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Abstract

Inflammation causes debilitating human conditions and older treatments rely on global
immunosuppression that non-specifically alleviates symptoms. Currently, several mono-
clonal antibodies (mAbs) are available that specifically block pro-inflammatory cytokines.
These include mAbs specific to tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6,
IL-17 and IL-12/IL-23. The chapter summarises the key elements in human inflammatory
disease conditions, including various forms of arthritis, psoriasis, Crohn's disease and
ulcerative colitis, plus pyrin-associated inflammatory syndromes and periodic fevers, to
explain the benefit of cytokine neutralisation through mAb-type reagents. The chapter
reviews the efficacy and safety of the current repertoire of anti-cytokine/cytokine receptor
mAbs. It also discusses the known side effects and adverse events that are sometimes
associated with systemic blockade of cytokines in vivo, and concludes that the accumulat-
ing knowledge of treatment failures can reveal unappreciated aspects of cytokine biology
and even new treatment opportunities. The chapter includes mention of the rapidly
expanding cohort of biosimilar mAbs and the mAbs to IL-4, IL-5 and IL-13 that are now
emerging, in addition to the need for treatments for disorders that remain refractory to the
current repertoire of anti-cytokine mAbs and conventional treatments. Thus, here we
summarise the current status of anti-cytokine mAbs for human inflammatory diseases.

Keywords: arthritis, asthma, crohn's disease, cytokines, biosimilar, inflammation, inter-
leukin (IL), IL-1β, IL-4, IL-5, IL-6, IL-13, IL-12, IL-17, IL-23, monoclonal antibodies
(mAbs), periodic fevers, psoriasis, pyrin, tumour necrosis factor (TNF), and ulcerative
colitis
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1. Introduction

Human inflammatory diseases are among some of themost debilitating conditions described and
they inflict varying degrees of functional impairment and may be long-lasting, causing chronic
pain. Some examples of inflammatory conditions include rheumatoid arthritis (RA) and other
related or non-related arthritides, skin diseases such as psoriasis, or intestinal conditions such as
Crohn's disease (CD) and ulcerative colitis (UC), as well as pyrin-associated inflammatory syn-
dromes and periodic fevers. These conditions generally present as acute bouts of inflammation,
but are in most cases active as chronic conditions with periods of worsening or ‘flares’. Intense
research, over many decades, has revealed important details regarding the mechanisms that
contribute to the pathology of these conditions, although in many situations the initial trigger
continues to remain undefined. This knowledge led to the use of broad-acting anti-inflammatory
agents that exert benefit due to global immune suppression. Thus, drugs such as corticosteroids
became the mainstream treatment option. Over time, however, as knowledge of the underlying
pathobiologydeepened, so the role of individual cytokines emerged as critical drivers of the in vivo
inflammatory processes. Eventually, as it became known thatmicrobes, especially viruses, encode
and express cytokine-receptor mimics that block the biological effects of specific cytokines, and
inhibit cytokine-mediated inflammation [1, 2], thus it became obvious to trial soluble receptor
proteins as inhibitors of pro-inflammatory cytokines to treat human inflammatory diseases.
Although the microbial products themselves are potent neutralising reagents, they were viral in
origin—not human—and therefore immunogenic (not suitable for long-term human use). The
use of neutralising cytokine-specific monoclonal antibodies (mAbs), and/or recombinant forms
of soluble cytokine receptors, however, efficiently solved this problem, because these recombi-
nant Ig-based molecules are essentially identical copies of endogenous human protein—purified
monoclonal Ig. Thus was born the era of cytokine-neutralising mAb-based therapeutic reagents
for the treatment of human inflammatory diseases.

2. Clinical presentation and processes of inflammatory diseases
amenable for treatment with cytokines targeted neutralising mAbs

Inflammation is a natural and spontaneous process that occurs in response to an insult causing
tissue damage. It involves the activation of innate and adaptive immune system components,
including both vascular and cellular responses. Essentially, there are four signs that represent
the clinical manifestations of inflammation: redness (Latin: rubor), warmth/heat (calor), swell-
ing (tumour) and pain (dolor), and when unresolved, inflammation frequently results in the loss
of physiological function (function laesa). Systemic symptoms such as fever also frequently
occur. Together, these are the universal or classical hallmarks of inflammation in mammals.

The magnitude of the response is initially directly proportional to the severity of the insult, but
reactivation of inflammation can be triggered, either by a reoccurrence of the same or similar
event, or sometimes via an unrelated event. During times of exacerbation, the severity of symp-
toms escalates dramatically, and this is often referred to as an inflammation ‘flare’. In either
instance, the physiological events that follow are becoming increasingly well understood
at a molecular level and this detailed mechanistic understanding has revealed a number of
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opportunities for therapeutic blockage of specific mediators of inflammation. In many cases, the
results of these specific interventions have been truly remarkable, such that previously debilitat-
ing disease conditions are now entirely manageable or, in some cases, almost unnoticeable. The
following sections provide a summary of current knowledge of the molecular basis of the events
that occur in several human inflammatory disorders together with a description of the mAbs and
recombinant protein-based reagents that can be applied to successfully ameliorate inflammation.

2.1. Inflammatory cytokines in the pathology of arthritides: rheumatoid arthritis (RA),
idiopathic juvenile arthritis (IJA) and ankylosing spondylitis (AS)

Rheumatoid arthritis (RA) is an autoimmune disease that comprises both systemic and tissues-
specific inflammation, primarily inflammation of joint synovium, leading ultimately to erosion
of the joint tissue. The initial trigger of the inflammation is usually unknown. Once present,
however, it usually progresses and is characterised by episodes of greater intensity or flares.
The systemic nature of the condition is exemplified by the fact that diverse tissues may be
involved, including skin and kidneys. It is generally believed that there are three main phases
of pathology in RA: (i) an initial induction phase of non-specific tissue inflammation, (ii) an
expansion phase involving T lymphocyte (T cell) responses and (iii) a chronic systemic inflam-
mation phase mediated by the production of cytokines such as interleukin (IL)-1β, tumour
necrosis factor (TNF) and IL-6 [3] and the production of citrullinated fibrinogen among other
substrates. The ‘unnatural’ citrullinated proteins are frequently the targets of rheumatoid
factor IgM and IgG autoantibodies [4]. Although the systemic phase is debilitating in its own
right, the inflammatory destruction of joint synovium results in immobile and dysfunctional
joints, and this is often amplified by the involvement of multiple affected joints, that is,
polyarthritis (Figure 1); for most patients, the painful chronic synovitis ultimately results in
irreparable joint destruction.

RA occurs not only in adults but also in children [5]. There are many presentations of juvenile
arthritis and most are idiopathic in nature, and include polyarticular and/or systemic arthritis, as
well as fever, skin rash, anaemia, spleen, liver and sometimes even cardiac tissue inflammation
[6, 7]. The inflammation is thought to be due to activation of macrophages and other immune
cells (monocytes, dendritic cells, T cells, etc.), which may explain the different subtypes of
juvenile idiopathic arthritis (JIA) [8], and in all cases there is inflammation mediated primarily

Figure 1. Clinical presentation of rheumatoid and psoriatic arthritis. (A) Long-standing RA characterised by ulnar
deviation, metacarpal phalangeal joint subluxation and boutonniere deformity, and (B) Psoriatic arthritis with bouton-
niere deformity. (Images generously provided by Prof. Manolios, Westmead Hospital, Sydney, Australia).
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by the production of soluble mediators—especially pro-inflammatory cytokines such as TNF
[9, 10]. Systemic JIA (SJIA) is thus considered a multifactorial auto-inflammatory disease [6].

Previous treatments for SJIA have traditionally comprised non-steroidal anti-inflammatory
drugs (NSAIDs) or corticosteroids in more severe cases, but these drugs can have significant
side effects and are often poorly tolerated in children, sometimes causing lifelong sequelae
such as sterility. Fortunately, most anti-TNF-based mAbs have yielded promising results,
although efficacy rates and treatment retention rates decrease with treatment time [11]. With
the emergence of IL-6 neutralising mAbs, such as tocilizumab, other effective treatment
options also now exist [12]. However, IL-1β-blocking agents such as anakinra or canakinumab
also show significant efficacy in JIA [13, 14]. Taken together, these findings support the current
dogma that the pathobiology of JIA is not entirely identical to adult RA even when joint
arthropathy is the primary common lesion. Secondly, these results suggest that there exists an
inflammation hierarchy among the contributing cytokines—some being critical to the produc-
tion of other cytokines or inflammatory mediator substances, and others less significant, that is,
some are ‘non-drivers’of the pathology but elevated nonetheless [9]. Furthermore, the presence
of TNF, IL-6 and IL-1β strongly points to the involvement of macrophages—particularly type-I
macrophages (M1 MØ) which, when activated, produce this combination of cytokines. Inter-
estingly, a polymorphism in macrophage migration-inhibitory factor (MIF) has been found to
be associated with SJIA [15, 16]. Indeed, the diverse presentation of juvenile arthritis suggests
that there is still much more to learn about the aetiology of arthritis in children.

Ankylosing spondylitis (AS) is another type of inflammatory arthritis that usually involves
the sacroiliac joint and spine [17]. As this disease worsens, shoulders can also be affected. The
predominant symptoms are joint stiffness and pain caused by a chronic low-grade inflamma-
tion [17]. In advanced cases, vertebra can actually fuse and remain in a fixed and immobile
position, explaining why many AS patients frequently present with a classical ‘forward-lean-
ing’ posture or limited flexion in the lumbar spine and inter-vertebral calcification (Figure 2A
and B). Despite a long-known association to HLA-B27, and other immune gene loci [18], and
an increased prevalence in males, the trigger for this condition remains unknown [17]. The
disease can be either undifferentiated or more specific in its presentation, for example,
presenting in a more defined manner such as with reactive arthritis, psoriatic arthritis (see
Figure 1) or more dispersed symptoms such as arthritis with an associated inflammatory

Figure 2. Clinical presentation of ankylosing spondylitis (AS) and psoriasis. (A) AS in a 30-year-old male with limited
flexion of lumbar spine, (B) AS involving cervical spine; X-ray features show calcification of anterior longitudinal
ligament, (C) psoriatic erosions involving proximal interphalangeal joints and second distal interphalangeal joint and
(D) psoriatic skin lesion characterised by flacking and silver scales. (Images generously provided by Prof. Manolios,
Westmead Hospital, Sydney, Australia).
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bowel disease (IBD) condition. The link with IBD is intriguing, and although this has long been
a rather poorly understood AS disease association (or presentation), recent evidence suggests a
potential role of IL-17-family cytokines.

Early treatments for AS have been focused primarily on relieving pain, for example, through
non-steroidal anti-inflammatory drugs such as aspirin, ibruprofen or voltaren and so on. Cox-2
inhibitors have also been used. As these are broad inhibitors of inflammation and pain-reducing
mimetics, they do not specifically target the specific factors that are critical to the underlying
aetiology of the condition. Similarly, drugs, such as sulfasalazine, methotrexate or corticoste-
roids, while offering some degree of efficacy in the treatment of AS, are, again, broad-acting
immune suppressants. As knowledge of the molecular aetiology of this disease has increased, it
was found that TNF-neutralising drugs etanercept, adalimumab, certolisumab pegol, infliximab
or golimumab can be effective [19]. Yet, precisely how anti-TNF mAbs provide benefit in AS
patients, however, is still not entirely clear, due essentially to the gaps in knowledge surrounding
this disease; the ability of the anti-TNF agents to prevent new bone formation, for example, is still
controversial and poorly explained through existing knowledge. Moreover, anti-TNF mAbs are
not beneficial in all AS patients. Thus, most clinicians conclude that while TNFmay be produced
in certain circumstances in AS pathology, it may or may not be the driving factor in AS disease
pathology [20].

There is currently much excitement surrounding the role for cytokines IL-17 and IL-23 in AS.
Indeed, the demonstrated efficacy of IL-17 and IL-23 neutralising mAbs in clinical trials has
recently cemented these cytokines as central mediators of AS inflammation. Several previously
unexpected immune cells are now therefore strongly implicated as being critical components of
the pathobiology of AS, specifically Th-17 cells and lineage-negative innate-like immune cells
(ILC) type 3 [21]. The different subsets of ILC3 cells typically produce not only IL-17-type
cytokines but also other cytokines such as IL-6, TNF and IFNγ (thus explaining the partial benefits
of treatment with anti-TNF mAbs, and global immune-suppressive treatments). These ILCs are
interesting in AS because they are exposed to bacteria and microbial products as they are found in
skin and in gut and recognised for their role in preserving barrier function. Moreover, the
detection of these innate cell types in the blood of AS patients [22] thus provides a mechanistic
link with the AS arthritis and the inflammatory bowel disease-type symptoms that occurs in
many AS patients. Moreover, both TNF and IL-17 have long been implicated in the structural
bone damage and remodelling that is evident in AS [23, 24]. More research will be required to
define the precise pathogenic mechanisms of IL-17-producing innate immune cells in AS.

2.2. Inflammatory cytokines in psoriasis (and psoriatic-type arthritis)

Psoriasis is an autoimmune skin condition where patches of scaly skin accumulate. The locations
of these patches are usually elbows, knees or scalp, although the location is not a diagnostic
feature per se, and the psoriatic skin lesions can occur almost anywhere on the body. A propor-
tion of people with chronic skin psoriasis will also develop a type of psoriatic arthritis of joints
(Figure 1). Like RA, this can result in significant joint erosion (Figure 2) but this type of arthritis
is rheumatoid factor negative, and thus distinct from RA [25]. Psoriasis is also different from
eczema, in that there is a thickening of the epidermis and the condition almost always persists,
whereas eczema often fades spontaneously, for example, as children grow older. In fact, there are

Therapeutic Antibody‐Based Drugs in the Treatment of Human Inflammatory Disorders
http://dx.doi.org/10.5772/67478

227



various forms of psoriasis, including the most common form—plaque psoriasis, comprising an
accumulation of dead skin cells building up, forming a cracked ‘plague’ skin lesion (Figure 2).
Some patients, however, develop smooth, shiny skin lesions; these usually being on the knee or
under the arm. In addition, guttate psoriasis is a form of the psoriatic disease that sometimes
form after Streptococcal sp. bacterial infections. Erythrodermic psoriasis is the most severe form of
the disease, and in this condition large areas of skin eventually sloth off.

In psoriasis treatment, a number of systemic immunosuppressive agents have been used,
for example, cyclosporine or methotrexate. Nevertheless, the dysfunction of cytokines,
especially IL-13, IL-17 and IL-23, appears to be integral to the pathology of all forms of
psoriasis—consistent with the broad benefits of cyclosporin in psoriatic pathologies [26].
Benefit has long been established with mAb-based reagents that neutralise TNF [27], and
more recently, new IL-23-neutralising mAbs are demonstrating considerable efficacy
[28, 29]. The IL-17A-neutralising mAbs secukinumab and ixekizumab, and IL-17R-blocking
mAbs brodalumab are also showing significant efficacy in ameliorating psoriatic-based
skin conditions [30–32]. This is consistent with the observations of elevated IL-17A within
psoriatic plaques (skin lesions), being produced from many immune cell types [33], as well
as IL-13 [34]. In fact, it has also been recently demonstrated that IL-17 is intimately linked to
IL-13 biology, whereby IL-13 regulates IL-17A production in Th17 cells [35, 36]. These
findings are also consistent with the observation that transgenic IL-17A expression mice
develop psoriatic-type skin lesions that resembles human psoriasis [37]. The striking effi-
cacy of anti-IL-17 mAbs indicates that IL-17-producing cells, such as Th-17 cells, are integral
to the pathobiology of many forms of psoriasis. Recently, however, IL-17-producing ILC3s
have been shown to be present in psoriatic tissues [38, 39]. It has also been shown that
CD1a-restricted IL-17-producing lipid antigen recognising T cells are present both in skin
and in blood of psoriasis patients [40]. Hence, the dramatic success of these new mAbs not
only brings psoriasis patients the promise of relief of their symptoms but also simulta-
neously reveals new and otherwise unappreciated knowledge of the critical aspects of the
disease mechanisms at play in psoriasis.

Other interesting recent developments are new oral treatments for psoriasis [41]. For example,
a small molecule phosphodiesterase-4 inhibitor (apremilast) works by preventing cAMP acti-
vation in immune cells, thereby limiting pro-inflammatory cytokine production [42–45]. It
should be noted, however, that initial clinical trials were discontinued due to unexpected side
effects such as diarrhoea, headache and nausea, although careful re-examination of dosing
regiments and/or new molecular modifications may still be possible. Nonetheless, phosphodi-
esterase-4 has itself been found to be elevated in psoriatic lesion inflammatory cells [44], and
thus the amelioration of symptoms correlates perfectly with its potent inhibition in vivo. In
summary, these findings again strongly substantiate the involvement of inflammatory cyto-
kines, especially IL-17 and IL-23, in the aetiopathology of human psoriasis. It is no exaggera-
tion to conclude that newly developed mAbs blocking IL-17 and IL-23 pathways have
completely revolutionised the treatment of chronic psoriasis— they now already comprise the
‘standard of care’ in plaque psoriasis treatments [46]. Even so, there is much more to learn
about this complex condition, such as the roles of IL-12 versus IL-23, for example, in limiting
IL-17 production, and the role of IL-17-producing skin γδ T cells [47].
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2.3. Cytokines in the pathology of inflammatory bowel disease (IBD): Crohn's
disease (CD) and ulcerative colitis (UC)

There are several autoimmune-based chronic inflammatory bowel diseases (IBD) involving the
gastrointestinal tract (GIT) and these most frequently include Crohn's disease (CD) and ulcer-
ative colitis (UC). Generically speaking, CD is considered to involve the distal junction of the
small intestine and thus primarily involves inflammation in the large intestine, whereas UC
inflammation can occur anywhere within the entire GIT. These conditions are both progressive
and characterised by relapsing inflammation [48]. CD lesions usually involve only the super-
ficial mucosal tissue layers, whereas UC inflammation is often more extensive, even presenting
through the full-tissue thickness of the intestine. A less-well-known feature of CD is that the
inflammation may involve non-GIT mucosa, for example, skin, eyes or joints, and even liver
can be affected. The pathological processes in CD and UC are complex, with a deep and
interconnecting interplay between inflammation and fibrosis as there is often a constant need
for tissue healing [49]. For both CD and UC, the differential diagnosis is usually confirmed
through endoscopy, as this procedure permits the delineation of the anatomical location that is
affected (site of the inflammation). Importantly, the endoscopy also provides the opportunity
for the grading of lesion severity.

In both CD and UC the immune system is highly activated, explaining the clinical benefits
experienced from treatments that induce global immune suppression. Cytokine-specific
mAb-based treatments are also effective at blocking and preventing IBD inflammation. It
has become increasingly evident that environmental triggers are both constitutive and
exacerbating during times of inflammatory flares, and hence the systemic presence of ther-
apeutic mAbs provides a long-lasting inhibition towards the chronic inflammation. There is
also a growing appreciation of the role of the gut microbiota in IBD [50]. Although the
intestinal (mucosal) immune system is meant to remain unresponsive to commensal micro-
organisms, just as it is to food-based antigens, it retains a capacity to respond to intestinal
pathogens. The current theory, however, is that there is an inappropriate, and potentially
constitutive, activation of innate immune cells within the bowel and these activated cells
constitute the basis of chronic IBD inflammation [48]. Theoretically, IBD inflammation may
involve almost any innate immune cell residing within the GIT mucosa, but Th1- and/or Th-
17-type pro-inflammatory cytokines appear to be involved—and these cells produce both
TNF and/or IL-17 plus IFNγ [48]. Also, there is currently a high level of interest in the ILC3
cells in acting as the initial triggers of IBD inflammation [51, 52]. However, changes in
commensal gut microflora are also now in focus, and especially the ability of bacteriophage
viruses, due to their capacity to lyse bacteria and thereby alter the GIT microbiome diversity
[53]. Thus, both a dysbiosis and inflammation-mediated disruption of the GIT epithelial
barriers are currently thought to be integral to both UC and CD conditions. Fortunately,
there are already several neutralising mAb-based therapies for IBD patients, especially for
those who are refractory to traditional treatment of aminosalicylates and corticosteroides.
These include the anti-TNF mAbs (infliximab, adalimumab, golimumab and certolizumab
pegol) and two anti-integrin-blocking mAbs (natalizumab and vedolizumab). In contrast to
the benefit evident in neutralising TNF, a contributing role for IL-17 in IBD is still uncertain,
and IL-12/IL-23 are likely not the driver cytokines as there is only marginal efficacy from
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ustekinumab (anti-12/IL-23) in CD patients, and no benefit was evident in initial trials with
briakinumab (anti-IL-12/IL-23 p40-neutralising mAbs) [54]. Indeed, brodalumab (anti-IL-
17RA-neutralising mAb) caused worsening symptoms in CD [55]. Clearly, further investiga-
tion into the complex interactions between the normal and altered microbiome, and the
endogenous intestinal cells, including resident innate and adaptive immune cells, is
required to better understand these IBD pathologies.

2.4. Autoinflammatory diseases: TNF-receptor-associated periodic syndrome (TRAPS),
cryopyrin-associated periodic syndrome (CAPS) and Muckle-Wells syndrome

One of the clearest cases of the mechanistic role of cytokines in the aetiology of human
inflammation concerns the hereditary periodic fever conditions. Here, an autoinflammatory
trigger (or triggers) involves genes that are embedded within the innate immune system, but
the response occurs in the absence of demonstrable infection—although there still remains the
possibility that a subclinical and undetectable infection is present [56]. For example, patients
with TNFR1 mutations are usually classified as TNF-Receptor-Associated Periodic Syndrome
(TRAPS) [57]. TRAPS fevers typically last more than a week and exhibit a range of symptoms,
such as myalgia, arthritis, fasciitis, abdominal pain, skin rashes and patches (Figure 3), or
periorbital oedema, and even amyloidosis in severe cases [58, 59]. The precise mechanism(s)
of pathology resulting in TRAPS has continued to mature over time, as TRAPS mutant TNFRs
have been successively thought to result in altered activation of a key transcription factor
within the immune system (NF-κB), an inability to bind to TNF, reduced surface expression
of TRAPS TNFRs, the incorrect folding of the receptors leading to an ‘unfolded protein
response’ which appears to activate the inflammasome and lead to mitochondrial reactive
oxygen species, and ultimately to inflammation [56, 60]. Despite the varied presentations, a
unifying presentation in TRAPS patients is the elevated levels of serum TNF, IL-1β and IL-6
cytokines. TRAPS treatment options vary but broad immunosuppression, such as with colchi-
cine, is no longer generally recommended, as it is accepted that there is significant benefit in
treating patients only at the times of inflammation, that is, during disease flares, and poten-
tially monitored via levels of serum S100 proteins, IL-18, serum amyloid A, and even miRNA
molecules [61, 62]. With the number of inflammatory cytokines that are elevated, the treatment
options range from generic immune suppressants (e.g. colchicine) to the use of specific cyto-
kine-neutralising mAbs. Unexpectedly perhaps, anti-TNF mAbs have largely proven ineffec-
tive in TRAPS, and they may even unexpectedly sometimes provoke a cytokine storm via the
activation of the cRel (a component of the NF-κB system), and thereby escalating the inflam-
mation [63]. Interestingly, the current standard treatment for TRAPs and the majority of
hereditary autoinflammatory diseases is the neutralisation of IL-1β, and either recombinant
IL-1 receptor antagonist (anakinra) or human IgG1 anti-IL-1β mAb (canakinumab) alleviates
inflammation in TRAPS [64, 65]. Hence, it appears that targeting only IL-1β is beneficial in
TRAPS. This, again, implies that there exists a hierarchy of inflammatory cytokines, such that
blocking one cytokine has a broader effect of reducing the production of others. In fact, the
administration of recombinant human TNF in human clinical trials for cancer and sepsis
clearly demonstrated this principle: the administration of TNF induced elevated IL-1β and
IL-6 [66, 67] (recently reviewed in Ref. [68]).
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Other autoinflammatory syndromes include Muckle-Wells syndrome (MWS), which presents
with periodic episodes of skin rashes (Figure 3), sensorineural deafness, hives, episodal fever,
joint pain and/or amyloidosis and other symptoms. These conditions are collectively known as
cryopyrin-associated periodic syndrome (CAPS) and they are all universally associated with
activation of pro-caspase-1 [70, 71] and thus also with mutations in NLRP3/CIAS1 and LNRC4
genes [72, 73] (see www.autoinflammatory-search/diseases). The central mechanism of patho-
genesis of CAPS-type diseases is the elevated production of IL-1β, usually from activated
monocytes/macrophages, and because of the involvement of caspase-1, there is usually a
concomitant elevated production of IL-18. Thus, the neutralisation of IL-1β as the fundamental
driver of the inflammation is proving to be beneficial in these conditions, that is, either with
mAb canakinumab or with recombinant IL-1Ra protein (anakinra). Even deafness in Muckle-
Wells syndrome patient was alleviated by neutralising IL-1β [74]. Finally, NLRP3 activation
also results in elevated IL-1β in other unrelated sterile inflammatory conditions such as those
involving monosodium urate (gout) and calcium pyrophosphate dihydrate (CPPD) (pseudo-
gout) crystalline-induced arthritis (Figure 3) [75, 76]. Thus, neutralising IL-1β is effective in
nearly all CAPS-type autoinflammatory conditions [60].

3. Biological therapeutics for inflammation

There are currently more than 20 recombinant cytokine receptor- and mAb- based protein
drugs that have been developed and widely approved for the treatment of human inflamma-
tion (see Boxes 1–5). These can be classified as recombinant cytokine receptor-based proteins,
or cytokine- or cytokine receptor-specific-neutralising mAbs (Figure 4).

3.1. Recombinant cytokine receptors and receptor-Ig fusion proteins

Etanercept (trade name Enbrel; www.enbrel.com) was the first human cytokine-receptor immu-
noglobulin chimeric fusion protein approved for the treatment of human diseases. Etanercept
comprises the extracellular region of human TNFR2 and the Fc region of human IgG1, and is
produced in Chinese hamster ovary (CHO) cells. As a TNFR2-based-Ig protein, it has properties
of both a human cytokine receptor and human Ig protein: the TNFR2 component binds to TNF
and lymphotoxin-α, whereas the human IgG1 portion confers serum longevity and Ig Fc recep-
tor (FcR)-binding capacity. Etanercept is thus a TNF inhibitor capable of neutralising soluble

Figure 3. Clinical presentation of auto-inflammatory syndrome skin rashes and pseudo-gout inflammation. (A) TRAPS
skin rash (from [69]), (B) Muckle-Wells syndrome / CAPS rash (image from autoinflammatory.org) and (C) joint and tissue
inflammation due to pseudo-gout flair after total knee arthroplasty of right knee, both before (left) and after (right)
antibiotics for potential culture-negative post-operative infection (Images used with permission).
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Box 1. Current therapeutic TNF and TNF-receptor-specific inhibitory agents.

TNF-receptor Ig fusion proteins and anti-tumour necrosis factor (TNF)

Drug name and structure Brand name
Usual
delivery Approved disease indications

Additional
potential uses

Etanercept
Recombinant fusion protein:
Human TNFR2:IgG1-Fc

Enbrel® s.c. injection Rheumatoid arthritis
Polyarticular juvenile
idiopathic arthritis (PJIA)
Psoriatic arthritis
Ankylosing spondylitis
Plaque psoriasis

Cognitive
impairment
(peri-spinal
delivery)?

Infliximab
Humanised (chimeric)
IgG1κ

Remicade® i.v. infusion Rheumatoid arthritis*
Psoriatic arthritis*
Ankylosing spondylitis
Plaque psoriasis
Crohn's disease
Paediatric RA
Paediatric Crohn's disease

Adalimumab
Human IgG1κ

Humira® s.c. injection Rheumatoid arthritis*
Psoriatic arthritis*
Plaque psoriasis
Active ankylosing spondylitis
Crohn's disease
Juvenile idiopathic arthritis
Ulcerative colitis

Golimumab
Human IgG1κ

Simponi® s.c. injection Rheumatoid arthritis*
Psoriatic arthritis*
Plaque psoriasis
Ulcerative colitis

Certolizumab Pegol
Pegylated-Fab’ of humanised
IgG1κ

Cimzia® s.c. injection Rheumatoid arthritis*
Psoriatic arthritis*
Ankylosing spondylitis
Crohn's disease

Biosimilars: (Among others)

Erelzi
TNFR2-IgG1
Etanercept biosimilar

etanercept-szzs®
(Sandoz)

i.v. infusion Same indications as per
etanercept

Brenzys (SB4)
TNFR2-IgG1
Etanercept biosimilar

(Samsung Bioepis;
Merck and Biogen)

i.v. infusion Same indications as per
etanercept

CTP-13
Humanised IgG1κ
Infliximab biosimilar

Remsima® (Infliximab)
Inflectra® (Hospira)

i.v. infusion Same as per infliximab

BOW015
Human IgG1κ
Infliximab biosimilar

Infimab® (Reliance
Life Sciences)

i.v. infusion Same as per infliximab

SB2
Human IgG1κ
Infliximab biosimilar

(Samsung Bioepis;
Merck and Biogen)

i.v. infusion Same as per infliximab
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TNF-receptor Ig fusion proteins and anti-tumour necrosis factor (TNF)

Drug name and structure Brand name
Usual
delivery Approved disease indications

Additional
potential uses

Adalimumab-atto
Human IgG1κ
Adalimumab biosimilar

Amjevita® (AMGEN) s.c. injection Same as per adalimumab

Adalimumab (India)
Human IgG1κ
Adalimumab biosimilar

Adfrar® (Torrent
Pharma)

s.c. injection Same as per adalimumab

SB5
Human IgG1κ
Adalimumab biosimilar

(Samsung Bioepis;
Merck and Biogen)

s.c. injection Same as per adalimumab

Note: *These agents can be used alone or in combination with methotrexate or other non-biologic disease-modifying anti-
rheumatic drugs.

Box 2. Current therapeutic IL-1β-specific mAb, or IL-1-receptor antagonist, inhibitory agents.

Anti-interleukin-1β or IL-1-receptor-antagonist

Drug name and
structure Brand name

Usual
delivery Approved disease indications Additional potential uses

Anakinra
Recombinant human
IL-1Rα (E. coli-
derived protein;
non-mAb)

Kineret®
(AMGEN/
Biovitrum)

s.c.
injection

Adult rheumatoid arthritis (moderate-
to-severe, monotherapy or with
DMARDS)

Lupus nephritis
Inflammatory joint
diseases: psoriatic arthritis,
spondyloarthritis,
osteoarthritis, etc.
Periodic fevers
Gout
Asbestosis
Epilepsy
Stroke

Rilonacept
Recombinant IL-1R
accessory protein
(E. coli-derived)

Arcalyst®
(Regenron
Pharmaceuticals)

s.c.
injection

Cryopyrin-associated periodic
syndromes (CAPS), including familial
cold auto-inflammatory syndrome
(FCAS) and Muckle-Wells syndrome
(MWS)

Canakinumab
Humanised
anti-IL-1β IgG1κ

IlarisTM

(ACZ885)
(Novatis)

s.c.
injection

Cryopyrin-associated periodic
syndrome (CAPS)
Familial cold auto-inflammatory
syndrome (FCAS) and Muckle-Wells
syndrome (MWS)
Systemic juvenile idiopathic arthritis
(SJIA)

Rheumatoid arthritis
Chronic obstructive
pulmonary disease
Coronary artery disease
Gout
Schizophrenia

Gerokizumab
Humanised mouse
anti-human IL-1β
IgG2κ (Fab)

EyeguardTM

(XOMA Corp.)
No approved medical indications at
present

Behçets Uveitis
Non-infectious uveitis
Pyoderma gangrenosum
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serum TNF and LTα, engaging with cytokine-expressing cells (i.e. membrane-bound TNF), and
simultaneously also in engaging with FcR-expressing cells and henceforth of triggering FcR-
mediated cell signalling (for a recent review, see [68]). An analogous TNFR1 p55-IgG1 Fc fusion
protein (Lenercept) was similarly produced and tested in a double-blind placebo-controlled
clinical trial for multiple sclerosis (MS). This disease choice was based on the fact that TNF is
produced inMS and has demonstrable cytotoxic activity against oligodendrocytes—the cells that
are destroyed by the immune system in MS—and because TNF neutralisation had been shown
to be beneficial in mice with experimental autoimmune encephalitis (a murine model for MS-like
disease). However, MS patients reported no benefits from the Lenercept treatment and

Box 3. Current therapeutic IL-6 and IL-6-receptor-specific inhibitory agents.

Anti-interleukin-6 and IL-6Rα

Drug name and
structure Brand name

Usual
delivery

Approved disease
indications

Additional potential
uses

Tocilizumab
Humanised mouse
anti-IL-6R IgG1κ

Actemra®
(Hoffmann–La Roche)

i.v. infusion
(monthly) or
more usually
s.c. injection

Rheumatoid arthritis
Systemic juvenile
idiopathic arthritis (SJIA)
Crohn's disease
(moderate/severe)
Castleman's disease

Neuromyelitis Optica
(Devic's disease)
GVHD?
TRAPS?

Sarilumab
Human anti-IL-6R IgG1κ

VelocImmune®
(Sanofi & Regeneron)

s.c injection Rheumatoid arthritis
(with methotrexate)
Plaque psoriasis
(moderate/severe)

AS?*
(**failed trials)

Sirukumab
Human mAb IgG1κ

(GlaxoSmithKline) s.c. injection Rheumatoid arthritis (with
or without methotrexate)

Giant cell arteritis
(vasculitis)
Non-eosinophilic asthma

Box 4. Current therapeutic IL-17 and IL-17-receptor-specific inhibitory agents.

Anti-interleukin-17 and IL-17R

Drug name and structure Brand name Usual delivery Approved disease indications
Additional
potential uses

Brodalumab
Human anti-IL-17R IgG2κ

(KHK4827, AMG827)
(Valeant Pharmaceutical
& Kyowa Hakko Kirin)

s.c. injection Psoriasis (severe)
Psoriatic arthritis
Rheumatoid arthritis
Asthma
Crohn's disease
(moderate/severe)

None yet
known

Ixekizumab
Humanised anti-IL-17A
and anti-IL-17A/F IgG4

Taltz® (LY2439821
Eli Lily & Co).

s.c. injection Plaque psoriasis
(moderate/severe)

None yet
known

Secukinumab
Human anti-I7A IgG1κ

Cosentyx® (Novartis
Pharma AG)

s.c. injection Plaque psoriasis
(moderate/severe)
Psoriatic arthritis
Ankylosing spondylitis

None yet
known
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unfortunately many trial patients experienced an unexpected worsening of their disease [77].
Lenercept also failed clinical trials for sepsis [78]. The reasons for this failure, especially in the
face of the success of etanercept, were enigmatic at the time and remain incompletely explained
even today; it is not clear whether ligand-binding differences, or even minor differences in the Ig
component, explain the divergence in in vivo behaviour and therapeutic efficacy. Onercept, a
TNFR1-extracellular region without an FcR component was also created by molecular biology
engineering. Onercept neutralised TNF in vitro, but it failed in clinical trials for psoriasis [79]. In
fact, several other human TNF-inhibitory TNFR-based reagents have also been developed, such
as pegsunercept (a pegylated recombinant soluble TNFR1 protein), but these were not licensed
for various reasons, primarily a lack of efficacy for the disease situations in which they were
tested (reviewed in Ref. [68]).

In an analogous manner, a recombinant bio-therapeutic IL-1β inhibitor comprising a purified
recombinant IL-1 receptor antagonist protein, anakinra (trade name Kineret; www.kineretrx.
com), has been developed and approved for the treatment of adult RA, usually administered
as a weekly subcutaneous (s.c.) injection. Moreover, another IL-1RA (accessory) protein,
rilonacept (trade name Arcalyst; www.arcalyst.com), is a dimeric fusion protein comprising

Box 5. Current therapeutic IL-12/IL-23 and common receptor-specific inhibitory agents.

Anti-interleukin-12 and interleukin-23 (IL-12 and IL-23)

Drug name and
structure Brand name

Usual
delivery

Approved disease
indications Additional potential uses

Ustekinumab
Humanised mAb
anti-IL-12/IL-23
p40 IgG1κ

Stelara® (CNTO 1275)
(Centocor & Jassen-Cilag)

s.c. injection Plaque psoriasis
(moderate/severe)

RA
AS
CD
Systemic lupus erythematosis
Ankylosing spondylitis

Briakinuman
Human mAb
anti-IL-12/IL-23
p40 IgG1κ

ABT-874 (Abbott) s.c. injection Plaque psoriasis
Psoriatic arthritis

RA,
CD?
MS?

Tildrakizumab
Humanised mAb
Anti-IL-23 p19
IgG1κ

(Merck; and now Sun
Pharma)

s.c. injection Plaque psoriasis
(moderate/severe)

CD?

Guselkumab
Humanised mAb
Anti-IL-23 p19
IgG1κ

(Janssen Research &
Development)

s.c. injection Plaque psoriasis
(moderate/severe)

CD?

AMG139
Human mAb
anti-IL-12/IL-23
p40 IgG1κ

(Amgen) In Phase II trial for CD

BI655066
Human mAb
anti-IL-12/IL-23
p40 IgG1

(Boehringer Ingelheim
Pharmaceuticals)

In Phase II trial for
psoriasis
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IL-1R1, and an IL-1RA linked to IgG1-Fc. It is approved for the treatment of Cryopyrin-
Associated Periodic Syndromes, including Muckle-Wells syndrome in adults and in children
of 12 and older. It should be noted that these IL-1β receptor-based inhibitors are specifically
contraindicated for simultaneous use with anti-TNF agents due to a dramatically increased
risk of infection (see below for a full list of contraindications).

3.2. Cytokine-neutralising mAbs

Infliximab (trade name Remicade; www.remicade.com) was the first anti-human cytokine
mAb to be approved for therapeutic use. Infliximab binds to both soluble and membrane-
bound human TNF, and this interaction prevents TNF from binding to either of its receptors
TNFR1 or TNFR2. Since antibodies are high-affinity reagents, infliximab is thus a potent
inhibitor of TNF's biological activities. Infliximab is administered by intravenous (i.v.) infusion,
usually 5 mg/kg, every 8 weeks (see Box 1). Other human TNF-specific therapeutic mAbs now
also exist. Adalimumab (trade name Humira; www.humira.com) and golimumab (trade name
Simponi; www.simponi.com) are both human and humanised anti-human TNF IgG1 mAbs.
These mAbs are generally administered by s.c. injection, every 1–2 weeks (see Box 1).
Certolizumab pegol (trade name Cimzia; www.cimzia.com) is a pegylated human immuno-
globulin Fab’ fragment of an anti-TNF IgG1mAb. It is also administered by s.c. injection, usually
monthly. These agents are all approved for use in a broad array of arthritic- and psoriatic-related
human inflammatory conditions (see Box 1). In the USA, Adalimumab has also recently been
approved for hidradenitis suppurativa (apocrine acne). This is a chronic inflammatory condition
that affects apocrine gland-bearing skin, such as that found in the axillae and groin, where
recurrent boil-like nodules develop and fail to heal.

More recently, neutralising IL-1β-specific mAbs have also emerged, canakinumab (trade name
Ilaris; www.ilaris.com) and gerokizumab (trade name Eyeguard). These are approved for
CAPS-type auto-inflammatory conditions, including MWS, as well as systemic JIA (see Box 2).
Similarly, blocking mAbs specific to IL-6R, tocilizumab (trade name Actemra; www.actemra.
com), sarilumab and sirukumab, have also been developed (Box 3). Sarilumab has recently
successfully completed a phase III clinical trials in combination with methotrexate for RA, and

Figure 4. Examples of recombinant protein mAb-based drugs. (A) Soluble (extracellular region) cytokine receptor,
(B) soluble (extracellular region) cytokine receptor—Ig Fc fusion protein, (C) humanised or fully human mAb and
(D) biosimilar human or humanised mAb.
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its approval appears to be imminent in the USA. These anti-IL-6 mAbs are being used in
combination with methotrexate to slow RA and JIA progression in patients who do not benefit
from anti-TNF agents, or especially when methotrexate monotherapy is less efficacious than
expected. Tocilizumab is additionally approved for the B cell tumour Castleman's disease [80],
and there is preliminary evidence that it might be effective against treating the refractory
neuromyelitis known as Devic's disease [81].

Other recent additions to the repertoire of human cytokine-neutralising mAbs are those that
inhibit IL-17 and IL-23 which are showing efficacy in the treatment of psoriasis and psoriatic-
related conditions (see Box 4). Brodalumab, an IL-17RA-specific mAb, is one such reagent that
acts by preventing IL-17-family cytokines from binding to the IL-17 receptor (Box 4). Recent
Brodalumab data, derived from phase II and III clinical trials, have demonstrated effectiveness in
the treatment of psoriasis [32], and reportedly with superior skin clearance than the anti-IL-12/
IL-23 mAb ustekinumab [55, 82]. These are long-awaited treatment for a skin condition that has
previously proven to be difficult to treat. However, the clinical trials with Brodalumab were
unpredictable, in that trial-related adverse events apparently included suicidal ideation with
trial-related harmful behaviours in some patients even suicide [83]. This unexpected outcome
may translate to limitations with its use and has necessitated restrictive labelling and specific
cautions in its use. On the other hand, ixekizumab (trade name Taltz; www.taltz.com), an IL-17A
cytokine-neutralising mAb, is already approved for plaque psoriasis without any noted psycho-
logical symptoms or unfavourable behavioural side effects [30]. These IL-17-family cytokine-
neutralising drugs represent a major breakthrough in psoriasis treatment.

Finally, the most recent addition to cytokine-neutralising mAb-based reagents are those that
neutralise IL-12 and IL-23 (Box 5), which act, for example, by binding to the shared p40
subunit of these cytokines. Ustekinumab (trade name Stelera; www.stelerainfo.com) is an
IL-12- and IL-23-neutralising mAb, and as mentioned, it is now approved for the treatment of
moderate-to-severe plaque psoriasis, psoriatic arthritis and moderately active CD [46].
Ustekinumab offers improved efficacy over anti-TNFs agents in CD patients, and, moreover,
requires only tri-monthly administration (after an initial monthly dosing induction).
Briakinuman, guselkumab and tildrakizumab also all block IL-23; briakinuman is a human
IgG anti-IL-23p40 mAb, and tildrakizumab is a humanised IgG1κ anti-IL-23p19 mAb and both
are effective and approved for psoriasis [46, 84]. Finally, guselkumab, an IgG1λ anti-IL-23p19
mAb, is reported to be safe in early-stage trials, and is also intended for use in psoriasis [85],
where it outcompeted the anti-TNF mAb adalimumab in phase II trials [86]. As these are
recently developed mAbs, their safety profiles will require ongoing monitoring, although early
data suggest that they do not represent an increased risk of infection [87].

4. New ‘biosimilars’ antibody reagents—biosimilars and interchangeables

It is now well over a decade since the first anti-cytokine mAbs have been used internally to treat
human inflammatory conditions and already the next generation of reagents are emerging.
These are the ‘copy’ reagents and they are generally known as ‘biosimilar’ reagents [88]. As the
initial cohorts of biologics are all now nearing the end of their patent protection, many
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pharmaceutical companies currently dedicate a large effort towards producing their new gener-
ation of mAbs. This is not just of benefit to the pharmaceutical companies that produce these
drugs, but potentially hugely advantageous for mankind. The greater the competition in the
marketplace the more downward pressure on the current high costs of cytokine-neutralising
mAbs and protein biologics [89]; in other words, the development of biosimilar mAbs should
ultimately translate into significant savings for the patient/consumer. The production of
biosimilar reagents should therefore quickly provide access to these drugs for a much larger
proportion of patients who might not otherwise be able to afford them. Already, the estimates of
the monetary savings are being generated and they are in the order of over Euro 20Mwithin the
first 3 years, which equates to at least an additional estimated 1200–1800 patients [90].

A ‘biosimilar’ reagent is defined by the US Federal Drug Administration (FDA) as a biological
product that is approved on the basis that it has highly similar physical and functional properties
to an existing FDA-approved biological product—known as the ‘reference’ product. The US FDA
guidelines for biosimilars and other drugs are available online (http://www.fda.gov/) and a
review of the current guidelines for the production of biosimilar regents has recently been
published [91]. Theoretically, there are no clinically meaningful differences between a biosimilar
reagent and its reference product in terms of either safety or efficacy. While this is essentially true
in reality, it is important to note, however, that a biosimilar and reference product may not be
entirely identical; minor differences in clinically inactive components are allowable in a
biosimilar product [88]. Another term that is used in this field is that of an interchangeable
product. This is a biosimilar that meets additional standards, that is, that it produces essentially
the same clinical results as the referenced product within an identical patient cohort. This was
achieved, for example, with Remsima (infliximab biosimilar), both in RA and in SA patient
cohorts [92, 93]. An interchangeable biological can therefore be substituted for the reference
product by a clinician or a pharmacist with essentially no discernable impact.

The establishment of the degree of similarity of a given candidate biosimilar is determined
through extensive physical, chemical and functional characterisation—directly comparing the
biosimilar product against the original reference product [94–96]. This includes a formal
demonstration of the similarity of the primary, secondary and tertiary structure of the
biosimilar, and examination of the similarity of the structural motifs that determine its mech-
anism of action. Firstly, the affinity of a given mAb for its cognate antigen needs to be identical,
or closely similar, to that of the reference product, and analytical techniques such as surface
plasmon resonance (SPR) are used to provide real-time-binding kinetic assessments (on- and
off-rates) of the biosimilar and reference mAbs. Secondly, the biosimilar mAb must possess
inherent properties integral on the reagent as a whole, for example, the capacity of the mAb to
induce immune effector functions such as antibody-dependent cytotoxicity (ADCC) or com-
plement-dependent cytotoxicity (CDC) [97], and the class of the mAb Ig is therefore an essen-
tial aspect that much be matched in the biosimilar; if the original reference mAb is an IgG1,
then the biosimilar must also be an IgG1. Thirdly, glycosylation patterns are being increasingly
recognised as critically important, as differences in sugars can interfere with an Ig's biological
activity [98]. Taken together, the similarity of the biosimilar mAb is essential as it ensures
identical interactions with (i) antigen, (ii) FcRs and (iii) its in vivo half-life. Often, more than 30
analytical methods may be required to establish a new product as a bone fide biosimilar [99].
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4.1. Approval processes for biosimilar mAbs

The US FDA recommends a step-wise approach for approving a biosimilar [100]. (Note:
biosimilars are not generic drugs, and their development and licensing do not fall under the
same regulatory pathways as generics.) The first step is the assessment of the critical quality
attributes (CQAs) of the molecule, that is, those that are relevant to the clinical outcomes. Factors
thought to be affecting the identity, purity and potency of a biosimilar molecule constitute its
CQA. The FDA also suggests that CGQs should be classified into three tiers and there is a
statistical approach for assessing CQAs, namely an equivalence testing for Tier 1, a quality-range
approach for Tier 2 and descriptive testing (raw data and graphical comparison) for Tier 3. The
processes are relatively similar worldwide, although there are differences in how biosimilars are
assessed in different countries or regions throughout the world with respect to the need for
in vivo toxicity testing [101]. There is also a need to provide evidence that all batches of the
biosimilar will fall within the established range. This challenge occurs because recombinant
mAbs are usually produced using a variety of host cell types and the newly generated recombi-
nant biosimilar protein may be associated with production impurities including host cell pro-
teins that co-purify with the biosimilar [102]—these are best identified by mass spectrometry-
type approaches [103]. Additionally, a number of post-translational modifications, including
glycosylation, oxidation, deamidation, pyroglutamation and formylation, can be introduced into
a mAb during its production. Thus, the biochemical and biophysical profiles of a biosimilar
molecule must closely match the reference product and any differences need to be investigated
to understand the nature of the divergence between the biosimilar and the reference product and
the potential effect(s) on safety, toxicity and biological function [88].

There are generally four phases of clinical research that are required for a new drug to be
developed and approved for human use: A phase I study to establish an initial safe dose range
and identify potential side effects, a phase II further assessing the efficacy and safety, followed
by a phase III study that confirms the drugs’ efficacy in comparison to a current treatment and
further establishes its safety versus the severity of any detectable side effects. Sometimes, a
phase IV study is additionally performed for further assessment of the drugs’ efficacy in
different populations and/or a better assessment the extent of side effects, for example, issues
associated with long-term drug use, or its use within a different population. By contrast, the
benefit of the biosimilar agent is its abbreviated assessment process. This is justified because of
the existing breadth of understanding of the reference product and its mechanisms of efficacy,
which have already been extensively demonstrated via the original, the reference product
assessment [104]. This permits the approval process for biosimilars to be focused mostly on
the analytical demonstration of similarity to the original reference product, and only two
phases of clinical studies are required for a full approval of a biosimilar. First, a phase I study
to demonstrate a similar pharmacokinetic and pharmacodynamic profile. This is generally
followed by a pivotal phase III-type study that demonstrates similar efficacy, safety and
immunogenicity—usually comparing against the reference product. The first biosimilar
(Resima) for infliximab was assessed in RA and AS patients in exactly this manner [92, 93].
Importantly, it is assumed that the biosimilar product will be delivered by the same route and
at the same dosage as the reference product. This process assumes that any newly produced
biosimilar mAb reagent is therefore unlikely to reveal any new adverse drug responses that
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have not already been documented in the original reagent. This process permits attention to be
focused on testing the immunogenic potential of the biosimilar, for example, via close attention
to the production processes, the mAb's physical similarity (glycosylation, etc.), and the pres-
ence (and quantity) of any co-purifying entities. Only time will determine if there are any
subtle differences in the new-generation biosimilar mAbs, that is, compared to original prod-
uct, and, henceforth, whether specific prescription guidelines need to be developed.

4.2. New cytokine-neutralising biosimilar reagents and mAbs

Two etanercept (Enbrel®) TNFR-IgFc biosimilar reagents have been approved to date: Erelzi
(etanercept-szzs) was approved in the US in mid-2016 and Brenzys (also known as SB4) was
approved in Korea in 2015. SB4 is also now approved in Europe, Australia and Canada (See
Box 1). Furthermore, there are several biosimilar anti-TNF mAbs that are either approved or in
development (see Box 1). For example, CTP-13 (trade name Remsima) was the worlds’ first
registered biosimilar anti-TNF infliximab (Remicade®) mAb therapeutic, first registered in
Europe and Korea in 2013. Additionally, inflectra (infliximab-dyyb) was approved in the US
in early 2016 and Infimab is produced in India. Similarly, Adalimumab-atto (trade name
Amjevita) and SB5 are other adalimumab (Humira®) biosimilars. For approval, Remsima was
extensively evaluated in comparison to infliximab. It was found to have (i) virtually identical
primary and higher-order structures, (ii) similar monomer and aggregate content, (iii) some
less basic variants due to C-terminal lysine amino acid residues (but these appear to be rapidly
removed in serum) and (iv) highly similar glycosylation patterns, to infliximab [105]. Never-
theless, the situation at present is that these new biosimilar drugs exist, but they are not
commercially available because the original US patent for anti-human TNF mAb does not
expire until late 2018. In fact, it has been estimated that there may already be as many as 20
anti-TNF biosimilar mAbs and mAb-based reagents in development, or under clinical assess-
ment. It is expected that these drugs will be marketed for the treatment of RA, JIA, AS and
psoriatic arthritis, that is, the indications as their reference drug(s) [106]. It is expected that
eventually biosimilars will be produced for all of the anti-IL-1β-, IL-6-, IL-17- and IL-12/23-
therapeutic mAbs (see Box 1–5).

Arguably, the most pressing issue with respect to the use of biosimilars and interchangeables is
when and how to use them. Since there appears to be equivalent efficacy between these first-
and second-generation drugs, then it can be assumed that either the original or the new-
generation reagent can provide immediate benefit to treatment-naïve patients. Furthermore,
initial studies also suggest that it is safe to switch to a biosimilar drug in anti-drug antibody-
naïve patient [107]. However, a recent study has demonstrated that virtually all patients who
developed anti-infliximab antibodies react to both inflectra and remsima—the infliximab
biosimilar mAbs [108]. This suggests that epitopes that are present in infliximab that elicit the
drug-specific antibodies are also present in the biosimilar mAbs [108]. It is also possible that
new epitopes are present in the biosimilar, and, similarly, that unique drug epitopes can be
present in the reference product. Data also exist showing that adalimumab-treated patient
serum does not show cross-reactivity with either infliximab or its biosimilar remsima [109].
Thus, the cross-reactivity appears to be drug specific.
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5. mAb and biosimilar Ig effector functions

Igs are complex tetrameric molecules comprising two glycosylated heavy chains and two light-
chain polypeptide molecules, bound together by disulphide bonds. The structure has different
domains, termed ‘constant’ (C) and ‘variable’ (V) domains (Figure 5). The domains are encoded
by different gene segments: C gene segments, plus a unique combination of V, plus ‘diversity’
(D) and ‘joining’ (J) gene segments conferring the antigen-binding site specificity.

5.1. mAb-antigen specificity and neutralisation

mAbs are highly specific reagents due to their extremely high affinity to their cognate Ag.
Biochemically, the reactivity is generally nanomolar to picomolar (108–1011 KD). When anti-
bodies bind to epitopes that block the antigen's normal Ag reactivity, that is, to their naturally
occurring ligand, their on- and off-rates define them as blocking reagents. Thus, mAb reagents
that are specific to cytokines or cytokine receptors can be strong inhibitors of cytokine biology
in vivo. Therapeutic mAbs are long lasting (approximately 15 days) due primarily to the
normal longevity of Ig in human plasma. Thus, the high affinity, neutralising capacity and
longevity of mAbs make them ideal therapeutic reagents.

5.2. mAb-FcR binding

Ig molecules bind to their antigens, and also to Fc receptor (FcR) proteins that are typically
expressed on many cells in the hematopoietic system, especially myeloid-lineage cells. FcγR1
is a high-affinity receptor (typically KA >107M), whereas FcγRIIA/B/C (CD32) and FcγRIIIA/B
(CD16) are low-affinity receptors (typically KA <107M) for human IgG1 [110] (See Table 1) and
this difference means that low-affinity FcRs generally exist unbound by high-plasma circulat-
ing Ig [111]. The Ig affinity difference of FcRs also explains why FcγR1 can bind to monomeric
IgG, whereas FcγRII and III tend to bind to IgG complexes.

Figure 5. Immunoglobulin (Ig) and antibody fragments. (A) Soluble intact mAb, (B) Fab and Fc fragments and (C) single
(light-chain) domain antibodies (Dabs), mAB Fv antigen-binding fragment and intact whole light-chain (kappa, κ or
lambda, λ).
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FcR binding to Igs can be activating to the cells that express them (e.g. typically FcγRIIA or
FcγRIIIA) or, alternatively, Ig binding of FcRs can trigger inhibitory signals (e.g. FcγRIIB and
FcγRIIIB). This is due to FcR-activating receptors containing intracellular immunoreceptor
tyrosine-based activation motifs (ITAM) defined as YXXL/I(X6-8)YXXL/I amino acids, while
inhibitory FcRs contain cytoplasmic immunoreceptor tyrosine-based inhibitory motifs
(ITIMs) defined as (S/I/V/LxYxxI/V/L). The capacity to trigger activation or inhibitory FcR
signalling also explains why circulating monomeric IgGs are generally not as stimulatory to
immune cells as compared to Igs when they exist as immune complexes. Although thera-
peutic mAbs were initially designed to bind and neutralise cytokines, it is clear that these
mAbs also bind to FcRs, and that this property is required for ADCC or CDC. However, FcRs
are themselves associated with and regulated by additional proteins such as the immuno-
globulin-like receptor (LIRs) [112]. LIRs fall into two basic categories: those that contain
ITAMs (defined above), for example, LIR-6 and LIR-7, and those that contain inhibitory
ITIMs, for example, LIR-1, -2, -3, -5 and -8. Some LIRS also contain asparagine (NxYxxL/V)
or a serine residue (SxYxxL/V) [113, 114]. LIR-1, LIR-6 (a and b) and LIR-7 associate with the
γ-chain of FcRs for human IgG, IgA and IgE (see Table 1) [112, 115]. The co-association of
these molecules results in the LIR's intracellular region being physically close to the FcR, and

Ag presentation Ig type Fc receptor type and function LIR type Refs.

1 T-independent IgM Polymeric IgR
Fcα/μR
FcμR

? [118]
[111, 119]

2 T-dependent IgG1 All FcγRs LIR-1/2 [120]

3 T-independent and carbohydrate Ag's IgG2 FcγRIIA H131 (high affinity)
FcγRIIA R131 + V158 (low affinity)

4 T-dependent IgG3 All FcγRs ? [121]

5 Chronic Ag and allergic responses IgG4 *FcγRI (CD64)—high affinity
FcγRIIA (CD32)—low affinity
FcγRIIB
FcγRIIC
*FcγRIIIAV158 (CD16)

LIR-1/2

6 IgG (all isotypes) FcγRIIIB (CD16) low affinity
inhibitory receptor; GPI-linked

?

7 IgA FcαR1 (inhibitory and activating)
Fcα/μR

? [121–124]

Notes: (1) High affinity Ig receptor (*) [120].
(2) FcγRIIA and FcγRIIC are single-domain-activating receptors [120].
(3) FcγRIIB is a single-chain inhibitory receptor [120].
(4) Other human variants:
FcγRIIA: two alleles H131 (low responder) and R131 (high responder).
FcγRIIIA: two variants—V158 and F155.
FcγRIIIB: two variants at four positions—R36, N65, D82 and V106; S36, S65, N82 and I106.
Plus point mutant A78D (SH) [120].

Table 1. Human immunoglobulin interactions with FcR and LIRs.

Immunotherapy - Myths, Reality, Ideas, Future242



this permits the LIRs ITIM to dampen the FcR-signalling capacity [112]. Thus, interactions
between Igs with an FcR are influenced by FcR-adjacent LIRs.

Since the LIRs themselves have not been extensively studied, the potential function(s) of LIRs
with respect to mAb therapeutics is only now emerging. Nevertheless, the interactions of
mAbs with FcRs, as well as the FcR-associated LIR molecules, are becoming increasingly
appreciated as vitally important in understanding and predicting mAb effector function
[116]. It is therefore equally important to consider the expression of both FcRs and LIRS in
various disease settings. It is known, for example, that LIRs are expressed in the synovium of
RA or AO patients [117]; however, how they modulate autoantibody-dominated diseases is
only now emerging.

6. Adverse events related to cytokine-neutralising and biosimilar mAbs

6.1. Antigenicity of anti-cytokine mAbs and development of drug-immune complexes

mAb-based therapeutics and related agents represent some of the most biologically complex
drugs currently available. The most common bio-manufacturing process involves the production
of cell culture-expressed Ig proteins, most frequently a Chinese hamster ovary cell lines
engineered to express the human, humanised or chimeric Ig-type mAbs. Unlike classic small-
molecule drugs, these intact Ig-type drugs are large multicomponent proteins that are essentially
similar to natural molecules: mAb, or unique molecules generated by recombinant technology,
for example, fusion proteins comprising two (or more) naturally encoded proteins such as
cytokine receptor proteins with or without an Ig Fc. Nevertheless, these mAb-based agents and
their biosimilar counterparts can vary in numerous ways from the naturally existing component
(see Section 4.1). This includes alterations in post-translational modifications of proteins as well
as contamination by host cell proteins [103]. This, in part, explains why factors intrinsic to the
drug production can contribute to the immunogenicity of the drug, even though mAbs (and
biosimilar mAbs) are highly similar to human endogenously produced Ig proteins.

The formation of therapeutic mAb-type drug reagent-immune complexes can be significant
to the patient for a variety of reasons. Drug-immune complexes can alter the activation
threshold for FcRs; note that high-affinity FcγRII and FcγRIII preferentially bind to
immune-complexed Ig [120] and the activation threshold for FcR signalling is lowered when
engaging with higher-ordered complexes—meaning that smaller or mid-sized immune-
complexed mAb drugs can have extended in vivo half-lives and engage with what would
otherwise normally be low-affinity FcRs. This explains, at least in theory, the potential for
mAb-based reagents to sometimes induce inflammatory reactions despite the fact that they
are otherwise virtually identical to naturally produced endogenous Igs. (There is decreasing
identity to endogenous host Ig for whole mAb, then Mab fragments, recombinant soluble
receptor proteins, and finally receptor-IgG Fc proteins.) Moreover, tissue deposition of
immune-complexed mAbs can lead to vascular thrombosis, neutrophil recruitment or tissue
monocyte/macrophage cell activation resulting in the release of inflammatory and chemo-
tactic molecules, cytokines and chemokines—in this case exactly the opposite to what the
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anti-cytokine or cytokine-receptor mAb is designed to achieve. Ultimately, the immune-
complexed-mAb drug can eventually elicit the anti-drug antibodies (ADAs) and cross-link
B cell receptors, amplifying immune activation.

The production of anti-drug antibodies has long been debated as being either harmful or
irrelevant. For example, the presence of anti-drug Igs might decrease the half-life of the mAb
drug (when bound to the mAb drug), or the anti-drug Ig could bind to an epitope located
within the Fv region of the mAb such that it naturally competes with its antigen specificity of
the mAb drug, thereby rendering the drug incapable of neutralising (blocking) antigen bind-
ing. It is generally considered that there are two types of antibodies-drug mAb reactions: (i)
mAb interactions with natural antibodies (usually IgM isotypes) and (ii) mAb interactions
with matured, isotype class-switched IgG effector Igs. Natural antibodies exist in most indi-
viduals and are usually low-affinity IgM antibodies with broad specificity, secreted by CD5+

B1 lymphocytes. Because they are IgM, they have an innate propensity to form immune
complexes. On the other hand, immune-complexed mAb drugs can be taken up by antigen-
processing cells, such as marginal zone macrophages, and presented to naïve B cells, eventu-
ally resulting in the production of high-affinity IgG. This type of ‘mature’ anti-drug Ig can
ultimately involve the activation of T cells and thus also to drug-based T cell-mediated inflam-
mation. In clinical practice, there is little evidence of Ig-based adverse drug reactions to
therapeutic mAbs, thus the anti-mAb-based drug Abs, even when present, are often not
pathological per se—although they may block the mAbs capacity to bind and neutralise
cytokines thus rendering the mAb drug ineffective.

The evidence of mAb immune complexes, and B- and T-cell reactivity, is arguably best consid-
ered with respect to the anti-TNF-neutralising antibodies, as these agents have now been used
for well over a decade and in various disease populations. Thus with time it has become clear
that mAb-specific Igs are (i) not infrequent (they occur in as many as 14% of patients taking
anti-TNF mAb-type drugs) [125], (ii) capable of immune clearance of the mAb drug, (iii) can
alter the pharmacokinetic profile of the mAb (e.g. drug half-life), (iv) capable of inducing
immune cross-recognition to the endogenously arising protein—particularly, a cytokine-recep-
tor component of the drug and (v) capable of inducing an array of adverse events spanning
less significant infusion-type reactions to severe hypersensitivity reactions. It is evident, there-
fore, that any patient with a history of prior sensitisation to mAb-type reagents should care-
fully consider the safety of using another mAb-type drug.

6.2. Adverse events related to cytokine neutralisation

The vast majority of conditions requiring cytokine blockade by neutralising mAbs are
chronic conditions. This raises the important issue of what happens when the normal func-
tion of the cytokine is being blocked in vivo. Indeed, most of the cytokines highlighted here
are central to inflammation that is beneficial to the host, especially that which is central to an
efficient antiviral and/or antibacterial immune response, such as IL-1β, IL-6 and TNF—all of
which are produced during the normal response to infection. This is because IL-1β helps
initiate immune responses during infected-related inflammation (since RIG-I activates NF-
κB and the inflammasome, and thus contributes to the aetiopathology of viral arthritis
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[126, 127]), IL-6 and TNF are produced by activated macrophages in vivo [128], and TNF and
IFNγ are produced at virtually all stages of infection where they have potent antiviral
effector functions [129]. IL-6 also aids Ig development, especially IgA at mucosal sites [130].
Neutralising these cytokines therefore necessarily significantly compromises the host's nat-
ural ability to effectively combat infections. This explains why anti-TNF therapy recipients
are at serious risk of more severe acute virus infections [131], and reactivation of chronic
viral or bacterial infection, especially tuberculosis [132]. This explains why there are numer-
ous reports of reactivation of chronic virus infections such as varicella zoster virus (‘shin-
gles’) in patients using anti-TNF mAbs [133]. It also explains why all therapeutic mAbs that
neutralise IL-1β, IL-6 and TNF are naturally contraindicated for the use during times of
active acute infection (Boxes 6, 7 & 8).

There is also evidence, albeit less convincing, that long-term use of anti-TNF therapeutics
might be associated with an increased risk of certain cancers, especially lymphomas [134].
However, many of the chronic inflammatory conditions that triggered the use of anti-
cytokine mAbs occur in older patients, and these are people who might also naturally be
at risk of certain cancers. Thus, without this type of clinical trial data health professionals

Box 6. Contraindications and adverse events associated with anti-cytokine/cytokine receptor mAbs.

Therapeutic anti-cytokine and cytokine receptor reagents:
Anti-tumour necrosis factor (TNF)

Drug name and reagent Known adverse event Specific contraindication

Etanercept
(Human TNFR2:IgG1-Fc)
Infliximab
(Humanised mouse IgG1κ)
Adalimumab
(Human IgG1κ)
Golimumab
(Human IgG1κ)
Certolizumab Pegol
(Pegylated-Fab’ IgG1κ)

• Common side effects and cautions:
Injection-site reactions (redness)
Upper respiratory infections (sinus)
Headache.

• Serious side effects:
Infection (new) infections, especially
Tuberculosis, histoplasmosis, influenza
and other viral infections, e.g. chickenpox
Hepatitis B (reactivation)
Nervous system demyelination
Blood pressure
Heart failure
Psoriasis
Lupus-like syndrome
Lymphoma and other cancers
Autoimmune hepatitis

• Existing (chronic) infections,
especially Tuberculosis, HIV,
Hepatitis B but also varicella
(chickenpox) and influenza or
other respiratory infections

• Vaccination with live microor-
ganisms

• Co-use of certain other immuno-
suppressant agents, e.g. anti-IL1β
agents, e.g. anakinra (Kineret®),
anti-CLTA4 mAbs, e.g. abatacept
(Orencia®), or Cytoxan (cyclo-
phosphamide)

• Multiple sclerosis
• Guillain-Barré syndrome
• Pregnancy
• Confirmed drug hypersensitivity

BIOSIMILARS:
CTP-13
(humanised mouse IgG1κ)
Adalimumab biosimilar
(human IgG1κ)
Infimab
(human IgG1κ)

Expected to be similar to those listed above Expected to be similar to those listed
above
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and epidemiologists only have access to patient data that are predominantly anecdotal in
nature. Arguably, the lack of overwhelming evidence of increased tumour incidence in
patients using anti-TNF mAbs-type drugs is consistent with the fact that clinical trials with

Box 7. Contraindications and adverse events associated with anti-cytokine/cytokine receptor mAbs.

Therapeutic anti-cytokine and cytokine receptor reagents:
Anti-interleukin-1β or IL-1-receptor-α

Drug name and reagent type Known adverse event Specific contraindication

Anakinra
(Recombinant IL-1R)
Rilonacept
(Recombinant IL-1R)
Canakinumab
(Humanised mouse IgG1κ)
Gerokizumab
(Humanised mouse IgG2κ)

• Common side effects and cautions:
Injection-site reactions (redness)
Upper respiratory infections (sinus)
Headache
Latex allergy (needle cover contains latex)

• Serious side effects:
Infection (new) infections
Vertigo
Nasopharyngitis/respiratory tract infec-
tion, especially Tuberculosis

• Existing infections, especially
Tuberculosis, HIV, Hepatitis B
but also varicella, influenza or
other respiratory infections

• Vaccination with live microor-
ganisms

• Co-use of TNF- inhibitory
agents: e.g. anakinra
(Kineret®)

• Pregnancy and breastfeeding
• Confirmed drug hypersensi-

tivity

Box 8. Contraindications and adverse events associated with anti-cytokine/cytokine receptor mAbs.

Therapeutic anti-cytokine and cytokine receptor reagents:
Anti-interleukin-6 or IL-6-receptor

Drug name and reagent type Drug name and reagent type Drug name and reagent type

Tocilizumab
(Human IgG1κ)
Sarilumab
(Human IgG1κ)
Sirukumab
(Human IgG1κ)

• Common side effects and cautions:
Injection-site reactions (redness)
Upper respiratory infections (sinus)

perforations of stomach or intes-
tines/prior diverticulitis, espe-
cially if taking other NSAID,
corticosteroids or methotrexate

Changes in blood tests (platelet and
neutrophil count, LFTs, increased
cholesterol)

• Serious side effects:
Infection (new) infections
Nasopharyngitis/respiratory tract
infection especially Tuberculosis

• Existing infections, especially Tuber-
culosis, HIV, Hepatitis B but also var-
icella and influenza or other
respiratory infections

• Vaccination with live microorganisms
• Co-use of TNF- inhibitory agents, for

example:
Etanercept (Enbrel®), Adalimumab

(Humira®), Infliximab
(Remicade®), Golimumab
(Simponi®) or Certolizumab
(Cimzia®)

• Co-use of B cell suppressive agents,
e.g. rituximab (Rituxan®)

• Co-use of T cell suppressive agents,
e.g. anti-CTLA4 abatacept (Orencia®)

• Pregnancy and breastfeeding
• Confirmed hypersensitivity
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TNF as an anticancer agent induced systemic inflammation rather than controlling the
tumour [135]. Yet, this is countered by clear in vivo evidence that TNF is tumouricidal
[136]. It would seem wise, therefore, for patients to remain vigilant to the potential risks
where practicable.

6.3. Unexpected anti-cytokine mAb adverse events—negative neurological events

Evidence comprising over a decade of use of anti-TNF-blocking reagents (TNFR-IgFc fusion
proteins and anti-TNF mAbs) has substantiated that in some patients there is the unpredictable
adverse event of developing demyelinating lesions in brain white matter (Figure 6). The
spectrum of clinical presentation of demyelinating events includes optic neuritis, MS-like
symptoms of paralysis, demyelinating neuropathies, or Guillain-Barre syndrome (for a recent
review, see [137]). The incidence of these conditions in the general populations is normally
quite low, but it is accepted that some patients develop these conditions within a few months
of starting anti-TNF therapies [138, 139]. In fact, MS as an existing condition is strongly
contraindicated for the use of anti-TNF therapeutics, and, as expected, cessation of anti-TNF
drugs is mandated if demyelinating symptoms occur [140]. Alternative MS treatments such as
glatiramir acetate (an undefined mixture of decoy CNS substrates) or interferon-β are
recommended in these patients. For the most part, demyelination events are transitory, how-
ever, in a small subset of patients the neurological symptoms persist.

Another unexpected concern is that with the use of the IL-17-inhibiting reagent, soluble IL-
17RA (Brodalumab), there have been unexpected reports of an increased incidence of depres-
sion and suicidal ideation-type behaviours in some trial patients (https://www. aad.org/
eposters/Submissions/getFile.aspx?id=1146&type=sub) (Box 9). These unfortunate adverse
events resulted in a decision by Amgen and AstraZeneca to offload the drug to another
pharma company, the Canadian-based multinational Valeant Pharmaceuticals and Kyowa
Hakko Kirin Company in Japan [83]. Nevertheless, the lack of any negative psychological
symptoms when using Ixekizumab (an IL-17A-neutralising mAb) indicates that IL-17A itself

Figure 6. Two patients showing MRIs of demyelinating CNS lesions associated with anti-TNF agents. (A) A 46-year-old
Caucasian female taking etanercept for 4 years for psoriatic arthritis developed multiple periventricular and subcortical
lesions (arrows), and (B) a 57-year-old Caucasian female with AS treated with etanercept for 6 years developed multiple
periventricular and subcortical frontal, parietal and temporal lobe lesions and level a C4–C5 cervical spine lesion (arrow).
(Images adapted from [138] in compliance with copyright).
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is not the culprit per se. Thus, other IL-17-related cytokines, or other IL-17R-binding partners
(but not IL-17A), may be necessarily required for the development of negative emotions,
especially those related to depression and suicide. This unexpected trial outcome, although
highly unfortunate, may have simultaneously inadvertently illustrated a previously
unappreciated role for the IL-17/IL-17R axis in depression and suicidality. Although the
mechanism is currently unknown, it has been reported that inflammatory cytokines IL-1β
and IL-6 are elevated in blood of suicide victims [141], and recombinant interferon-α therapy
has been associated with depression in chronic hepatitis patients [142, 143]. There is growing
evidence that cytokines such as IFN-α drive neuroinflammation via triggering the trypto-
phan pathway [144], and high levels of the downstream tryptophan metabolite, quinolinic
acid, has been linked to microglia expression in suicide victims [145, 146]. Furthermore, one
might hypothesise that blocking IL-17, but not IFNs, might still leave type-I IFN levels high,
and promoting depression and suicidality by mechanisms described above. However,
another possibility could be that IL-17R agonistic mAbs, or IL-17 small-molecule agonists,
might have value in potentially preventing depression, suicide and other negative emotions.
It is currently unknown, for example, whether the brodalumab-IL-17RA interactions
completely block all IL-17-related cytokines, prevent IL-17RA from interactions with one or
more of its potential hetero-complexed IL-17 receptors, for example, IL-17 receptor RB, IL-
17RC or IL-17R. Nevertheless, it is clear that the clinical use of brodalumab must likely only
occur with a clear ‘suicide-risk’ warning for those who choose to use it to ameliorate inflam-
matory conditions such as psoriasis. Additionally, it remains a plausible possibility that
altering the IL-17R mAb epitope may generate a non-'suicide-risk’ next-generation reagent,
that retains its anti-inflammatory properties. Even more intriguing, the current FDA sub-
missions claim that the latest clinical data do not replicate the initial finding of an increased
risk of suicidal ideation. Further investigation will be needed to determine the broader and

Box 9. Contraindications and adverse events associated with anti-cytokine/cytokine receptor mAbs.

Therapeutic anti-cytokine and cytokine receptor reagents:
Anti-interleukin-17 and IL-17Rα

Drug name and structure Known adverse events Specific contraindications

Brodalumab**
(Human IgG2κ)
Ixekizumab
(Human IgG4)
Secukinumab
(Human IgG1κ)

Common side effects and cautions:
Injection-site reactions (redness)
Upper respiratory infections and/or

nasopharyngitis
Headache
Arthralgia
Serious side effects:
Major cardiovascular events (including
myocardial infarction)
Cholelithiasis
Suicidal ideation and behaviour**

• Patients suffering from psoriasis are
sometimes afflicted with co-morbidities
including psychiatric conditions (depres-
sion, anxiety, suicidality**). Patients with
these conditions are not excluded; how-
ever, depression (PHQ-8) and suicidality
(eC-SSRS) test monitoring are
recommended

• Drug hypersensitivity
• Infection
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usual spectrum of adverse events of brodalumab. No adverse events are known yet for IL-
12/IL-23 neutralising mAbs.

7. Expanding treatment indications for existing cytokine-neutralising
and biosimilar mAbs—current realities and exciting futures

mAb-type drug development procedures in the US and Europe typically involve small-scale
clinical trials demonstrating safety followed by trials showing efficacy relative to a specific
disease(s) indication. These so-called landing indications are often followed by fast-tracked
priority review. The expanded use may include a different disease indication or a different use
of the mAb, such as the delivery of a radio-isotype conjugated to the mAb drug, such as was
the case for the anti-CD20 mAb rituximab. The fast track and priority review is justified
primarily because of the availability of existing safety and toxicity data.

With existing safety data in place, there is the ability to file for expanded use of mAb-based
drugs. This is particularly the case for cytokine- and cytokine-receptor-specific mAbs, as the
target cytokine/cytokine receptor may be elevated and involved in additional pathologies, apart
from the disease indication directly assessed in the original clinical trials. (In some cases, a mAb
drug has even failed in the original trial, but has been successful in subsequent trials, e.g., the
TNF-neutralising mAb infliximab failed in clinical trials of sepsis, but is successful when used in
RA and Crohn's disease patients, etc.; see Box 1). Most often, the expanded use label is related to
diseases or conditions that are similar in terms of aetiopathology. For example, anti-TNF mAb-
based reagents Enbrel, infliximab and adalimumab are recommended for a spectrum of arthritis
and tissue-related inflammatory diseases: RA, psoriatic arthritis, plaque psoriasis, AS, JIA, CD
and UC.

7.1. Anti-TNF mAb-based reagents in neuroinflammation and cognition

Etanercept (a TNFR2-Ig Fc) has additionally been used in off-label situations, most notably, in
the treatment of cognitive decline after brain injury or Alzheimer's disease, and also in stroke.
These uses are consistent with evidence that activated microglia produce TNF and with the
idea that TNF is important in modulating neuronal synaptic function and neuropathic pain. In
fact, there is an extensive literature base demonstrating important roles for TNF in the devel-
opment and homeostasis of neurological systems [147]. One unifying hypothesis is that TNF
causes glutamate excitotoxicity in neurones in a number of neurodegenerative diseases, and it
is sobering to consider that cerebral TNF is elevated in degenerative CNS conditions, traumatic
brain injury and even situations of post-operative delirium with cognitive decline [148]. So too,
the levels of neuronal and microglial glutamate are important in these diseases, but it is also
known that either TNF or IL-1β induces high level of neuronal glutamate and neurotoxicity
[149]. Despite the growing body of evidence implicating TNF in neuroinflammation, there is
still debate about the effectiveness and strategy of neutralising TNF in neurodegenerative
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disorders. One of the reasons for this likely surrounds the difficulties in delivering the TNF-
neutralising mAb-based reagents to the brain, although it appears that this can be successfully
achieved by peri-spinal administration [150]. Moreover, the recent discovery of the brain
lymphatics [151] provides an avenue for drug removal away from brain tissue.

Another off-label use of mAbs that neutralise cytokines in inflammation is stroke and traumatic
brain injury. The main focus of treatment in stroke is thrombolytic therapy with an emphasis to
reduce stroke size and reverse localised ischaemia. Nevertheless, there is evidence that the stroke
penumbra region evokes or experiences an inflammatory response that comprises microglial
TNF production and subsequent neurotoxicity. Peri-spinal-delivered etanercept appears to ame-
liorate this inflammation, even years after the neurological injury [152, 153]. Moreover, even a
single injection of etanercept has been reported to alleviate symptoms of aphasia, speech apraxia,
a hemiparesis in a patient with non-recent traumatic acute brain injury [154]. In animal models,
traumatic brain injury induces both microglial and astrocytic activation with increasing produc-
tion of TNF that can be neutralised by etanercept [155]. In humans, there is also strong evidence
of elevated pro-inflammatory cytokine IFNγ, TNF and IL-1β and IL-6 which is associated with
poorer cognitive outcomes [156]. This is an area of increasing investigation and current models
suggest a key role for reactive oxygen species, matrix metalloproteases, angiogenic factor,
inflammatory cytokine and leukocyte adhesions such that in early stages neuroprotection may
be mediated by neurotrophic factors such as brain-derived neurotrophic factor, nerve growth
factor and vascular endothelial growth factor, plus cytokines TGFβ, IL-1Ra, IL-4 and IL-10,
among others, with a switch to neurodegenerative changes in chronic inflammation involving
cytokines TNF, IL-1β and IL-6 [157]. Hence, brain microglia are essential for both neurores-
toration and neurorecovery, but prolonged activation is more likely to be disadvantageous, that
is, to have pathological sequelae [158]. With the apparent efficacy of etanercept treatment to
neutralise TNF, even years after the initial insult or injury, it remains plausible that the adminis-
tration of IL-1Ra might also be beneficial in early stages, that is, to block inflammation by IL-1β,
with subsequent administration of mAb-based neutralisation of TNF, IL-1β and IL-6 in later
stages. This is consistent with documented TNF immune reactivity in brain tissues from early
times, extending to 18 days or more after ischaemic stroke in humans [159]. A greater under-
standing of the processes that regulate microglial activation and function will critically inform
the potential standardised use of anti-cytokine treatments to neutralise inflammation-mediated
tissue injury after TBI and stroke.

One of the most intriguing uses of anti-TNF mAbs has been in the treatment of cognitive
impairment, a concept already introduced above. In infectious situations, prolonged activation
of the transcription factor NF-κB and the sustained expression of TNF have been linked to
AIDS-related dementia complex [160]. In particular, the regional location of TNF-producing
cells correlated with HIV gp41-reactive cells, and correlated with increasing cognitive impair-
ment and dementia [161]. In animal models, increased TNF is associated with cognitive decline
that is linked to non-enzymatic glycation of proteins, for example, modification by D-glucose
[162]. Similarly, exposure to certain anaesthetics is associated with the potential for post-surgery
delirium and with later cognitive dysfunction [163], and this is especially apparent in the
elderly [164]. Surgery-associated cognitive dysfunction has suggested to be linked to the pro-
duction of pro-inflammatory cytokines [165], the activation of caspases, and to the increased
synthesis and accumulation of β-amyloid (Aβ) protein, and thus to the induction of
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hyperphosphorylation of tau [166, 167], although contradictory studies also exist [168]. Recent
studies further suggest that TNF and IL-6 are components of the pro-inflammatory response
[169]. Furthermore, another recent study has even suggested that high IL-6 prior to surgery is a
risk factor for post-operative delirium onset in the elderly [170]. Therefore, there is a potential
use for TNF- and/or IL-6-neutralising mAbs in these conditions, although they are not currently
a component of the standard treatment. At present, one can only surmise that these drugs
might be beneficial to elderly patients, especially long term, particularly because of the possi-
bility that post-operative delirium is associated with subsequent cognitive impairment [171] or
indeed, potentially even, as a possible trigger for subsequent neurodegenerative pathologies.

7.2. IL-17- and IL-17R-related mAbs and negative emotions: anxiety and suicidal ideation

A recent and unexpected complication of IL-17 cytokine blockade via IL-17R-specific mAbs
was a report of self-harm ideation and suicidality, as noted above (Box 9). This appears specific
to IL-17R blockade, rather than IL-17A neutralisation alone, although a recent re-evaluation of
the phase II and II trial data, literature and expert opinion has refuted these findings [172], and
others interpret the data to imply accidental findings, rather than being suggestive of a direct
suicidal causation [173]. Nevertheless, further investigation will clearly be required, and close
monitoring of its use, in a broader population, will be required to confirm a role for IL-17-
related cytokines, or other IL-17R-interacting molecules, in the propagation of negative emo-
tions, especially depression and anxiety. In this regard, it is nevertheless intriguing that anxiety
has previously been negatively correlated with serum levels of TGF-β1 and IL-17 [174],
whereas others have reported increased TNF and IL-17 in individuals with generalised anxiety
disorder [175]. Moreover, increased levels of dopamine-induced glucocorticoid-resistant Th-17
cells are reported in multiple sclerosis—a condition where depression is a frequent co-morbid-
ity [176]. Although these intriguing observations clearly warrant further investigation, it
remains possible, although quite controversial, that this represents a new opportunity: to
target IL-17R in individuals experiencing suicidal ideation.

8. Inflammatory conditions still requiring new treatments

8.1. Other inflammatory diseases amenable to mAb cytokine blockade: anti-IL-4, IL-5
and IL-13 in asthma, allergy and atopic dermatitis

Asthma is a chronic disease of airways where pre-exposure and complement result in cyto-
kine- and allergen-triggered inflammation that is characterised by the dysregulation of IL-4,
IL-5 and/or IL-13. Mepolizumab (Nucala) and reslizumab (Cinquair) are IL-5-specific-
neutralising mAbs that have recently been demonstrated to be capable of preventing and
controlling moderate to severe asthma [177, 178]. Since eosinophilia is a feature of this condi-
tion, mepolizumab is also indicated for other hyper-eosinophilic conditions, such as eosino-
philic airway inflammation, allergic rhinitis, atopic dermatitis, and eosinophilic oesophagitis
[179]. Similarly, benralizumab is an IL-5Rα-neutralising mAb currently in development [180].
However, it is clear that asthma is more accurately defined as a heterogeneous syndrome,
which explains why many patients do not respond well to older, more conventional asthma
therapies. Apart from targeting IL-5, mAbs that target and neutralise IL-13 (e.g. tralokinumab,
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produced by LEO Pharma) are also emerging as effective reagents in clinical trials for atopic
dermatitis, and are additionally being considered for conventionally unresponsive asthma
patients. Lebrikizumab neutralises IL-4 and IL-13 and prevents airway inflammation, mucous
secretion and airway remodelling that occurs in chronic asthma [181, 182]. As with the other
inflammatory conditions discussed in this chapter, the challenge for clinicians is to determine
which of these recently developed anti-IL-4, -IL-5 and -IL-13 cytokine and IL-5Rα cytokine-
receptor-neutralising reagents are optimal for a given disease condition. Comorbidities may be
highly informative in this regard, and already it has been suggested that the lebrikizumab is
most effective in patients with serum periostin, a potential predictor of airway eosinophilia
[183, 184] and a correlate for IL-13 bioactivity in vivo [185]. Moreover, recent studies indicate
that in the context of asthma, allergy and atopic dermatitis, Th-2 cytokines producing ILC2
cells play an important role in modulating IL-3, IL-5 and IL-13 functions at the lung mucosa or
skin [186, 187]. ILC2 subsets may vary considerably accordingly to the anatomical location. For
example, lung-resident IL-33R+ ILC2s produce IL-5 and IL-13, whereas skin ILC2s express
thymic stromal lymphopoietin (TLSP) and IL-4 [188]. Indeed, vaccine adjuvants such as IL-
13Ra2 or IL-4R antagonist can significantly alter ILC2 function at vaccination sites, acting
within the first 24 h after administration [189, 190]. Thus, designing drugs that target the
different ILC2 subsets at the lung mucosa or skin has high potential to provide the next-
generation therapeutics for asthma, allergy and atopic dermatitis. So, too, the therapeutic value
of the current Th-2 cytokine-neutralising antibodies will become clearer with time, and a
current challenge is the paucity of treatments available for asthma patients who present with
little or no evidence of Th-2 cytokine-based inflammation.

8.2. Remaining challenges including neurological inflammation

Still, there are several conditions or situations where treatments remain suboptimal, or diffi-
cult, and where treatment failure is inexplicably common. For example, despite advances in
the current understanding of SJIA, up to 50% of cases experience a chronic disease and many
patients appear to be refractory to existing treatments—including cytokine-specific mAbs [6].
This reality may again highlight the possibility that there exists a spectrum of aetiologies, some
of which are not sufficiently affected by existing treatments. Alternatively, it is possible that the
mechanisms that regulate checkpoints and exert inhibition of the immune system require
additional specific enhancement. Other classic autoimmune diseases such as Scleroderma,
although uncommon, involves systemic immune attack of tissues, including vascular endothe-
lium, that remains extremely challenging to treat and can even require in-limb amputation by
end-stages, in extreme cases. Even today, there remains no durable effective treatment for
scleroderma. Other rare immune-destructive conditions such as myasthenia gravis, involving
autoantibody blockade of neuromuscular junctions, urgently require better treatments rather
than global B-cell immune suppression.

Remaining high on the list of current clinical challenges in neuroinflammatory conditions is
multiple sclerosis, especially the chronic progressive forms of multiple sclerosis where patients
experience progressive worsening with each disease flare. Also, there are other neurodegener-
ative conditions, such as amyotrophic lateral sclerosis (also known as Lou Gehrig's disease, or
motor neurone disease) that present with elements of neuroinflammation, even if inflammation
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is not necessarily the primary driver of neuronal loss. The recent intriguing success of anti-TNF
therapies in stroke and brain injury [152–154] highlighted above suggests that the cytokine/
cytokine-receptor blockage in the brain is possible. Innovation for easier brain-specific delivery
methods, and a considerably deeper knowledge of immune cells with their extensive tissue- and
cell-specific interactions in the brain, in both normal and disease settings, should accelerate the
development of new treatment options and address this opportunity and serious clinical need.

Food intolerances and food-related atopy also remain a clinical challenge. Ranging from peanut
allergies to rawmeat intolerance that arises after tick-bite, the current treatments remain global in
nature and need to better embrace the microbiome, including dysbiosis exerted by viruses
(especially bacteriophages) rather than just the diversity in bacteria communities. Hence, there
remains a critical need for more information, that is, a more detailed mechanistic understanding
of these immunological diseases and food allergies. Despite the successes of mAb-based
biotherapeutics for human inflammatory diseases, a challenge for the global pharmaceutical
companies who have benefited from these biotechnology successes is thus to direct more funding
into these research areas.

9. Summary

Nearly 20 years have passed since the first cytokine-specific biological reagent, Enbrel
(etanercept), was FDA approved in 1997, and, as reviewed here, there are already now more
than 20 cytokine- or cytokine-specific mAbs and recombinant soluble cytokine receptor pro-
teins in clinical use, or on the verge of approval, for inflammatory diseases. Thus, the treatment
of human inflammatory diseases has experienced a watershed era. Arguably, three challenges
now remain. The first is to address the less common but nevertheless devastating conditions
for which there are no cures or effective treatments—irrespective of the number of people
affected by them. The second is to determine how to better stratify the existing treatments for
optimum use in selected subconditions. Thirdly, the overwhelming concern is that these
treatment breakthroughs remain out of reach for millions of people worldwide; there are still,
undoubtedly, millions of patients who cannot afford them. With the era of biosimilars upon us,
there is an opportunity to provide cheaper mAb-based therapeutics to affected people. Yes, the
opportunity is there, but whether it will change the unsustainable appetite for large financial
gains and reduce costs in developed countries remains to be seen.
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