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ABSTRACT The rapid development of digital imaging and computer vision has increased the potential of
using the image processing technologies in ophthalmology. Image processing systems are used in standard
clinical practices with the development of medical diagnostic systems. The retinal images provide vital
information about the health of the sensory part of the visual system. Retinal diseases, such as glaucoma,
diabetic retinopathy, age-related macular degeneration, Stargardt’s disease, and retinopathy of prematurity,
can lead to blindness manifest as artifacts in the retinal image. An automated system can be used for offering
standardized large-scale screening at a lower cost, which may reduce human errors, provide services to
remote areas, as well as free from observer bias and fatigue. Treatment for retinal diseases is available; the
challenge lies in finding a cost-effective approach with high sensitivity and specificity that can be applied
to large populations in a timely manner to identify those who are at risk at the early stages of the disease.
The progress of the glaucoma disease is very often quiet in the early stages. The number of people affected
has been increasing and patients are seldom aware of the disease, which can cause delay in the treatment.
A review of how computer-aided approaches may be applied in the diagnosis and staging of glaucoma
is discussed here. The current status of the computer technology is reviewed, covering localization and
segmentation of the optic nerve head, pixel level glaucomatic changes, diagonosis using 3-D data sets, and
artificial neural networks for detecting the progression of the glaucoma disease.

INDEX TERMS Glaucoma, age-related macular degeneration, Stargardt’s disease, diabetic retinopathy,
fundus image.

I. INTRODUCTION
MEDICAL image segmentation algorithms label each voxel
in a digital diagnostic image to indicate the tissue type and
provide information about the underlying anatomical struc-
tures. Inconsistent image quality, intensity inhomogeneity,
blurred edges, and poorly defined boundaries are some of
the inherent challenges encountered in the medical image
segmentation task. Nevertheless, recent advances in the med-
ical imaging modalities and computer vision contributed sig-
nificantly to the growth of image guided diagnosis. In that
vein, since the digital image data pertaining to the retina
lends itself to the image processing and pattern recognition
procedures, the early detection of retinal diseases becomes a
reality. Before delving into the details of various retinal image
analysis techniques, which is the main focus of this paper,
what follows is a brief anatomical overview of the human

eye with an emphasis to the retina. The most used among
the five senses of the human body is the vision and the eye
perceives most of the information about the world. A consid-
erable portion of the brain is used in visual processing. The
retina, a layered tissue lining the interior of the eye, converts
the incoming light signal into a neural signal suitable for it
to be processed by the brain. Rods and cones in the retina
provide sensation of vision to the human eye, which includes
color differentiation and perception of depth. Fig. 1 shows
the anatomy of the eye. The retina consists of approximately
one million nerve fibers, which group together to form the
optic nerves. The beginning of the optic nerves in the retina
is called the optic nerve head (ONH) or optic disc (OD),
which is circular in shape and visibly bright in the fundus
images. In one particular area there are no photoreceptors,
namely, cones and rods, in the ONH, it cannot respond to
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FIGURE 1. The anatomy of the eye showing the three main layers
(retina, choroid and sclera), optic nerve, optic disc and varrious other
features.

FIGURE 2. A Retinal Fundus Image [2].

the light stimulation, and hence known as the ‘blind spot’.
The optic nerves leaving the eye form a natural deep sloping
region which is cup shaped, called the neuroretinal rim. The
appearance of retina in normal fundus images is transparent
and the retinal arterioles and venules run in the nerve fibre
layer of the retina and are thus the only part of the retina
readily visible on fundoscopy [1]. The reddish orange glow of
the fundus is generated by reflection from the choroids, which
is a rich network of blood vessels sandwiched between the
retina and the sclera. Several diseases manifest themselves in
the retina, a brief overview of the retinal diseases is presented
below. Fig. 2 depicts an image captured through a fundus
camera.

FIGURE 3. Retinal Fundus Images of the ONH - Normal and Pathological
eyes [5]. (a) No Glaucoma. (b) Early Glaucoma. (c) Moderate Glaucoma.
(d) Deep Glaucoma.

A. RETINOPATHY CONDITIONS
Glaucoma, a chronic disease that affects the optic nerves is
the second major cause of blindness in the world leading
to losses in the visual field and eventual blindness [3], [4].
Various risk factors associated with glaucoma have been
identified, among which the significant one is the raised intra
ocular pressure (IOP) that destroys the blood vessels and optic
nerves. If glaucoma is left untreated, it may lead to permanent
damage of the optic nerves and cause blindness. This pro-
gressive and irreversible damage to the optic nerves is often
accompanied by only subtle signs or even no symptoms, and
therefore it is nicknamed as the ‘sneak thief of sight’. Fig. 3
depicts the different stages of glaucoma as it progresses.
An early detection of glaucoma is important, which can min-
imize the damage and the vision loss, and ensure a prompt
and adequate treatment. Changes in the structural appearance
of the ONH and retinal nerve fiber layer (RNFL) often pre-
cede the development of visual field loss in glaucoma [6] in
3-D analysis. So far, such evaluation has predominantly been
subjective and obtained with high intra and inter observer
variability [7], [8]. With the emergence of newer optical
imaging techniques, assessment of optic disc morphology has
become more objective and quantitative. In recent studies,
a large OD size [9] has been suggested as a risk factor for
the retinal disease glaucoma. The ONH is a circular area
where the optic nerve fibers converge, hence as the glaucoma
progresses, it causes the nerve fibers to atrophy and results in
apparent changes in the shape of the ONH. Often, variability
in the appearance of the ONH caused by the image contrast
and obscurity by blood vessels warrants a subjective manual
screening and analysis. A quantitative relationship exists in
between ganglion cell density [10] and visual sensitivity for

4328 VOLUME 4, 2016



M. C. V. Stella Mary et al.: Retinal Fundus Image Analysis for Diagnosis of Glaucoma

the detection of human clinical glaucoma. As an earliermeans
of diagnosis of glaucoma, investigators have suggested a
variety of criteria [11] such as size of the cup, narrowness
of the remaining disc rim, vertical ovalness of the cup, and
progressive changes in the cup. If the position, center, and
radius of the OD is detected precisely, it can in turn be used as
a reference for locating other anatomical regions, for instance,
macula and fovea. The patients who seldom complain of
patchy loss of peripheral vision or reduced clarity of colours
will in turn be followed up.

FIGURE 4. A Fundus Image with Diabetic Retinopathy [13].

Diabetic Retinopathy (DR) is a progressive pathology and
is found in individuals who have diabetes mellitus for several
years. It causes a group of lesions in the retina [12]. The
number and types of lesions present on the retina determine
the severity of the disease. It is a disease which is caused due
to the insufficient insulin - a hormone that moves sugar from
the blood into the cells. As a result, more sugar prevails in the
blood which causes damage throughout the body including
blood vessels. A fundus image with diabetic retinopathy is
shown in Fig. 4. In DR, the blood vessels in the retina are
affected and vision is lost. If left untreated, it can lead to
blindness. An over accumulation of glucose and/or fructose
damages the tiny blood vessels in the retina. The first lesions
which occurs most frequently as a consequence of DR, is the
Microaneurisms (MAs) that appears on the side of the blood
vessels as small swellings [14]. During the initial stage, one
does not notice any change in vision. A condition called mac-
ular edema is developed by some [15], which occurs when the
damaged blood vessels leak fluid and lipids onto the macula
which is the part of the retina that lets us see details. This fluid
makes the macula swell and causes blurred vision. As the
disease progresses, blood vessels start to proliferate. Lack of
oxygen in the retina causes fragile, new blood vessels to grow
along the retina and in the clear, gel-like vitreous humour that
fills the inside of the eye. Without timely treatment, these
new blood vessels can bleed, cloud vision, and destroy the
retina. The longer a person has mellitus, the higher the risk of
developing some ocular problem.

FIGURE 5. Fundus photograph showing an eye with neovascular
Age-related Macular Degeneration [17].

Age-related Macular Degeneration (AMD) is a gradual,
progressive, painless deterioration of the macula [16]. It is
a leading cause of blindness and affects people, who are
aged 65 and older. The appearance of spots beneath the
retina marks the early stage of AMD. Fig. 5 shows a fundus
photograph of an eye with neovascular AMD. These spots
are small, round lesions called drusen that cause serious loss
of vision. The loss of vision first starts in one eye, since the
healthy eye will be compensating for the loss of vision in the
damaged eye. It begins with characteristic yellow deposits
(drusen) in the macula [18]. Most people with these early
changes have good vision. People with drusen can go on to
develop advanced AMD. The risk is higher when the drusen
are large and numerous. Two forms of AMD exist: ‘dry’and
‘wet’. About 90 percent of those with AMD are affected
by the former. Although irreversible, many patients with dry
AMD experience no symptoms but experience only gradual
and minimal changes in their vision clarity [19]. In wet macu-
lar degeneration, fine blood vessels at the back of the eye pro-
liferate and leak fluid and blood. Wet macular degeneration
may develop suddenly in patients with dry macular degen-
eration. Both forms of macular degeneration are painless and
the condition typically affects both eyes. The Fig. 6 shows the
range of vision under normal and pathological conditions for
the same picture under different retinopathic conditions. But
these vision patterns occur only at a latter stage, when these
visions occur, and hence early diagonosis is very important in
the case of ocular diseases. Hence, an automated diagonosis
is essential for retinal diseases.
A new system, known as Retinal Image Vessel Extraction

and Registration System (RIVERS), is used by retinal clini-
cians, researchers, and study directors as an integrated service
for retinal image analysis over the internet [20]. We review
the computer-aided techniques developed for the detection of
glaucoma, a disease that occurs in the retina causing defor-
mation of the ONH. An emphasis on how the ONH segmen-
tation is carried out and the features and techniques used in
determining the progression of glaucoma are discussed in this
review.
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FIGURE 6. Signs and Symptoms of Glaucoma, DR and AMD. (a) A normal
range of vision. (b) The same view with advanced vision loss from
Glaucoma. (c) The same view with advanced vision loss from DR.
(d) The same view with advanced vision loss from AMD.

II. IMAGE PREPROCESSING
Medical images usually contain noise due to interference
and other phenomena, that affects the process of measuring
parameters in images and data acquisition systems [21]. The
minor differences thatmay be present in normal and abnormal
tissues, due to noise and artifacts, make direct analysis in the
images difficult. Shading artifacts due to nonuniform illumi-
nation degrades the efficiency of image analysis. Preprocess-
ing is an essential step which reduces the image variation
by normalizing the original image with a reference model.
Preprocessing is required to eradicate noise present in the
fundus image and equalization of the irregular illuminations
associated with retinal images. It helps in reducing the intra
image as well as inter image variability [22]. Pure glauco-
matous changes are emphasized in the preprocessing step
which excludes disease independent variations from the input
images. These include variations due to image acquisition,
such as inhomogeneous illumination or different ONH local-
izations and also retinal structures not directly related to
glaucoma, e.g., the blood vessel tree.

A. ILLUMINATION CORRECTION
Nonuniform illumination is a general problem in retinal
imaging due to the complexity of the optic system in the imag-
ing process. Various techniques have been used in the removal
of nonuniform illumination. Narasimha-Iyer et al. [23] used
an iterative robust homomorphic surface fitting algorithm for
the estimation of the illumination component and reflectance
component in the removal of nonuniform illumination.
Nyúl [24] compensated the illumination artifacts by a polyno-
mial surface fitting technique by considering the intensity of
the input image as a product of the luminosity and reflectance
component. The low frequency changes of the image inten-
sities here reflect the illumination inhomogeneities and this

is applicable only for background regions and not for the
retinal image features, as the least square polynomial fitting
excludes these areas. But a percentile based thresholding
identifies the structured regions as either brighter or darker
regions. Yu et al. [25] viewed the image f (x, y) as a prod-
uct of an illumination component i(x, y) and a reflectance
component r(x, y), which depends on the imaging surface.
Equations 1, 2 and 3 denote how the new image is constructed
from the image to be preprocessed.

f (x, y) = i(x, y) × r(x, y) (1)

The slow-varying background image is denoted as

fb(x, y) = ib(x, y) × rb(x, y) (2)

and the resulting image is expressed as

f (x, y)
fb(x, y)

= (i(x, y) × r(x, y))
(ib(x, y) × rb(x, y))

(3)

It is assumed that the slow-varying background image is
uniform over its surface, rb(x, y) = k , and the illumination
has been same for both the images. Then

f (x, y)
fb(x, y)

= r(x, y)
k

. (4)

The resultant image obtained is an illumination normal-
ized image. Various adaptive techniques such as adaptive
histogram equalization, adaptive Weiner filter and adaptive
brightness schemes are used in the correction of the illumi-
nation. The adaptive histogram equalization [26]–[31] helps
in enhancing the contrast of the image, while the adaptive
Weiner filter [21] suggested by Bankman supresses unaccept-
able blurring of lines and edges. Wang et al. [32] stated that
controlling the external lighting conditions [33] and adjusting
the brightness of the images to a proper range has been
difficult since there is a rise of intensity in some regions
and reduced brightness as it lies far away from the OD.
To enhance the darker regions, a brightness adaptive scheme
is utilized, which is derived from the expression

y = β × xα (5)

where 0 ≤ α ≤ 1, x is the pixel value and β = inmaxα , inmax
is the value of the upper limit intensity (i.e., brightness) of the
input image (0 ≤ inmax ≤ 255). By the brightness adjust-
ment function even dim areas can be identified. A proper
selection of α and inmax generates a curve as illustrated in
Fig. 7. Balasubramanian et al. [34] utilized a normalization
technique for correcting uneven illumination of a topography
in Topography Change Analysis (TCA). Chrástek et al. [35]
roughly estimated the illumination by median filtering using
an optimal mask whose size is bigger than the retinal anatom-
ical features, as larger masks tend to create problems at the
image border. Youssif et al. [36] overcame the nonuniform
illumination by an averaging function [27] where each pixel
in the retinal image is adjusted using

Ieq(r, c) = I (r, c) + m+ Iw(r, c) (6)
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FIGURE 7. Expected function for brightness adjustment.

where m is the desired average intensity, Iw(r, c) is the mean
intensity value in a window of size N × N . The size of the
window can vary from 30 to 50. Grau et al. [3] suggested
a special inhomogeneity function for the compensation of
illumination artifacts in the 3-D data sets. The OD region is
found to be a bright yellowish than the other regions of the
fundus image [37]. It shows better contrast in the red and
green channels. The colour image is converted to a grayscale
image using the following equation (7).

IRG(x, y) = ((IR(x, y))2 + (IG(x, y))2)
1
2 (7)

The intra slice and inter slice variations in the 3-D
data set is corrected using a third degree polynomial.
Murray et al. [38] eliminated the preprocessing step by using
the intensity as a function of instantaneous amplitude and
frequency components, which helps in producing accurate
results.

B. BLOOD VESSEL’S REMOVAL
Blood vessels act as distractors in the detection of OD and
the removal of blood vessels is essential for proper detec-
tion of OD. Morphological processing is done as a prepro-
cessing step prior to the detection of the location of the
OD [30], [39]–[42] for the blood vessels and exudates present
in the image to be filtered out. Hence the given RGB image
is converted into a gray scale image since it shows good vari-
ation between the OD and the background. The blood vessels
are darker and the OD is brighter. If exudates are present
in the image, then this does not stand true. To remove the
blood vessels and exudates from the retinal fundus images,
morphological opening and closing is done using an appro-
priate structuring element. Opening suppresses bright details
smaller than the structuring element and closing suppresses
dark details smaller than the structuring element. Hence open-
ing tends to smooth the contour in an image breaking narrow
isthmuses and eliminating thin protrusion. Closing tends to
narrow sections of the contour fusing narrow breaks and long
thin gulfs and helps in generating vessel masks [24], which

is followed by a morphological reconstruction. A shade cor-
rection operator is used to remove slow background varia-
tion, which is done by subtracting the background from the
grayscale image. Osareh et al. [40], [42] used color mathe-
maticalmorphology to extract important shape characteristics
and relevant information. Low level features are extracted
from the planes by Gaussians at different scales [43] and edge
detectors. In colour morphological processing the L channel
is taken from the HLS colour space where the blood vessels
appear less strong than the normal intensity. When colour
morphological operations are performed each pixel value is
identified as a vector of colour components, with luminance L
in the first position defined as: x > y if⎧⎨
⎩

Lx > Ly
or Lx = Ly and Sx < Sy

or Lx = Ly and Sx = Sy and Hx ÷ Ho < Hy ÷ Ho

⎫⎬
⎭

(8)

The ÷ operator gives a distance between two hue values on
a unit circle and the hue values are measured based on a pre-
defined origin. Morphological processing along with a shade
correction operator helps in localizing the ONH appropriately
and the results are promising and they perform better when
compared to the existing techniques. Blood vessels originate
from the OD and appear as deep red or orange red filaments
that are of progressively diminishing width. The pixel values
in the three color bands are strongly correlated [44], [45]
and hence PCA is applied to diagnose the correlation co-
efficient matrix. The first axis correlates the main structural
features, the second texture and the third, noise. The vessel/
nonvessel separability is enhanced by using a canny edge
detector as the first principal component, using the fea-
tures like size, compactness and shape. Regions smaller than
30 pixels are reclassified as non-vessels. The ratio of square
of the perimeter to area is used to segregate the non-vessels
and if a region is found to be elliptic, the ratio of the major to
minor axis is taken for the classification. Youssif et al. [46]
used a simple edge fitting algorithm to segment the blood
vessels and maximize the similarity between a predefined
2-D Gaussian template and the fundus image. Twelve 15×15
filters are generated along different orientations (0◦ to 165◦)
with an angular resolution of 15◦. To generate a binary vessel/
nonvessel image, the maximum response from the global
threshold selection algorithm proposed by Cao et al. [47],
Otsu [48], and Yang et al. [49] is utilized.
Cheng and Huang [50] divided the original image into

blocks, and for the estimation of a local threshold of each
block, the corresponding gray-level histogram is utilized.
As the global threshold approach generates too much noise, a
local threshold is assigned depending on the gray-level value
of the brightest 20% of the pixels. Noise reduction is done
by using an edge detecting technique, where the adjacent
pixels with gradients greater than ten are defined as edges.
Using the threshold from the previous step, the points that are
away from the edges are removed yielding the vasculature.
Leel et al. [51] utilized a Gaussian kernel in the three
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color bands for the smoothing of the image and to remove
distractions.

C. BRIEF SUMMARY
Preprocessing is an essential process, as illumination artifacts
are present in the retinal fundus images. Preprocessing meth-
ods improve the performance of image processing methods
like segmentation, feature extraction, and pixel level glauco-
matous changes. Manual control of illumination is inefficient
and time consuming when capturing the images. Even the
cameras have adequate artificial illumination necessary to
preprocess the images before applying the image processing
methods. Several preprocessing methods are available in the
literature. Analysis of these reveal that illumination correc-
tion and removal of blood vessels, which act as distractors
are to be carried out. Correction of illumination can be done
by adaptive equalization and filtering techniques to enhance
the contrast and to remove the blurring effects.Morphological
processing can be done to remove blood vessels. To overcome
some of the shortcomings, a vessel/nonvessel seperability
procedure can be used for the removal of blood vessels.
Hybrid preprocessing algorithms, with effective thresholding
may yield promising results. If the resolution of the images
is good, the preprocessing methods produce good results.
An effectivemethod has to be chosen, depending on the appli-
cation and the preprocessing has to be done effectively even
for the low resolution images. The preprocessing methods
chosen may differ from application to application depending
upon the requirements of the application process.

III. LOCALIZATION OF OPTIC NERVE HEAD
In retinal image analysis, accurately locating theOD is crucial
to track the vessels and to register the changes in the OD due
to the progression of a disease. The OD is a cluster of high
intensity pixels and it is brighter than any other part of the
fundus image. If exudates are present in the image in a darker
background it also leads to be a candidate region of the OD.

A. HIGHEST IMAGE VARIATION
The intensity variations present in the image helps in locating
the OD clearly. Hence, the contrast of the retinal image
is enhanced by a locally adaptive transformation. The OD
appears as a yellowish region [44] in the fundus image and
it typically occupies approximately one seventh of the entire
image. The appearance of the OD is identified by a relatively
rapid variation in intensity as the ‘dark’blood vessels are
lying beside the ‘bright’nerve fibres. The adjacent pixels
variance of intensity is used in recognition of the OD. The
retinal image is normalized and an average variance within
the subimages of size M × M (usually 80 × 80 as the
OD is of this size) are obtained and the location of the
highest intensity of this image is taken as the centre of
the OD, (id , jd ).

Eswaran et al. [33] utilized an averaging filter of size
25 × 35 pixels containing equal weights of one applied to

the image region Ri in order to smoothen the low intensity
variations, while leaving the objects of interest relatively
unchanged whereas Chrastek et al. [52] used an averaging
filter of 31×31 and the size of the ROI is taken as 130×130,
where a canny edge detector is used in detecting the edges
in the image. The green channel of the RGB color space
is used in order to localize the OD. A contrast stretching
transformation is used tomake the bright object features more
distinguishable from the background. This transformation
slightly enhances the intensity values of the darker regions
while the brighter regions of the image remain more or less
unchanged. The average filter is applied to the gray scale
image and the green channel of the fundus image. The con-
trast stretching is done in the green channel of the image.
Fig. 8 depicts the above results. Abràmoff et al. [12] also
suggested that the candidate regions for OD are selected by
taking the highest 5% intensity level pixels and hue value
in the yellow range. Then the nearby pixels are clustered to
form the candidate regions. The clusters which are below a
certain threshold value are abandoned. Liu et al. [53] divided
the image into 64 regions and selected the region with the
maximum of highest 5% pixels as the center of the ROI, as
depicted in Fig. 9. The ROI is selected as the region with
twice the typical OD diameter. Nyúl [24] suggested that an
adaptive thresholding with a window size approximately the
size of the vessel thickness is utilized. A mean filtering with
the largest kernel and the threshold probing will roughly
localize the ON. Chrástek et al. [35] stated that the ON can
be detected using a proper threshold θONH , calculated using

FIGURE 8. Averaged Contrast Stretching of Images. (a) Original Image.
(b) Average Filtered Image. (c) Averaged Green Channel. (d) Contrast
Stretched Image in Green Channel.

4332 VOLUME 4, 2016



M. C. V. Stella Mary et al.: Retinal Fundus Image Analysis for Diagnosis of Glaucoma

FIGURE 9. Image divided into 64 regions and ROI marked.

the mean gray value and standard deviation of all the pixels.
The Euclidian DistanceMap (EDM) removes noise and small
regions. A threshold of 5 is used to remove the background,
and the center of gravity of the remaining pixels gives the
rough position of the OD. Li and Chutatape [54] used the
highest 1% gray levels for clustering and the clusters with
centroids within a specified distance are combined together.
If the number of pixels in a cluster is less than 100, then
the cluster is abandoned. The candidate regions are taken
with 120 × 120 pixels and with the centroid as the center.
Noronha et al. [55] used the highest 4% gray level pixels for
the selection.
Leel et al. [51] used an unsupervised colour thresholding

to initially classify the retinal image into a number of colour
clusters. Unsupervised colour thresholding is a multithresh-
old segmentation procedure that applies a simple thresholding
for each colour domain. It is generated by means of within
class and between class criteria from the relevant colour
band. After the unsupervised colour thresholding, clusters
are weighted based on how similar the colour of the corre-
sponding cluster is with reference to yellow. At times the
cluster with the highest weight does not represent the OD
object as in the case where the exudates appear as a brighter
yellow than the OD. A second feature based on the level of
the presence of blood vessels within a neighborhood is used,
which is determined by a co-occurence matrix and weights
are assigned to the second feature. Now the combinations of
both the weights are determined and the one with the highest
weight is classified as the OD. Fig. 10 shows how different
candidate regions have been selected and the best candidate
region is marked as the ROI. Cluster 1 has more yellow and
a large amount of blood vessels are present. Hence Cluster 1
is classified as the ROI having the OD. The ROI is isolated
from the background using a k-means clustering technique.

FIGURE 10. Candidate Regions selected by the color bands and the
presence of blood vessels.

It uses the L ∗ a ∗ b colour space [56]. The green channel
of each fundus image is morphologically reconstructed using
a circular structuring element [57]. Bright regions that are
closer to the blood vessels are extracted as the candidate
regions of the OD. The non-OD regions are classified using
the 6 region-based features and a Gaussian Mixture Model
classifier. A convex hull estimates all the candidate OD
regions. The best-fit ellipse across the convex hull becomes
the segmented OD boundary. The centroid of major blood
vessels within the segmented OD boundary finally is detected
as the Vessel Origin (VO) pixel location.

B. OPTIMUM THRESHOLD BASED LOCALIZATION
Siddalingaswamy and Prabhu [58] suggested that the OD
is brighter than all other features in the retinal image, and
it appears as a greater contrast in the green channel [33],
[58]–[64] compared to the other two channels. Based on
the approximation of the histogram of an image, an optimal
thresholding method using a weighted sum of two or more
probability densities with normal distribution is applied to
segment the brightest regions in the image. The optimal
threshold is obtained from the histogram of the image, which
is scanned from the highest intensity value t1 to a lower
intensity value. The scanning stops at the intensity level t2
which has at least a thousand pixels with the same intensity
resulting in a subset of histogram. From this the optimal
threshold is calculated as follows.
1) Initial estimate of T is calculated as

Tk = t1 + t2
2

(9)

2) Mean gray level of the object μok and background μkb
of the images are computed as follows

μkb =
∑

i,jεbackground I (i, j)

no. of background pixels
(10)

μo
k =

∑
i,jεobject I (i, j)

no. of object pixels
(11)
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3) New threshold is calculated as

Tk+1 = μkb + μko

2
(12)

4) Steps 2 to 3 are repeated until Tk = Tk+1

When this optimal threshold is applied to the image, it
results in a number of connected regions. The region with
the maximum number of pixels is taken as the OD region.
Rosin et al. [65] performed dilation to remove the distractors
and the image is divided into subregions and each region
is weighted according to the summation of the variances.
The various subregions are found in various locations, such
as some lying completely on the background, some within
which containing blood vessels and some without any blood
vessels within them. Thus the candidate region is detected.
Walter and Klein [66] applied a simple area threshold after
morphological operations to obtain a binary image b that
contains some parts of the OD as well as bright appearing
pathologies like exudates. The biggest particle of the image b
coincides with one part of the OD and its centroid c is
calculated as the maximum of the discrete distance function
of the biggest particle of b and is an approximation for the
locus of the OD.
Cheng and Huang [50] utilized a adaptive thresholding

technique to localize and segment the OD. The bright spot
in the fundus image obtains the threshold T . The red channel
is chosen, since it has minimal blood vessels as distractors
in segmenting the OD. The object with the most 8-connected
pixels is chosen. Since the variations in intensity is different
for various images, an adaptive thresholding technique is cho-
sen. The sliding band filter (SBF) is used [37] to downsample
the image twice in order to reduce the computational cost.
The first downsampling is applied to a larger ROI and the
second to the smaller ROI. The highest filter response pro-
duces k-candidate points pointing to the OD candidate region.
A local regression algorithm has been used for smoothing the
boundary of OD. The OD center [67] is calculated using three
distribution characteristics. They are local vessel density,
compactness and uniformity.

C. MASK GENERATION
Mask generation [68] aims at labeling pixels belonging to
the fundus ROI in the entire image. The dark surrounding
region in the image are the pixels outside the ROI. Those
pixels are not strictly dark (0 intensity value) but have to be
discarded in subsequent processing stages. By calculating the
statistics for each of the color bands of the image, a 4-sigma
thresholding is performed with a free parameter empirically
chosen such that pixels with an intensity value above that
threshold are considered to belong to the ROI. A region
connectivity test is performed for all the bands to be com-
bined through logical operations and in order to identify the
largest common connected mask. The ROI size is not always
the same for each band. Fig. 11 shows a mask determined
for Fig. 2.

FIGURE 11. Mask determined for Fig. 2.

D. PRINCIPAL COMPONENT ANALYSIS (PCA)
Li and Chutatape [69] performed the PCA [24], [54],
[70]–[72] on a set of training images containing the OD
and extracted the dominant eigen vectors called ‘disc space’-
which represent the OD’s significant features. To locate the
OD in a given retinal image, the candidate regions are first
selected by clustering the brightest pixels and applying the
prior knowledge about the OD diameter. Then the distances
between the candidate region pixels and their projection onto
the ‘disc space’are calculated, which are used to predict
whether the pixels belong to the OD. Since large lesions areas
usually distract in predicting the OD region incorrectly, the
use of candidate regions aided in speeding up the processing,
and the results are claimed to be robust even in the presence
of large lesion areas. The size of the OD may vary and hence
different scales are applied to find the pixel (Lx ,Ly), as the
OD center. Theminimum distance in all the candidate regions
and among all the scales is detected as the OD region.

E. HOUGH TRANSFORM
The OD is a bright and circular or elliptic region due to
the photographic projection, morphological operations or
edge detection techniques are attempted in a region of inter-
est (ROI) enclosing the OD followed by the Hough transform
for its localization [24], [30], [35], [39], [41], [46], [52], [66],
[67], [71], [73]–[84]. A shade correction operator is used in
the preprocessing step for the removal of slow background
variations due to the exudates. The boundary and the center
of the OD are estimated by applying the circular Hough
transform, which maps any point (x, y) in the retinal image
to a circle in a parameter space with center (a, b) and radius
r that passes through (x, y) given by

(x − a)2 + (y− b)2 = r2 (13)
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FIGURE 12. Hough Circles used in determining the Hough peak.

to all the feature points in the preprocessed edgemap. In other
words, by taking a feature point as the center, a fixed radius r
in the feasible range can be used to construct a circle. Fig. 12
shows how Hough peaks are determined in the Hough circles
drawn. Thus the set of all feature points give rise to circles,
which may in turn intersect at an approximate center of a
detected circular shape in the edge map for a suitable value
of r , and as a consequence will produce a peak in the Hough
space. Among the collection of circular shapes detected by
the peaks in the Hough transform corresponding to various
values of r , the a priori information about the OD’s radius is
made use of to select the most probable circle that closely
resembles the boundary of the OD. Thus the method has
proved to be very reliable in extracting the OD. Moreover,
the selection of the correct candidate is preferred by the fact
that the score of this algorithm is an absolute and not a relative
measure.

F. LINE OPERATOR
The lightness component is used by Lu and Lim et al. [85]
within the LAB color space [41], [86], [87], as the OD
detection usually performs the best there. To enhance the
circular brightness structure associated with the OD, the
retinal image is smoothed using bilateral smoothing filter
that combines geometric closeness and photometric sim-
ilarity. A line operator is designed to detect the circular
regions that have similar brightness structure as the OD. For
each image pixel at (x, y), the line operator first determines
n line segments Li, i = 1, . . . , n of specific length p
(i.e., number of pixels) at multiple specific orientations that
center at (x, y) as shown in Fig. 13. Twenty different orienta-
tions are taken into consideration as illustrated in Fig. 14. For
one specific orientation each line segment is divided into two
line segments Li,1 and Li,2 both of the same length (p− 1)/2
and hence the ‘n’ oriented line segments have ‘n’ image
variations as follows. For i = 1, . . . , n

Di(x, y) = ∥∥fmdn(ILi,1 (x, y)) − fmdn(ILi,1 (x, y))
∥∥ (14)

Each line segment has a specific pattern which is used
to locate the OD accurately. An orientation map O(x, y)
is constructed using line segment’s image variation. This
orientation map is converted to a peak image using

FIGURE 13. Example line operator that uses 20 oriented line segments.

FIGURE 14. Model (PDM) overlaid on a retinal image.

a convolution map.

P(x, y) =
x=xo+m∑
x=xo−m

y=yo+m∑
y=yo−m

M (x, y)O(x, y) (15)

Now the peak images are formed at the OD center and macula
center and is classified into OD category or macula category
depending on the image difference between the pixel at the
center and those surrounding it. If the maximum score is
obtained by the peak it is classified as OD and if it is a mini-
mum, it is classified as macula. The score is determined by

S(x, y) = P(x, y)(Diff (x, y) × (Diff (x, y) > 0)) (16)

where (Diff (x, y) > 0) is the set of all image pixels with
negative image difference to zero.
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G. PYRAMIDAL DECOMPOSITION AND
HAUSDORFF DISTANCE
1) PYRAMIDAL DECOMPOSITION

Lalonde et al. [59] used pyramidal decomposition [59]–[61],
[68] to determine the potential regions which might contain
the OD. He preferably used the green channel (G) in the
original RGB image or the intensity channel in theHSI image,
as they have the OD in a clearer form. For efficient imple-
mentation a Haar-based discrete wavelet transform is used in
creating the pyramid. A four- and five-level decomposition of
the image in the data set is performed and the resolution levels
are adequate as only a few bright pixels fall into the original
OD region. The pixels that have higher intensity values than
the mean pixel value are considered to be candidate regions.
Smoothing is done inside each of the candidate region and the
brightest pixel is selected as a possible OD center point. CVR,
a simple confidence value, to assess the relevance of each
hypothesis is defined as the ratio between the average pixel
intensity inside a circular region centered on the brightest
pixel of radius, which is approximately equal to the expected
radius of the OD in the image and the average intensity
in its neighborhood. It captures a circular patch of bright
pixels surrounded by darker pixels. A rectangle slightly larger
than the bounding box around the circular region is taken
as the neighborhood. Potential OD regions, along with their
confidence values CVR and high-intensity pixel coordinates
representing its center is obtained as the intermediate result
for further analysis and the top ten candidates are retained.
To locate the potential OD contours, an algorithm based on
Hausdorff distance is utilized. The candidate regions identi-
fied by the pyramidal decomposition method are explored for
the presence of a circular shape, as if the OD is a symbol in
a map. Contiguous regions are aggregated into a single zone
in order to limit the number of ROIs in the image.

2) OD CONTOURS USING HAUSDORFF DISTANCE

Binary images are given as inputs to the Hausdorff based
matching technique. For each aggregated region obtained
from pyramidal decomposition, perform edge detection fol-
lowed by thresholding. Using the Rayleigh probabilisticmod-
eling method detect the noisy edge distribution. After this a
proper threshold has to be selected as it requires choosing a
probability of misinterpreting a noisy edge as a true edge. The
threshold T is estimated as follows:

T (x) =
⎡
⎣(P

1
M
FA − 1)

M∑
j=1

x2j

⎤
⎦

1
2

(17)

where xj’s are the magnitudes ofM noisy edge samples used
for the estimation and PFA is the probability of viewing a
noisy edge as a valid edge. The estimation of T is done in
the edge map using noisy edges only. The procedure adopted
is as follows:
1) Canny edge detection [26], [47] is done using Canny

hysteresis in the region of interest to capture as many
edges as possible.

2) The high threshold is reassigned to a value that captures
10% of all edges in step 1 capturing the strong edges
only.

3) The second edge map is subtracted from the first one to
get the noisy edge map IN .

4) M edge pixels are extracted within a small window in
the center of the noisy edge map IN to compute T for a
given PFA.

5) The final thresholded binary edge map IT is obtained
using the threshold T and is used for calculating the
Hausdorff-based template matching.

The Hausdorff distance H (A,B) is defined as

H (A,B) = max(h(A,B), h(B,A)) (18)

h(A,B) = max
a∈Amin

b∈B ‖a− b‖ (19)

where h(A,B) provides a degree of mismatch between two
sets of points A and B by measuring the distance of the point
of A that is farthest from any point of B and vice versa. In a
binary image IT , A represents the set of black pixels and
B the set of pixels that form a black circular template. The
Hausdorff distance is calculated between the template and the
underlying arrangement of pixels in IT . If the match is exact,
then the distance is zero which increases as the resemblance
weakens. This even helps in locating the OD in the absence
of precise disc borders and presence of vessels coming out of
the disc. Two confidence values CVH and CVR are assigned
to each Hausdorff candidate. CVH , is the proportion of tem-
plate pixels overlapping edge pixels in the thresholded edge
map IT . CVR, is the ratio between the average pixel intensity
over the template candidate and the average intensity over
its neighborhood. This indicates how well the candidate is
aligned with the OD from a pixel-intensity point of view and
higherCVR indicates better aligned candidates. For determin-
ing the best Candidate, the most likely OD position and radius
are found by determining the candidate with the highest
overall (global) confidence. The global confidence is chosen
to follow the rule combination of the Dempster-Shafer theory,
where the global confidence value CVG is calculated as

CVG = CVH×CVR+CVH×(1−CVR)+CVR×(1 − CVH )

(20)

H. A SPECIALIZED CORRELATION FILTER
Lowell et al. [88] integrated a specialized correlation
filter [25], [89], [90] matching the OD structure for localiza-
tion of the ONH. The correlation peak of the image gives the
OD center. High intensity pixels are found near the circular
rim of the OD with vertical oriented and a rough centrally
located band of low intensity blood vessels. The template
consists of a Laplacian of Gaussian with a vertical channel
corresponding to the major vessel band in the middle. The
intensity component of the fundus image is correlated with
the template. A full Pearson-R correlation, which accounts
for variations in mean intensity and contrast, is given by
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the equation:

Ci,j =
∑

x,y(f (x, y) − f (x, y))(w(x − i, y− j) − w)∑
x,y(f (x, y) − f (x, y))2

∑
x,y(w(x − i, y− j) − w)2

(21)

Several regions of interest have been identified by clustering
algorithms because of several bright regions in the retinal
images. A correlation filter is applied to each region for iden-
tifying the true region containing the OD. The final region of
interest containing the OD is defined as an n × m rectangle
whose center is the point with the higher response computed
by means of the correlation filter. Due to the characteristic
asymmetry of the ONH the filter is prone to locate a point
slightly to the temporal side.

I. GEOMETRIC PARAMETRIC MODEL
The retinal fundus images have a common vascular pattern
in almost all the images. The main vessels originate from the
OD and they follow a specific course. They are geometrically
modeled into two parabolas [67], [91], with a common vertex
inside the OD. The vessels diverge when moving away from
the OD, and branch vessels tend to deviate from the main
vessel. The parabolas quickly bend towards the macula in
the temporal region, whereas in the nasal region this inward
deflection happens at a much slower rate. In order for the
parabolas to be centered at the coordinates of the OD center
(xOD,yOD), a translation transformation had to be applied to
the model.

x∗ = x − xOD (22)

y∗ = y− yOD (23)

Optimized values of parameters represent the best positioning
of the OD, (xOD,yOD) according to the model fit on the avail-
able data. The absolute minimum is found when (xOD,yOD)
are inside the OD, but in one of the many local minima the
gradient-based algorithm would be easily trapped. To over-
come this problem, a simulated annealing (SA) optimization
algorithm has been implemented. SA is a global stochastic
optimization algorithm that theoretically guarantees the con-
vergence toward global minimum.

J. VESSELS DIRECTION MATCHED FILTER
Youssif et al. [46] used a threshold to the red band of the
image [25], [71], [91], [92] along with the morphological
operations. Each pixel of the green band is then equalized
using the following equation.

Ieq(r, c) = I (r, c) + m− Iw(r, c) (24)

where m is the average density, Iw(r, c) is the mean intensity
value of the pixels within a window size 40 × 40. The ROI
of the retinal images is shrunk by five pixels to discard the
pixels near the border since the amount of pixels used while
calculating the local average intensity in the center is more
than the amount of pixels used near the border. Adaptive
histogram equalization is done to the illumination equalized

inverted green band image. By recording the direction of the
template that achieved the maximum response at each pixel,
a vessels direction map (VDM) can be obtained from the
segmentation algorithm. All the pixels labeled as nonvessel
are assigned a ‘−1’ in order to abstain from further process-
ing. The binary vessel/nonvessel image is thinned to reduce
the amount of pixels labeled as vessels into the vessels’
centerline. All the remaining vessel-labeled pixels that are not
within the square centered on each of the highest 4% intensity
pixels are relabeled as nonvessel pixels. This step reduces the
number of OD candidates. This detects the correct OD center
in almost all the cases.

K. POINT DISTRIBUTION MODEL (PDM)
Given a set of parameters b, the PDM [69], [93], [94] can
generate an s, and conversely also estimate b for a given s.
As a result we have two spaces, an image space one in which
s exists and a parameter space in which b lives. The PDM is
linked to the image I by the cost function F(s, I ). The main
axis of the model is defined by the points p1 and p2. Points
on the vascular arch p7 to p16 are positioned at fixed angles
from the main axis. Two of the four points, p3 and p5, on the
border of the OD lie on the main axis while the other two,
p4 and p6, are located at the point where the venous vascular
arch leaves the OD. By computing the mean model point
position, the PDM is determined by

s = 1
n

n∑
i=1

si (25)

and the covariance matrix

s = 1
n− 1

n∑
i=1

(si − s)(si − s)T (26)

To find the s which best fits an image, the cost function
must be minimized. The points can be moved directly in
the image s or it can be done in the parameter space p of
the PDM. In order to get the maximum optimization results,
a combination of both the approaches have been taken into
consideration. In the parameter space variations like rotation,
translation, and scaling are done. In the image space the
points are placed in the thickest most contrasted vessel. p1 is
found to be the center of OD and p5 is found on the outer rim
of the ONH. Fig. 14 depicts how the points are overlaid in
the retinal fundus image. An automated method which is able
to locate the most important anatomical landmarks in fundus
images is presented here, which is able to find the OD and the
macula in most of the cases.

L. VASCULAR DISTRIBUTION MODEL
To track the progress of the disease, it is imperious that
the same retinal locations from one visit to another are
measured [95]. Due to the movement of the patient, pos-
tural adjustments frequently occur during the OCT scan
acquisition. When OCT magnifications are made even a
small change may induce significant image displacements.
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The Humphrey 2000 OCT system allows ocular motion to
be viewed by means of a live monochrome video image of
the ocular fundus as it is scanned. The video is obtained
at the standard rate of 30 frames per second, interlaced
scan. The appearance of the ONH which is a bright ellipse,
elongated slightly in the vertical direction varies with the
patients. Joshi et al. [80] utilized a pair of images, where
the pair of images is divided into a reference image R and a
floating image F . The circular Hough transform determines
the region of interest from both R and F . The ROI is chosen
as an 800 × 800 region centered on the OD from the green
channel of both images, as it has better contrast than the other
channels.
Retinal regions not containing the nerve head are called

‘empty retina’. Eigen approaches can detect objects of a
given class. Two classes of subimages CN and CR containing
the eigen spaces φN and φR are selected corresponding to
the subimages on the ONH and the ‘empty retina’. Training
images are taken to form the respective classes. A Hough
transform has been used to identify likely image regions for
the dual eigen space analysis by finding circles. The com-
bined set of best circles for all radii is denoted (γi, ci, ρi). Each
region identified by the Hough circles is evaluated by extract-
ing a 43 × 43 window, τ ∗(γi, ci, ρi) about its center (ri, ci)
and projecting it on to the eigen vectors. Of the candidate
locations at most five are forwarded for geometric analysis
of their position with respect to the vessel contours. For
each circle, these scores are then accumulated and weighted
by π istar , a measure of the overall angular uniformity of the
collective contour arrangement about (ri, ci).

vi = π istar

∑
j

vi,j (27)

The circle maximizing this measure is selected as the nerve
head location. Any contour may contain points from a blood
vessel, the nerve head perimeter, or both. While the vessels
detected contain straight lines, the perimeter is curved. Using
the mean-squared error it is first classified as either straight or
curved in a straight line fit. The nerve head position is used to
construct the vasculature distribution model. The responses
accumulate coherently for those fields in which the nerve
head detection is accurate.

M. EM FOR GAUSSIAN MIXTURE MODEL
Roychowdhury [57], Tan et al. [96], and Yousefi et al. [97]
proposed a Gaussian Mixture Model (GMM), a probabil-
ity distribution which assumes that the pixel intensities in
the image can be modeled by a collection of K component
Gaussian distributions with some mixing coefficient πk =
1, 2, . . . ,K . The probability density function of each pixel,
x can be represented as:

p(x) =
K∑
k=1

πkN (x;μk , �k ) (28)

and the likelihood of the given Gaussian distribution is
calculated using μk and πk as the mean and variance of

the kth Gaussian distribution given by,

N (x;μk , �k ) = 1

(2π )
|x|
2
√|�k |

exp

(
− 1

2 (x−μk )T�−1
k (x−μk )

)

(29)

The mixture weight, πk , must satisfy the following equation
in order to have valid probabilities.

K∑
k=1

πk = 1 and ∀k : πk ≥ 0 (30)

The data taken into consideration consists of X=x1,x2,Ě,xn
pixel instances occurring within the OD in the green chan-
nel. The green channel is selected as the visibility and con-
trast of the optic cup is superior in this channel. The pixel
instances, x, are assumed to be independent, and stated as,

p(X |πk , μk , �k ) =
N∏
j=1

p(xj) (31)

In order tomaximize themarginal likelihood in equation (31),
we apply the expectation maximization (EM) algorithm for
optimization in the GMM. For initialization of the EM-GMM
parameters, neuroretinal rim, retinal vessels and optic cup are
the features taken from the OD for processing. It is defined
to have K = 3 Gaussians in the approach and equal weights
for the mixture weight are initialized with π initialk = 1

K . The
EM algorithm estimates the number of Gaussian mixtures
in its histograms and their corresponding parameterization.
As each iteration progresses, the EM algorithm estimates
the distribution of the hidden variable on each data sample
(exp.ectation), and modifies the estimates of the Gaussian
parameters maximizing (maximization) the joint distribution
of the data and the hidden parameter. In the expectation step,
the influence of each Gaussian responsible for xj is calculated
using the following equation

pjk = πkN (xj;μk , �k )
K∑
i=1
πiN (xj;μi, �i)

(32)

and in the maximization step the following parameters are
re-estimated using the improved distribution of (32).

μnewk =

N∑
j=1

pjk xj

N∑
j=1

pjk

(33)

�new
k =

N∑
j=1

pjk (xj − μnewk )(xj − μnewk )T

N∑
j=1

pjk

(34)

πnewk = 1
N

N∑
j=1

pjk (35)
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The EM process is re-iterated till the convergence of the
likelihood function is satisfied.

N. BRIEF SUMMARY
Among the numerous methods available for localization of
the ONH, though the Hough transform is a standard algorithm
for line or circle detection, its computational complexity can
be overcome by the fast Hough transform. One way of reduc-
ing the computation required to perform the Hough transform
is to make use of gradient information that predicts in which
direction a circle must lie from a given edge coordinate
point. The optic disk is usually the brightest component on
the retinal fundus images, and therefore a cluster of high
intensity pixels will identify the optic nerve head location
effectively. This works well, unless there are other potential
fundus features such as exudates. The pyramidal decompo-
sition method along with the Hausdorff distance compares
the candidate regions to a circular template that approximates
the optic disk, thereby selecting the appropriate candidate
region. Vessel tracking techniques provide vital information
about the center of the optic disk. The convergence of blood
vessels also provides information regarding the center of OD.
The diameter, position and direction of blood vessels helps
the geometrical models to localize the center of OD. The
first few principal components of PCA may also help in an
accurate localization ofONH. For a proper convergence of the
ROI, EM-GMMalgorithmwith new parameter values may be
applied.

IV. SEGMENTATION OF OPTIC NERVE HEAD
After the accurate selection of the OD region, the active
contours have to be drawn for the accurate detection of the
OD boundary, as an accurate detection helps in assessing the
progression of eye diseases.

A. ACTIVE CONTOUR MODEL
The usual segmentation algorithms are not enough to accu-
rately find the boundary of the OD as they do not incorporate
the edge smoothness and continuity properties. An active
contour model [42], [83], [98]–[103], states that the presence
of an edge depends not only on the gradient at a specific point
but also on the spatial distribution. The curve adapts itself
dynamically to the required edges or objects in the image.
An initial contour is drawn to trace the OD using snakes.
The snake moves under an evolution equation that pushes it
towards configurations that minimise internal and external
energies. The initial contour for a snake must be close to
the desired boundary otherwise it can converge to the wrong
resting place. Internal forces make the curve compact and
external forces tend the curve towards the object’s borders.

B. GEOMETRIC ACTIVE CONTOUR MODEL
Geometric computations are used implicitly in the geometric
deformation model [58] for the evolvement of the curves.
It starts with an initial curve that evolves its shape byminimiz-
ing the energy function represented by level set function π in

the image domain. When the energy becomes minimum the
curve evolution stops. In level set methods [53], [104]–[106],
a contour is represented by zero level set function π and the
energy function that is to be iteratively minimized to find
the object boundary is given by an external energy function
which has two values that fit the image intensities inside and
outside the contour. The gradient descent method minimizes
the energy function and it consists of a data fitting term,
driving the active contour toward object boundary and the
length term, producing a smoothing effect on the contour and
the level set regularization term that controls the speed of the
contour. Joshi et al. [80] used a region based active contour
model [49] to improve the segmentation of the OD instances.
This model uses the local image information at a support
domain around each point of interest inspired by localized
C-V models. The region-based method drives the contour
using statistical information to decide whether or not a pixel
should be aggregated into a region. The distractors such as
blood vessels can influence the boundary-based deformable
model’s evolution. Tang et al. [107] utilized a C-V model
to detect the contours both with and without gradient. This
model uses a level set formulation and interior contours are
automatically detected, and the initial curve can be placed
anywhere in the image. In fundus images the papilla appears
as a bright or yellowish region. Its shape appears more or
less like a circle or an ellipse and it varies from image to
image. Based on the shape feature, an elliptic shape restraint
is imposed on the zero level set function of the C-V model.
Yu et al. [25] used a fast, hybrid level set model for a

robust curve initialization as the Gradient Vector Flow (GVF)
hybrid model. The curve evolution partial differential equa-
tion (PDE) is given by

∂ψ

∂t
= gεk|�ψ | + β1(1 − λ)|�ψ | + β2�g.�ψ (36)

The first term is a front evolution driven by the internal cur-
vature k . The second term represents a deformation driven by
the region information I . For a bright target object, it indicates
an expansion movement for the parts of the curve inside the
object if I > λ and a contractionmovement for the parts of the
curve outside the object if I < λ. The predefined threshold λ
is the lower bound of the bright OD region intensity. The third
term is the edge vector that helps to stop the evolving curve at
the OD boundary. ε, β1, β2 are the parameters to control the
balance of the forces.

C. GENETIC ACTIVE CONTOUR MODEL
Hussain [108] made use of the polar coordinates to simplify
the implementation. A region of interest (ROI) is defined as
the area bounded between Rmin and Rmax which is further
segmented into four quadrants as designated by ophthalmol-
ogists - (I)nferior, (N)asal, (S)uperior and (T)emporal quad-
rants as in Fig. 15. A randomly chosen point in each quadrant
is used as the initial population of snake points within this
ROI in terms of radius r(s) and an equally spaced angular
displacement θ (s). Fig. 16 illustrates how as θ changes the
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FIGURE 15. Snakes Space Parameterization.

FIGURE 16. As θ changes the search space lies in all 4 quadrants.

search space lies in all 4 quadrants. Since the angles in the
quadrant aremultiples of one another, a change from 0 toπ/2,
may evolve the populations in the four quadrants in parallel.

D. GRADIENT VECTOR FLOW MODEL (GVF)
In the GVF model the snake equations for external energy
are replaced by edge gradients [30], [42], [103], [109]. The
external energy in the GVF model is by the equation (37)

V (x, y) = (u(x, y), v(x, y)) (37)

The energy function to be minimized is given by

γ =
∫
μ(u2x + u2y + v2x + v2y) + |�f |2|V − �f |2dxdy (38)

where f represents the edge gradients. The energy is mostly
determined by the first term when |�| is small. In contrast,
when |�f | is large, closer to the edges, the second term
dominates and minimizes the energy making V almost equal
to |�f |. μ is a parameter that determines the relationship
between smoothness of the vector field and how much the

snake is attracted to the edges, and it represents the noise in
the image. If μ is large, then a large noise is present in the
image.

E. ACTIVE SHAPE MODEL (ASM)
Li and Chutatape [69] proposed the ASM, which utilized a
PDM from the training set and an iterative search procedure
to locate instances of shapes in the image under consideration.
The shape instance is landmarked by the position of n(n=48)
where 14 points are selected on the main blood vessels
(1 − 8, 25 − 30) and the other points (9 − 24 and 31 − 48)
are chosen evenly on the disc boundary. This ASM model is
illustrated in Fig. 17. The shapes taken for training undergo
transformations such as translation, rotation and scaling. The
transformation parameters are obtained by minimizing the
euclidian distance between the shapes using least square
approach and then the aligned training shapes undergo PCA
using the first four eigen vectors, which represent 93.22% of
the total variance of the training shapes. One or two search
zones may result from this aggregation for a retinal image of
good quality.

FIGURE 17. Active Shape Model. (a) A shape instance of optic disk.
(b) Active Shape Model incorporated in the optic disk.

F. HU’S CIRCULAR MODEL
Hu’s Circular model [88]–[90] is a combination of two mod-
els, the global model and the local model. The global model
consists of a circle with center c and radius r . This is used for
the rough fitting on the border of the disc. The local model
is defined by a center c and evenly spaced radial spokes and
direction vectors, si = [cos(θi), sin(θi)]. The model is defined
by distances mi from c along each spoke. The local model
has a corresponding global model with radius r = mi which
is the local model’s mean displacement. Three modification
are made to Hu’s model: A four phase algorithm has been
designed for accurate segmentation. The first phase is the
localization method. The Second Phase is the temporal lock.
The third phase is the global fit. The fourth phase is the
optimization for the improvement of the contour localization.

1) PHASE I - LOCALIZATION

A global elliptic model, that better fits to the elliptic shape
of the OD with a vertical principal axis, and a fixed aspect
ratio is used. The elliptical model can be transformed into an
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FIGURE 18. Bilinear interpolation of gradient.

equivalent circular model by scaling using the spoke ratios, to
‘normalize’radial distances and forces. The vector gradient,
is used to detect changes in the radial spokes intensity, and
the radial gradient is calculated by the bilinear interpolation
depicted in Fig. 18. The dot product of the gradient vector and
the spoke direction vector determines the gradient with the
spoke. The use of energy functions supports fast nonlinear
optimization. The contour is altered under the influence of
the force with external and internal components. External
force drags towards the attractor points. The internal force is
made up of the global and local force. The global force pulls
towards the global shape whereas the local force smooths
the model by penalizing differences in deformation between
neighboring spokes.

2) PHASE II - TEMPORAL LOCK

A global model with 9 spokes is defined at angles −60◦ to
+60◦ in steps of 15◦ on the temporal edge only. The gradient
image is smoothed with a Gaussian filter. The temporal bias
of the localization algorithm ensures that the initial contour
is usually just outside the temporal edge. The radial search
range is ±6 pixels.

3) PHASE III - GLOBAL FIT

The whole phase is activated here using 24 spokes evenly
spaced at 15◦. The radial search range is ±4 pixels. The other
parameters remain the same as for phase II.

4) PHASE IV - LOCAL DEFORMATION

When the global model reaches equilibrium the local model is
activated. To improve contour localization the gradient image
is recalculated with smoothing factor. Local stage optimiza-
tion is found to be more challenging than the global stage.
This method detects the position of the major anatomical fea-
tures of the retina [69], [93]. The algorithm output produces
a vector, sresult which contains positions of 16 distinct points
in the retinal image I . The parametric model is given by

sresult = G(b,F, I ,O) (39)

where sresult is the final output of the model, G, is the com-
plete model b the set of parameters, F the cost function, I the
fundus image and O the optimization algorithm. With the set
of model parameters, b, the set of 16 points ‘s’ has to be
generated.

G. WARPING
Kim et al. [29] applied adaptive histogram equalization to the
image and then used an average filter with 180 pixel-sized
windows to smooth the sharpness of the image and detected
the ONH center as the brightest point in the image. From
the center of the OD an imaginary circle is drawn with the
radius of one third of the distance between the center of the
ONH and the fovea. The circle is thenwarped into a rectangle.
At each 360◦ angles around the circle at 1◦ intervals from 0◦
through 359◦, radial profiles are extracted. The rectangle-
formed image consists of profiles of area in the circle centered
at ONH. A thresholding technique performs binarization and
every pixel having gray-levels less than half of the total level
is discarded in the image. Pixels on each row having less than
one third width of the image are removed and only the bottom
pixels at each column are retained.

H. BRIEF SUMMARY
In this review geometric based active contours fused with
level set methods tend to draw the active contours accurately.
Improved performance can be found if Hu’s circular model
is utilized for the segmentation of the ONH. As stated by
the various authors if preprocessing is done effectively, then
distractors may not misguide the various contour models. The
genetic active contours help in decreasing the processing time
as the snake lithers through the four quadrants simultane-
ously. A combination of the active contour models can be
tried with various level set methods to provide improvised
results.

V. PIXEL LEVEL GALUCOMATOUS CHANGES
For detecting pixel-level glaucomatous changes [110]–[114]
there are few methods:

1) Statistical Image Mapping (SIM)
2) Topographic Change Analysis (TCA)
3) Proper Orthogonal Decomposition (POD)
4) Vessel Diameter

A. STATISTICAL IMAGE MAPPING (SIM)
For glaucoma progression to be identified, the SIM method
is employed wherein images are acquired at regular intervals
of the clinical follow-up. A minimum of seven follow up
examinations is required for the current SIM of the retina.
The series of images are registered for a topographic height
analysis at each individual pixel. The changes or stability of
the pixels are summarized and a suitable statistic is derived
from it. A line of best fit (slope) is derived from the ordinary
least squares regression. The standard error of this slope
indicates how well the data fits the linear trend. Now the test
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statistic for each pixel is given by the absolute value of the
slope divided by the standard error at that point. A large value
of the test statistic indicates a large change in topographic
height at that pixel. This process is repeated for all pixels and
a statistic image is derived from it. The test statistic is recal-
culated by reshuffling the images randomly for all possible
permutations of the order of the images. The glaucomatous
structural changes affect a contiguous region in the ONH
and the homogeneous regions are grouped together to form
clusters. The permutation test is done pixel by pixel and the
value is thresholded at 5% level with the pixels labeled as
active or changing. After thresholding we are left with an
image that will contain clusters of contiguous active pixels.

B. TOPOGRAPHIC CHANGE ANALYSIS (TCA)
For the assessment of glaucoma, in the TCA method, three
Heidelberg Retina Tomography (HRT) images are acquired
during each patient visit at regular intervals of the clinical
follow-up. TCA compares the topographic height variability
at superpixel (4 x 4 pixels) for a height change between
the baseline examination and the follow up examination. For
detecting a change in height variability in a superpixel, TCA
utilizes topographic measurement from 16 different loca-
tions, and N different topograph scans acquired in each visit.
An adjusted value is calculated by subtracting the respective
topographic measurement in each pixel from its respective
mean. The mean topographic height may be influenced by
the location of each pixel in a scan and whether the scans
are acquired at a baseline or follow up condition. The sig-
nificance of change at each superpixel is evaluated using a
Frequency distribution (F−distribution). The final step is to
cluster contiguous and significant superpixel change loca-
tions for identifying progression from a baseline condition.
The topographic changes compared are with the baseline
and three consecutive sets of follow up images. Any patient,
who showed a cluster of 20 or more significant superpixels
bound within the contour line for the OD, is considered to
have confirmed progression of glaucoma. A change in mean
retinal height for each superpixel location gives the change
in mean difference of the topography changes. The OD and
optic cup are segmented using the superpixel [115] changes
in the fundus image.

C. PROPER ORTHOGONAL DECOMPOSITION
The Proper Orthogonal Decomposition (POD) technique is
used for detecting structural progression in an eye from a
baseline condition. A bounded rectangular region covering
a manually drawn OD is constructed in each of the topogra-
phies for selecting topographic measurements within the OD
region. The changes are quantified using the parameters:

1) L1 norm
2) Euclidean distance (L2 norm),
3) Image Euclidean distance (IMED), and
4) Correlation

L1 norm, L2 norm and IMED parameters measure the degree
of dissimilarity between a follow-up topography and its
baseline subspace representation; lower values indicate more
changes in the follow-up examination from the baseline. The
glaucomatous changes in the OD region in the baseline and
follow up visits are quantified using the above parameters.
While using Euclidean distance for image similaritymeasure-
ment performance degradation is primarily from the pixel-to-
pixel correspondence used and this is due to the orthogonal
coordinate system used formeasuring an image distance. This
drawback is overcome by the IMED, assigning a varying
weight to the adjacent pixels using a non-orthogonal basis.

D. VESSEL DIAMETER
Vessel diameter also helps in identifying the progression of
the disease. In order to detect the vessel diameter, first the ves-
sel center line has to be detected. Vlachokosta et al. detected
the vessel centerlines [116] bymeans of a differential calculus
as the initial step. The vessels are found to be darker than the
background. By finding the local minima of the image in the
direction that is perpendicular to the vessel, the pixels that
belong to centerlines can be detected. This can be seen from
Fig. 19. The following properties hold for these pixels:

• The Hessian matrix (matrix of second order derivatives)
of the image has at least one positive eigenvalue.

• The first derivative of the image across the direction of
the eigenvector, which corresponds to the largest posi-
tive eigenvalue, vanishes.

The first acquired image is taken as the reference image
and the other follow-up images are registered with respect
to the reference one. For each image, the vessel centerlines
are extracted and the distance transformation of the refer-
ence binary image is calculated,which provides the smallest
distance of each pixel of the reference binary image from

FIGURE 19. Vessel diameter estimation.
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the centerlines. Then each image is transformed by an opti-
mization process using the current values of the parameters
of the transform. Estimation of vessel diameter is done by
modeling the vessel intensity by means of Gaussian function.
Due to the presence of a central light reflex in several vessels
generated from a rough reflecting surface two models, with
light reflex and without light reflex are described in order to
best fit the observed vessels.
A robust M-estimation method determines the parameters

of the model, since it reduces the effect of possible outliers
on the estimation of the parameters. The vessel diameter is
estimated by the difference of the abscissas that correspond
to the zeros of the second order derivative of the model.
However, the estimation of the diameter of a vessel that has
light reflex is further complicated due to the fact that the roots
of the second order derivative cannot be solved analytically.
Therefore, the Newton-Raphson method is applied. For each
selected vessel, the mean diameter and the standard deviation
over the whole image sequence is computed and found that
the vessel diameter is higher for images of patients who had
ocular hypertension than the normal ones.

E. PROBABILITY MAPS
Soft classification method has been used by
Narasimha-Iyer et al. [43] for the computation of the prob-
ability maps for a given set of features. A feature set F
contains features f1, f2, . . . , fn. Each pixel (i, j) is repre-
sented by a feature vector containing the sampled features
f1(i, j), . . . , fn(i, j).
To compute the k nearest neighbors for each pixels, the fea-
ture vectors can be input to a kNN classifier . The probability
Pc(i, j) for pixel (i, j) in class c ε {disc, bg} is calculated as

Pc(i, j) = nc
k

(40)

where nc is the number of nearest neighbors of class c and k
is the total number of nearest neighbors.

1) FEATURE SELECTION

A set of possible features has to be selected. This uses a
one-time feature selection routine to optimize the feature
set for the detection of the OD. A Sequential Floating For-
ward Selection (SFFS) algorithm serves this purpose and
adds the best feature to the set. A Sequential Backward
Selection (SBS) removes any feature that may degrade the
performance, thus improving the overall performance of the
selected set while reducing its cardinality.

2) POLAR TRANSFORMATION

The original transformation Pdisc is transformed into polar
coordinates. A kernel point Q is determined as the approx-
imate center and this point should be available within the
disc. The OD is sampled from Q radially outward with I rays
of radius R and J samples per ray. The result of the trans-
formation to polar coordinates is a new 2-D image P(i, j)
where 0 ≤ i < I and 0 ≤ j < J . The samples are
computed from an average of the values, excluding vessel

pixels, along an arc whose endpoints bisect the surrounding
two rays.

3) GRAPH CONSTRUCTION

The unwrapped image P(i, j) can be viewed as a 2-D
weighted, directed graph G = (V ,E) where each pixel
corresponds to a vertex, V and edges E , the interconnection
between these pixels. The boundary has to be smooth, and
hence any two adjacent pixels on the border should not be
too far apart. A smoothness constraint M exists in which a
vertex V at the point (i, j) is said to have a directed edge from
itself to every point (i + 1, j ± q) where 0 ≤ q ≤ M

2 and
(j − q) ≥ 0 and (j + q) < J . The optimality of the path
is defined with respect to the total cost of the vertices on it.
The optimal path, computed in polar coordinates, consists of
samples along the final border in the original image. The final
border is calculated by transforming the samples using the
inverse of the polar transform, and then fitting an interpolat-
ing 2-D closed spline to the data.

F. BRIEF SUMMARY
Pixel level glaucomatous changes may help in finding the
progression of the disease. Instead of a single image, a
series of images are used, and the changes with respect to
the base line provide certain information about the disease
progression. Proper orthogonal decomposition method using
Haar based wavelet helps in providing information about
the changes. The images have to go through transformation
processes as the image will not be at the same position
during each patients’ visit. The super pixel level leads to
more descriptive features and hence they are effective yield-
ing significant computational savings. The pixel-wise change
analysis technique of TCA analyze ONH topographies at
(1/4)th of the original topographic resolution and requires two
or more additional follow-up exams to confirm and establish
confidence on a detected change. The POD framework uses
only a single follow-up exam and analyzes the ONH structure
at the original topographic resolution and detects glaucoma-
tous changes from a baseline condition. Techniques such as
TCA and SIM of the retina methods detect glaucomatous
changes based on observed pixel changes within the optic
disk margin.

VI. ALGORITHMS FOR 3-D DATASETS
Optical Coherence Tomography (OCT) [117]–[120] is a new
imaging technique which produces micrometer-resolution,
cross-sectional scans of biological tissues. Before the
invention of Spectral Domain-Optical Coherence Tomogra-
phy (SD-OCT), up to six B-scans or OCT slices are obtained
from the optic nerve head during each scanning session. Then
these slices are evaluated visually by the individual clinician.
Some commercially available scanners acquires close-to-
isotropic 3-D ONH-centered volumes. Isotropic [121] means
that the size of each imaged element or voxel, is the same in all
three dimensions. The cup-to-disc ratio and RNFL thickness
is measured [122]–[125] here for accurate segmentation.
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The 3-dimensional dataset produces the OD cube data
composed of 200A-scans derived from 200B-scans. It covers
a 6 × 6 mm area centered on the OD. The RNFL thick-
ness map is created from the cube dataset. The software
then automatically determines the center of the OD. It then
extracts a circumpapillary circle (1.73 mm in radius) from
the dataset to perform RNFL thickness measurements [126].
Mwanza et al. [127] utilized the Ganglion Cell Analy-
sis (GCA) algorithm [127], [128] to discriminate the normal
and the pathological eyes. It successfully detects and mea-
sures the thickness of the ganglion cell-inner plexiform layer.
The fractal analysis (FA) [56] has been used in 1-D RNFL
data. 2-D pseudo images are obtained from the 1-D RNFL
data of both the normal and diseased eyes. The features are
obtained from the FA, Wavelet Fourier Analysis (WFA) and
the Fast Fourier Analysis (FFA). The FA features are found
to be better classified than the other two. A random forest
classifier classifies the cup, rim, and background using the
three in-region cost functions [120]. Radial scans are created
using the resampling of the volumes in which the Bruch’s
Membrane Opening (BMO) endpoints are easier to detect.
The Haar Stationary Wavelet Transform (SWT) produces a
radial projection image. The in-region and disc-boundary cost
images are utilized by the multisurface graph-based approach
to segment the boundaries of OD and cup. The multimodal
approach outperforms the unimodal approach in segmenting
the OD and the cup.
The introduction of the confocal scanning laser ophthal-

moscope (CSLO), such as the Heidelberg Retina Tomo-
graph (HRT), which obtains accurate three-dimensional
images of the surface topography of the ONH helps in
the early detection of glaucoma [129]. In order to examine
for ONH changes, the confocal scanning laser ophthalmo-
scope (SLO) has become a useful tool in the morphological
assessment of the ONH [130]. Area and volume derived
topographic parameters have been used extensively for their
ability to distinguish normal eyes from those with glaucoma.
Paunescu et al. [131] used ONH parameters such as disc area,
horizontal integrated rim volume, and vertical integrated rim
area for the determination of whether glaucoma is present or
not. During eye examinations, ophthalmologists [24] look for
specific regions and patterns to identify possible markers of
diseases.
The OD can be detected from a single OCT slice [132].

This method investigates the retinal pigment epithe-
lium (RPE) which bounds the OD and which has a low-
rank appearance structure that differs from areas within the
disc. To segment the OD, it acquires from the OCT image an
RPE appearance model that is specific to the individual and
imaging conditions. This determines a low-rank dictionary
from fundus image areas known to be part of the RPE
according to prior knowledge of the ocular anatomy.

A. PREPROCESSING
Median filtering [133] is applied to the image which consid-
ers each pixel in the image in turn and refers to its nearby

neighbors to decide whether or not it is representative of
its surroundings. Instead of simply replacing the pixel value
with the mean of neighboring pixel values, it replaces it
with the median of those values. Rossant et al. [134] applied
a non linear diffusion filter to the image, which performs
better than median filters or Gaussian filters, since the edges
are better preserved. The output image is then normalized
between the values 0 and 1. The contrast between the inner
retina and the vitreous is large enough to detect the Inner
Limiting Membrane (ILM) by using an edge-tracking algo-
rithm. This algorithm is based on the maximization of the
local mean gradient. An active contour algorithm refines the
result. The energy functions are defined by internal forces,
the rigidity and the tension of the contour, external forces,
and the GVF field derived from the gradient of the image.
Abràmoff et al. [121] used a fast, three dimensional mul-
tiscale layer segmentation algorithm with a graph search
approach. Surface 1 corresponds to the ILM, surface 2 lies
between the inner and outer segments of the photoreceptors,
and surface 3 is the outer boundary of the retinal pigment
epithelium. When these three surfaces are segmented the
approximate size, shape, and position of the ONH region is
not yet known. A large region that is expected to include the
ONH is excluded from surface detection.

B. EM ALGORITHM-ANISOTROPIC MARKOV
RANDOM FIELD
Grau et al. [3] used three-dimensional datasets from monkey
eyes under controlled intraocular pressure (IOP). He recom-
mended that the hidden classification of images depends on
a set of distributed unknown parameters. The E-M algorithm
alternates between two tasks, classification of image voxels
and estimation of distribution parameters, in an iterative way.
The expectation and maximization are carried out at step
(t + 1) applying the following equations:

E-Step:

pt+1(xi = k)|yi, θ (t) = p(yi|xi = k, θ (t)k )p(xi = k)∑
j p(yi|xi = j, θ (t)j )p(xi = j)

(41)

where yi is the log-transformed intensity at voxel i, xi is the
label given to this voxel, and p(yi|xi= k, θ (t)k ) correspond to a
normal distribution
M-Step:

μ
(t+1)
j =

∑
i yip

t+1(xi = j|yi, θ (t))∑
i p
t+1(xi = j|yi, θ (t)) (42)

{(
σ
(t+1)
j

)2 =
∑

i p
t+1(xi = j|yi, θ (t))(yi − μ

(t)
j )2∑

i p(xi = j|yi, θ (t))

}
(43)

In this way, the probability of the distribution, given the
previous parameter values using Bayes’ rule is estimated
in the E-step and the new parameter values that maximize
the probability is calculated in the M-step. The algorithm
is guaranteed to increase the likelihood at each iteration
thus converging at least to a local minimum. The use of
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the structure tensor introduces local information about struc-
ture orientation and coherence into the segmentation process.
An anisotropic Markov Random Field (MRF) [3], [31], [135]
has been introduced in which the influence of neighbors on
the classification of a voxel is weighted by the local structure
characteristics at its location. The use of anMRF to determine
the prior class probabilities increases the need for correct
neighbor values. This method has showed improvement over
the isotropic MRF.

C. RETINAL-VITREAL BOUNDARY
The retinal-vitreal boundary [136] helps in detecting the pro-
gression of glaucoma and is extracted first. Then this bound-
ary is analyzed to determine the limits of the optic cup. The
retinal-choroid boundaries are extracted to determine their
endpoints, which lie on the optic disk perimeter. Significant
contrast at the vitreal-retinal boundary is observed in the
retina and optic nerve images. To make the retina homoge-
neous the speckle is suppressed and the contrast between the
vitreous humor and retina is significantly increased. A bright-
ness threshold t , that segments the retina and ONH from one
side of the vitreous humor is found. Four basic operations
are used by the boundary detection: noise reduction, colum-
nwise edge detection, optimal threshold selection, and final
boundary extraction. A 4 × 4 median filtering is used twice
to preserve edges and edge locations. Speckle noise is often
modeled as follows:

B(r, c) = I (r, c) × N (r, c) (44)

whereB(r, c) is a pixel in the B-scan, I (r, c) is the actual pixel
intensity, and N (r, c) represents Gaussian distributed noise
with a mean of one and a standard deviation σn. A Lapla-
cian of Gaussian (LoG) edge detector is used and in one-
dimension it reduces to the second derivative of the Gaussian.
To compromise between the ability to localize weak edges
and to suppress clutter, which impacts the detection error rate,
a value of σ = 5 is chosen. The threshold value t which
minimizes the cost function is determined using a sample
J (t) for a fixed set of t values evenly spaced over a range
that always bounds t . The sampled minimum is found and a
parabola is fit locally around this point

y(t) = at2 + bt + c (45)

The threshold t found in the image from the previous step,
makes the matter of boundary extraction now insignificant.
Noise in the vitreous humor can cause small artifacts to occur
in the thresholded image. To remove these artifacts we first
label each 4−connected object in the image and remove those
objects whose area is less than 1

50 of the total area of all the
objects in the image. The non cup regions are of constant
curvature, but it is now assumed that the cup is parabolic
rather than circular.

D. k-NN CLASSIFIER AND CONTEXTUAL k-NN CLASSIFIER
A fast multiscale extension of 3-D graph search is devel-
oped to detect four intraretinal surfaces in ONH-centered

OCT volumes [43], [100], [137], [138]. The speckle noise is
removed from the OCT volume by first ordering the voxel
values according to their intensities. Then a combination of
both the median filtering and averaging-based smoothing is
done. Five gradient magnitude volumes are generated for dif-
ferent resolutions for the multi-scale approach, where level 4
represents the full resolution. For each level i, the z−values
of the gradient magnitude volumes are controlled by the
following equation:

zi−1 × 2 − α ≤ z ≤ zi−1 × 2 + α for1 ≤ i ≤ 4 (46)

where zi−1 = fi−1(x, y) is the surface segmented in level
i− 1 and α is a margin in z axis. The histological equivalent
of the surface 1 is the Internal limiting membrane and the
surface 2 is at the boundary between the inner and outer
segments of the photoreceptors, and surface 4 corresponds
to the outer boundary of the retinal pigment epithelium.
Surfaces 2 and 3 are not present in the ONH region. The
ONH has to be normalized across patients and in order to
normalize it, the second intraretinal surface (surface 2) is used
as it has a consistent shape over its surface. The second and
fourth intraretinal surfaces are used to average the image in
the z−direction for OCT projection of the image. The OD cup
and rim are extracted from the background using a supervised
classification method.

E. BRIEF SUMMARY
A logical extension of the work would be to derive 3-D med-
ical image data for processing. The major disadvantages of
the existing 2-D approaches can be solved by such an image
driven approach, but the cost needed to develop automatic
segmentation techniques is large, as the manual annotation
process is too labour intensive and suffers from inter and intra
observer variability. The 3D surfaces are reconstructed from
2-D contours detected in sequential 2-D images. The reasons
behind the lack of interest on 3-D statistical surface models
might be the low availability of adequate training samples,
and the difficulties to design a proper modelling algorithm
due to the complexity of 3-D shape variations.

VII. MACHINE LEARNING AND
TRADITIONAL CLASSIFIERS
Glaucomatous variations among the images allows appear-
ance based feature extraction. Transformation methods that
provide information with different spatial and frequency res-
olutions are needed. Principal Component Analysis (PCA)
reduces the high dimensionality of the transformed images
into image-based features of lower dimensions. The goal of
the machine learning [139] is to find an optimal classifier
that has enough capacity to learn from the training data, and
still be able to generalize the unseen data from the rest of the
population in the input space. Let xεRd be an input feature
vector, and let yε{−1, 1} be its corresponding output label, for
a two pattern classification problem [140], [141]. A machine
learning classifier is modelled as a function f (x, π) with a set
of parameters π .
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FIGURE 20. Support vectors in SVM.

A. SUPPORT VECTOR MACHINE(SVM
The SVM [139], [142]–[146] is a classifier which is generated
with support vectors to form a classification decision hyper-
plane w with offset b which is based on the idea of structural
risk minimization. The hyperplane is given by

hyperplane = {|x|〈w, x〉 + b = 0} (47)

Input data x which fall on one side of the hyperplane are
labelled as 1 and those on the other side as −1. Each clas-
sifier is generated from a different permutation of training
and testing data from the same sample data. Fig. 20 shows
how support vectors are determined in SVM. The structural
capacity is estimated to be the same, since the permutation
is statistically random and same sample data is used. Given
a set of input feature F = {f1, . . . , fd }, the feature vector is
given by

x = {f1, f2, . . . , fd } (48)

After this process, an optimal set of features Fs =
{fs1, . . . , fsm} is selected representing a lower dimensional
feature vector

x = {fs1, fs2, . . . , fsm} (49)

wherem � d that can provide an optimal classifier. Once the
optimal set of features are found, they are used to train the
model for the final generation of the classification, whether
normal or retinopathic condition.

B. DISCRIMINATIVE AND GENERATIVE CLASSIFICATION
In a two-class classification problem [142], a training set is
given, consisting of {xi, yi}, i = 1, . . . ,N where xiεRD is the

input, and it contains both continuous and discrete entries.
The output label is determined by yi = ±1. The Bayes’
rule is the only consistent way to manipulate beliefs and
plausibility and its classifier assumes independency between
components of input. The classical linear discriminant anal-
ysis (LDA) [147] models the two classes of data with Gaus-
sian densities of same variance but different means. It takes
D(D + 1)/2 + D + D parameters in this approach. Linear
discriminant function is determined by u(x) = w.x+bwhich
only needs D + 1 parameters results. If it is a dataset of
finite size, fewer data points for each parameter is needed in
the generative approach. Unless the equivariance assumption
fits well to the data, the classical LDA will be less effi-
cient, for the sole purpose of classification. The advantage
of discriminative classifiers is that they concentrate mostly
on the decision boundary, and they provide less insight into
the structure of the data space and hence it is difficult to
handle data containing missing entries. When performing the
indirect classification [148] method there exists a relationship
between the explanatory and intermediate variables, where
w = f (x) is unknown, therefore it has to be estimated. Based
on the explanatory variables, models are created to predict the
values of the intermediate variables. Then the classification
is performed using the deterministically known classifying
structure g(w) between intermediate and response variables.

C. THE MULTI LAYER PERCEPTRON (MLP)
The MLP [142], [149], [150] is termed as a feedforward
network, and is a generalization of single-layer perceptron.
It is an approximation of any real valued function, and has
three layers, the input, hidden and the output layers. In a
two-classification problem the input x is given by x =
(x1, . . . , xD)T , and

zj = g
( D∑
d=1

wjdxd + wj0

)
(50)

f = h
( J∑

j=1

vjzj + v0

)
(51)

The activations of the hidden layer units are zj, j = 1, . . . , J
and wjd are the weights between the input and the hidden
layer. The weights connecting the hidden layer to the output
unit are vj. The terms wj0 and v0 are the biases for the hidden
and output units. The MLP is the most popular architectures
among other neural networks, because it can be efficiently
trained by error backpropagation. The mean-squared error
(MSE) is not the proper error function in classification, but
it is the negative log likelihood function. Despite having a
different error function, the equations in the error backprop-
agation remain unchanged.

D. MIXTURE OF GAUSSIANS (MOGs)
Since the input of the glaucoma data contains only continuous
values, each class-conditional density p (x|C±) is modelled
by a normal multivariant density [142]. This results in a
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classical LDA or a quadratic discriminant analysis (QDA),
depending onwhether or not the two normal densities are con-
strained to have the same covariance. Real data distributions
usually do not follow a normal distribution but have slightly
heavier tails, skewed or even a bi-modal structure. For such
problems a single Gaussian is not flexible enough to model
adequately the distribution of data. The MOG is very simple,
and the probability densities for the positive and negative
classes are each modeled first as a mixture of multivariant
normal densities.

p(x) =
M∑
m

p(x|m)P(m) (52)

p(x|m) = 1√
(2π )D|�m| ×exp

[
− 1

2
(x−μm)T�−1

m (x−μm)
]

(53)

The expectation-maximization (EM) algorithm is used to find
the parameters P(m), μm and�m. Multiple trials are required
to avoid localminima. However, a learning rate is not required
as the EM automatically chooses the optimal one.

E. MIXTURE OF GENERALIZED GAUSSIANS(MGGs)
The generalized Gaussian mixture model [142] models the
class-conditional densities p(x|C±) with higher flexibility,
while preserving the possibility to realize the statistical prop-
erties of the data in terms ofmean, variance, and kurtosis, etc.,
where kurtosis can be formally defined as the standardized
fourth population moment about the mean. The MGG uses
the same mixture model as the MOG, but each cluster is now
described by a linear combination of non-Gaussian random
variables sm,which are the independent hidden sources in a
cluster m responsible for generating the observation xs given
Am and bm.

p(x|m) =
∫
δ

[
x − (Amsm + bm)

]
p(sm)dsm (54)

sm will assume a generalized Gaussian density of zero mean,
unit variance, and shape parameter βm,

p(sm|βm) =
D∏
d

(
smd |βmd

)
(55)

p(smd |βmd ) = ω(βmd ) exp
[
−c(βmd )|smd |

2
(1+βmd )

]
(56)

where ω(β) is the normalization constant and β is a measure
of kurtosis. It will be adapted together with Am, bm and P(m)
during training.

F. PARZEN WINDOWS
The Parzen window [142] is a kernel-based nonparametric
approach to density estimation given by

p(x) = 1
N

N∑
i=1

1
hD
H

(
(x − xi)

h

)
(57)

whereH (u) is known as the Parzen window and has to satisfy
H (u) ≥ 0 and

∫
H (u)du = 1. If an isotropic Gaussian Parzen

window is used as, H (u) ∝ exp 1 |u2|
2 , it becomes a special

instance of the MOG density estimation. Its dependency
is mainly on the width parameter h. It provides only little
information about the structure of the data and also requires
storage of the entire training set for classification.

G. PIXEL INTENSITIES
Pixel intensity values are taken as high dimensional fea-
ture vector in standard appearance based approaches.
Abràmoff et al. [138] utilized a Gaussian filter bank concept
mathematically to create a larger set of features, from which
an optimal combination of features could be selected. Gaus-
sian filter bank features are sensitive to edges and textures in
the gray-scale intensity image obtained from a color image at
different scales and orientations. The outputs of a Gaussian
steerable filter bank in hue, saturation, brightness space are
taken as features and also the variance in the red, green, and
blue channels in a small region around the pixel are taken as
optimal parameters.

H. ONH SPATIAL FEATURES
A fundus camera is used to acquire a pair of sequential
ONHPs in each subject [151]. Subjects’ pupils are dilated,
and photographs are taken at the leftmost and rightmost
position of the pupil, to maximize the stereoscopic base.
Tobin et al. [152] used a prior probability [153] with other
statistical data for training of the localization of the ONH.
A small set of fundus images that have had the ONH center
manually selected is used for training. Using the prior prob-
ability the likely location of the ONH centre is determined
for all patients for both the eyes. The retina is characterized
in terms of the vessel structure as the vasculature emanates
from the ONH. Four spatial features of the vasculature, the
density map of the vessels ω(x, y), an average thickness
map t(x, y), an average orientation map θ (x, y) and a lumi-
nance map l(x, y) are used to determine the center of the
ONH. Mathematical morphology along with local linearity
of vessels, piecewise connectivity and vessel brightness seg-
ments the vessels in the retina used. The vessel structures are
dark relative to the retinal surface and hence the gray scale
intensities are to be inverted. Two categories of rectangular
convolution windows are chosen depending on the feature
extraction. When the size of the convolution windowmatches
the ON dimensions, the spatial feature characteristics are
extracted using retinal luminance, vessel density, average
vessel thickness and average vessel orientation as follows.
Pederson and Anderson [154] used the cup-to-disc ratio [155]
in determining the progression of the disease.

1) RETINAL LUMINANCE

This feature measures the brightness but it should not be
confused with retinal lesions as they also appear as bright
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objects thus determining the ON as it is a bright region

l(x, y) = I (x, y) × w1(x, y) (58)

The size of the window is M x N = 1 ON diameter and it
searches for brightness elements whose mean size is roughly
equal to the ON diameter.

2) VESSEL DENSITY

The vessels enter the eye through the ON and they tend to
be dense in this region. The density is defined as the no. of
vessels in a unit area of the retina and the convolution window
w(x, y) is defined to be 0.6 ON diameter.

ρ(x, y) = bt (x, y) × wv(x, y) (59)

3) AVERAGE VESSEL THICKNESS

The vessels are found to be thickest near the ON. The thick-
ness feature is independent of the no. of vessels in the window
taken into consideration.

4) AVERAGE VESSEL ORIENTATION

The vascular orientation entering the eye is found to be
roughly perpendicular to the horizontal raphe of the retina.
They become more parallel as the distance to the ON
increases. A steerable filter incorporating the second deriva-
tive of Gaussian andHilbert’s transform are used to determine
the vessel orientation. To determine the conditional densities
p(v|ωON ) and p(v|ω¬ON ), a vector v[ρ, t, θ, v]t is used. The
prior probabilities p(ωON ) and p(ω¬ON ) are combined with
the conditional densities p(v|ωON ) and p(v|ω¬ON ) for the
calculation of posterior probabilities p(ωON |v) and p(ωON |v)
using the Bayes’ rule, which are used to develop a likelihood
estimate for the location of the ON.

I. PARAMETER CLASSIFICATION
Swindale et al. [129] determined the shape of the ONH by
a smooth two-dimensional surface with a shape described
by ten free parameters such as cup position, cup radius, cup
slope, cup depth, vertical offset, horizontal and vertical image
curvature, nasotemporal slant and vertical slant. A least-
square fitting method adjusted the parameters to give the best
fit. The coordinates of a circular region that covered the cup
are determined first. The following measurements are made:

• An overall measure of the steepness of the cupwalls (gr ).
• Separate temporal (gTr ) and nasal (gNr ) components.
• A goodness-of-fit measure of the model to the image in
this region (fR): this value is larger in images in which
the cup is irregular in shape.

• A goodness of fit measure of the image to a model
without a cup (fp): this value is larger in images with
large cups and smaller in images with small or absent
cups.

• A measure of maximum cup depth (z500) is identified
from the average of the 500 largest depth values present
for image pixels within the cup region.

An analysis on the statistics of the different parameters
enables to construct a classifier that gives the probability,
P(G), that each image came from the glaucoma population
or not. Images are classified as abnormal if P(G) >0.5.

Xu et al. [156] utilized a pair of stereo images taken from
a conventional stereo camera. A four step analysis is carried
out:

• 3-D ONH reconstruction [157], [158],
• disc margin detection,
• cup margin detection, and
• calculation of ONH stereometric parameters.

Depth is inversely proportional to the disparity between the
two matching points from the left and right images in the
stereo image pair. Disparity is defined as the coordinate dif-
ference (vL-vR) of the corresponding points. Multiple corre-
sponding points are identified automatically on the left and
right images by two matching methods namely the highest
correlation, and the minimum difference of features. The
various features include the gradient magnitude, gradient
orientation, intensity, cross-correlation and feature difference
between the given comparison windows, and detected the
corresponding points at the location with the highest corre-
lation and the minimum difference. Highest intensity on the
image is located as the candidate region of the OD. The initial
disc margin is detected with the Hough transform technique
and refined by iteratively minimizing an energy function
to converge properly. The combined information from the
intensity value, image gradient, and boundary smoothness
makes the energy function. The cup margin is located 150μm
posterior to the disc margin for eyes with cup depths ranging
between 0.2 and 1.0 mm. For eyes with cup depth shallower
than 0.2 mm or deeper than 1.0 mm the cup margin is located
at one fifth of the total depth. Seven ONH parameters such
as disc area, rim area, rim volume, cup area, cup volume,
cup-to-disc (C/D) area ratio, and vertical C/D ratio-were
automatically generated.

J. FEATURE SELECTION
1) MOMENT METHODS

Confocal Scanning Laser Tomography (CSLT) captures
3-dimensional ON images for the automatic analysis, to pro-
vide support in the clinical care of patients affected with
glaucoma. The back of the eye is scanned sequentially in two
dimensions, and a series of images is captured. In each of the
image series, the relative height of the retinal surface structure
is inferred by finding the focal plane in which maximum
reflectance of each pixel occurs (topography image).Moment
Methods [159], [160] are used to extract features from CSLT
images. Moment features are properties of connected regions
in binary images that are invariant to image transformations
and with respect to its axes, describes the image content
and captures both global and detailed geometric information
about the image. Zernike moments are utilized where the
image’s properties are described by their order (n) and rep-
etition (m) with respect to a digital image. The low order
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moments capture gross shape information and high order
moments incrementally resolve detailed information of the
digital image. If more information is present in the image,
then it may add to some noise. So higher order moments
usually do not contribute much information and the task is to
determine the optimal number of lower order moments. For
the Zernike moments generated, the order n and repetition m
meet the conditions, n − |m| = even and |m| ≤ |n|.
Now a proper selection of optimal subset features is essen-
tial, hence Multilayer Perceptron(MLP) and Support Vector
machines (SVM) based wrapper models are used to find an
Optimal Moment Feature Subset (OMFS) to provide optimal
data classification accuracy. In order to determine the size of
the OMFS, an accumulative feature selection strategy is used
which incrementally adds moments to an existing feature
set and train a classifier (MLP and SVM) to determine the
classification accuracy for the new feature subset. All the
moments are normalized in the range [−1,+1].

2) EUCLIDEAN BASED FEATURE SELECTION (EUBAFES)

Feature selection based on a distance based feature [161],
is constrained to reinforce similarity between instances that
fall into the same class, and decay in similarities between
instances that fall into different classes. To solve the problem,
an energy function which determines which feature subset is
superior to the other has to be found. We need an optimal
search algorithm to avoid exhaustive search, because the
number of possible feature subsets grows exponentially with
the number of features. The search space is defined by a
hypercube, where the optimal search continues by hopping
through the corners with a specific strategy. The energy func-
tion used here depends on the inter and intra class similarities.
This method does not select all features with discriminant
properties but selects a subset of features that together have a
best discriminant property.

K. BRIEF SUMMARY
Artificial Neural Networks (ANNs) have always shown
equivalent, and in many cases superior performance when
compared to human physicians or conventional statistical
methods. In recent years, SVM plays a dominant role in
ANNs. The use of image information as input parameters
to ANN models have also been shown to be efficient. These
indicate that the incorporation of image analysis techniques
into an ANN-based detection and progression of glaucoma
is promising. Performance of ANNs is still not convincing
enough. Supervised learning is used in all ANN models
reported in this survey. Preparation of training and test data
is crucial for the learning process and may influence the
final outcome of the ANNs. When an ANN model is trained,
factors such as inter- and intraobserver variability among
pathologists, difference kinds of patients, different age groups
and method of data collection may cause bias to the ‘knowl-
edge’ learnt by the model and lead to inaccurate outcome.
To overcome some of these shortcomings, a standardised val-
idation procedure may be incorporated. A two level classifier

has been chosen since the images are classified as affected or
not affected by glaucoma. If the levels or degrees of severity
of glaucoma has to be detected, then the classifiers may
be extended to multi-level classifiers. Performance levels of
ANNs can be increased by selecting the correct features to be
given to the training set. The age of the patients chosen for
training also has to be diverse to increase the accuracy of the
training, which results in increased efficiency in the testing
process. Both time and frequency domain features has to be
incorporated to produce better results.

VIII. RETINAL DATABASES
There are several databases available. Some databases of
retinal fundus images are available online. The most popular
ones are STructured Analysis of the REtina(STARE) [27].
The STARE Project was conceived and initiated in 1975 by
Michael Goldbaum, M.D., at the University of California,
San Diego, and has been funded continuously by the National
Institutes of Health (U.S.A.) since 1986. It also supports
elaborate measurements of the anatomical structures and
lesions visible in the retinal image. These measurements
are useful for tracking disease severity and the evaluation
of treatment progress over time. The STARE dataset has
31 images of healthy retinas and 50 images of pathological
retinas which is widely used for benchmarking OD detection
in the literature.The next most used database is the Digi-
tal Retinal Images for Vessel Extraction(DRIVE) [2]. The
DRIVE database has been established to enable comparative
studies on segmentation of blood vessels in retinal images.
The photographs for the DRIVE database were obtained
from a diabetic retinopathy screening program in The Nether-
lands. The screening population consisted of 400 diabetic
subjects between 25 − 90 years of age. Forty photographs
have been randomly selected, 33 do not show any sign of
diabetic retinopathy and 7 show signs of mild early diabetic
retinopathy. Each image has been JPEG compressed. The
set of 40 images has been divided into a training and a test
set, both containing 20 images. For the training images, a
single manual segmentation of the vasculature is available.
For the test cases, two manual segmentations are available;
one is used as gold standard, the other one can be used to
compare computer generated segmentations with those of an
independent human observer.
The ARIA project aims to provide an automated image

capture and image analysis platform capable of predicting
individuals at risk of eye disease. All photographs were taken
at a 50 degree field width, and all images are in colour.
Additionally, trained image analysis experts have traced out
the blood vessels in the images and these are also given
in sub-directories. It contains retinal images with manual
outlines of vessels, OD and the location of the fovea. Another
database in use is the Méthodes d’Evaluation de Systémes
de Segmentation et d’Indexation Dédiées á l’Ophthalmologie
Rétinienne (MESSIDOR). The MESSIDOR database has
been established to facilitate studies on computer-assisted
diagnoses of diabetic retinopathy. The 1200 eye fundus color
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numerical images of the posterior pole for the MESSIDOR
database were acquired by 3 ophthalmologic departments
using a color video 3CCD camera on a Topcon TRC NW6
non-mydriatic retinograph with a 45 degree field of view.
The images were captured using 8 bits per color plane at
1440 × 960, 2240 × 1488 or 2304 × 1536 pixels. The
DIARETDB1 [13] is a standard Standard Diabetic Retinopa-
thyDatabase for benchmarking diabetic retinopathy detection
from digital images. The database consists of 89 colour fun-
dus images of which 84 contain at least mild non-proliferative
signs (Microaneurysms) of the diabetic retinopathy, and 5 are
normal. Images were captured using the same 50 degree field-
of-view digital fundus camera with varying imaging settings.
The Hamilton Eye Institute Macular Edema

Dataset (HEI-MED) (formerly DMED) is a collection of
169 fundus images to train and test image processing algo-
rithms for the detection of exudates and diabetic macu-
lar edema. The images have been collected as part of a
telemedicine network for the diagnosis of diabetic retinopa-
thy currently developed by the Hamilton Eye Institute, the
Image Science and Machine Vision Group at Oak Ridge
National Laboratory (ORNL) with the collaboration of the
Université de Bourgogne. RIM-ONE is an online database
with retinal fundus images and aims to be a reference for
the design of ONH segmentation algorithms. RIM-ONE is
exclusively focused on ONH segmentation, it has 169 high-
resolution images and 5 manual reference segmentations and
a gold standard of each one. The high number of expert seg-
mentations enables the creation of reliable gold standards and
the development of high accurate segmentation algorithms.
ORIGA(-light) is an online retinal fundus image database for
glaucoma analysis and research. Retinal fundus image is an
important modality to document the health of the retina and
is widely used to diagnose ocular diseases such as glaucoma,
diabetic retinopathy and age-related macular degeneration.

IX. DISCUSSIONS AND CONCLUSIONS
The various computer technologies have helped the automa-
tion of detecting the OD accurately. A large number of
researchers have reported on improved specificity and sen-
sitivity in diagnosing glaucoma. A survey of those tech-
nologies [22], [34], [162], [163] has also been reported
by various authors in analyzing the retinal image features.
Machine intelligence technologies such as ANNs have helped
the physicians in management and analysis of clinical data.
When a neural network model is employed for medical image
processing, compared with conventional image processing
methods, there are several things that are to be considered.
Firstly, the time for applying a trained neural network to solve
a medical image processing problem is negligibly small,
though the training of a neural network is a time consuming
work. Secondly, medical image processing tasks often require
complex computations. Hence the performance of ANNs
can be significantly improved when image based informa-
tion is added, which shows the need for (semi-)automatic
segmentation and modelling. Moreover, in the diagnosis of

diseases from functional images, computerised image pro-
cessing technologies, when applied to, are time-efficient,
reproducible and often more accurate than human experts.
Among the reported localization algorithms, the Hough space
determines the accurate ONH center and ROI and is seen to
be more efficient. Segmentation of the ONH is determined
accurately and precisely by Hu’s circular model. Detection of
glaucoma based on image analysis techniques has also been
reported to be efficient. These technologies are expected to
lead to improved diagnosis and treatment decision-making,
and reduce the reliance on expensive and invasive diagnostic
procedures.
Nevertheless, researchers must confront several great chal-

lenges. These cover all aspects of segmentation, classification
and progression of glaucoma. In particular, the further devel-
opment of statistical shape based segmentation techniques
covering various modalities, registration of intra and inter
modality data, and the inclusion of the surrounding anatom-
ical structures and the potential information, might carry in
an overall classification approach. These results should lead
to a full 3-D model of the ONH including a probabilistic
distribution of abnormalities and development of these over
time. Finally, all this potential segmentation and classification
information needs to be integrated into clinical evaluation
tools of which ANNs are expected to remain the most log-
ical choice (although SVMmight challenge this dominance).
Subsequent integration of the obtained information in the
treatment process could be investigated.
Commercialisation and clinical application of computer

technologies in the medical field require more reliable and
comprehensive validation of these technologies. Currently,
the role of computer-aided diagnosis in detection and progres-
sion of glaucoma have not yet been fully assessed and should
be considered as an important complement to the physician’s
professional knowledge and judgment in making decisions.
Besides the ongoing investigation of the technologies to
improve their accuracy and robustness, substantial efforts
should be put into the evaluation and validation of these
technologies. To conclude, in the past decades, great efforts
have been made to develop and apply computer technologies
in clinical medicine, such as the detection of glaucoma, and
as this research trend continues, the succeeding decades are
likely to harvest the fruit of these efforts.
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