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Abstract 

 

Using the staggered entry of Chi-X in 12 European equity markets as a source of exogenous 

variation in high frequency trading (HFT), we find that HFT causes significant increases in co-

movement in returns and in liquidity.  About one-third of the increase in return co-movement is 

due to faster diffusion of market-wide information.  We attribute the remaining two-thirds to 

correlated trading strategies of HFTs.  The increase in liquidity co-movement is consistent with 

HFT liquidity providers being better able to monitor other stocks and adjust their liquidity 

provision accordingly.  Our findings suggest a channel by which HFT impacts the cost of capital. 
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1. Introduction 

One of the most substantial changes in financial markets during the past decade is the 

proliferation of algorithmic trading (AT) and high frequency trading (HFT).1  While estimates of 

the scale of HFT activity vary depending on the market and how broadly HFT is defined, there is 

no doubt HFT accounts for a large share of trading volume in most developed markets.  This 

“rise of the machines” has triggered intense debate between regulators, practitioners, and 

academics about the effects of HFT.  Consensus is forming on some of the positive effects of 

HFT, with many empirical studies finding that AT and HFT improve simple measures of 

liquidity such as bid-ask spreads and are beneficial to price discovery.2  Less is known about the 

impact of HFT on stability and systematic risk in markets, including issues that have alarmed 

regulatory bodies, such as periodic liquidity evaporation, flash crashes, and volatility. 

Co-movement in stock returns and in the liquidity of individual stocks is an important 

aspect of market stability and risk.  Co-movement in returns determines the benefits of cross-

sectional diversification, the level of systematic risk, and therefore can affect companies’ cost of 

capital.  Co-movement or “commonality” in liquidity similarly attracts a return premium because 

investors dislike stocks that become illiquid when the market becomes illiquid (e.g., Acharya and 

Pedersen, 2005; Anthonisz and Putniņš, 2017).  Co-movement also affects the way shocks are 

transmitted and thus the level of systemic risk.  An increase in co-movement could therefore 

offset some of the benefits of HFT such as increased liquidity. 

There are several reasons why HFT is likely to impact co-movement between securities.  

For example, HFTs tend to withdraw their liquidity when it is most needed by markets—during 

times of stress and large market-wide price movements.  Moreover, HFT strategies involve 

trading on asset mispricing across and within markets and the strategies of HFTs are similar.  

Such trading results in correlated demand for groups of stocks, which can increase in the extent 

to which they co-move.  HFT are also better able to monitor conditions in other stocks and adjust 

their liquidity provision accordingly, thereby synchronizing returns and liquidity across stocks.  

Despite these reasons, there is scarce evidence on how HFT affects co-movement. 

                                                 
1 AT refers to orders and trades placed and managed by a computer that is programmed with an algorithm. HFT is a 

subset of AT that is distinguished by considerably higher trading speed, high order-to-trade ratios, and limited 

inventory positions, typically held for extremely short time periods.  Common strategies employed by HFTs include 

liquidity provision and various forms of arbitrage and quasi-arbitrage. 
2 For example, see Hendershott, Jones, and Menkveld (2011), Riordan and Storkenmaier (2012), Hasbrouck and 

Saar (2013), Menkveld (2013), Brogaard, Hendershott, and Riordan (2014a), and Brogaard, Hagströmer, Nordèn, 

and Riordan (2015). 
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We aim to fill this gap by analyzing the impact of HFT on co-movement in returns and in 

liquidity.  We investigate the time period of 2007–2009 for 12 European equity markets, using 

the staggered entry of Chi-X as an exogenous instrument for the level of HFT.3  The entry of 

Chi-X provides a good natural experiment because (i) Chi-X led to a substantial increase in HFT 

due to its low latency and “symbiotic relationship” with HFT (Chordia, Goyal, Lehmann, and 

Saar, 2013; Menkveld, 2013, 2016), and (ii) Chi-X began trading many different groups of 

stocks on many different dates, facilitating difference-in-differences estimation with many 

events.  The staggered entry of Chi-X allows us to control for potential confounding effects 

including time-series trends that are not related to HFT.  We also control for fragmentation.  We 

use daily consolidated order books and trades for the 12 European equity markets. 

Our main finding is that increased HFT activity leads to greater co-movement in both in 

returns and liquidity.  The increase in co-movement is economically meaningful; a one-standard-

deviation increase in HFT increases return co-movement by one-fifth of its mean and liquidity 

co-movement by two-fifths of its mean.  We also find that HFT substantially increases liquidity, 

narrowing spreads by almost one-half, and increases volatility. 

Several mechanisms could contribute to the increase in co-movement.  Using models of 

mediation, we shed light on their relative importance.  The quotes of HFTs are faster to 

incorporate market-wide information (e.g., Brogaard, Hendershott, and Riordan, 2014a), which 

is one source of increased return co-movement.  About one-third of the increase in return co-

movement is due to faster diffusion of market-wide information.  Isolating this channel is 

important because unlike other causes of return co-movement, faster diffusion of market-wide 

information makes prices more accurate without necessarily increasing systematic risk.  We 

attribute a small fraction (9%) of the increase in return co-movement to a “habitat” effect; 

increased liquidity due to HFT makes stocks more attractive to large investors that trade broad 

cross-sections of liquid stocks.  We attribute the bulk of the increase in return co-movement 

(56%) to correlated trading strategies of HFTs such as those documented by Chaboud, 

Chiquoine, Hjalmarsson, and Vega (2014), and Boehmer, Li, and Saar (2018). 

The tendency for HFT liquidity providers to withdraw from the market when conditions 

are unfavorable (e.g., Anand and Venkataraman, 2016) is a source of fragility that increases both 

volatility and co-movement in liquidity.  We estimate that this mechanism accounts for around 

                                                 
3 Menkveld (2013) and Jovanovic and Menkveld (2016) also use the introduction of Chi-X to study HFT, but they 

use a single country and focus on different issues concerning HFT. 
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one-fifth of the increase in liquidity co-movement overall and becomes stronger during the 

period of high volatility in 2008–2009.  Our results suggest the main drivers of the increase in 

liquidity co-movement are the increased ability of HFT market markers to monitor conditions in 

other stocks and the correlated liquidity demand of opportunistic HFTs. 

The impact of HFT is not uniform in the cross-section of stocks.  We find that HFT leads 

to larger increases in co-movement in returns and in liquidity for medium and low volume 

stocks.  The stronger impact on medium and small stocks is consistent with the notion that prior 

to HFT, liquidity providers with limited monitoring capacity allocate less effort to monitoring 

information relevant for small stocks, where the stakes are lower (e.g., Lyle, Naughton, and 

Weller, 2016).  The increase in monitoring capacity brought about by HFT disproportionately 

increases monitoring of value-relevant information about medium and small stocks, thereby 

increasing their synchronicity with the rest of the market.  Non-uniformity in how HFT affects 

co-movement is also consistent with a habitat effect; an increase in the liquidity of medium and 

small stocks due to HFT increases the likelihood that they will be held by large institutions and 

subsequently co-move with other stocks held by institutions. 

Our results have implications for companies and markets.  Co-movement in returns and 

liquidity is a source of systematic risk that is associated with expected return premiums.  

Therefore, stronger co-movement can increase the cost of capital for companies and impact the 

real economy through the level of investment by companies.  However, because HFT also 

increases the level of liquidity, which can decrease required returns (e.g., Amihud and 

Mendelson, 1986), the ultimate effect of HFT on the cost of capital is ambiguous.  What is 

unambiguous is that there are at least three channels by which HFT can affect the cost of capital: 

the liquidity level, co-movement in returns, and co-movement in liquidity. Stronger co-

movement also increases the tendency for shocks to propagate across securities, which can affect 

the level of systemic risk and the propensity for flash crashes.   

 

2. Related literature and hypotheses 

This section reviews the relevant findings of the literature on AT/HFT (for a more 

detailed review of HFT see Menkveld (2016)) and on co-movement in returns and in liquidity.  

Because HFT is a subset of AT, some studies of AT are relevant to understanding the effects of 
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HFT.  It then draws together insights from both areas to arrive at two hypotheses about the 

effects of HFT on co-movement. 

 

2.1. The effects of AT/HFT 

Much of the empirical literature focuses on the effects of AT/HFT on various measures of 

market quality, such as liquidity and informational efficiency.  For example, Hendershott, Jones, 

and Menkveld (2011) use the staggered introduction of automated quote dissemination on the 

NYSE in 2003 as an instrument for AT and find that AT has a positive effect on liquidity 

(reduces quoted and effective spreads).  They use the flow of electronic messages normalized by 

trading volume as a proxy for AT.  Our paper is methodologically similar in that it uses a 

staggered market structure change as an instrument and a normalized electronic message flow 

proxy, but in contrast, the market structure change that we examine facilitates HFT in particular.  

Our paper also differs by examining the effects of HFT on co-movement in returns and liquidity, 

rather than the level of liquidity.  Hendershott and Riordan (2013) and Boehmer, Fong, and Wu 

(2015) find a similar positive effect of AT on liquidity in a sample of Deutsche Boerse stocks 

and a global sample, respectively.   

Hasbrouck and Saar (2013) focus specifically on HFTs.  They develop an algorithm to 

proxy for HFT activity using trade and quote data and find that HFTs decrease spreads and short-

term volatility and increase depth.  Similarly, Boehmer et al. (2018) find that increased 

competition among HFTs, in particular market making HFTs, decreases short-term volatility and 

increases liquidity.  Menkveld (2013) analyzes the entry of Chi-X in the Dutch equity market and 

in particular the trades of a large market making HFT that subsequently commenced trading 

Dutch equities.  He finds that the HFT market maker displays many of the characteristics of 

traditional market makers, but has a substantial positive effect on liquidity.  Jovanovic and 

Menkveld (2016) use the same event to calibrate their model of equilibrium HFT and non-HFT 

trading.  They find that the HFT entry decreases adverse selection costs, increases trade 

frequency, and has a modest positive effect on welfare.  Our paper adds to this literature on the 

effects of HFT by analyzing the impact on co-movement in returns and in liquidity. 

The literature also generally finds that HFT has a positive effect on informational 

efficiency.  For example, Brogaard et al. (2014a) and Carrion (2013) both use a data set of 

Nasdaq-identified HFTs trading on Nasdaq during 2008–2010 (but apply different methods) and 
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conclude that days with a lot of trading by HFTs are associated with higher informational 

efficiency.  HFTs facilitate price discovery by submitting liquidity demanding orders in the 

direction of permanent price changes and in the opposite direction to transitory pricing errors.  

HFTs trade in the direction of macroeconomic news announcements, market-wide price 

movements and limit order book imbalances.  Chaboud et al. (2014) study AT in the foreign 

exchange market using a data set that clearly identifies computer-generated trades.  They find 

that AT improves two measures of informational efficiency: the frequency of arbitrage 

opportunities and the autocorrelation of high-frequency returns.  They show that AT strategies 

and trades are highly correlated. 

Although a number of regulators and practitioners have raised concerns about the effects 

of HFT on systematic risks, relatively little evidence exists to date.  Foucault (2012) concludes 

his survey of AT/HFT stating that the effect on systematic risk is unclear and more work is 

needed.  This is where our paper contributes to the AT/HFT literature by characterizing the 

effects of HFT on co-movement in returns and liquidity.  The degree of co-movement is an 

important aspect of market quality as it affects systematic risk, the propagation of shocks, and 

market stability. 

 

2.2. Co-movement in financial markets 

The extent to which stock returns co-move determines how effectively diversification, in 

the form of holding portfolios of stocks, can reduce risk.  Similarly, co-movement in liquidity, 

often referred to as “commonality in liquidity”, determines the extent to which variation in 

liquidity can be reduced by holding portfolios of stocks.  Because investors are concerned about 

liquidity (e.g., Amihud and Mendelson, 1986; Amihud, 2002) systematic variation in liquidity 

(liquidity “risk”) is associated with a return premium.  For example, Acharya and Pedersen’s 

(2005) liquidity-adjusted CAPM shows that co-movement in liquidity contributes to liquidity 

risk and thus attracts an expected return premium.  Therefore, co-movement in returns and in 

liquidity affects asset prices, required returns, and consequently can impact the cost of capital.   

A large number of empirical papers study co-movement or commonality in liquidity 

starting with Chordia, Roll, and Subrahmanyam (2000), Huberman and Halka (2001), and 

Hasbrouck and Seppi (2001).  Brockman, Chung, and Pérignon (2009) find co-movement in 
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liquidity in most of the world’s stock exchanges.  A commonly used measure of co-movement in 

liquidity is the R2 in a regression of a stock’s liquidity on market liquidity.   

Both demand-side and supply-side explanations for co-movement in liquidity have been 

proposed.  The demand-side explanations suggest that correlated trading demands and/or 

correlated sentiment cause co-movement in liquidity, e.g., institutional investors with similar 

investing styles may exhibit correlated trading patterns (e.g., Koch, Ruenzi, and Starks, 2016).  

The supply-side explanations suggest shocks to the funding liquidity or inventory risk of 

liquidity providers cause the co-movement and consistent with this view Hameed, Kang, and 

Viswanathan (2010) find that co-movement is stronger during market declines.  Karolyi, Lee, 

and Dijk (2012) use a global sample to test various explanations for what causes co-movement in 

liquidity.  Their evidence largely supports demand-side explanations, but does not rule out 

supply-side effects also playing a role.   

Our contribution to this literature on liquidity co-movement is in showing that a major 

determinant of the amount of co-movement in liquidity is the level of HFT activity.  The impact 

of HFT occurs through both demand-side and supply-side channels, for example, correlated 

aggressive trading and market making algorithms that are better at monitoring and responding to 

changing market conditions.  Given the level of HFT activity has grown in the past decade, our 

results are useful for understanding recent time-series trends in the level of liquidity co-

movement.  They also help understand cross-sectional variation in liquidity commonality given 

that HFT are more active in stocks with particular characteristics.  

The determinants of co-movement (or “synchronicity”) in returns have also been widely 

studied.  Co-movement in returns is not simply a reflection of co-movement in fundamental 

values.  For example, when a stock is added to an index its degree of return co-movement tends 

to increase although its fundamentals remain unchanged (e.g., Barberis, Shleifer, and Wurgler, 

2005; Claessens and Yafeh, 2012).  Such findings suggest that various market frictions, 

imperfect incorporation of information in prices, or sentiment cause prices to temporarily deviate 

from fundamentals and influence the degree of return co-movement.  Claessens and Yafeh 

(2012) use a global sample to test various determinants of co-movement in returns.  Their 

evidence largely supports the demand-based explanation that co-movement is driven by 

correlated shocks to investor demand for a particular set of stocks, but does not rule out the 
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“information diffusion” explanation that some stocks reflect market-wide information faster than 

others.  

Our contribution to this literature on return co-movement is in showing that HFT has a 

significant impact on return co-movement and that this impact is consistent with both demand-

based explanations such as correlated trading demands as well as information diffusion effects 

through faster price discovery.   

There are two main interpretations of the R2 from a regression of a stock’s returns on 

market returns (the commonly used measure of return co-movement).  The first is that co-

movement is inversely related to the amount of stock-specific information impounded into prices 

(e.g., Roll, 1988; Morck, Yeung, and Yu, 2000; Durnev, Morck, Yeung, and Zarowin, 2003; Jin 

and Myers, 2006; Hutton, Marcus, and Tehranian, 2009).  Consistent with this notion, these 

studies generally find that return co-movement is higher in countries with weaker investor 

protection and less transparent information environments.  The second interpretation is that a low 

degree of return co-movement can be due to a relatively high amount of stock-specific 

information and/or a relatively high level of noise in stock prices (e.g., Campbell, Lettau, 

Malkiel, and Xu, 2001; Chan and Hameed, 2006; Bartram, Brown, and Stulz, 2012).   

An increase in the co-movement of returns is likely to be accompanied by an increase in 

the co-movement of liquidity and vice versa.  The first reason is that many of the causes of co-

movement in either returns or liquidity also cause co-movement in the other variable.  For 

example, correlated shocks to investor demands to trade groups of stocks impact both the returns 

and the liquidity of those stocks.  Similarly, funding constraints of liquidity providers are more 

likely to impact market-wide liquidity following a market-wide return shock and therefore 

stronger return co-movement is likely to lead to stronger co-movement in liquidity.  Second, 

liquidity is a priced characteristic and is persistent.  A market-wide decrease in liquidity is likely 

to increase future expected market returns, causing a negative contemporaneous market return.  

Stronger co-movement in liquidity will therefore lead to stronger co-movement in returns.  

 

2.3. The effects of HFT on co-movement 

HFT trading strategies can be broadly classified into (i) market making strategies and (ii) 

opportunistic strategies (comprising arbitrage, momentum, and other strategies).  Hagströmer 

and Nordén (2013) analyze these two types of strategies in the Nasdaq OMX Stockholm market.  
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They find that HFT market makers account for the majority of HFT volume and HFT orders and, 

as expected, supply liquidity more often than opportunistic HFTs.   

Importantly, there are reasons why both market making and opportunistic HFTs are likely 

to increase co-movement in returns and in liquidity.  First, opportunistic HFTs are likely to 

demand liquidity in a number of stocks at the same time.  For example, statistical arbitrage often 

involves simultaneously taking long and short positions in a number of stocks that appear 

relatively mispriced.  The different legs of the strategy must be transacted around the same time 

to avoid price movements while the strategy is only partially implemented.  Similarly, 

momentum strategies can involve placing long and short positions on different stocks at the same 

time.  Furthermore, opportunistic HFTs use similar strategies to one another, based on similar 

signals, which can further amplify the correlation in liquidity demand across stocks (e.g., 

Chaboud et al., 2014; Biais and Woolley, 2011; Boehmer et al., 2018).  Jarrow and Protter 

(2012) highlight that opportunistic HFTs can have a destabilizing effect when they unknowingly 

coordinate on a common signal.  In extreme cases, such as the “quant meltdown” of 2007 (see 

Khandani and Lo, 2011), opportunistic HFTs may all earn large profits or make large losses at 

the same time and thus increase their activity or withdraw from the market at the same time.  

Time-series variation in opportunistic HFT activity can therefore increase co-movement in 

liquidity and in returns. 

Second, market making HFTs are also likely to increase co-movement in liquidity and in 

returns through (i) increased monitoring of related securities, and (ii) correlated liquidity 

withdrawals when conditions become unfavorable.  Cespa and Foucault (2014) model market 

makers that condition their liquidity provision on the prices of other stocks and show that such 

“price watching” gives rise to cross-asset liquidity spillovers.  In their model, market makers in a 

stock X infer a noisy signal about the stock’s fundamental value by observing the prices of 

another stock, Y.  An exogenous liquidity shock to stock Y causes the prices of stock Y to give a 

noisier signal about the value of stock X.  The increased uncertainty about the fundamental value 

of stock X causes the market makers to scale back their liquidity provision in stocks X, leading 

to a liquidity spillover.   

In addition to liquidity spillovers, which increase co-movement in liquidity, price-

watching market makers cause price changes in one stock to be rapidly reflected in the prices of 

other stocks, thereby increasing return co-movement.  Cespa and Foucault’s (2014) model 
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predicts that liquidity spillovers (and thus also co-movement) will be stronger in the presence of 

a larger number of price-watching market makers.  HFT market makers, compared to traditional 

market makers, are better able to automatically monitor the prices and market conditions of 

many other stocks and use this information in optimally setting quotes (Hendershott and Riordan, 

2013); in the language of Cespa and Foucault (2014) HFTs are more likely to be price watchers.  

Therefore, an increase in HFT market making is likely to increase liquidity spillovers and co-

movement in liquidity and in returns.  Lyle et al. (2016) show that the enhanced monitoring 

ability of AT/HFT is the main reason they tend to increase liquidity.  Similarly, Boehmer et al. 

(2018) argue that one of the reasons that HFT tend to face lower adverse selection risks and thus 

increase liquidity (decrease short-term volatility) is that they are better able to extract signals 

from related same-industry securities and from the market index. 

Although evidence suggests AT/HFT market makers tend to increase liquidity on average 

(e.g., Hendershott et al., 2011, Hasbrouck and Saar, 2013), their lack of affirmative obligations 

allows them to withdraw from the market and suspend liquidity provision during unfavorable 

market conditions (e.g., Anand and Venkataraman, 2016).  A concern raised by regulators and 

practitioners is that HFTs suspend liquidity provision during times when liquidity provision is 

most needed—when information asymmetry or perceived asymmetry is high, or the market is in 

a period of stress.  This endogenous liquidity provision can amplify variation in liquidity, and to 

the extent that HFTs suspend liquidity provision in a number of stocks at the same time, it is 

likely to further increase co-movement in liquidity and in returns.  An extreme example is the 

“flash crash” of May 2010.  Kirilenko, Kyle, Samadi, and Tuzun (2017) find that HFTs did not 

trigger the flash crash but exacerbated the initial liquidity shock by withdrawing from the market 

or switching from providing liquidity to demanding liquidity.  Similarly, the dynamic trading 

model of Ait-Sahalia and Saglam (2013) predicts that volatility leads HFTs to reduce their 

provision of liquidity.  Because volatility has a systematic or market-wide component, the 

variation in HFT liquidity provision will also have a market-wide component.  

Based on the discussion above, our two hypotheses are as follows. 

 

Hypothesis 1: HFT increases co-movement in returns 

Hypothesis 2: HFT increases co-movement in liquidity 
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In general, co-movement in returns and in liquidity is a concern for investors because it 

limits the usefulness of diversification and thus contributes to systematic return and liquidity 

risks.  There is, however, another reason why HFT is likely to increase co-movement in returns 

and in liquidity that does not necessarily increase systematic risk.  Biais, Foucault, and Moinas 

(2015) and Foucault, Hombert, and Roşu (2016) argue that HFTs’ ability to react more quickly 

to public information will increase the informativeness of prices, in particular the speed at which 

they reflect public information.  Consistent with this prediction, Carrion (2013), Brogaard et al. 

(2014a), and others find that HFTs increase informational efficiency and cause prices to reflect 

information faster.  Faster incorporation of market-wide information across stocks can increase 

stock price synchronicity and return co-movement.  For example, Chordia, Sarkar, and 

Subrahmanyam (2011) find that the returns of small stocks tend to follow those of large stocks.  

They attribute this finding to market-wide information being first reflected in the prices of large 

stocks, which are followed by a large number of analysts and traded by institutional investors, 

and then gradually transmitted from large to small stocks.  Because the cross-correlations occur 

with a lag, contemporaneous correlations fail to measure the full extent of return co-movement.4  

When the informational efficiency of prices increases, particularly when less informationally 

efficient stocks become faster in reflecting market-wide information, contemporaneous co-

movement should increase.  This mechanism by which HFT can increase co-movement can be 

distinguished from the other mechanisms by isolating the increase in co-movement that is due to 

decreased delay in impounding market-wide information.  

 

3. Data  

Our sample period is from February 1, 2007, to February 27, 2009, which covers two 

months prior the first Chi-X entry in Europe (starting with the Dutch and German markets) and 

extends to two months after Chi-X started to operate in Spain.  During this period, Chi-X 

commenced trading equities from 13 European countries: Austria, Belgium, Denmark, France, 

Finland, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United 

Kingdom (UK).  We include all of these countries in our sample, except Switzerland due to data 

deficiencies.  We exclude the effects of the financial crisis (which falls during our sample period) 

                                                 
4 The failure of contemporaneous correlations to adequately measure the extent of co-movement is why non-

synchronous trading causes a downward bias in market betas (e.g., Scholes and Williams, 1977; Dimson, 1979). 
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from our analysis by using a difference-in-differences approach that sweeps out time-series 

variation in co-movement that occurs for reasons other than changes in HFT activity. 

We construct a sample of stocks from each of the European countries as follows.  First, 

we include all stocks that at any time within our sample period are traded on the Chi-X platform.  

Second, we include the top 75 stocks from each country based on aggregate trading volume 

during the sample period.5  Many (but not all) of the top 75 stocks in each country are at some 

stage traded on Chi-X, in which case we do not duplicate them in the sample.  Our results are 

robust to using the top 20% of stocks per country rather than the top 75 stocks (Online Appendix 

Section 2).  The main difference between these two sampling approaches is that using the top 75 

stocks results in approximately equal weights on each of the 12 countries in the sample, whereas 

using the top 20% of stocks places greater weight on markets that have more listed stocks 

because they end up having more stocks in the aggregate sample.  Following Hendershott et al. 

(2011), stocks with a price above EUR 1,000 are omitted.  Our final sample comprises 1,311 

stocks and 674,307 stock-day observations. 

Fig. 1 shows the sequence in which Chi-X commenced trading European stocks and the 

total number of stocks traded on the platform, grouped into terciles by volume.  There are zero 

stocks traded on Chi-X at start of the sample and the first step change occurs with the entry of 

Chi-X in Germany and the Netherlands.  The addition of other countries’ stocks follows a step 

function with the changes distributed fairly evenly through time, which is favorable for our 

quasi-experimental econometric design.  By the end of our sample, Chi-X is trading close to 400 

of the top tercile stocks (T3), and close to 200 stocks from each of the middle and lowest terciles 

(T2 and T1).  Consequently, our sample of stocks also contains a considerable number of stocks 

that are not traded on Chi-X even by the end of the sample period.  Such stocks contribute to the 

analysis as controls for any confounding time-series trends.     

 

< Fig. 1 here > 

 

We obtain intraday data on trades and quotes, aggregated at an hourly frequency, from 

the Thomson Reuters Tick History data set, maintained by SIRCA.  The data include the best bid 

and ask quotes at the end of the hourly interval, as well as the number of trades, the traded 

                                                 
5 The reason for including this second group of stocks is so that the sample also contains some stocks that do not end 

up traded on Chi-X.  Such stocks act a further control group in our difference-in-differences model. 
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volume, the volume-weighted average price and the number of electronic messages during the 

hourly interval.6  For each stock, we obtain trade and quote data for (i) the home market (its 

primary listing), (ii) Chi-X (if the stock is traded on Chi-X), and (iii) all other exchanges and 

multilateral trading facilities that trade the stock (see the Appendix for the list of 

exchanges/MTFs for which we consolidate data).  For each stock we merge the data from all of 

the venues in which it is traded to construct consolidated order books and consolidated records of 

trading activity.  After calculating liquidity proxies (described below) we aggregate the hourly 

data to stock-day observations for the instrumental variables panel regressions.  For metrics that 

require comparisons of value (e.g., dollar volume) across countries, we convert values into EUR. 

We exclude weekends and national holidays in each country.  In constructing daily 

aggregates, we use trading activity between 8:00am and 4:30pm Greenwich Mean Time (GMT).7  

Quotes or trades that are more than 20% away from the price on the home exchange are 

excluded.  We winsorize all variables at the 0.5 and 99.5 percentiles within each country.  

 

4. Measures and descriptive statistics 

Table 1 provides definitions of the measures of HFT activity, liquidity, fragmentation, 

and control variables, along with descriptive statistics.  Below we elaborate on how we compute 

the most important of these measures. 

 

< Table 1 here > 

4.1. HFT measures 

We use proxies for HFT activity based on electronic message traffic, similar to 

Hendershott et al. (2011) and Boehmer et al. (2015).8  The first proxy, 𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡, is 

negative trading volume (in EUR 100) divided by the number of quote messages:  

                                                 
6 The number of electronic messages is defined as the sum of best bid and best ask updates during the interval, 

where an update is a change to the price or quantity at either the best bid or offer.  This captures all order 

submissions, amendments and cancellations, at or within the best prevailing quotes.  
7 To avoid consolidating across exchanges with very different trading hours we exclude exchanges in time zones that 

that are more than three hours ahead of or behind GMT. 
8 Hendershott et al. (2011) and Boehmer et al. (2015) use these measures as proxies for algorithmic trading (AT), 

which includes HFT but is somewhat broader.  Given HFT is a subset of AT, an increase in HFT activity will be 

reflected in higher values on these measures of AT.  Our main analysis focuses on the changes in these measures as 

a result of the introduction of Chi-X.  Because Chi-X specifically distinguished itself on the basis that it was a low 

latency trading platform, it primarily stimulated HFT activity (Chordia et al., 2013; Menkveld, 2013, 2016; 

Jovanovic and Menkveld, 2016) rather than AT more broadly.  Therefore, the majority (if not all) of the variation in 
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𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 =  −
𝑑𝑣𝑜𝑙𝑖,𝑡

100𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝑖,𝑡
  ,    (1) 

where 𝑖 is a stock, 𝑡 is a trading day, 𝑑𝑣𝑜𝑙𝑖,𝑡 is consolidated trading volume, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝑖,𝑡 is the 

number of electronic messages. The second proxy for HFT is the number of messages divided by 

the number of trades in each day: 

𝐻𝐹𝑇𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡 =  
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝑖,𝑡

𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡
 ,    (2) 

where 𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡 is the number of trades for stock 𝑖 on day 𝑡. The intuition behind both of these 

measures is that the main indicator of HFT activity is increased message traffic, because 

computers are able to place orders at a very high speed and algorithms constantly search and 

exploit small trading opportunities; therefore, they submit large amounts of messages each day.  

Messages include order submissions, modifications, and cancelations.  Both HFT proxies 

normalize message traffic by volume or trade counts.  We calculate both HFT proxies separately 

for the stock’s home exchange, Chi-X, and the consolidated market.  We find similar results 

across these three versions and therefore use the consolidated version in this paper.  

Figs. 2 and 3 plot the time-series of message traffic and HFT activity (𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡), 

respectively, for terciles of our sample stocks.  In all terciles, message traffic increases through 

time.  The increase is not due to changes in overall volume because message traffic normalized 

by volume (𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡) also increases through time.  Part of the increase in message traffic 

and HFT activity (if not most) is attributable to the entry of Chi-X in a staggered fashion 

throughout our sample period (we confirm this in regressions below).  Stocks in the highest 

volume tercile (T3) experience the largest growth in message traffic and in HFT activity.  This 

result is consistent with the fact that proportionally more of the T3 stocks end up traded on Chi-

X (Fig. 1).   

 

< Fig. 2 here > 

< Fig. 3 here > 

 

Table 1 shows that there is a higher proportion of HFT activity on Chi-X compared to the 

home exchange.  For example, the ratio of electronic messages to trades (𝐻𝐹𝑇𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡) has an 

                                                                                                                                                              
the AT measures around the entry of Chi-X is likely to be driven by variation in HFT and thus in our analysis we 

refer to these measures as proxies for HFT. 
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average of 17.26 in the home market and a staggering 192.34 in Chi-X.  The descriptive statistics 

on the HFT measures have many similarities with what Hendershott et al. (2011) report for the 

US markets.  For example, there is more message traffic in higher volume (larger) stocks 

(attributable to their higher overall trading activity), the HFT proxies have lower averages for 

larger stocks (primarily due to the pre-Chi-X periods) and converge to a similar level for all 

stock size categories after the entry of Chi-X.   

 

4.2. Liquidity measures 

Following Karolyi et al. (2012), who analyze the causes of co-movement in liquidity, in 

our baseline analysis we use Amihud’s (2002) measure of illiquidity, inverted so that it becomes 

a measure of liquidity, 𝐿𝐼𝑄𝑖,𝑡.  Amihud’s measure is based on the price impact of trading volume 

and is strongly positively related to other liquidity estimates like the bid-ask spread, depth, and 

price impact measured using tick-by-tick data (Amihud, 2002; Goyenko, Holden, and Trzcinka, 

2009; Hasbrouck, 2009).9 

We calculate our main liquidity measure each stock-day as follows: 

 𝐿𝐼𝑄𝑖,𝑡  =  −𝑙𝑜𝑔 (1 + ∑ (
1

𝐻

|𝑟𝑖,𝑡,ℎ|

𝑑𝑣𝑜𝑙𝑖,𝑡,ℎ
)𝐻

ℎ=1 )  ,    (3) 

where |𝑟𝑖,𝑡,ℎ| is the absolute midquote return in basis points (bps) for stock 𝑖 in hour ℎ of day 𝑡, 

and 𝑑𝑣𝑜𝑙𝑖,𝑡,ℎ is hourly consolidated volume (in EUR ‘000).  The log makes the distribution of 

𝐿𝐼𝑄𝑖,𝑡 closer to a Normal distribution and the multiplication by –1 reverses the interpretation 

from illiquidity to liquidity. 

In robustness tests we find similar results using the relative quoted bid-ask spread in bps 

as an alternative measure of liquidity:  

𝑆𝑃𝑅𝐸𝐴𝐷𝑖,𝑡 = ∑ (
1

𝐻
10,000

𝐴𝑠𝑘𝑖,𝑡,ℎ−𝐵𝑖𝑑𝑖,𝑡,ℎ

(𝐴𝑠𝑘𝑖,𝑡,ℎ+𝐵𝑖𝑑𝑖,𝑡,ℎ)/2
)𝐻

ℎ=1   ,    (4) 

where 𝐴𝑠𝑘𝑖,𝑡,ℎ and 𝐵𝑖𝑑𝑖,𝑡,ℎ are the ask and bid quotes at the end of hour ℎ for stock 𝑖 on day 𝑡. 

 Table 1 shows that both liquidity measures monotonically increase across the volume 

terciles (higher volume stocks are more liquid).  Chi-X has a narrower average spread than the 

home market, despite the fact that volume on Chi-X is less than that of the home market.  The 

                                                 
9 Goyenko et al. (2009) compare high-frequency liquidity measures with monthly and annual measures and find that 

in the post-decimalization period (after 2001) the correlation between effective spread and Amihud’s measure 

increases, in contrast to other liquidity measures.  Amihud’s measure is also used in the literature on how liquidity 

risk affects asset prices (e.g., Acharya and Pedersen, 2005). 
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narrower spreads on Chi-X are consistent with Menkveld’s (2013) finding that Chi-X encourages 

highly competitive HFT market makers to provide liquidity.  

 

4.3. Market fragmentation measures  

 An increase in the number of venues in which a stock is traded makes liquidity more 

dispersed and can affect the overall level of liquidity (Bennett and Wei, 2006).  To control for 

such effects we estimate four market fragmentation proxies. 𝐹𝑅𝐴𝐺1𝑖,𝑡 is the number of trading 

venues that have executed trades in stock 𝑖 on day 𝑡.  The larger the number of venues, the more 

fragmented is trading.  Table 1 shows that across the full sample, stocks on average trade in 3.57 

venues, with a tendency for higher volume (larger) stocks to trade in more venues than lower 

volume stocks.   

Our second fragmentation measure, 𝐹𝑅𝐴𝐺2𝑖,𝑡, is the Herfindahl-Hirschman Index (HHI), 

which is used by Degryse, de Jong, and van Kervel (2015) in analyzing fragmentation in 

European equity markets: 

𝐹𝑅𝐴𝐺2𝑖,𝑡 = 1 − ∑ (
𝑑𝑣𝑜𝑙𝑖,𝑗,𝑡

∑ 𝑑𝑣𝑜𝑙𝑖,𝑗,𝑡𝑗
)

2

𝑗  ,     (5) 

where 𝑑𝑣𝑜𝑙𝑖,𝑗,𝑡 is volume of stock 𝑖 on market 𝑗 on day 𝑡.  𝐹𝑅𝐴𝐺3𝑖,𝑡 is similar to the second 

measure, except it is calculated using the number of trades instead of trading volume. The last 

fragmentation proxy, 𝐹𝑅𝐴𝐺4𝑖,𝑡, is the volume market share of all venues other than home 

exchange (range: zero to one).  We use 𝐹𝑅𝐴𝐺2𝑖,𝑡 in our baseline tests.  Our results are robust to 

using the other measures. 

 

4.4. Co-movement measures 

A long line of literature analyzes co-movement or “commonality” in returns and 

liquidity.  Following Morck et al. (2000), Hameed et al. (2010), and Karolyi et al. (2012), we 

measure co-movement in returns (liquidity) using the R2 from regressions of individual stock 

returns (liquidity) on market returns (market liquidity).  High R2 indicates a high degree of co-

movement—much of the variation in the individual stock returns or liquidity is explained by 

market-wide variation.  For each stock in each month we estimate the following regressions 

using daily observations: 

𝑟𝑖,𝑡 = 𝛼𝑖
𝑟 + ∑ 𝛽𝑖,𝑗

𝑟 𝑟𝑚,𝑡+𝑗
1
𝑗=−1 + 휀𝑖,𝑡

𝑟   ,    (6) 
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where 𝑟𝑖,𝑡  is the daily midquote return for stock 𝑖, 𝑟𝑚,𝑡+𝑗 is the market return in the country of 

stock 𝑖 calculated as the equally weighted average of returns for all stocks in the country 

(excluding stock 𝑖).10  The lead and lag terms in the regression account for non-synchronous 

trading in the spirit of Dimson (1979).  Logit transformation of the regression R2 to make it into 

an unbounded variable (as per Morck et al., 2000; Hameed et al., 2010; Karolyi et al., 2012) 

gives our measure of co-movement in returns (for stock 𝑖 in month 𝜏): 

 𝑅𝑖,𝜏
2,𝑟 = 𝑙𝑛(

 𝑅 
2

1− 𝑅 
2)  .       (7) 

 We estimate co-movement in liquidity in a similar way, but include an additional step (a 

regression estimated for each stock using the full sample) that removes persistence in liquidity 

and day-of-the-week seasonality (similar to Karolyi et al. (2012)): 

𝐿𝐼𝑄𝑖,𝑡 = 𝛽𝑖𝐿𝐼𝑄𝑖,𝑡−1 + ∑ 𝛾𝑖,𝑗𝐷𝑗
5
𝑗=1 + 𝜔𝑖,𝑡

𝐿𝐼𝑄
  ,    (8) 

where 𝐷𝑗 is a set of dummy variables for each of the working days of the week.  The residuals, 

𝜔𝑖,𝑡
𝐿𝐼𝑄

, are purged of first order serial correlation and day-of-the-week effects and are therefore 

used to estimate co-movement in liquidity in a similar manner to the procedure for returns:  

�̂�𝑖,𝑡
𝐿𝐼𝑄 = 𝛼𝑖

𝐿𝐼𝑄 + ∑ 𝛽𝑖,𝑗�̂�𝑚,𝑡+𝑗
𝐿𝐼𝑄1

𝑗=−1 + 휀𝑖,𝑡
𝐿𝐼𝑄

  ,    (9) 

 𝑅𝑖,𝜏
2,𝐿𝐼𝑄 = 𝑙𝑛(

 𝑅 
2

1− 𝑅 
2)   .       (10) 

Similar to the procedure for returns, ω̂𝑚,𝑡+𝑗
𝐿𝐼𝑄

 is the equal-weighted average of all individual 

stocks’ liquidity residuals (excluding stock 𝑖) in each country.  Our results are robust to using 

volume-weighting and using the bid-ask spread as an alternative measure of liquidity.  For a 

valid estimate of co-movement in returns or liquidity, we require a minimum of 15 valid daily 

observations in regressions (6) and (9). 

Table 2 reports descriptive statistics on co-movement in returns, liquidity, and in HFT 

volume, for stock terciles as well as separately for each country in the sample.  To simplify 

interpretation of the magnitudes, Table 2 reports the co-movement measures before the logit 

transformation, i.e., the regression R2s.  Higher volume stocks (T3) tend to have stronger co-

movement with their respective markets in terms of returns, liquidity, and HFT volume.  The 

countries with the highest average co-movement in returns are Sweden (R2 of 51%), France, 

                                                 
10 We exclude stock 𝑖 to avoid spurious relationship in case the stock is a large proportion in the index and 

correlation between dependent and explanatory variables. 
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Germany, and the UK, whereas the lowest co-movement occurs in Belgium (R2 of 24%), 

Austria, Finland, and Denmark.  Co-movement in liquidity follows a similar pattern across 

countries, i.e., co-movement in returns is positively correlated with co-movement in liquidity.  

Interestingly, co-movement in HFT volume across stocks also shows similar patterns to co-

movement in liquidity for different countries and across stock terciles.  Thus, it appears there is 

commonality in the co-movement measures, suggesting common causes drive co-movement in 

returns, liquidity, and HFT volumes.   

 

< Table 2 here > 

 

5. Analysis of HFT’s impact on co-movement 

We exploit the staggered entry of Chi-X in the European markets as an instrument for the 

level of HFT activity.  Chi-X distinguished itself from the traditional national stock exchanges 

by having a considerably faster trading platform.11  It was therefore conducive to HFT and 

rapidly captured market share from the national stock exchanges.  Having an instrument that 

affects different markets at different points in time has the advantage of allowing us to control 

for confounding factors using time fixed effects.  The international sample, spanning several 

markets, reduces the chance that our findings are specific to a particular market. 

For the Chi-X entry to be a valid instrument it has to be exogenous, relevant, and not 

affect co-movement directly, only through its impact on HFT.  First, we confirm its relevance 

using F-tests in the first-stage regressions, strongly rejecting the null hypothesis that the 

instrument is not a determinant of HFT activity.  Second, there is little doubt that the entry of 

Chi-X is exogenous with respect to co-movement.  Chi-X was a response to the European 

Union’s Markets in Financial Instruments Directive (MiFID), which enabled competition 

between trading venues.12  Third, while there are several reasons why the entry of Chi-X would 

impact co-movement through its effects on HFT, it is unlikely that the Chi-X entry has a direct 

                                                 
11 For example, a Chi-X press release on April 7, 2008, claims that Chi-X is “up to 10 times faster than the fastest 

European primary exchange”. 
12 Chi-X commenced trading stocks from different countries sequentially and within each country starting with the 

largest stocks and progressively adding smaller stocks.  In many countries, Chi-X added the constituents of the 

market’s large capitalization index first and only after confirming that there are no technical problems with trading 

those stocks did it expand its coverage to constituents of a broader market index.  The sequence in which stocks are 

added to Chi-X is therefore exogenous (this does not mean that it is unrelated to observable characteristics such as 

size). 
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effect on co-movement independent of its effect on HFT.  Chi-X impacts other market 

characteristics such as volume and fragmentation for reasons that could be associated with, or 

independent of, HFT.  We therefore control for market characteristics in the instrumental 

variables regressions, including volume, volatility, fragmentation, and price level.  This ensures 

we are not picking up, for example, the effects of fragmentation on co-movement. 

Other studies of AT/HFT also use a variety of market structure changes to help establish 

causality.  Most of these studies use changes within a single market or a single event, for 

example, the introduction of automated quote dissemination at the NYSE (Hendershott et al., 

2011), the entry of Chi-X in Dutch equities (Menkveld, 2013; Jovanovic and Menkveld, 2016), 

the introduction of co-location at Nasdaq OMX Stockholm (Brogaard, Hagströmer, Nordèn, and 

Riordan, 2015), technology upgrades at the London Stock Exchange (Brogaard et al., 2014b), 

and short selling bans (Brogaard, Hendershott, and Riordan, 2017).  Boehmer et al. (2015) use an 

international sample, exploiting the introduction of co-location in a number of markets.   

Does the choice of market or exogenous shock matter in analyzing HFT?  Several factors 

suggest HFT have a fairly consistent impact across different developed markets, making it likely 

that results from one market or markets generalize to others, and making the choice of sample in 

most cases a non-critical factor.  First, the existing literature examines a variety of developed 

markets and different exogenous shocks and, across these varied settings, finds fairly cohesive 

results about how HFT affects markets (e.g., HFT tend to increase liquidity and lead to faster 

price discovery).  To the extent that we also measure some market characteristics that have been 

previously studied, our results are consistent with findings from other markets.  For example, 

consistent with the literature, we find that a shock that reduces latency in trading (the 

introduction of Chi-X) substantially increases the level of HFT activity and that the increase in 

HFT is associated with an increase in liquidity.  Second, in an international comparison of the 

effects of AT/HFT on European, US, and Asian markets, Boehmer et al. (2015) find that 

AT/HFT have remarkably consistent effects across markets.  One of the factors that contributes 

to the consistency across markets is that the major HFT firms are global and implement similar 

or identical trading strategies/algorithms in a number of different markets.  This is also true in 

our sample—the major HFTs that commence trading following the entry of Chi-X include the 

major global firms that also trade the US and Asian markets (e.g., Menkveld, 2013).  Third, 

equity markets in developed countries are relatively similar with respect to the major market 
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design features (e.g., they tend to be electronic, centralized, automated limit order book markets, 

with anonymity, similar trading platforms, fragmentation of trading, and so on).  There are of 

course also differences across markets, but the differences tend to be secondary design features 

or matters of degree (e.g., extent of fragmentation).  Consequently, when global HFT firms trade 

across similar market structures in different countries, it is reasonable to expect similar effects.   

Although the major effects of HFT in most markets are likely to be similar, some 

variation across markets will prevail.  We ensure that our results are not overly driven by a 

particular market by drawing on a broad sample of countries.  Any effects that are specific to a 

particular country have a relatively small influence on our overall results, which reflect the 

average or common effects in multiple markets. 

We start by estimating the effects of Chi-X on HFT activity and other market 

characteristics using an ordinary least squares (OLS) panel regression on stock-day observations: 

𝑌𝑖,𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽𝐷𝑖,𝑡
𝐶ℎ𝑖−𝑋 + 휀𝑖,𝑡  ,    (11) 

where 𝑌𝑖,𝑡  is one of the two HFT proxies, message traffic, volume, inverse midquote price, 

volatility, or fragmentation.  𝐷𝑖,𝑡
𝐶ℎ𝑖−𝑋 is a dummy variable equal to one when a stock is traded on 

Chi-X at that point in time and zero otherwise, and 𝛼𝑖 and 𝛾𝑡 are stock and time fixed effects. We 

estimate (11) on the whole panel and also separately for each stock tercile by volume.   

 Table 3 reports the estimated effects of Chi-X.  The entry of Chi-X is associated with 

large increases in HFT activity.  The increases are statistically significant for both HFT proxies 

and message traffic in the pooled sample as well as individual volume terciles (with the 

exception of one of the HFT proxies, 𝐻𝐹𝑇𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡, in one of the terciles, T2).  In the pooled 

sample, 𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 increases by approximately 17.32 (implying EUR 1,732 less traded 

volume per message), which is a large amount given the pooled sample mean of 𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 

is –27.46 (implying an average of EUR 2,746 traded volume per message).  The entry of Chi-X 

is also associated with a decrease in volume (𝑑𝑣𝑜𝑙𝑖,𝑡
 ) in the two highest volume terciles, an 

increase in volatility, and an increase in fragmentation (as expected). 

 

< Table 3 here > 

 

Next we turn to the impact of HFT on co-movement in returns and in liquidity.  For this 

we use two-stage least squares (2SLS) instrumental variables (IV) panel regressions, similar to 
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Hendershot et al. (2011).  Because different stocks commence trading on Chi-X at different 

times, we are able to include stock and time fixed effects in the panel regressions, which 

effectively gives a difference-in-differences estimator.  This eliminates any differences in co-

movement through time that are unrelated to the level of HFT, as well as time-invariant cross-

sectional variation in co-movement. 

The first-stage regressions are estimated on a panel of stock-day observations: 

𝐻𝐹𝑇𝑖,𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽𝐷𝑖,𝑡
𝐶ℎ𝑖−𝑋 + ∑ 𝛿𝑗

4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝑡 + 휀𝑖,𝑡  .   (12) 

We average the fitted values of HFT activity from the first stage for each stock 𝑖 in each month 𝜏 

(𝐻𝐹𝑇𝑖,𝜏
̂ ) to match the frequency of the co-movement estimates and then use them in the second-

stage regressions of stock-month observations: 

𝑅𝑖,𝜏
2

 
= 𝛼𝑖 + 𝛾𝜏 + 𝛽𝐻𝐹𝑇𝑖,𝜏

̂ + ∑ 𝛿𝑗
4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  ,    (13) 

where 𝐻𝐹𝑇𝑖,𝑡 is one of the proxies for HFT activity, 𝛼𝑖 and 𝛾𝑡 are stock and time fixed effects, 

𝐷𝑖,𝑡
𝐶ℎ𝑖−𝑋 is a dummy variable equal to one when a stock is traded on Chi-X at that point in time 

and zero otherwise, and 𝑅𝑖,𝜏
2  is one of the co-movement variables (either 𝑅𝑖,𝜏

2,𝑟
 or 𝑅𝑖,𝜏

2,𝐿𝐼𝑄
).  The set 

of control variables in both stages comprise measures of fragmentation (𝐹𝑅𝐴𝐺2𝑖,𝑡), volume 

(𝑑𝑣𝑜𝑙𝑖,𝑡
 ), volatility (𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡), and the inverse of the midquote price (𝑖𝑛𝑣𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑖,𝑡 ).   

 Table 4 reports the results from the second-stage regressions.  The results show that HFT 

increases co-movement in both returns and in liquidity.  In the pooled sample, the impact of HFT 

on co-movement is statistically significant at the 1% level and is stronger than the impact of any 

of the control variables (fragmentation, volume, volatility, inverse price).  In terms of magnitude, 

the coefficient 7.197 implies that a one-standard-deviation increase in  𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝜏 increases 

the average return co-movement R2 by 7.13 percentage points, all else equal.13  The estimated 

increase of 7.13 percentage points is meaningful given that the average R2 of the return co-

movement regressions varies between 24% and 51% across countries.  The increase is around 

one-fifth of the pooled sample average return R2 (41%, Table 2) or around two-fifths of a 

standard deviation.   

The magnitude of the impact of HFT on co-movement in liquidity is even larger.  The 

coefficient 13.481 implies that a one-standard-deviation increase in HFT increases the average 

                                                 
13 Since the co-movement estimates are logit transformed R2 values, to provide a meaningful interpretation we 

perform a reverse transformation similar to Karolyi et al. (2012). 
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liquidity co-movement R2 by 9.52 percentage points.  This increase is around two-fifths of the 

pooled sample average (23%, Table 2) or around two-thirds of a standard deviation.  The results 

support our hypotheses that HFT increases co-movement. 

 

< Table 4 here > 

 

The impact of HFT is not uniform across terciles.  HFT has a significant positive impact 

on return and liquidity co-movement in the lower two volume terciles and the lower two liquidity 

terciles, but not the highest tercile (the largest, most liquid, highest volume stocks).  The impact 

of HFT is the strongest in the middle volume tercile, where a standard deviation increase in HFT 

is associated with an increase of in return co-movement of around 30 percentage points.  The 

impact of HFT on co-movement in liquidity is positive and significant across all volatility 

terciles, and the impact on co-movement in returns is significant for the two lowest volatility 

terciles.  

One explanation for HFT’s stronger impact on co-movement in smaller stocks is from 

increased monitoring by HFT market makers as the mechanism by which HFT increase co-

movement.  Lyle et al. (2016) show that market makers with limited monitoring capacity (e.g., 

non-HFT market makers) allocate more effort to monitoring information relevant for the pricing 

of large stocks in which they face the largest potential losses from having stale quotes picked off.  

Thus, when monitoring capacity increases due to HFT market makers, there is more scope for 

improvements in the speed with which quotes in small stocks reflect market-wide information 

and market-wide liquidity than there is for large stocks.  Consistent with this explanation, 

Chordia et al. (2011) show that information tends to be first incorporated in the prices of large 

stocks before being transmitted to small stocks.  This tendency implies that small stocks have 

larger potential increases in the speed with which they reflect information and thus their co-

movement with the market.  In support of this notion, Glosten, Nallareddy, and Zou (2016) show 

that by making it easier to trade on systematic information, the introduction of exchange traded 

funds (ETFs) increases the speed with which market-wide information is reflect in the prices of 

small stocks (but not big stocks) thereby increasing their co-movement with the market.  It seems 

from our results that HFTs play a similar role. 
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Non-uniformity across terciles in the impact of HFT is also consistent with a habitat 

effect; an increase in the liquidity of medium and small stocks due to HFT increases the 

likelihood that they will be held by large institutions and subsequently co-move with other stocks 

held by institutions.  It is also consistent with faster diffusion of market-wide information.  

 The estimated impacts of HFT on co-movement are qualitatively similar (and therefore 

not reported) using spreads as the liquidity measure, estimating the models in first differences 

instead of levels, and permutations of the control variables. 

 We also examine the effects of HFT on other stock characteristics (returns, liquidity, 

spreads, and volatility) using the same 2SLS IV approach.  Table 5 reports the results.  HFT 

increases liquidity (𝐿𝐼𝑄𝑖,𝜏, the price impact based measure) and decreases bid-ask spreads.  Both 

of these effects are highly statistically significant, of a meaningful magnitude, and consistent 

with several other studies that show HFT improves liquidity (e.g., Menkveld, 2013; Hasbrouck 

and Saar, 2013; Brogaard et al., 2015).  For example, the coefficients in Table 5 imply that the 

increase in HFT activity due to Chi-X results in a decrease in bid-ask spreads of around 61 bps, 

which is close to a 50% decrease from the pre-Chi-X level of spreads.  Consistent with this 

estimate, Menkveld (2013) shows that spreads in the Dutch market decrease by around 50% after 

a HFT market maker starts quoting following the entry of Chi-X.  HFT has no significant effect 

on returns.  HFT has a positive effect on volatility (although only marginally statistically 

significant), which is consistent with the findings of Boehmer et al. (2015) in an international 

sample.  Although Boehmer et al. (2015) focus on the broader category of AT, their empirical 

design has similarities with ours insomuch as they use speed upgrades (colocation in their case) 

as instrumental variables. 

 

6. Analysis of the channels by which HFT impacts co-movement  

The increase in co-movement due to HFT is consistent with a number of possible 

mechanisms.  To get some insight into the relative importance of the different mechanisms, we 

estimate multiple mediation models and compare the magnitude and significance of various 

channels (following Preacher and Hayes, 2004, 2008). 

One channel through which HFT could increase co-movement in returns is through 

correlated trading across stocks (e.g., Chaboud et al., 2014; Bias and Wooley, 2011; Boehmer et 

al., 2018), similar to what has been previously documented for quant funds.  Jarrow and Protter 
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(2012) point out that opportunistic HFTs can increase systematic return variation and have a 

destabilizing effect when they unknowingly coordinate on a common signal.   

A second channel is by increasing the speed with which prices reflect public market-wide 

information (e.g., Brogaard et al., 2014a; Carrion, 2013).  Barberis et al. (2005), in what they 

refer to as the “information diffusion view”, argue that market-wide information is reflected in 

the prices of different stocks at different rates.  An increase in the synchronicity with which 

individual stocks reflect market-wide information therefore increases co-movement.  Such an 

increase in synchronicity could arise if, for example, HFT increase the speed with which market-

wide information is transmitted from large stocks to small stocks, which is consistent with our 

finding that smaller stocks tend to have the largest increase in co-movement.  Disentangling the 

information diffusion channel from the correlated HFT trading channel is important because 

increased co-movement from faster information diffusion is beneficial in that it reduces pricing 

errors, whereas increased co-movement for other reasons can increase systematic risk.   

We account for a third channel, which is that the increase in liquidity due to HFT activity 

(recall spreads fall by close to 50% as a result of HFT activity following the entry of Chi-X) 

makes medium and small stocks more attractive to other non-HFT participants, in particular 

large institutional investors that are limited to investing in highly liquid stocks.  Prior studies find 

that a stock’s co-movement with the market increases when it is added to a market index and at 

least part of this increase is due to the increase in holdings by large investors (e.g., Barberis et 

al., 2005).  In what they refer to as the “habitat view”, Barberis et al. (2005) argue that investors 

hold subsets of stocks (due to transaction costs, information constraints, and so on).  When the 

risk aversion, sentiment, or liquidity needs of investors change, they tend to trade their holdings 

in a similar manner, creating a common factor in the given subsets of stocks.  An increase in 

stock liquidity makes it more likely that the stock becomes part of the “habitat” of large investors 

and therefore that the stock will co-move with other stocks held by large institutions. 

The distinguishing features of these three channels are that the information diffusion 

channel implies the causal chain ↑HFT => ↓delay in prices => ↑return co-movement, whereas 

the habitat view implies the causal chain ↑HFT => ↑liquidity => ↑return co-movement, and the 

correlated trading channel implies a direct effect (↑HFT => ↑return co-movement) that does not 

occur through ↓delay in prices or through ↑liquidity.  Mediation analysis can quantify the role of 

each of these channels.  We measure the delay with which prices reflect market-wide 
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information (“delay in prices”) using the method developed by Hou and Moskowitz (2005).  The 

approach involves estimating two regressions of individual stock returns on market returns: 

𝑟𝑖,𝑡 = 𝛼𝑖
 + 𝛽𝑖

 𝑟𝑚,𝑡 + 휀𝑖,𝑡
                   (14) 

 𝑟𝑖,𝑡 = 𝛼𝑖
 + 𝛴𝑗=0

4 𝛽𝑖,𝑗
 𝑟𝑚,𝑡−𝑗 + 휀𝑖,𝑡

𝑟      (15) 

and saving the two R2 values as 𝑅𝑖,𝜏
2,𝑅𝐸𝑆𝑇𝑅𝐼𝐶𝑇𝐸𝐷

 and 𝑅𝑖,𝜏
2,𝑈𝑁𝑅𝐸𝑆𝑇𝑅𝐼𝐶𝑇𝐸𝐷

, respectively.14  Whenever 

market-wide information is not instantly and fully reflected in the returns of individual stocks, 

the R2 from the first regression (which includes only the contemporaneous market return) will be 

less than the R2 of the second regression (which includes contemporaneous and lagged market 

returns).  The difference between the R2 values is the extent to which market-wide information is 

impounded in prices with a delay.  The delay metric is therefore: 

    𝑑𝑒𝑙𝑎𝑦𝑖,𝜏 = 1 −
𝑅𝑖,𝜏

2,𝑅𝐸𝑆𝑇𝑅𝐼𝐶𝑇𝐸𝐷

𝑅𝑖,𝜏
2,𝑈𝑁𝑅𝐸𝑆𝑇𝑅𝐼𝐶𝑇𝐸𝐷  .        (16) 

We use the serial multiple mediator model of Hayes (2012) and Preacher and Hayes 

(2004, 2008).  The general idea behind these mediation models is estimating a series of 

regressions involving various permutations of the independent, mediator, and dependent 

variables and combining the outcomes to infer the direct and mediated channels by which the 

independent variable affects the dependent variable.  The procedure ensures all the channels sum 

to the total effect of the independent variable on he dependent variable.  Hayes (2012) and 

Preacher and Hayes (2004, 2008) provide the relevant statistics for testing the significance of the 

various channels and for expressing the strength of a mediated channel as a proportion of the 

total effect.  The intuition for how a mediation channel is identified from a series of regressions 

(in the simple case of a single mediator) is that if a mediating relation exists the following three 

results will hold: (i) the independent variable affects the mediator in a regression of the mediator 

on the independent variable; (ii) the independent variable affects the dependent variable in a 

regression of the dependent variable on the independent variable; and (iii) the mediator and not 

the independent variable affects the dependent variable in a regression of the dependent variable 

on both the independent and mediator variables.  

Fig. 4 illustrates the results of the multiple mediation models for the drivers of return co-

movement.  The coefficient estimates support the existence of all three channels.  However, the 

channels differ in importance.  Approximately one-third (35.1%) of the impact of HFT on return 

                                                 
14 We estimate these regressions separately for each stock in each month using daily observations. 
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co-movement occurs through faster diffusion of market-wide information, consistent with the 

evidence that HFT facilitate price discovery (e.g., Brogaard et al., 2014a).  That leaves around 

two-thirds of the increase in return co-movement to other channels, which potentially increases 

systematic risk.  Only 9.0% of the total effect occurs through the effect of HFT on liquidity.  

Thus, there is some support for the habitat view as a channel by which HFT increase co-

movement in returns, but this channel is not strong relative to the other mechanisms.  That leaves 

55.9% of the effect of HFT on return co-movement as a direct effect.  Given our discussion of 

the ways that HFT might impact co-movement, most of this direct effect is likely due to 

correlated trading strategies of HFT.  This finding is consistent with Hasbrouck and Seppi (2001) 

who show that co-movement in returns is largely driven by co-movement in order flows.  

 

< Fig. 4 here > 

 

Turning to HFT’s impact on co-movement in liquidity, one channel is the “habitat” effect 

described earlier.  The increase in liquidity resulting from HFT market making can attract a 

clientele of large institutional investors.  When such investors trade into or out of positions in a 

correlated manner (e.g., due to fund flows) they can create an additional source of liquidity co-

movement.  Its distinguishing feature is the mediating role played by the level of liquidity: ↑HFT 

=> ↑liquidity => ↑liquidity co-movement.  

A second channel is associated with HFT’s effect on volatility (which we find to be 

positive and significant in Table 5).  Kamara, Lou, and Sadka (2008) report that market-wide 

volatility creates similar trading behavior among traders and hence affects liquidity co-

movement.  Similarly Karolyi et al. (2012) find higher liquidity co-movement when volatility is 

higher.  More specific to HFT, although HFT market makers increase liquidity on average, their 

lack of a binding commitment such as an affirmative obligation in providing liquidity means the 

liquidity they provide can be a source of fragility and subject to sharp withdrawals when 

conditions become unfavorable.  Anand and Venkataraman (2016) show that “endogenous 

liquidity providers” (many of which are HFTs) scale back in unison when conditions are 

unfavorable.  Such behavior creates additional volatility, and can increase liquidity co-

movement.  This destabilizing liquidity provision can even contribute to extreme events such as 



 

27 

  

flash crashes (Kirilenko et al., 2017).  This channel is identified through the proportion of the 

increase in liquidity co-movement that is associated with increased volatility.   

Finally, there are reasons why HFT can increase liquidity co-movement directly rather 

than through mediating variables.  One such reason is HFT’s enhanced ability to monitor 

conditions in a broader cross-section of stocks and adjust their liquidity provision accordingly.  

Cespa and Foucault (2014) model this mechanism and show that it gives rise to cross-asset 

liquidity spillovers that can increase liquidity co-movement.  Similarly, correlated trading of 

opportunistic HFTs can increase liquidity co-movement when they demand liquidity in aa 

number of stocks simultaneously (e.g., statistical arbitrage strategies). 

We again use multiple mediation models to tease apart the mediated channels from the 

direct channels.  Fig. 5 illustrates the results.  We find support for both of the indirect (mediated) 

channels as well as the direct channel—all three channels are statistically significant.  Similar to 

the results for return co-movement, the habitat effect is small in magnitude, accounting for only 

5.1% of the total effect of HFT on liquidity co-movement.  The volatility channel is larger, 

accounting for around one-fifth of the total effect (18.8%).  The remaining three-quarters of the 

effect of HFT on liquidity co-movement is direct (76%).  Therefore, the results suggest HFT 

market makers’ enhanced ability to monitor prices and conditions in a broad cross-section of 

stocks as well as correlated trading by opportunistic HFTs are likely to be the main drivers of 

HFTs’ impact on liquidity commonality.  This conclusion is consistent with Koch et al. (2016) 

who find that co-movement in liquidity is driven by traders with similar trading behavior and 

inventories and Bai and Qin (2010) who find that systematic liquidity risk arises from correlated 

trading behavior of investors. 

 

< Fig. 5 here > 

 

 It is useful to compare our results with those of Boehmer et al. (2018).  Boehmer et al. 

(2018) identify three major groups of strategies used by HFT firms—market making, cross-

market arbitrage, and directional strategies.  They show that competition among HFT firms, in 

particular among market making HFTs, tends to decrease one-second trade price volatility, 

which can be interpreted as an increase in liquidity.  This overall result is consistent with our 

finding that liquidity improves with more HFT.  While Boehmer et al. (2018) do not analyze the 
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impact of HFT on co-movement in returns and in liquidity, some of the mechanisms that they 

suggest as drivers of the improved liquidity imply that HFTs increase co-movement and we find 

support for these mechanisms.  For example, Boehmer et al. (2018) argue that the decrease in 

adverse selection associated with strong competition among HFTs could be because HFTs are 

better able to extract signals from related securities and from the market index.  This conjecture 

is supported by our finding that HFTs reduce the delay with which market-wide information is 

reflected in stock prices, leading to an increase in return co-movement.  Furthermore, Boehmer 

et al. (2018) argue that the reductions in temporary price impacts and realized spreads associated 

with strong competition among market making HFTs could be due to decreasing rents from 

market making.  Such competition limits the ability for market makers to cross-subsidize 

liquidity provision in adverse conditions with rents from liquidity provision in favorable 

conditions.  Consequently HFT market makers enter and exit in a correlated manner depending 

on market conditions (e.g., Anand and Venkataraman, 2016), resulting in increased co-

movement in liquidity.  Our results also support this mechanism.  

Therefore, the tendency for HFT to increase both the level of liquidity and the extent of 

co-movement in returns and in liquidity is related—both effects share several common 

mechanisms / drivers.  This finding reiterates the importance of considering the impact of HFT 

on co-movement when assessing the overall effects of HFT because the increase in co-movement 

due to HFT, at least in part, is jointly determined with the increased liquidity due to HFT.  

Considering the effects of HFT on only the level of liquidity can overstate the benefits of HFT.  

 We examine the sensitivity of the mediation results to changes in the model specification.  

We test the effects of removing the control variables, using a different set of control variables, 

and removing the liquidity channel (which is the weakest of the channels), thereby changing the 

model structure.  We find that the results are qualitatively similar across the different model 

specifications.  There are some changes to the relative importance of the different channels when 

omitting or changing the set of control variables and these changes could be due to an omitted 

variables bias in the alternative model specifications.15   

 

                                                 
15 The results of these robustness tests are in the Online Appendix, Section 4. 
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7. The effects of HFT in different market conditions  

Our sample period spans a period of relatively calm, “normal” market conditions and a 

crisis period (the years 2008–2009) in which the market fell sharply and volatility was relatively 

high.  In our main analysis, we remove the effects of the crisis on the level of co-movement by 

using difference-in-differences models.  However, the effects of HFT on co-movement and other 

market characteristics could depend on market conditions.  For example, the increased volatility 

during the crisis years might cause HFTs to provide less liquidity, or to more often withdraw 

their liquidity in response to adverse conditions, or to more often take liquidity to exploit 

arbitrage opportunities. 

To explore these possibilities, we re-estimate our models allowing the effects of HFT in 

the crisis period to be different to those in the pre-crisis period.  The full set of results is in the 

Online Appendix Section 3; here we summarize the findings. 

First, we find that the sign and magnitude of the effect of HFT on return/liquidity co-

movement is similar in the pre-crisis and crisis periods.  In fact, the difference in HFT’s effects 

in the two periods is not statistically distinguishable from zero, and is small in magnitude (less 

than 10% difference).  Thus, the overall tendency for HFT to increase co-movement in returns 

and in liquidity holds in normal and in high volatility conditions.  This finding is not completely 

surprising given the main channels by which HFT increase co-movement include faster price 

discovery, correlated trading strategies, and better ability to monitor other stocks—these effects 

are present in both normal and stressed/volatile market conditions.  

In contrast, we find that the effects of HFT on liquidity, and the channels by which HFT 

affects co-movement in liquidity, do depend on market conditions.  HFT are more beneficial to 

liquidity during the pre-crisis period than during the crisis, although their crisis-period effect on 

liquidity remains positive.  Other studies find that aggregate liquidity decreases during market 

declines because capital constraints in the market making sector become binding (e.g., 

Brunnermeier and Pedersen, 2009; Hameed et al., 2010; Comerton-Forde et al., 2010).  Because 

many HFTs engage in market making (e.g., Hagströmer and Nordén, 2013), our finding is 

consistent with the notion that HFTs also face capital constraints that become more binding 

during periods of declining prices and high volatility. 

Furthermore, we find that a larger proportion of the effect of HFT on liquidity co-

movement during the crisis is associated with increased volatility.  This result is consistent with 
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recent findings that HFT withdraw their liquidity from a number of stocks in unison when 

conditions become unfavorable (e.g., Anand and Venkataraman, 2016), and the fact that 

unfavorable conditions such as high volatility occur more often during crises.  High volatility is 

disliked by market makers because it increases the risk of holding inventory positions.  The 

effects of HFT on liquidity co-movement are also consistent with earlier studies of the 

determinants of variation in liquidity.  For example, Brunnermeier and Pedersen (2009) show 

that market maker capital constraints drive liquidity co-movement and Hameed et al. (2010) 

show that the co-movement in liquidity that is induced by capital constraints becomes stronger 

during market declines.  In this regard, HFTs exhibit similar attributes as other market makers. 

Taken together, our findings comparing the pre-crisis and crisis period effects of HFT 

provide support to the concerns expressed by some market participants and regulators that HFTs 

provide less liquidity during times of market stress, which is precisely when the market needs the 

liquidity the most.  Further, our findings suggest that this tendency of HFTs affects not only the 

amount of liquidity they provide, but also contributes to commonality in liquidity, which is a 

type of liquidity risk.  Such risk is likely to affect asset prices ex-ante as investors demand higher 

rates of return as compensation for such risk (e.g., Acharya and Pedersen, 2005).  Our finding 

that the effects of HFT are somewhat different during crisis and non-crisis periods supports the 

idea of incorporating asymmetric dependence into asset pricing models, allowing the relations 

between individual stock liquidity, market-wide liquidity, and returns to vary with market 

conditions (e.g., Anthonisz and Putniņš, 2017). 

 

8. Conclusion 

Our main finding is that HFT increases co-movement in both returns and in liquidity.  We 

establish causality by exploiting the staggered entry of Chi-X in 12 European equity markets.  

The positive effect of HFT on co-movement is economically meaningful.  A one-standard-

deviation increase in HFT increases return co-movement by one-fifth of its mean and liquidity 

co-movement by two-fifths of its mean. 

The impact of HFT is not uniform across stocks; medium and small stocks (by volume 

and liquidity) experience larger increases in co-movement.  The stronger impact on medium and 

small stocks is consistent with the notion that prior to HFT, liquidity providers with limited 

monitoring capacity allocated relatively less effort to monitoring information relevant for small 
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stocks, where the stakes are lower.  The increase in monitoring capacity brought about by HFT 

therefore disproportionately increases monitoring of value-relevant information about medium 

and small stocks, thereby increasing their synchronicity with the rest of the market.  The non-

uniformity in the impact of HFT on co-movement is also consistent with a habitat effect; an 

increase in the liquidity of medium and small stocks due to HFT increases the likelihood that 

they will be held by large institutions and subsequently co-move with other stocks held by 

institutions. 

We also examine the effects of HFT on other stock characteristics.  Consistent with other 

studies, we find that HFT increases liquidity measured by Amihud’s price impact metric and bid-

ask spreads.  The increases in liquidity are economically meaningful; for example, spreads 

decrease by almost one-half.  HFT is more beneficial to liquidity during “normal” periods than 

during the crisis years (2008–2009) when volatility is high.  Our results also suggest that HFT 

are associated with increased volatility. 

HFTs’ impact on co-movement occurs for a number of reasons.  We estimate that around 

one-third of the increase in co-movement in returns is due to faster diffusion of market-wide 

information.  We attribute the other two-thirds of the increase in return co-movement to 

correlated trading strategies of HFTs, and to a lesser extent a habitat effect whereby large 

institutional investors are able to hold smaller stocks than previously due to the increased 

liquidity.  Similarly, we find that the habitat effect explains only a relatively small fraction of the 

increase in liquidity co-movement.  The tendency for HFT liquidity providers to withdraw from 

the market when conditions are unfavorable is a source of fragility that increases both volatility 

and co-movement in liquidity.  This effect is particularly pronounced during high volatility, such 

as during 2008–2009.  We estimate this component accounts for around one-fifth of the increase 

in liquidity co-movement.  Our results suggest the main drivers of the increase in liquidity co-

movement are the increased ability of HFT market markers to monitor conditions in other stocks 

and the correlated liquidity demand of opportunistic HFTs. 

Our results help paint a more complete picture of the effects of HFT, showing that some 

of the benefits of HFT, such as increased liquidity, are somewhat offset by an increase in co-

movement.  Co-movement affects the way shocks are transmitted between stocks and thus the 

level of systemic risk.  Higher co-movement also has implications for the cost of capital and thus 

investment by firms and the real economy.  Asset pricing models show that co-movement in 
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returns and in liquidity is associated with cross-sectional return premiums that increase the cost 

of capital.  However, because HFT also increase the level of liquidity (which will tend to lower 

the cost of capital), HFT have two opposing effects on the costs of capital.  Which one dominates 

is an important empirical question that is left for future work.  
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Appendix  

 

Table A1 

List of trading venues for which we consolidate data  

This table lists the trading venues for which we consolidate trades and quotes for our sample of stocks from 12 

countries.  

 

Exchange name Country  Exchange name Country 

Vienna SE Austria  Euronext Amsterdam Netherlands 

Euronext Brussels Belgium  Burgundy MTF Nordic Region 

Prague SE Czech Republic  Oslo SE Norway 

Nasdaq OMX Copenhagen Denmark  Warsaw SE Poland 

NYSE ARCA Europe  Euronext Lisbon Portugal 

Sigma X Europe  Bucharest SE Romania 

Nasdaq OMX Helsinki Finland  Russian Trading System Russia 

MONEP France  Saudi SE Saudi Arabia 

Euronext Paris France  Barcelona SE Spain 

Berlin SE Germany  Bilbao SE Spain 

RWB Germany  Madrid SE Spain 

Xetra Germany  Mercado Continuo Spain 

Frankfurt SE Germany  Valencia SE Spain 

Hamburg SE Germany  Nordic Growth Market Sweden 

Hanover SE Germany  Nasdaq OMX Stockholm Sweden 

Munich SE Germany  Berne SE Switzerland 

Stuttgart SE Germany  Scoach Switzerland Switzerland 

TradeGate SE Germany  Swiss Blue Chip Segment Switzerland 

Xetra International Market Germany  Istanbul SE Turkey 

Budapest SE Hungary  Equiduct United Kingdom 

Quote MTF Ltd Hungary  BATS Europe United Kingdom 

Irish SE Ireland  Channel Islands SE United Kingdom 

Tel Aviv SE Israel  Chi-X Europe United Kingdom 

Milan SE Italy  London SE United Kingdom 

Euro TLX Italy  PLUS Markets Group United Kingdom 

Luxembourg SE Luxembourg  Turquoise United Kingdom 
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Table 1 

Definitions of variables and descriptive statistics 

This table defines the variables calculated for each stock-day, 𝑖, 𝑡, and reports descriptive statistics.  The sample 

comprises 1,311 stocks from 12 European countries and spans the period February 1, 2007 to February 27, 2009, with a 

total of 674,307 stock-day observations.  Means of variables are calculated for the full sample (Pooled) as well as terciles 

of stocks based on EUR volume.  Terciles are constructed using country-specific breakpoints to ensure terciles are similar 

in the distribution of stocks from each country.  T1 (T3) contains stocks with the lowest (highest) average daily traded 

EUR volume during the sample period.  The standard deviation (SD) is calculated within time, 𝑥𝑖,𝑡
∗ = 𝑥𝑖,𝑡 − �̅�𝑖. 

 

Variable Description 
Mean Mean Mean Mean SD 

Pooled T1 T2 T3 within 

𝑟𝑖,𝑡  Daily midquote return using consolidated 

quotes (bps) 

-20.83 -18.92 -22.45 -21.06 472.58 

𝐿𝐼𝑄𝑖,𝑡 Price impact based liquidity measure, 

calculated as the negative log of 

Amihud’s ILLIQ (absolute return divided 

by traded EUR volume) 

-0.38 -0.83 -0.34 -0.03 0.63 

𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
 

 
 Time-weighted relative quoted spread for 

stock i in the consolidated order book 

(bps) 

111.69 240.03 76.13 18.30 438.41 

𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
ℎ𝑜𝑚𝑒

 
 Time-weighted relative quoted spread for 

stock i on its home exchange (bps) 

125.30 275.19 84.82 20.47 536.01 

𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝑡
𝐶ℎ𝑖𝑋

 
 Time-weighted relative quoted spread for 

stock i on Chi-X (bps) 

79.30 137.85 101.16 50.40 83.57 

𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡
  Daily number of trades in stock i 

consolidated across all venues  

1,468.67 195.10 709.07 3,555.90 1,401.25 

𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡
ℎ𝑜𝑚𝑒 Daily number of trades in stock i on its 

home exchange 

1,282.01 186.17 663.17 3,042.59 1,070.22 

𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡
𝐶ℎ𝑖𝑋 Daily number of trades in stock i on Chi-

X 

91.70 1.47 21.86 255.87 421.57 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝑖,𝑡
  Daily number of quote messages (‘000) 

in stock i’s consolidated order book (a 

proxy for HFT activity) 

17.15 

 

2.39 

 

8.02 

 

41.66 

 

37.56 

 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝑖,𝑡
ℎ𝑜𝑚𝑒 Daily number of quote messages (‘000) 

for stock i on its home exchange 

6.30 1.15 3.49 14.46 7.51 

𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠𝑖,𝑡
𝐶ℎ𝑖𝑋 Daily number of quote messages (‘000) 

for stock i on Chi-X 

2.92 0.20 1.09 7.59 13.61 

𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡
  Negative trading volume (‘00 EUR) 

scaled by the number of quote messages, 

consolidated across all venues (a proxy 

for HFT) 

-27.46 

 

-21.34 

 

-19.10 

 

-42.09 

 

52.49 

 

𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡
ℎ𝑜𝑚𝑒 Negative trading volume (‘00 EUR) 

scaled by the number of quote messages, 

in the stock’s home exchange 

-41.38 

 

-26.70 

 

-29.12 

 

-68.17 

 

170.14 

 

𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡
𝐶ℎ𝑖𝑋 Negative trading volume (‘00 EUR) 

scaled by the number of quote messages, 

in Chi-X 

-1.52 

 

-0.24 

 

-0.92 

 

-2.43 

 

4.35 

 

𝐻𝐹𝑇𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡
  Daily number of quote messages scaled 

by the number of daily trades, 

consolidated across all venues (a proxy 

for HFT) 

18.25 25.88 17.77 11.78 69.36 

𝐻𝐹𝑇𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡
ℎ𝑜𝑚𝑒 Daily number of quote messages scaled 

by the number of daily trades, in the 

stock’s home exchange 

17.26 

 

29.81 

 

12.53 

 

10.85 

 

151.77 

 

𝐻𝐹𝑇𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡
𝐶ℎ𝑖𝑋 Daily number of quote messages scaled 

by the number of daily trades, in Chi-X 

192.34 

 

327.19 

 

296.14 

 

106.72 

 

1,937.74 
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Table 1 -  Continued 

Variable Description 
Mean Mean Mean Mean SD 

Total T1 T2 T3 within 

𝑑𝑣𝑜𝑙𝑖,𝑡
  Daily traded EUR volume, consolidated across 

all venues (EUR million)  

33.20 1.52 8.12 91.42 45.61 

𝑑𝑣𝑜𝑙𝑖,𝑡
ℎ𝑜𝑚𝑒 Daily traded EUR volume in the stock’s home 

exchange (EUR million) 

28.24 1.40 7.35 77.20 38.52 

𝑑𝑣𝑜𝑙𝑖,𝑡
𝐶ℎ𝑖𝑋 Daily traded EUR volume in Chi-X (EUR 

million) 

0.67 0.004 0.096 1.93 3.77 

𝐹𝑅𝐴𝐺1𝑖,𝑡 Fragmentation proxy #1, calculated as the 

number of venues that execute trades during that 

stock-day 

3.57 1.99 2.97 5.80 1.77 

𝐹𝑅𝐴𝐺2𝑖,𝑡 Fragmentation proxy #2, calculated as the 

Herfindahl-Hirschman index of traded EUR 

volume in each venue 

0.07 0.05 0.06 0.11 0.10 

𝐹𝑅𝐴𝐺3𝑖,𝑡 Fragmentation proxy #3, calculated as the 

Herfindahl-Hirschman index of the number of 

trades in each venue 

0.07 0.05 0.05 0.10 0.10 

𝐹𝑅𝐴𝐺4𝑖,𝑡 Fragmentation proxy #4, calculated as the EUR 

volume market share of all venues other than the 

home market (0 to 1) 

0.08 0.08 0.06 0.10 0.13 

𝑖𝑛𝑣𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑖,𝑡  Inverse of the midquote for the consolidated 

order book at 4:30pm GMT 

0.26 0.36 0.27 0.14 0.41 

𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝑡 Standard deviation of hourly intraday midquote 

returns (bps) 

76.65 79.53 70.22 80.32 169.13 
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Table 2 

Descriptive statistics on co-movement and market variables for all countries and terciles 

This table reports descriptive statistics for the pooled sample, stock terciles based on average daily volume, and 

each of the 12 countries.  Terciles are constructed using country-specific breakpoints to ensure terciles are similar in 

the distribution of stocks from each country.  T1 (T3) contains stocks with the lowest (highest) average daily traded 

EUR volume during the sample period.  Countries are listed in descending order by their average level of co-

movement in returns 𝑅𝑟
2.  The table reports the mean and standard deviation (SD) of co-movement in returns (𝑅𝑟

2), in 

price-impact based liquidity (𝑅𝐿𝐼𝑄
2 ), in quoted spreads (𝑅𝑆𝑃𝑅𝐸𝐴𝐷

2 ), in daily volume (𝑅𝐷𝑉𝑂𝐿
2 ), and in HFT activity 

(𝑅𝐻𝐹𝑇 𝑣𝑜𝑙𝑢𝑚𝑒
2 ).  The last four columns report means of market returns (in bps), market liquidity (negative log of 

Amihud’s ILLIQ metric), market volatility (average monthly standard deviation of daily midquote returns in bps), 

and market-wide average traded volume (in EUR million per stock-day), calculated as equally weighted averages of 

the respective variable for all stocks in the sample.  Standard deviations (SD) are calculated within time, 𝑥𝑖𝑡
∗ = 𝑥𝑖𝑡 −

�̅�𝑖. 

 

Sample 𝑅𝑟
2 

 

 𝑅𝐿𝐼𝑄
2  

 

 𝑅𝑆𝑃𝑅𝐸𝐴𝐷
2  

 

 𝑅𝐷𝑉𝑂𝐿
2  

 

 𝑅𝐻𝐹𝑇 𝑣𝑜𝑙𝑢𝑚𝑒
2  

Market 

return 

Market 

liquidity 

Market 

volatility 

Market 

volume 

 Mean SD  Mean SD  Mean SD  Mean SD  Mean SD Mean Mean Mean Mean 

Pooled 0.41 0.18  0.23 0.16  0.20 0.15  0.22 0.15  0.20 0.15 -20.52 -0.38 148.96 32.98 

Tercile 1 0.35 0.17  0.22 0.15  0.19 0.14  0.19 0.14  0.19 0.14 -20.86 -0.35 150.76 32.88 

Tercile 2 0.41 0.18  0.23 0.15  0.21 0.16  0.21 0.15  0.19 0.14 -20.34 -0.39 148.08 32.98 

Tercile 3 0.47 0.19  0.24 0.16  0.21 0.16  0.27 0.17  0.22 0.16 -20.37 -0.40 148.10 33.09 

Sweden 0.51 0.19  0.25 0.16  0.26 0.21  0.24 0.15  0.21 0.15 -25.67 -0.20 190.84 21.76 

France 0.51 0.19  0.21 0.14  0.21 0.18  0.27 0.17  0.23 0.16 -18.97 -0.04 161.78 79.53 

Germany 0.47 0.19  0.23 0.15  0.17 0.13  0.28 0.18  0.20 0.16 -20.94 -0.05 179.06 80.92 

UK 0.47 0.18  0.28 0.18  0.23 0.18  0.24 0.16  0.23 0.16 -19.74 -0.14 160.95 35.24 

Spain 0.41 0.19  0.21 0.15  0.18 0.13  0.21 0.15  0.19 0.14 21.55 -0.27 127.83 43.13 

Italy 0.39 0.21  0.26 0.17  0.21 0.16  0.22 0.14  0.20 0.14 -21.84 -0.09 175.30 45.24 

Norway 0.36 0.18  0.19 0.13  0.18 0.13  0.19 0.14  0.18 0.13 -24.23 -1.00 162.59 10.81 

Netherlands 0.36 0.18  0.16 0.12  0.17 0.12  0.20 0.14  0.17 0.13 -19.22 -0.67 130.58 27.62 

Denmark 0.35 0.18  0.20 0.14  0.20 0.14  0.19 0.13  0.18 0.13 -25.61 -0.67 119.63 5.69 

Finland 0.35 0.18  0.18 0.13  0.18 0.13  0.19 0.14  0.17 0.13 -18.72 -0.73 116.35 13.51 

Austria 0.28 0.17  0.24 0.15  0.18 0.14  0.21 0.16  0.18 0.13 -20.20 -0.71 125.92 3.49 

Belgium 0.24 0.16  0.17 0.12  0.17 0.12  0.18 0.13  0.16 0.12 -13.10 -1.09 88.29 7.99 
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Table 3 

First-stage regressions of the impact of Chi-X on HFT and other variables 

This table reports the impact of Chi-X entry on HFT activity and other market characteristics.  The estimates 

are of 𝛽 from the following regression model: 

𝑌𝑖,𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽𝐷𝑖,𝑡
𝐶ℎ𝑖−𝑋 + 휀𝑖,𝑡 

where 𝑌𝑖,𝑡  is one of the dependent variables shown in the table (two HFT proxies, message traffic, volume, inverse 

midquote price, volatility, and fragmentation, all defined in Table 1), 𝐷𝑖,𝑡
𝐶ℎ𝑖−𝑋 is a dummy variable equal to one when 

a stock is traded on Chi-X at that point in time and zero otherwise, and 𝛼𝑖 and 𝛾𝑡 are stock and time fixed effects. 

The regressions are performed on the whole panel and also separately for each tercile of stock by volume.  Terciles 

are constructed using country-specific breakpoints to ensure terciles are similar in the distribution of stocks from 

each country.  T1 (T3) contains stocks with the lowest (highest) average daily traded EUR volume during the sample 

period.  Standard errors are robust to heteroskedasticity and within-stock autocorrelation. *, **, *** denote 

significance at 10%, 5%, 1%, respectively. 

 

 (1) (2) (3) (4) (5) (6) (7) 

Sample  𝐻𝐹𝑇𝑣𝑜𝑙𝑢𝑚𝑒𝑖,𝑡 𝐻𝐹𝑇𝑡𝑟𝑎𝑑𝑒𝑠𝑖,𝑡 messagesi,t dvoli,t invmidquotei,t volatilityi,t 𝐹𝑅𝐴𝐺2𝑖,𝑡 

All 17.32*** 4.48** 31,346.11*** -10.88*** -0.07*** 11.13** 0.09*** 

T1  11.54*** 10.68*** 3,930.69*** -0.014 -0.12*** 9.26 0.04*** 

T2 8.08*** -0.51 11,330.19*** -1.50*** -0.003 2.38 0.07*** 

T3 21.22*** 4.37*** 38,839.75*** -12.33*** 0.02** 28.57 0.10*** 
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Table 4 

Second-stage regressions of the impact of HFT on co-movement 

This table reports results from second-stage regressions that analyze the impact of HFT on co-movement in 

stock returns and in liquidity: 

𝑅𝑖,𝜏
2

 
= 𝛼𝑖 + 𝛾𝜏 + 𝛽𝐻𝐹𝑇𝑖,𝜏

̂ + ∑ 𝛿𝑗
4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  

𝑅𝑖,𝜏
2  denotes a co-movement measure for stock 𝑖 in month 𝜏, i.e., co-movement in returns (𝑅𝑖,𝜏

2,𝑟
) in Panel A and co-

movement in liquidity (𝑅𝑖,𝜏
2,𝐿𝐼𝑄

) in Panel B.  𝐻𝐹𝑇𝑖,𝜏
̂  is the fitted value of HFT activity obtained from the first-stage 

regression. 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 is a set of four control variables: a fragmentation proxy (𝐹𝑅𝐴𝐺2𝑖,𝜏), volume (𝑑𝑣𝑜𝑙𝑖,𝜏), 

volatility (𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏) and 1/midquote price (𝑖𝑛𝑣𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑖,𝜏).  𝛼𝑖 and 𝛾𝜏 are stock and time fixed effects.  The 

second-stage regressions are estimated for the pooled sample and for each tercile of stocks separately (T1-T3).  We 

construct terciles by volume, liquidity, and volatility, using country-specific breakpoints to ensure terciles are 

similar in the distribution of stocks from each country.  T1 (T3) contains stocks with the lowest (highest) average 

daily traded EUR volume (or liquidity or volatility) during the sample period.  The table reports slope coefficients 

(𝛽 and 𝛿𝑗, with the 𝛽 multiplied by 1,000) with t-statistics in parentheses.  Standard errors are robust to 

heteroskedasticity and within-stock autocorrelation. *, **, *** denote significance at 10%, 5%, 1%, respectively. F-

statistic from first-stage regressions test of instrumental relevance are in range from 10.9 to 194.4. The whole panel 

consists of 32,233 stock-month observations. 

 

   Control variables 

 Sample 𝐻𝐹𝑇𝑖,𝜏
̂  𝐹𝑅𝐴𝐺2𝑖,𝜏 𝑑𝑣𝑜𝑙𝑖,𝜏 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏 𝑖𝑛𝑣𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑖,𝜏 

Panel A: Impact of HFT on co-movement in returns, 𝑅𝑖,𝜏
2,𝑟

 

 Pooled 7.197*** -189.035 -0.000 -0.184*** -40.692* 

  (3.551) (-1.345) (-0.475) (-2.677) (-1.800) 

 Volume terciles (T1 – lowest) 

 T1 18.002*** -566.584* -0.000 -0.198** 35.244 

  (4.488) (-1.672) (-0.133) (-2.560) (1.365) 

 T2 20.146** -313.126 0.000 -0.288** -104.750*** 

  (2.464) (-1.138) (0.396) (-1.967) (-2.689) 

 T3 -3.550 -104.203 -0.000*** -0.139 -154.251 

  (-1.307) (-0.567) (-3.315) (-1.596) (-1.262) 

 Liquidity terciles (T1 – lowest) 

 T1 15.678*** -779.854*** 0.000*** -0.247*** -2.982 

  (4.712) (-2.626) (4.506) (-3.132) (-0.129) 

 T2 11.204** -323.925 -0.000 -0.228*** -66.747* 

  (2.000) (-1.069) (-1.362) (-3.014) (-1.667) 

 T3 -4.972* -171.694 -0.000*** -0.024 -39.713 

  (-1.767) (-0.977) (-3.904) (-0.292) (-0.417) 

 Volatility terciles (T1 – lowest) 

 T1 -1.312 371.978* -0.000*** 2.798*** 689.482** 

  (-0.521) (1.884) (-4.111) (3.109) (2.301) 

 T2 11.497*** -310.111 -0.000 1.252** -6.844 

  (2.835) (-1.145) (-0.800) (2.330) (-0.100) 

 T3 12.128*** -652.045** 0.000** -0.229*** -42.504* 

  (2.894) (-2.530) (2.070) (-3.342) (-1.760) 
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Table 4 – Continued 

 

   Control variables 

 Sample 𝐻𝐹𝑇𝑖,𝜏
̂  𝐹𝑅𝐴𝐺2𝑖,𝜏 𝑑𝑣𝑜𝑙𝑖,𝜏 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏 𝑖𝑛𝑣𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑖,𝜏 

Panel B: Impact of HFT on co-movement in liquidity, 𝑅𝑖,𝜏
2,𝐿𝐼𝑄

 

 Pooled 13.481*** -290.734** 0.000*** -0.071 -20.534 

  (6.327) (-2.116) (5.185) (-1.352) (-1.085) 

 Volume terciles (T1 – lowest) 

 T1 29.074*** -955.147*** 0.000*** -0.060*** 63.040** 

  (7.082) (-2.851) (4.659) (-2.932) (2.236) 

 T2 29.305*** -22.765 0.000*** 0.161 -139.605*** 

  (3.676) (-0.089) (3.219) (1.376) (-4.338) 

 T3 3.792 470.001*** 0.000 -0.079 -135.237 

  (1.364) (2.754) (0.845) (-0.999) (-1.279) 

 Liquidity terciles (T1 – lowest) 

 T1 18.793*** -921.497*** 0.000*** -0.022 3.237 

  (5.534) (-2.629) (4.595) (-0.832) (0.132) 

 T2 30.746*** -733.249** -0.000*** 0.037 -79.255*** 

  (5.036) (-2.250) (-3.344) (0.400) (-3.342) 

 T3 2.756 422.866** 0.000 -0.013 -40.502 

  (0.970) (2.518) (0.545) (-0.139) (-0.460) 

 Volatility terciles (T1 – lowest) 

 T1 14.672*** -32.699 0.000*** 1.154 -517.857* 

  (5.014) (-0.155) (4.963) (1.326) (-1.699) 

 T2 10.952*** -46.917 0.000 0.769 49.798 

  (2.609) (-0.172) (1.414) (1.526) (0.805) 

 T3 13.965*** -780.954*** 0.000** -0.079 -28.066 

  (3.318) (-3.335) (2.546) (-1.505) (-1.409) 
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Table 5 

Second-stage regressions of the impact of HFT on other stock characteristics 

This table reports results from second-stage regressions that analyze the impact of HFT on various stock 

characteristics: 

𝑌𝑖,𝜏 = 𝛼𝑖 + 𝛾𝜏 + 𝛽𝐻𝐹𝑇𝑖,𝜏
̂ + ∑ 𝛿𝑗

4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  

𝑌𝑖,𝜏 is one of the following dependent variables for stock 𝑖 in month 𝜏: average daily midquote return (𝑟𝑖,𝜏), average 

liquidity (𝐿𝐼𝑄𝑖,𝜏), average relative quoted spread (𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝜏), and average volatility (standard deviation) of daily 

midquote returns (𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏).  𝐻𝐹𝑇𝑖,𝜏
̂   is the fitted value of HFT activity obtained from the first-stage regressions.  

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 is a set of four control variables: a fragmentation proxy (𝐹𝑅𝐴𝐺2𝑖,𝜏), volume (𝑑𝑣𝑜𝑙𝑖,𝜏), volatility 

(𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏) and 1/midquote (𝑖𝑛𝑣𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑖,𝜏).  𝛼𝑖 and 𝛾𝜏 are stock and time fixed effects.  The table reports slope 

coefficients (𝛽 and 𝛿𝑗) with t-statistics in parentheses.  Standard errors are robust to heteroskedasticity and within-

stock autocorrelation. *, **, *** denote significance at 10%, 5%, 1%, respectively. 

 

Dependent  Control variables 

variable 𝐻𝐹𝑇𝑖,𝜏
̂   𝐹𝑅𝐴𝐺2𝑖,𝜏 𝑑𝑣𝑜𝑙𝑖,𝜏 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏 𝑖𝑛𝑣𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑖,𝜏 

𝑟𝑖,𝜏 -0.217 18.966** 0.000 -0.003 -0.692 

 (-1.532) (2.067) (0.206) (-0.107) (-0.255) 

𝐿𝐼𝑄𝑖,𝜏 0.019*** 0.581*** 0.000*** -0.000*** 0.024 

 (15.024) (7.310) (13.401) (-3.547) (0.694) 

𝑠𝑝𝑟𝑒𝑎𝑑𝑖,𝜏 -3.534*** -90.116*** 0.000*** 0.086** 45.170*** 

 (-11.903) (-5.000) (-10.417) (2.198) (4.934) 

𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏 2.841** -67.814* 0.000**  23.659*** 

  (2.325) (-1.870) (2.149)  (4.067) 
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Fig. 1. Number of stocks traded on Chi-X through time.  The graph illustrates the staggered introduction of Chi-X to 

European equity markets.  The vertical axis measures the number of stocks in each traded volume tercile of our 

sample traded on Chi-X on each day during the sample period.  Terciles are constructed using country-specific 

breakpoints to ensure terciles are similar in the distribution of stocks from each country.  T1 (T3) contains stocks 

with the lowest (highest) average daily traded EUR volume during the sample period. 
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Fig. 2. Daily number of quote messages. The graph shows the average number of quote messages (number of 

changes to the price or volume at the best quotes, measured each stock-day) through time for terciles of traded EUR 

volume.  Terciles are constructed using country-specific breakpoints to ensure terciles are similar in the distribution 

of stocks from each country.  T1 (T3) contains stocks with the lowest (highest) average daily traded EUR volume 

during the sample period. 
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Fig. 3. HFT activity through time.  The graph shows HFT activity (ratio of negative trading volume (in ’00 EUR) to 

the number of quote messages) through time for terciles of traded EUR volume.  Terciles are constructed using 

country-specific breakpoints to ensure terciles are similar in the distribution of stocks from each country.  T1 (T3) 

contains stocks with the lowest (highest) average daily traded EUR volume during the sample period. 
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Fig. 4. Direct and mediated effects of HFT on co-movement in returns.  This graph depicts the results from multiple 

mediation analysis of the channels by which HFT impacts return co-movement.  The estimates are derived from the 

following set of panel regressions using stock-month (𝑖, 𝜏) observations: 

𝑅𝑖,𝜏
2,𝑟

 
= 𝛼𝑖 + 𝛾𝜏 + 𝛽𝐻𝐹𝑇𝑖,𝜏

̂ + ∑ 𝛿𝑗
4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  

𝐿𝐼𝑄𝑖,𝜏 = 𝛼𝑖 + 𝛾𝜏 + 𝛽1𝐻𝐹𝑇𝑖,𝜏
̂ + ∑ 𝛿𝑗

4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  

𝑑𝑒𝑙𝑎𝑦𝑖,𝜏 = 𝛼𝑖 + 𝛾𝜏 + 𝛽3𝐻𝐹𝑇𝑖,𝜏
̂ + 𝛽2𝐿𝐼𝑄𝑖,𝜏 + ∑ 𝛿𝑗

4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  

𝑅𝑖,𝜏
2,𝑟 = 𝛼𝑖 + 𝛾𝜏 + 𝛽0𝐻𝐹𝑇𝑖,𝜏

̂ + 𝛽5𝐿𝐼𝑄𝑖,𝜏 + 𝛽4𝑑𝑒𝑙𝑎𝑦𝑖,𝜏 + ∑ 𝛿𝑗
4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  

where 𝑅𝑖,𝜏
2,𝑟

 is co-movement in returns, 𝐿𝐼𝑄𝑖,𝜏 is liquidity, 𝐻𝐹𝑇𝑖,𝜏
̂  is the fitted value of HFT activity from the first-

stage regressions that use Chi-X as an instrumental variable, 𝑑𝑒𝑙𝑎𝑦𝑖,𝜏 is a measure of the delay with which the 

stock’s price reflects market-wide information, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 is a set of four control variables: a fragmentation proxy 

(𝐹𝑅𝐴𝐺2𝑖,𝜏), volume (𝑑𝑣𝑜𝑙𝑖,𝜏), volatility (𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏) and the inverse of the midquote price (𝑖𝑛𝑣𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑖,𝜏).  𝛼𝑖 

and 𝛾𝜏 are stock and time fixed effects.  The percentages refer to the strength of the channel as a proportion of the 

total effect.  *, **, *** denote significance at 10%, 5%, 1%, respectively. 
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Fig. 5. Direct and mediated effects of HFT on co-movement in liquidity.  This graph depicts the results from 

multiple mediation analysis of the channels by which HFT impacts liquidity co-movement.  The estimates are 

derived from the following set of panel regressions using stock-month (𝑖, 𝜏) observations: 

𝑅𝑖,𝜏
2,𝐿𝐼𝑄

 
= 𝛼𝑖 + 𝛾𝜏 + 𝛽𝐻𝐹𝑇𝑖,𝜏

̂ + ∑ 𝛿𝑗
4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  

𝐿𝐼𝑄𝑖,𝜏 = 𝛼𝑖 + 𝛾𝜏 + 𝛽1𝐻𝐹𝑇𝑖,𝜏
̂ + ∑ 𝛿𝑗

4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  

𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏 = 𝛼𝑖 + 𝛾𝜏 + 𝛽2𝐻𝐹𝑇𝑖,𝜏
̂ + ∑ 𝛿𝑗

4
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  

𝑅𝑖,𝜏
2,𝐿𝐼𝑄 = 𝛼𝑖 + 𝛾𝜏 + 𝛽5𝐻𝐹𝑇𝑖,𝜏

̂ + 𝛽3𝐿𝐼𝑄𝑖,𝜏 + 𝛽4𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏 + ∑ 𝛿𝑗
3
𝑗=1 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 + 휀𝑖,𝜏  

where 𝑅𝑖,𝜏
2,𝐿𝐼𝑄

 is co-movement in liquidity, 𝐿𝐼𝑄𝑖,𝜏 is liquidity, 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏 is volatility, 𝐻𝐹𝑇𝑖,𝜏
̂  is the fitted value of 

HFT activity from the first-stage regressions that use Chi-X as an instrumental variable, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑗,𝑖,𝜏 is a set of four 

control variables: a fragmentation proxy (𝐹𝑅𝐴𝐺2𝑖,𝜏), volume (𝑑𝑣𝑜𝑙𝑖,𝜏), volatility (𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦𝑖,𝜏) and the inverse of 

the midquote price (𝑖𝑛𝑣𝑚𝑖𝑑𝑞𝑢𝑜𝑡𝑒𝑖,𝜏).  𝛼𝑖 and 𝛾𝜏 are stock and time fixed effects.  The percentages refer to the 

strength of the channel as a proportion of the total effect.  *, **, *** denote significance at 10%, 5%, 1%, 

respectively. 
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