other side of the beam.

The total time taken was 161 minutes: 61 minutes spent
for 10 instances of Local Exploration, 0.4 minutes updating
the graph, 2.6 minutes updating the set of frontiers, and 22
minutes were taken to update and estimate the information
value of the candidate attachment points. Graph operations,
performing m-A*, and path-planning using RRT, required a
total of 35 minutes. The robot took the remaining 38 minutes
to complete the planned trajectory (the robot simulation
included moving the robot at realistic speeds).

IV. CONCLUSION

This paper has presented a graph-based exploration ap-
proach that allows a climbing robot—able to adhere to
surfaces with arbitrary normals—to choose a new attach-
ment position which enables making high information gain
observations in such an environment. The approach, which
effectively combines the relative strengths of A*—modified
to search simultaneously for multiple goals—and RRT, has
been demonstrated in simulation and is shown to enable the
robot to select a new base location that allows new informa-
tion to be collected whilst also minimising movement. The
approach has been further shown to enable a robot to explore
the majority of several simulated environments. While the

approach has been demonstrated on a 7 DOF robot, the
framework is suitable to any climbing robot that must remain
attached to the surface throughout its motion.

Work is under way to validate this approach in real
environments with the physical robot.

REFERENCES

[1] P. Blaer and P. Allen, “Data acquisition and view planning for 3-d
modeling tasks,” in Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, 2007, pp. 417–422.

[2] D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi, “Autonomous naviga-
tion and exploration in a rescue environment,” in Safety, Security and
Rescue Robotics, Workshop, IEEE International, 2005, pp. 54–59.

[3] C. Dornhege and A. Kleiner, “A frontier-void-based approach for au-
tonomous exploration in 3D,” in Safety, Security, and Rescue Robotics
(SSRR), IEEE International Symposium on, 2011, pp. 351–356.

[4] L. Freda and G. Oriolo, “Frontier-based probabilistic strategies for
sensor-based exploration,” in Robotics and Automation (ICRA), Pro-
ceedings of IEEE International Conference on, 2005, pp. 3881–3887.

[5] L. Freda, G. Oriolo, and F. Vecchioli, “Sensor-based exploration for
general robotic systems,” in Intelligent Robots and Systems (IROS),
IEEE/RSJ International Conference on, 2008, pp. 2157–2164.

[6] D. Kanoulas and M. Vona, “Bio-inspired rough terrain contact patch
perception,” in Robotics and Automation (ICRA), IEEE International
Conference on, 2014, pp. 1719–1724.

[7] M. Lozano Albalate, M. Devy, J. Miguel, and S. Marti, “Perception
planning for an exploration task of a 3d environment,” in Pattern
Recognition, Proceedings. 16th International Conference on, vol. 3,
2002, pp. 704–707.

[8] A. Mazumdar and H. H. Asada, “Mag-foot: A steel bridge inspection
robot,” in Intelligent Robots and Systems (IROS), IEEE/RSJ Interna-
tional Conference on, 2009, pp. 1691–1696.

[9] G. Paul, P. Quin, A. To, and D. Liu, “A sliding window approach to
exploration for 3d map building using a biologically inspired bridge
inspection robot,” in CYBER Technology in Automation, Control, and
Intelligent Systems, IEEE International Conference on, 2015, pp.
1097–1102.

[10] G. Paul, P. Quin, A. W. K. To, and D. Liu, “A sliding window approach
to exploration for 3d map building using a biologically inspired bridge
inspection robot,” in Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER), 2015 IEEE International Conference on,
June 2015, pp. 1097–1102.

[11] G. Paul, “Autonomous exploration and mapping of complex 3d
environments by means of a 6dof manipulator,” Ph.D. dissertation,
University of Technology Sydney, 2010.

[12] P. Quin, G. Paul, D. Liu, and A. Alempijevic, “Nearest neighbour
exploration with backtracking for robotic exploration of complex 3d
environments,” in Australasian Conference on Robotics and Automa-
tion (ACRA), Proceedings of, 2013.

[13] R. Shade and P. Newman, “Choosing where to go: Complete 3D
exploration with stereo,” in Robotics and Automation (ICRA), Proc.
IEEE International Conference on, 2011, pp. 2806–2811.

[14] P. Ward, D. Liu, K. Waldron, and M. Hassan, “Optimal design of
a magnetic adhesion system for climbing robots,” in Climbing and
Walking Robots (CLAWAR), International Conference on, 2013.

[15] S. Wirth and J. Pellenz, “Exploration transform: A stable exploring
algorithm for robots in rescue environments,” in Safety, Security and
Rescue Robotics (SSRR), IEEE International Workshop on, 2007, pp.
1–5.

[16] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Robotics and Automation (CIRA), Proc. Symp. IEEE Int Computa-
tional Intelligence in, 1997, pp. 146 – 151.

[17] C. Yang, G. Paul, P. Ward, and D. Liu, “A path planning approach via
task-objective pose selection with application to an inchworm-inspired
climbing robot,” in IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), 2016.

[18] A. Yershova, L. Jaillet, T. Simeon, and S. LaValle, “Dynamic-domain
rrts: Efficient exploration by controlling the sampling domain,” in
Robotics and Automation (ICRA), Proc. of the IEEE International
Conference on, April 2005, pp. 3856–3861.

[19] Y. Yu and K. K. Gupta, “C-space entropy: A measure for view
planning and exploration for general robot-sensor systems in unknown
environments.” I. J. Robotic Res., vol. 23, no. 12, pp. 1197–1223, 2004.

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight

pdquin
Highlight


