
Elsevier required licence: © <2016>. This manuscript version is made available under the

CC‐BY‐NC‐ND 4.0 license http://creativecommons.org/licenses/by‐nc‐nd/4.0/

Programs as Data Structures in λSF -Calculus

Barry Jay

Centre for Quantum Computing & Intelligent Systems
School of Software

University of Technology Sydney
Sydney

Australia

Abstract

Lambda-SF-calculus can represent programs as closed normal forms. In turn, all closed normal forms
are data structures, in the sense that their internal structure is accessible through queries defined in the
calculus, even to the point of constructing the Goedel number of a program. Thus, program analysis and
optimisation can be performed entirely within the calculus, without requiring any meta-level process of
quotation to produce a data structure.
Lambda-SF-calculus is a confluent, applicative rewriting system derived from lambda-calculus, and the
combinatory SF-calculus. Its superior expressive power relative to lambda-calculus is demonstrated by the
ability to decide if two programs are syntactically equal, or to determine if a program uses its input. Indeed,
there is no homomorphism of applicative rewriting systems from lambda-SF-calculus to lambda-calculus.
Program analysis and optimisation can be illustrated by considering the conversion of a programs to combi-
nators. Traditionally, a program p is interpreted using fixpoint constructions that do not have normal forms,
but combinatory techniques can be used to block reduction until the program arguments are given. That
is, p is interpreted by a closed normal form M. Then factorisation (by F) adapts the traditional account
of lambda-abstraction in combinatory logic to convert M to a combinator N that is equivalent to M in the
following two senses. First, N is extensionally equivalent to M where extensional equivalence is defined in
terms of eta-reduction. Second, the conversion is an intensional equivalence in that it does not lose any
information, and so can be reversed by another definable conversion. Further, the standard optimisations
of the conversion process are all definable within lambda-SF-calculus, even those involving free variable
analysis.
Proofs of all theorems in the paper have been verified using the Coq theorem prover.

Keywords: lambda-calculus, SF-calculus, self-interpretation, xi-rule

1 Introduction

λ-calculus [1] provides a completely general account of the extensional behaviour of

functions, of all that can be discovered by evaluating them. This may be enough for

applications, but the implementation of programming languages requires access to

the internal structure of programs. As this is not possible from within the pure λ-

calculus, meta-level analysis is commonly required. For example, self-interpretation

1 Thanks to Thomas Given-Wilson, Neil Jones, Jens Palsberg and Jose Vergara for helpful discussions as
this work gestated, and the anonymous referees.
2 Email:Barry.Jay@uts.edu.au

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 325 (2016) 221–236

1571-0661/© 2016 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.09.040

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:Barry.Jay@uts.edu.au
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.09.040
http://dx.doi.org/10.1016/j.entcs.2016.09.040
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

M,N,P := x | S | F | λx.M | MN

(λx.M)N −→ {N/x}M
SMNP −→ MP (NP)

FOMN −→ M (O is S or F)

FPMN −→ NP � �P (P is a compound of P � and �P).

Fig. 1. λSF -calculus

of λ-calculus [12,17,2,14,15,4,3,18,9], usually begins by applying a meta-function

quote which converts an arbitrary λ-term into a data structure, whose internal

structure can be queried at will.

Recent work suggests an alternative approach, using calculi that support a more

general class of queries. Pure pattern calculus [8,5] uses pattern matching to define

generic queries of data structures built from arbitrary constructors. However, it is

unable to analyse pattern-matching functions themselves. SF -calculus [7] can query

any closed normal form by using its operator F to reveal its internal structure, e.g.

the components P1 and P2 of a closed normal application P1P2. However, it does

not provide first-class support for λ-abstraction or any other mechanism for binding

variables.

This paper shows how to factorise abstractions in a new calculus, the λSF -

calculus, by converting them to combinators when it is safe to do so, i.e. when

this will not break any redexes in the body of the abstraction. The syntax and

reduction rules of λSF -calculus are just those of λ-calculus and SF -calculus, as

given in Figure 1, on the understanding that the compounds now include some

abstractions as well as some applications. The result is a proper extension of λ-

calculus in the sense that there is no function from λSF -calculus to λ-calculus that

preserves its structure as an applicative rewriting system.

This expressive power can be used to support arbitrary queries of closed normal

forms. In this sense, we can identify the data structures with the closed normal

forms. What about programs? The standard interpretation of programs does not

yield normal forms since recursion is modeled by a fixpoint function that does not

have a normal form. However, traditional combinators can be used to identify

programs, even recursive ones, with closed normal forms. Hence, we can identify

the programs with closed normal forms, to get

programs = closed normal forms = data structures.

That is, programs can be represented by terms that are simultaneously functions,

ready to act on arguments, and data structures, ready for analysis and optimisation,

and this without any need for quotation. Except when justifying this equation, we

will identify the programs with the closed normal forms.

This provides a more flexible foundation for computation than any of the tradi-

tional models, as these emphasise only one aspect of a program’s nature. In partic-

ular, λ-calculus emphasises its functional aspect, while Turing machines emphasise

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236222

its structure, as a string of symbols on a tape. This new flexibility suggests fresh

approaches to many issues in theory and practice, especially the implementation of

programming languages.

The structure of the paper is as follows. Section 1 is the introduction. Section 2

introduces λSF -calculus and its basic properties. Section 3 shows that equality of

programs is definable. Section 4 defines extensional equivalence. Section 5 shows

that there is no homomorphism of applicative rewriting systems from λSF -calculus

to λ-calculus. Section 6 show how to represent recursive programs as closed normal

forms. Section 7 converts programs to extensionally equivalent combinators. Sec-

tion 8 optimises the conversion by program analysis. Section 9 converts programs

to combinators in a way that preserves intensions as well as extensions. Section 9

discusses the proof verifications in Coq. Section 10 suggests some fresh approaches

to existing issues. Section 11 draws conclusions.

2 λSF -calculus

The terms and reduction rules of λSF -calculus are given in Figure 1. The terms

(meta-variables M,N,P, . . . consist of variables x, y, z, . . . , f, g, . . ., the operators S

and F , abstractions λx.M with bound variable x and body M , and applications MN

of M to N . The reduction rules for λ and S are standard. The rules for F have

the same high-level semantics as in SF -calculus in that F branches according to

whether its first argument P is an atom, i.e. an operator, or a compound. If P is

an atom then return the first branch: if P is a compound then apply the second

branch to its two components. The intention is that the compounds are terms whose

decomposition into components does not break any redexes. They are, in a sense,

head normal forms. The technical point is that there is a syntactic test for this

property, even in the presence of abstractions. The reflexive, transitive closure of

−→ is denoted −→∗.

2.1 Compounds

In combinatory calculi, the compounds are all the partially applied operators. For

example, in SF -calculus, the compounds are all terms of the form SM or SMN

or FM or FMN . These forms are compounds in λSF -calculus, too. All other

compounds of λSF -calculus are abstractions λx.M whose decomposition is safe

because either M is already an atom or compound, or outermost reduction in M

awaits the instantiation of x, i.e. x is active in M in the following sense.

Define the set active(M) of active variables of a term M to be a set that has

at most one element, that is defined by the pattern-matching function in Figure 2

(active(M)− {x} removes x from active(M)).

Here are some examples of compounds. The body of λx.x y has x active. The

body of λx.λy.x has x active. The body of λx.λy.y is a compound. The body of

λx.F is an atom. The body of λx.Fx is a compound. The body of λx.FxM is a

compound. The body of λx.FxMN has x active, since F is an intensional operator

that needs to know the value of x to reduce. The body of λx.λy.F (FxMN)PQ has

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236 223

active =

| x ⇒ {x}
| O ⇒ {}
| λx.M ⇒ active(M)− {x}
| OM ⇒ {}
| OMN ⇒ {}
| SMNP ⇒ {}
| FMNP ⇒ active M

| MN ⇒ active M otherwise.

Fig. 2. Active Variables

x active.

2.2 Star Abstraction

The decomposition of an abstraction λx.M will use the star abstraction λ∗x.M of

M with respect to x. This is an adaptation of the standard technique for defining

the abstraction of a combinator M with respect to a variable. Since this is defined

using the combinators S,K and I, the latter two must be defined in terms of S and

F , as follows. Define

K = FF

so that KMN = FFMN −→M for any choice of M and N . Then define

I = SKK

so that IM = SKKM −→ KM(KM) −→M for any M .

The star abstraction λ∗x.M of M with respect to x is defined by

λ∗x.x= I

λ∗x.y=Ky (y �= x)

λ∗x.O=KO (O an operator)

λ∗x.λy.M = λx.λ∗y.M
λ∗x.MN =S(λx.M)(λx.N) .

This definition modifies the traditional definition of λ∗x.M for combinators M in

two ways. First, when the body is an application MN the result uses λx.N instead

of λ∗x.N . To see why this is necessary, consider λ∗x.F (KN1N2). Now F (KN1N2)

is a compound, so it is safe to separate F from KN1N2 but λ∗x.KN1N2 breaks the

redex KN1N2 so a recursive call to λ∗x would here be unsafe. Second, there needs

to be a rule for λ∗x when the body is an abstraction λy.M . The result is λx.λ∗y.M
and not λ∗x.λ∗y.M since it is important that only one abstraction is eliminated at

a time, namely, the innermost one.

Here are some simple examples of star abstraction. In SKI-calculus, the λ-

abstraction λx.λy.y can be represented by

λ∗x.λ∗y.y = λ∗x.I = KI

where λ∗ is used to convert abstractions into combinators in the traditional man-

ner. In λSF -calculus, the λx.λy.y is already a closed normal form. However, its

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236224

factorisation will introduce λ∗x.λy.y which is calculated as follows:

λ∗x.λy.y = λx.λ∗y.y = λx.I .

This has eliminated the innermost abstraction, just like the first step in the calcu-

lation of λ∗x.λ∗y.y in SKI-calculus. A second factorisation exposes

λ∗x.SKK = S(λx.SK)(λx.K) .

Further factorisation eliminates the remaining abstractions to produce the combi-

nator

S(S(KS)(S(KF)(KF)))(S(KF)(KF))

which when applied to terms M and N reduces to N , just like the original ab-

straction. Of course, it is much bigger than the original term, as it does not take

advantage of the standard optimisation, in which λ∗x.I takes advantage of the fact

that x is not free in I to produce KI. This will be addressed in Section 8.

2.3 Components

The left component M� of a term M is defined as follows

(MN)�=M

M�= abs left (otherwise)

where abs left = SKF will be used as the left component of any term that is not

an application, especially of any abstraction. The key point about abs left is that it
cannot be the left component of an application to some N since abs left N = SKFN

is a fully applied instance of S. In general, words in sans-serif, such a abs left may

be used to name particular terms of λSF -calculus, as well as the meta-variables M

and N , etc.

Now the right component �M of M is defined by

�(MN) =N

�(λx.M) = λ∗x.M
�M =M (otherwise.)

It follows that if M is a compound and M −→ N then M� −→ N� and �M −→
�N . That is, no redexes are broken by taking components of compounds. To put is

another way, there is a derived reduction rule

(ξ)
M −→ N

λ∗x.M −→ λ∗x.N
(λx.M is a compound.)

2.4 Confluence

Theorem 2.1 (confluence lamSF red) Reduction in λSF -calculus is confluent.

Proof. The proof can be seen as an instantiation of Klop’s result [13] for extensions

of λ-calculus, in that the additional reduction rules are left-linear and orthogonal.

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236 225

The only catch is that the reduction rule for F has a side-condition, so some care

is required. �

2.5 Normal Forms

The normal forms are defined to be the variables, operators, abstractions of normal

forms, and applications MN in which M and N are both normal and MN is either

a compound or has an active variable.

Theorem 2.2 (irreducible iff normal) A term is irreducible if and only if it is

a normal form.

A program is a closed normal form. A factorable form is either an operator or a

compound.

Theorem 2.3 (programs are factorable) All programs are factorable forms.

Hence, any closed term of the form FPMN must reduce. This is a form of

progress result.

3 Definable Equality

It follows from Theorem 2.3 that the equality term defined in SF -calculus [7] serves

to define equality in λSF -calculus too. The algorithm is as follows. Operators are

equal if they have the same extensional behaviour, which can be decided by some

term eqop. Atoms and compounds are never equal. Compounds are equal if their

components are. The actual term is given

fix (λe.λx.λy.F x (eqopx y) (λxl.λxr.Fy(KI)(λyl.λyr.e xl yl(e xr yr)(KI)))) .

where fix is a fixpoint term. This, and other approaches to recursion, will be

addressed in Section 6.

Theorem 3.1 (equal programs) equal M M −→∗ K for all programs M .

Theorem 3.2 (unequal programs) equal M N −→∗ KI for all distinct pro-

grams M and N .

Proof. The proof is by induction on the rank of M , as defined in the Coq imple-

mentation. The only case of interest arises when M is an abstraction and N is an

application. Now the left component of N cannot be abs left since any application

of abs left reduces, and so the left components of M and N cannot be equal. �

4 Extensionality

Mathematically, two functions f and g are extensionally equivalent if they have the

same graph. For unary functions, this means that f x = g x for all x. In λ-calculi,

extensionality is captured by adding the η-reduction rule

λx.f x −→ f if x is not free in f .

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236226

When added to the basic λ-calculus, with just the β-rule, we get the λβη-calculus,

which is confluent. Define =βη to be the equivalence relation on λ-calculus induced

by β-reduction and η-reduction. However, adding the η-rule to λSF -calculus is

unsound, as can be seen from the following calculations. Define ≡βηSF to be the

equivalence relation on λSF induced by its reduction rules and the η-rule. First,

the operators S,K and I become equal to their usual interpretations, by

S ≡βηSF λx.λy.λz.Sxyz ≡βη λx.λy.λz.xz(yz)

K ≡βηSF λx.λy.Kxy ≡βηSF λx.λy.x

I ≡βηSF λx.Ix ≡βηSF λx.x .

Then we have SKM ≡βηSF λx.x ≡βηSF (SKN) for any terms M and N . Further,

F (SKM)I(KI) ≡βηSF KI(SK)M =βηSF M

shows that M ≡βηSF N and this for any M and N . The calculus has collapsed.

A more useful relation is obtained by excluding the rule for factoring compounds

from the equivalence relation, to get the equivalence relation ≡βηSK . Define terms

M and N of λSF to be extensionally equivalent if M ≡βηSK N . For example, we

have the following lemma.

Lemma 4.1 (star equiv abs) λ∗x.M ≡βηSK λx.M for all terms M .

Here are three more examples of definable program manipulations that preserve

extensional behaviour.

Define a combinator wait so that

wait M N −→∗ S(S(KM)(KN))I

using standard combinatorial techniques. The right-hand side is normal if M and

N are, but application to some P reduces this to M N P so that wait M N waits

for P before applying M to N . It follows that

Lemma 4.2 (wait ext) For all terms M and N , wait M N ≡βηSK M N .

Define a combinator tag with the property that

tag T M −→∗ S(KM)(SKT) .

Now SKT is an identity function for any T since

SKTP −→ KP (TP) −→ P .

It follows that when tag M N is applied to some P then it reduces by

S(KM)(SKT)P −→ KMP (SKTP) −→∗ MP .

Lemma 4.3 (tag ext) For all terms T and M , tag T M ≡βηSK M .

The resulting system of tags is as rich as the calculus as a whole, and so can be

used to carry information about, say, constructors or types. In this paper, we will

use just three tags in program analysis as follows: abs = tag F will tag abstractions;

com = tag S will tag combinators; and app = λx.λy.tag K (wait x y)) will tag

applications.

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236 227

Define a combinator eager such that eager M N reduces to M N if and only

if N is factorable. That is, replacing M N by eager M N forces the application

to evaluate N before evaluating the application of M to it. The target is a term

similar to

FN(λx.xN)(λy.λz.λx.x(yz))M

where x, y and z are fresh. Now M is applied to N only if N has been reduced to

factorable form. The new abstractions can be eliminated by ensuring

eager M N −→∗ FN(SI(KN))(S(K(S(K(SI))))(S(KK)))

This will be used later to block non-terminating reductions. However, if your

goal is to avoid re-computation of N then this approach has the weakness that

if N reduces to an operator then it will be evaluated twice! This problem can

be eliminated by introducing a variant of F in which the atomic branch uses its

argument.

Lemma 4.4 (eager is eager) eagerM N −→∗ M N for all programs M and N .

5 Homomorphisms

The common features shared by all these calculi are that they are applicative rewrit-

ing systems [20] that have variables as a term form. Accordingly, it makes sense

to define a homomorphism of applicative rewriting systems with variables to be a

function from one such to another which has the following characteristics:

• it preserves the equivalence relation derived from reduction;

• it preserves applications;

• it preserves variables;

• it does not introduce free variables.

It is enough to require preservation up to equivalence, but for convenience, we will

demand strict equality. Similarly, the requirement that a homomorphism does not

introduce free variables can be weakened to require that closed terms be mapped

to closed terms, or even that operators be mapped to closed terms. Note that the

definition does not require that λ-abstractions be preserved, or that the image of S

takes any particular form. All conditions are expressed in terms of concepts common

to all the calculi under consideration, namely rewriting, variables and applications.

Theorem 5.1 (no homomorphism) There is no homomorphism from λSF -

calculus to λ-calculus.

Proof. Assume that there is such a homomorphism. Then it can be composed

with the embedding of λ-calculus into λβη-calculus to get a homomorphism [[−]]. It
follows that

[[S]] ≡βη λx.λy.λz.[[S]]xyz ≡βη λx.λy.λz.[[Sxyz]] ≡βη λx.λy.λz.xz(yz) .

Similarly, we can show that [[K]] ≡βη λx.λy.x and [[I]] ≡βη-equivalent to λx.x. Finally,

in SF -calculus we have F (SKM)F (KI) −→ KI(SK)M −→∗ M , for each term

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236228

M , and so

[[F (SKM)I(KI)]]≡βη [[F]]([[S]][[K]][[M]])[[I]]([[K]][[I]])

≡βη [[F]](λx.x)(λx.x)(λx.λy.y) .

Hence, by the homomorphism property, we have

[[M]] ≡βη [[F]](λx.x)(λx.x)(λx.λy.y) .

Now the right-hand side is independent of M and so we have, for any N , that

[[M]] ≡βη [[N]]. In particular we have x = [[x]] ≡βη [[y]] = y for any variables x and y,

which yields a contradiction. �

Corollary 5.2 There is no homomorphism from SF -calculus to λ-calculus.

Proof. The proof of Theorem 5.1 applies equally to SF -calculus. �

6 Programs as Normal Forms

The identification of programs with (closed) normal forms in an untyped setting

is rather unusual. Of course, we cannot isolate the terminating computations, as

this would solve the Halting Problem. If, further, we allow any computation to be

a program, i.e. albeit one that takes no inputs, then the game is over. However,

by separating the program from its inputs, we can use combinatory techniques to

block any troublesome reductions in the program until the input is given. In this

manner, programs can be made strongly normalising, and so can be identified with

(closed) normal forms.

A crude solution would be to replace all abstractions with the corresponding

star abstractions, as these are closed normal forms by construction. However, this

is surely more violent than necessary.

Ideally, the identification should be demonstrated using a small programming

language, with a conversion function from programs to closed normal forms of λSF -

calculus, but this is beyond our current scope. There may be several ways to do

this, and the options will change dramatically if the language is typed. Rather

than explore these options, which would take some time, let us rather show how to

overcome the key difficulty, namely the representation of recursive programs.

Consider a recursive program of the form

let rec f x = M

where M may contain f and x as free variables. Its standard representation is by

a term of the form fix (λf.λx.M) where fix is a fixpoint function defined to be ωω

where ω = λx.λf.f(xxf) . It follows that

fix = λx.λf.f(xxf)ω −→ λf.f(ωωf) = λf.f(fix f) .

so that fix f −→ f (fix f). This expresses the recursion very cleanly, but now

program representations do not have a normal form.

However, we can delay the application of ω to ω by replacing fix by the exten-

sionally equivalent term

fix2 = λf.wait (wait ω ω) f .

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236 229

Its application to a normal form f also has a normal form, but further application

to some x reduces to ω ω f x which is fix f x. Now the original program can be

interpreted by fix2 (λf.λx.M). In the same manner, we may define fix3 and fix4 etc,

so that recursive programs can be made to wait for any number of arguments before

risking non-termination.

This accounts for the outermost recursion in a program, but when recursive

functions are composed then this technique produces terms of the form

λx.fix2 f (fix2 g x)

which re-introduces arbitrary computations into programs through fix2 g x. To

block this, introduce eager evaluation, as described in Section 4 and define yet

another fixpoint term by

fix eager = λf.λx.eager (wait (wait ω ω) f) x .

Now the composition of recursive programs normalises since evaluation of the re-

cursion is blocked until the bound variable x takes a value. In this manner, the core

constructions used to create recursive programs can be controlled by combinators

to ensure that they do not introduce non-termination.

7 Extensional Conversion to Combinators

The extensional conversion of program to combinators is given by the recursive,
pattern-matching function

to combinator :=

| O ⇒ O

| λx.M ⇒ to combinator (λ∗x.M)

| MN ⇒ (to combinator M) (to combinator N))

which eventually converts each abstraction λx.M in its argument to λ∗x.M .

Theorem 7.1 (to combinator makes combinators) If M is a closed term

then to combinator M is a combinator.

Since it is easy to test for abstractions and compounds, there is no difficulty in

representing to combinator as a program, namely,

to comb = fix(λf.λx.F x x (λxl.λxr.equal abs left xl (f xr) ((f xl) (f xr))).

Theorem 7.2 (to combinator is extensional) to combinator M ≡βηSK M for

all terms M .

Theorem 7.3 (to combinator to comb) For all programs M we have

to comb M −→∗ to combinator M .

Summarising, if M is a program then to comb M reduces to the combinator

to combinator M which is extensionally equivalent to M .

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236230

8 Program Analysis and Optimisation

The extensional conversion above can be optimised in various ways. In particular,

there is no need to convert programs that are already combinators. Also, it is more

efficient to convert λx.M to KM if x is not free in M . Define is comb by

is comb = fix(λf.λx.F xK(λxl.λxr.equal abs leftxl (KI) ((f xl) (f xr) (KI)) .

Theorem 8.1 (is comb true) For all programs M , if M is a combinator then

is comb M reduces to K.

Theorem 8.2 (is comb false) For all programs M , if M is not a combinator then

is comb M reduces to KI.

The test for deciding if a program λx.M uses its argument x can be defined by

a term binds that detects copies of I in λ∗x.M . It is given by

binds = fix (λf.λx.equal I x K (F x (KI) (λxl.λxr.(f xl) K (f xr)))) .

Theorem 8.3 (binds abs false) For all programs λx.M , if M is closed then

binds (λx.M) reduces to KI.

Theorem 8.4 (binds abs true) For all programs λx.M , if x is free in M then

binds (λx.M) reduces to K.

These ideas lead to the definition of the optimised extensional conversion func-
tion given by

to combinator opt :=

| O ⇒ O

| λx.M ⇒ (to combinator opt (if binds (λx.M) then (λx.M) else (KM))

| MN ⇒ if is combinator (MN)

then (MN)

else (to combinator opt M) (to combinator opt N))

It is easy to reprise the treatment of to combinator for to combinator opt, but
since these ideas will recur in the next section, there is no particular reason to go

through the details here.

9 Intensional Conversion to Combinators

Although the conversion functions above preserve extensionality, they lose inten-

sional information, in that an abstraction λx.M becomes indistinguishable from a

star abstraction λ∗x.M or combinator. A conversion function f preserves inten-

sions if it does not lose information, i.e. there is another transformation g such that

g(f M) reduces to M for all programs M .
For example, star abstraction is intensional, since there is an inverse, given by

unstar =

| O ⇒ O

| λx.M ⇒ λx.(unstarM)

| KM ⇒ abs K M

| SMN ⇒ abs S M N

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236 231

where abs K = λx.λy.x and abs S = λx.λy.λz.x z (y z). The corresponding

program, also called unstar, is given by program

unstar = fix (λf.λx.f x x (λxl.λxr.equal abs left xl (λz.f (x z))

(equal K xl (abs K xr) (F xl x (λxll.λxlr.abs S xlr xr) .

Theorem 9.1 (unstar star) Star abstraction is intensional, with inverse unstar.

The extensional conversion from programs to combinators can be made inten-

sional, too, by adding tags to record the presence of abstractions and combinators.

The optimised, intensional conversion of programs to combinators is given by

to combinator int :=

| O ⇒ O

| λx.M ⇒ abs (to combinator int (if binds (λx.M) then (λ∗x.M) else (KM)))

| MN ⇒ if is combinator (MN)

then com (MN)

else app (to combinator opt M) (to combinator opt N)

Theorem 9.2 (to combinator int makes combinators) If M is a closed term

then to combinator int M is a combinator.

Theorem 9.3 (to combinator int is extensional) For all closed terms M we

have to combinator int M ≡βηSK M .

The corresponding program to comb int is given by

to comb int= fix (λf.λx.F x x (λxl.λxr.equal abs left xl

(abs (f(binds xr xr (K(xrK))))

(is comb x (com x) (app (f xl) (f xr))).

Theorem 9.4 (to comb int to combinator int) For all programs M , there is

a reduction to comb int M −→∗ to combinator int M .

For the conversion in the opposite direction, define to program by

to program :=

| O ⇒ O

| abs M ⇒ unstar(to program M)

| com M ⇒ M

| app MN ⇒ (to program M)(to program N)

This can be defined by a term to prog.

Theorem 9.5 (to comb int is intensional) to comb int is intensional, with in-

verse given by to prog.

Summarising, to comb int maps programs to combinators in a manner that is

both extensional and intensional.

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236232

Verification in Coq

The proofs of all the named lemmas and theorems in the paper have been verified

using the Coq proof assistant. Details can be found in the source files [6]. This

section will reprise some of the key definitions and theorems, to gain some feeling

about how well aligned are the manual and automated approaches.
The operators and terms of lamSF are given by

Inductive operator := | Sop | Fop .
Inductive lamSF : Set :=
| Ref : nat -> lamSF
| Op : operator -> lamSF
| Abs : lamSF -> lamSF
| App : lamSF -> lamSF -> lamSF .

The declaration of operator declares a type operator with two constructors

Sop and Fop. Then the declaration of the type lamSF introduces four constructors.

Ref is used to construct variables, represented by de Bruijn indices of type nat, the

type of natural numbers. Op is used to build the operators S and F as Op Sop and

Op Fop. In most situations, all operators are treated uniformly, which is exploited

by giving them a separate type. Abs constructs abstractions and App constructs

applications. In this manner, the function λx.λy.xySF is represented by

Abs(Abs(App(App(App(Ref 1)(Ref 0))(Op Sop))(Op Fop))) .

The biggest gap between this representation and the paper representation is the

use of de Bruijn indices for variables. For example, the requirement maxvar M = 1

means that M has exactly one free variable (indexed by 0).

The Coq versions of the named results in the paper are given in Figure 3. Most

of the unexplained notation, such as confluence should be self-explanatory. Note,

however, that homomorphism is here defined to be a homomorphism from lamSF

to lambda rather than a homomorphism in general. Also, beta eta eq is here the

equivalence relation generated from βηSK-reduction, and not just from β- and

η-reduction.

10 Fresh Approaches

Having established the basic machinery of λSF -calculus and seen something of its

expressive power, it is interesting to consider, at least in outline, how it suggests

fresh approaches to some issues.

Gödelisation Although λ-calculus is Turing-complete, in the sense of being able

to compute any number that a Turing machine can, there are strong limits to its

ability to compute functions of λ-terms. For example, equality of closed normal

λ-abstractions is not definable as λ-abstraction [1]. Nor is it possible to so define

the Gödel number of a closed normal form. With a little effort, the conversion of

programs to combinators can be extended to support Gödelisation.

Self-interpretation Self-interpretation is used to support programming language

implementation within the language itself. In particular, it can be used to impose

an evaluation strategy upon a confluent calculus such as λ-calculus [14] or SF -

calculus [9]. Traditionally, the first step in self-interpretation is to use meta-level

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236 233

Theorem confluence_lamSF_red: confluence lamSF lamSF_red.
Theorem irreducible_iff_normal:
forall M, irreducible M lamSF_red1 <-> normal M.

Theorem programs_are_factorable : forall M, program M -> factorable M.
Theorem equal_programs : forall M, program M -> lamSF_red (App (App equal M) M) k_op.
Theorem unequal_programs :
forall M N, program M -> program N -> M<>N ->

lamSF_red (App (App equal M) N) (App k_op i_op).
Lemma star_equiv_abs : forall M, beta_eta_eq (star M) (Abs M) .
Theorem no_homomorphism: forall h, homomorphism h -> False.
Theorem to_combinator_makes_combinators :
forall M, closed M -> combinator (to_combinator M).

Theorem to_combinator_is_extensional : forall M, beta_eta_eq M (to_combinator M).
Theorem to_combinator_to_comb:
forall M, program M -> lamSF_red (App to_comb M) (to_combinator M).

Theorem is_comb_true: forall M, program M -> combinator M -> lamSF_red (App is_comb M) k_op.
Theorem is_comb_false:
forall M, program M -> (combinator M -> False) ->

lamSF_red (App is_comb M) (App k_op i_op).
Theorem binds_abs_false :
forall M, program (Abs M) -> closed M ->

lamSF_red (App binds (Abs M)) (App k_op i_op).
Theorem binds_abs_true :
forall M, program (Abs M) -> maxvar M = 1 ->

lamSF_red (App binds (Abs M)) k_op.
Theorem unstar_star : forall M, normal M -> lamSF_red (App unstar (star M)) (Abs M).
Lemma wait_ext : forall M N, beta_eta_eq (wait M N) (App M N).
Lemma tag_ext : forall T M, beta_eta_eq (tag T M) M.
Lemma eager_is_eager : forall M N, factorable N -> lamSF_red (eager M N) (App M N).
Theorem to_combinator_int_makes_combinators :
forall M, closed M -> combinator (to_combinator_int M).

Theorem to_combinator_int_is_extensional :
forall M, closed M -> beta_eta_eq M (to_combinator_int M).

Theorem to_comb_int_to_combinator_int:
forall M, program M ->

lamSF_red (App to_comb_int M) (to_combinator_int M).
Theorem to_comb_int_is_intensional :
forall M, program M -> lamSF_red (App to_prog (App to_comb_int M)) M.

Fig. 3. Theorems Verified in Coq

calculations to quote a program, to produce a data structure that is suitable for

analysis. Since programs in λSF -calculus are already data structures, there is no

need for quotation. Indeed, evaluation strategies can be defined within the calculus,

without the need for any meta-level analysis.

Term constructors In the traditional λ-calculus account, the same λ-abstraction

may have several different meanings. For example, the natural number zero may be

represented as λf.λx.x, in which f is applied zero times to x. Also, the boolean for

falsehood may be represented by λx.λy.y in which the second branch, represented by

its second argument, is taken. However, λf.λx.x and λx.λy.y are equivalent under

renaming of bound variables, so that the same term has two different meanings.

Traditionally, these have been distinguished by either introducing constructors, such

as Zero and False, or adding types, such as Nat and Bool, or both. Now, we can

tag these abstractions with information about their status as constructors, or their

types. Similarly, constructor arities can be recorded by using wait.

Pattern calculus In λSF -calculus, it should be possible to give a complete ac-

count of constructor equality and pattern-matching by manipulating intensional

information.

Type checking Similarly, once terms are tagged with type information, the calculus

should support type checking and type inference.

Evaluation strategy Confluent rewriting systems support a natural model of pro-

gram optimisation by changing the order in which sub-expression are evaluated.

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236234

However, sequential execution requires that an evaluation strategy be imposed. As

with intensional information, different strategies give rise to a variety of different

calculi [16]. These can be captured by using terms such as wait and eager to control

evaluation order.

Partial evaluation Once programs are represented by normal forms, it is much

easier to understand the nature of partial evaluation, of static arguments versus

dynamic arguments, etc [11]. As before, these analyses should now be representable

as programs.

Domain specific languages Users are driven to create their own, domain-specific

programming languages because general purpose languages prove to be sub-optimal

for their needs. One approach is to grow a language from a small core [19,10]. This

will be easier once program analysis and evaluation strategies are definable.

11 Conclusions

λSF -calculus combines the best features of λ-calculus and combinatory calculi

within a single calculus in that λ-abstraction provides a natural account of func-

tionality through its β-reduction, while combinators provide a natural account of

data structures, once the factorisation operator F is supported. Together, they

show how programs and data structures can both be identified with the closed nor-

mal forms of λSF -calculus, so that they may be applied or analysed at any time.

Further, the combinators can be used to tag programs with additional, intensional

information, e.g. about constructors or types, or to control evaluation strategy by

making applications wait before reducing.

The identification of programs and data structures also removes a layer of indi-

rection from program analysis. There is no need to quote or Gödelise abstractions.

Nor is there need for a separate state machine, to evaluate programs expressed on a

tape. The ramifications may extend to all aspects of programming language design

and implementation, including analysis and optimisation.

Like pattern calculus and SF -calculus, λSF -calculus supports powerful collec-

tion of generic queries for searching and updating data structures. However, the

earlier calculi were far removed from current experience, making adoption diffi-

cult. By contrast, λSF -calculus merely adds a couple of operators to the popular

λ-calculus approach, which makes migration much easier.

In conclusion, λSF -calculus adds intensionality to the extensional nature of λ-

calculus, so that one can query the internal structure of arbitrary closed normal

forms, and treat programs as data structures.

References

[1] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Holland, 1984. revised
edition.

[2] Henk Barendregt. Self-interpretations in lambda calculus. J. Funct. Program, 1(2):229–233, 1991.

[3] Michel Bel. A recursion theoretic self interpreter for the lambda-calculus. http://www.belxs.com/
michel/#selfint.

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236 235

http://www.belxs.com/michel/#selfint
http://www.belxs.com/michel/#selfint

[4] Alessandro Berarducci and Corrado Böhm. A self-interpreter of lambda calculus having a normal form.
In CSL, pages 85–99, 1992.

[5] Barry Jay. Pattern Calculus: Computing with Functions and Structures. Springer, 2009.

[6] Barry Jay. LamSF repository of proofs in Coq. https://github.com/Barry-Jay/lambdaSF, February
2016.

[7] Barry Jay and Thomas Given-Wilson. A combinatory account of internal structure. Journal of Symbolic
Logic, 76(3):807–826, 2011.

[8] Barry Jay and Delia Kesner. First-class patterns. Journal of Functional Programming, 19(2):191–225,
2009.

[9] Barry Jay and Jens Palsberg. Typed self-interpretation by pattern matching. In Proceedings of the
2011 ACM Sigplan International Conference on Functional Programming, pages 247–58, 2011.

[10] Barry Jay and Jose Vergara. Growing a language in pattern calculus. In Theoretical Aspects of Software
Engineering (TASE), 2013 International Symposium on, pages 233–240. IEEE, 2013.

[11] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
International Series in Computer Science. Prentice Hall International, 1993.

[12] Stephen C. Kleene. λ-definability and recursiveness. Duke Math. J., pages 340–353, 1936.

[13] J.W. Klop. Combinatory Reduction Systems. PhD thesis, Mathematical Center Amsterdam, 1980.
Tracts 129.

[14] Torben Æ. Mogensen. Efficient self-interpretations in lambda calculus. Journal of Functional
Programming, 2(3):345–363, 1992. See also DIKU Report D–128, Sep 2, 1994.

[15] Torben Æ. Mogensen. Linear-time self-interpretation of the pure lambda calculus. Higher-Order and
Symbolic Computation, 13(3):217–237, 2000.

[16] G.D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1, 1975.

[17] John C. Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings
of 25th ACM National Conference, pages 717–740. ACM Press, 1972. The paper later appeared in
Higher-Order and Symbolic Computation.

[18] Fangmin Song, Yongsen Xu, and Yuechen Qian. The self-reduction in lambda calculus. Theoretical
Computer Science, 235(1):171–181, March 2000.

[19] Guy L. Steele. Growing a language. Higher-Order and Symbolic Computation, 12(3), 1999.

[20] Terese. Term Rewriting Systems, volume 53 of Tracts in Theoretical Computer Science. Cambridge
University Press, 2003.

B. Jay / Electronic Notes in Theoretical Computer Science 325 (2016) 221–236236

https://github.com/Barry-Jay/lambdaSF

	Introduction
	SF-calculus
	Compounds
	Star Abstraction
	Components
	Confluence
	Normal Forms

	Definable Equality
	Extensionality
	Homomorphisms
	Programs as Normal Forms
	Extensional Conversion to Combinators
	Program Analysis and Optimisation
	Intensional Conversion to Combinators
	Fresh Approaches
	Conclusions
	References

