
UNIVERSITY OF TECHNOLOGY SYDNEY,
AUSTRALIA.

DOCTORAL THESIS

Data Analytics and the Novice
Programmer

Author:
Alireza AHADI

Supervisor:
Associate Professor

Raymond LISTER

(principal) and Dr Julia
PRIOR (co-supervisor)

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Human Centred Technology Design
School of Software

January 22, 2018

iii

Declaration of Authorship

I, Alireza AHADI, declare that this thesis titled, “Data Analytics and the
Novice Programmer” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

v

“When I was in college, my graduation thesis was called ’Female Directors.’ I
interviewed all of the important female directors from Mexico. There were four.
That was it. ”

Patricia Riggen

vii

UNIVERSITY OF TECHNOLOGY SYDNEY, AUSTRALIA.

Abstract
Faculty of Engineering and Information Technology

School of Software

Doctor of Philosophy

Data Analytics and the Novice Programmer

by Alireza AHADI

The aptitude of students for learning how to program (henceforth Pro-
gramming learn-ability) has always been of interest to the computer science
education researcher. This issue of aptitude has been attacked by many
researchers and as a result, different algorithms have been developed to
quantify aptitude using different methods. Advances in online MOOC sys-
tems, automated grading systems, and programming environments with
the capability of capturing data about how the novice programmer’s be-
havior has resulted in a new stream of studying novice programmer, with a
focus on data at large scale. This dissertation applies contemporary ma-
chine learning based analysis methods on such "big" data to investigate
novice programmers, with a focus on novices at the early stages of their first
semester. Throughout the thesis, I will demonstrate how machine learn-
ing techniques can be used to detect novices in need of assistance in the
early stages of the semester. Based on the results presented in this disser-
tation, a new algorithm to profile novices coding aptitude is proposed and
its’ performance is investigated. My dissertation expands the range of ex-
ploration by considering the element of context. I argue that the differential
patterns recognized among different population of novices is very sensitive
to variations in data, context and language; hence validating the necessity
of context-independent methods of analyzing the data.

ix

CONFIRMATION OF ETHICS CLEARANCE

Human Negligible Low Risk Ethical clearance was granted for this PhD
project by the University of Technology Sydney Human Research Ethics
Committee under approval numbers ETH16-0340 (see Appendix D).

xi

Acknowledgements
I would like to express my special appreciation and thanks to my ad-

viser associate professor Raymond Lister, you have been a tremendous men-
tor for me. I would like to thank you for encouraging my research and for
allowing me to grow as a research scientist. Your advice on my research
have been priceless.

A special thanks to my family. Words cannot express how grateful I
am to my father, mother and my beloved sister for all of the sacrifices that
you’ve made on my behalf.

Alireza Ahadi

xiii

KEYWORDS

Novice Programmer
Human Factors
Measurement
Computer Science Education
Data Mining
Online assessment
MOOC
Databases
SQL Queries
Learning Edge Momentum
Bimodal Grade Distribution
Machine Learning
Programming Source Code Snapshot
Pattern Recognition
Classification
Supervised Machine Learning

xv

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements xi

1 Introduction 1

1.1 Motivation . 1
1.2 Motivation . 2
1.3 Research Questions . 2
1.4 Research Design . 2
1.5 Thesis Structure . 3

Chapter 2: Background 3
Chapter 3: Results Overview 3
Chapter 4: Method . 3
Chapter 5 to Chapter 12 3
Chapter 13: Discussion and Conclusion 3

1.6 Significance and Contribution 3
1.7 Conclusion . 4

2 Background 5

2.1 Introduction . 5
2.2 Who is a novice programmer? 5
2.3 Data analysis . 7

2.3.1 Static success factors 8
2.3.2 Success factors and contradictory reports 10
2.3.3 Dynamically accumulating data 11

2.4 Dynamic Programming Source Code Snapshot Data Collec-
tion Tools . 14
2.4.1 Blackbox . 14
2.4.2 CloudCoder . 14
2.4.3 CodeWorkout . 15
2.4.4 JS-Parsons . 15
2.4.5 PCRS [118] . 16
2.4.6 Problets . 16
2.4.7 TestMyCode . 16

xvi

2.4.8 URI Online Judge . 17
2.4.9 UUhistle . 17
2.4.10 Web-CAT . 17

2.5 Publicly Available Programming Source Code Snapshot Datasets 18
2.5.1 Blackbox . 18
2.5.2 Code Hunt . 18
2.5.3 Code.Org . 19

2.6 Approaches for Data Analysis 19
Educational data mining and learning analytics . . . 19
Machine learning and data mining approaches 20

2.7 Machine Learning in CSed . 21
2.8 Assessment . 23
2.9 Studies of the Novice Programming Process 24
2.10 The analysis of the novice programmer errors 24

3 Results Overview 29

3.1 Results Overview . 29
3.2 The Thesis About The Thesis 29

3.2.1 Research Questions 1 30
Paper 1. Chapter 5: Geek genes, prior knowledge,

stumbling points and learning edge momen-
tum: parts of the one elephant? 30

Paper 2. Chapter 6: Exploring machine learning meth-
ods to automatically identify students in need
of assistance 30

Paper 3. Chapter 7: A Quantitative Study of the Rela-
tive Difficulty for Novices of Writing Seven
Different Types of SQL Queries 30

Paper 4. Chapter 8: Students’ Semantic Mistakes in
Writing Seven Different Types of SQL Queries 31

Paper 5. Chapter 9: Students’ Syntactic Mistakes in
Writing Seven Different Types of SQL Queries
and its Application to Predicting Students’
Success . 31

3.2.2 Research Question 2 31
Paper 6. Chapter 10: Performance and Consistency in

Learning to Program 32
Paper 7. Chapter 11: On the Number of Attempts Stu-

dents Made on Some Online Programming
Exercises During Semester and their Subse-
quent Performance on Final Exam Questions 32

xvii

Paper 8. Chapter 12: A Contingency Table Derived
Methodology for Analyzing Course Data . 32

4 Method 33

4.1 Introduction . 33
4.2 Background . 33

4.2.1 Programming source code snapshots, collected at the
University of Helsinki. 36

4.2.2 Database source code snapshots, collected at the Uni-
versity of Technology Sydney. 37

5 Geek genes, prior knowledge, stumbling points and learning edge

momentum: parts of the one elephant? 43

5.1 Introduction . 43
5.1.1 Statement of Contribution of Co-Authors 43

5.2 PDF of the Published Paper 46
5.3 Discussion . 53

6 Exploring machine learning methods to automatically identify stu-

dents in need of assistance 55

6.1 Introduction . 55
6.1.1 Statement of Contribution of Co-Authors 55

6.2 PDF of the Published Paper 58
6.3 Discussion . 69

7 A Quantitative Study of the Relative Difficulty for Novices of Writ-

ing Seven Different Types of SQL Queries 71

7.1 Introduction . 71
7.1.1 Statement of Contribution of Co-Authors 71

7.2 PDF of the Published Paper 74
7.3 Discussion . 81

8 Students’ Semantic Mistakes in Writing Seven Different Types of

SQL Queries 83

8.1 Introduction . 83
8.1.1 Statement of Contribution of Co-Authors 83

8.2 PDF of the Published Paper 86
8.3 Discussion . 93

9 Students’ Syntactic Mistakes in Writing Seven Different Types of

SQL Queries and its Application to Predicting Students’ Success 95

9.1 Introduction . 95
9.1.1 Statement of Contribution of Co-Authors 95

9.2 PDF of the Published Paper 98

xviii

9.3 Discussion . 105

10 Performance and Consistency in Learning to Program 107

10.1 Introduction . 107
10.1.1 Statement of Contribution of Co-Authors 107

10.2 PDF of the Published Paper 110
10.3 Discussion . 117

11 On the Number of Attempts Students Made on Some Online Pro-

gramming Exercises During Semester and their Subsequent Per-

formance on Final Exam Questions 119

11.1 Introduction . 119
11.1.1 Statement of Contribution of Co-Authors 119

11.2 PDF of the Published Paper 122
11.3 Discussion . 129

12 A Contingency Table Derived Method for Analyzing Course Data131

12.1 Introduction . 131
12.1.1 Statement of Contribution of Co-Authors 131

12.2 PDF of the Submitted Paper 134

13 Discussion and Conclusion 155

13.1 Introduction . 155
13.2 Overview of Research . 155
13.3 Research Questions . 155
13.4 Research Outcome . 156
13.5 Research highlights . 156
13.6 Research Significance . 157
13.7 Research Findings . 157

13.7.1 Data . 157
13.7.2 Method . 158
13.7.3 Context . 158

13.8 Discussion . 159
13.8.1 Data . 159
13.8.2 Method . 159
13.8.3 Context . 160

13.9 Limitations . 161
13.9.1 Data . 161
13.9.2 Context . 161

13.10Recommendations . 161
13.10.1 Data . 162

Static data . 162
Dynamic data . 162

xix

13.10.2 Method . 162
13.10.3 Features of a strong algorithm to capture students learn-

ing from the source code snapshot data 162
General Attributes . 162
Language Independence 163
Distribution Independence 164
Cross-Context Parameter Variation in the Construc-

tion of a Metric 164
Validity of the Operationalization 164

13.10.4 Context . 165
13.11Conclusion . 165

A Definition of Authorship and Contribution to Publication 167

B Specific Contributions of Co-Authors for Thesis by Published Pa-

pers 169

C Complete list of Publications by Candidate 179

D UTS Human Ethics Approval Certificate - UTS HREC - ETH16-

0340 183

E Extract from UTS Subject Outline – 31271 "Database Fundamen-

tals" Sem. 2 2016 193

F Extract from Helsinki Subject Outline – 581325 "Introduction to

Programming" Sem. 2 2016 207

G Extract from UTS Database Fundamentals – 31271, Practice Ques-

tions and Answers 215

G.1 Introduction . 215
G.2 Pizza Database . 215

G.2.1 Questions Used in The Practice Online SQL Test . . . 219
G.2.2 Proposed Answers for The Questions Used in The Prac-

tice Online SQL Test 219

H The Final Exam Questions Used at Helsinki University 223

I Extract from Helsinki Subject Content – 581325 "Introduction to

Programming" Sem. 2 2016, Week 1. 229

Bibliography 255

xxi

List of Figures

4.1 An abstract view of the logical services where data instru-
mentation and collection are typically performed. Note that
some data collection tools encompass multiple logical ser-
vices (Adapted from Ihantola et al., 2015). 34

4.2 Data can be collected at different levels of granularity, which
implies different collection frequencies and associated data
set sizes (Adapted from Ihantola et al., 2015). 35

4.3 Student’s home screen at AsseSQL. Students may attempt
questions in any order, as many times as they wish. 38

4.4 Screen for an individual question. The question and the sim-
ple output to clarify the question are presented for each ques-
tion in the test. 39

4.5 Feedback screen for an individual question with the output
of model answer as well as the student’s answer are pre-
sented in this page. 39

4.6 Back to the student’s home screen: students may return to
this at anytime. 40

4.7 A sample of the ERD used in the test. 41

xxiii

List of Tables

3.1 Research Questions, the thesis about the thesis, and the cor-
responding chapters . 29

5.1 Authors’ Area of Contribution for The Paper Corresponding
to Chapter 5 . 44

6.1 Authors’ Area of Contribution for The Paper Corresponding
to Chapter 6 . 56

7.1 Authors’ Area of Contribution for The Paper Corresponding
to Chapter 7 . 72

8.1 Authors’ Area of Contribution for The Paper Corresponding
to Chapter 8 . 84

9.1 Authors’ Area of Contribution for The Paper Corresponding
to Chapter 9 . 96

10.1 Authors’ Area of Contribution for The Paper Corresponding
to Chapter 10 . 108

11.1 Authors’ Area of Contribution for The Paper Corresponding
to Chapter 11 . 120

12.1 Authors’ Area of Contribution for The Paper Corresponding
to Chapter 12 . 132

G.1 List of questions and their corresponding covered topic. . . . 220
G.2 Proposed Answers for the questions presented in G.1 221

xxv

List of Abbreviations

ACC Accuracy
CMS Cource Management System
CTP Computational Thinking Patterns
DM Data Mining
DT Decision Tree
EDM Educational Data Mining
EQ Error Quotient
FN False Negative
FP False Positive
FDR False Discovery Ratio
FNR False Negative Ratio
FPR False Positive Ratio
IDE Integrated Development Environment
JAR Java Archive File
LMS Learning Management System
LN Logical Necessity
LS Logical Sufficiency
LSI Kolb's Learning Style Inventory
ML Machine Learning
MSLQ Motivated Strategies Learning Questionnaire
NN Neural Network
NPSM Normalized Programming State Model
PCA Principal Component Analysis
RF Random Forest
RED Repeated Error Density
RSE Rosenberg Self-Esteem
SEN Sensitivity
SPC Specificity
SQL Structured Query Language
SVM Support Vector Machine
TN True Negative
TP True Positive
WATWIN WATson & GodWIN

Web-CAT Web-based Center for Automated Testing

xxvii

List of Publications by Candidate

Below are the publications first authored by the Candidate which contribute
to this thesis by publication.

1. Ahadi, A. and Lister, R., 2013, August. Geek genes, prior knowledge,
stumbling points and learning edge momentum: parts of the one ele-
phant?. In Proceedings of the ninth annual international ACM con-
ference on International computing education research (pp. 123-128).
ACM. (See Chapter 5)

2. Ahadi, A., Prior, J., Behbood, V. and Lister, R., 2015, June. A Quantita-
tive Study of the Relative Difficulty for Novices of Writing Seven Dif-
ferent Types of SQL Queries. In Proceedings of the 2015 ACM Confer-
ence on Innovation and Technology in Computer Science Education
(pp. 201-206). ACM. (See Chapter 7)

3. Ahadi, A., Lister, R., Haapala, H. and Vihavainen, A., 2015, July. Ex-
ploring machine learning methods to automatically identify students
in need of assistance. In Proceedings of the eleventh annual Inter-
national Conference on International Computing Education Research
(pp. 121-130). ACM. (See Chapter 6)

4. Ahadi, A., Behbood, V., Vihavainen, A., Prior, J. and Lister, R., 2016,
February. Students’ Syntactic Mistakes in Writing Seven Different
Types of SQL Queries and its Application to Predicting Students’ Suc-
cess. In Proceedings of the 47th ACM Technical Symposium on Com-
puting Science Education (pp. 401-406). ACM. (See Chapter 9)

5. Ahadi, A., Prior, J., Behbood, V. and Lister, R., 2016, July. Students’ Se-
mantic Mistakes in Writing Seven Different Types of SQL Queries. In
Proceedings of the 2016 ACM Conference on Innovation and Technol-
ogy in Computer Science Education (pp. 272-277). ACM. (See Chap-
ter 8)

6. Ahadi, A., Lister, R. and Vihavainen, A., 2016, July. On the Number
of Attempts Students Made on Some Online Programming Exercises
During Semester and their Subsequent Performance on Final Exam
Questions. In Proceedings of the 2016 ACM Conference on Innova-
tion and Technology in Computer Science Education (pp. 218-223).
ACM. (See Chapter 11)

7. Ahadi, A., Lal, S., Leinonen, J., Lister, R. and Hellas, A. Performance
and Consistency in Learning to Program. Australian Computing Ed-
ucation Conference, 2017 (Award winning paper for best student pa-
per). (See Chapter 10)

xxviii

8. Ahadi, A., Lister, R., Hellas, A. A Contingency Table Derived Method-
ology for Analyzing Course Data. 17, 3, (August 2017), 19 pages.
DOI: https://doi.org/10.1145/3123814 (See Chapter 12)

xxix

THESIS BY PUBLICATION

This thesis is presented in the format of scholarly papers published during
the period of my candidature, according to UTS regulations set out in the
website http://uts.edu.au/current-students/dab/uts-graduate-research-school.
The papers included in this thesis by publication form a research narrative
which is summarized in Chapter 5. Each paper then forms a separate chap-
ter of this thesis, inserted in its published format.

xxxi

To all novice programmers. . .

1

Chapter 1

Introduction

This chapter provides the overview and the motivation for this research
project, as well as my theoretical perspectives. The chapter concludes with
research questions to be addressed in this thesis.

1.1 Motivation

Can we tell if students are learning to program?
Learning to program is hard. As such, it is not surprising that decades

of research has been invested into pedagogical practices that could be used
to help those struggling with the task (Vihavainen, Airaksinen, and Watson,
2014a). Whilst such research has resulted in improvements in course out-
come in many institutions, the factors that contribute to students’ learning
programming still somewhat elude us.

One stream of research that has promise to explain these factors is re-
lated to automatically extracting students performance in a programming
class. This work has been largely motivated by identifying those who are
more apt to learn programming than others (Evans and Simkin, 1989). How-
ever, when traditional variables such as age, gender and personality are
used to predict outcomes, the performance varies considerably over differ-
ent contexts (Evans and Simkin, 1989; Watson, Li, and Godwin, 2014). More
recent studies that use dynamically accumulated data such as source code
snapshots or assignment progress, provide an additional and a continuous
measure of students’ progress, which has led to better performance of such
models (Watson, Li, and Godwin, 2014). As an example of the use of con-
tinuous source code snapshot data, Jadud created a metric that quantifies
how students fix errors (Jadud, 2006).

Early advances into measuring variables that could be used to catego-
rize students are related to the understanding of students performance in
courses. Evans and Simkin describe these as approximations for program-
ming aptitude, which is often investigated in the light of the student’s in-
troductory programming course performance, e.g. course grade (Evans

2 Chapter 1. Introduction

and Simkin, 1989). This research has witnessed a continuing trend over
the years. Before 1975, much of the research was focused on demographic
factors such as educational background and previous course grades, while
by the end of the 1970s, research moved gradually toward evaluating static
tests that measure programming aptitude. A more recent trend has been
to investigate the effect of cognitive factors such as abstraction ability and
the ability to follow more complex processes and algorithms (Evans and
Simkin, 1989). These lines of research have been continued to this day by
introducing factors related to study behavior, learning styles and cognitive
factors (Watson, Li, and Godwin, 2014). However, dynamically accumu-
lating data such as programming process data has only recently gained
researchers’ attention (Jadud, 2006; Porter, Zingaro, and Lister, 2014; Vi-
havainen, 2013; Watson, Li, and Godwin, 2013). These techniques deploy
source code programming snapshot data to provide a better understand-
ing of students learning aptitude. However, non of these method have at-
tempted to feed data analytics methods, and in particular, machine learning
tools with the collected data.
In this dissertation, I adopt the machine learning and statistical data min-
ing on the data collected from novices to explore the question "Can we tell
if students are learning to program?" Thus, my original question can be re-
expressed as:

1.2 Motivation

Can machine learning techniques tell us if students are learning to pro-
gram?

1.3 Research Questions

How early can we detect those who are going to struggle/are struggling?

RQ1 Is it possible to identify struggling students by analyzing the source
code snapshot data?

RQ2 Can we address the problem of the sensitivity of the prediction (of
the struggling novice programmers) in a more context-independent
manner?

1.4 Research Design

This PhD research project takes quantitative approaches and involves quan-
titative data collected from programming tasks completed by whole cohorts
of students under exam conditions.

1.5. Thesis Structure 3

1.5 Thesis Structure

This thesis by publication includes a number of peer-reviewed papers. The
remainder of the thesis is organized as follows:

Chapter 2: Background

This chapter is a review of related previous research. The focus is on how
the data-driven methods have attempted to capture learning aptitude of the
novice programmers.

Chapter 3: Results Overview

The chapter draws together the story produced by the publications included
in this thesis. A commentary is given which describes how one or more of
the papers address each research question.

Chapter 4: Method

This chapter is a detailed account and justification of the quantitative data
collection process adopted in my research project.

Chapter 5 to Chapter 12

Most of these chapters include one of the published papers. Each chapter
is preceded by a reiteration of the storyline and research question(s) ad-
dressed.

Chapter 13: Discussion and Conclusion

This chapter summaries how each of the research questions have been ad-
dressed, together with the significance, contribution and limitations of the
research. The chapter concludes with proposals for future work.

1.6 Significance and Contribution

The contribution of my PhD research lies in the use of the machine learning
frameworks to analyze data collected from the novice computer program-
mers with the goal of identifying students in need of assistance as early as
possible. Through detailed analysis of the data using different statistical
and machine learning based methods, I review the state of the art, pro-
posed new methods to analyze novices data, and develop a new metric for
quantifying the programming learn-ability of novices.

4 Chapter 1. Introduction

1.7 Conclusion

The purpose of this research is to study the data collected from the novice
programmer in a way that has not been done before: designing a machine
learning based framework which can best predict who is going to struggle
to learn programming and who is not. The results of this research have
valuable pedagogical implications.

5

Chapter 2

Background

This chapter reviews the related work done in the field of computer science
education research. This thesis is focused on the intersection of three main
research areas: educational data mining (EDM), the novice programmer,
and machine learning. As this is a thesis by publication, the literature of
relevance to each chapter/paper is discussed in detail in the paper itself.
The aim of this "background" chapter is merely to describe literature that
sets the scene for the papers that follow.

2.1 Introduction

Learning to program is hard. As such, it is not surprising that decades of
research has been invested into pedagogical practices that could be used to
help those struggling with the task (Vihavainen, Airaksinen, and Watson,
2014b). Whilst such research has resulted in improvements in course out-
come in many institutions, the factors that contribute to students’ learning
programming still somewhat elude us.

2.2 Who is a novice programmer?

To understand the characteristics of a novice programmer, I first review the
attributes of the expert programmer. Most studies have characterized the
programming skill through either sophisticated knowledge representation
and problem solving skills (Détienne, 1990; Gilmore, 1990). It is known
that programming experts have well organized knowledge schema, have
organized their knowledge according to the functional characteristics of the
language, and have problem solving skills on both the general and special-
ized levels (Mayrhauser and Vans, 1994). Compared to the list of attributes
associated with the expert programmer, novice programmers show poor
levels of such attributes. Winslow expressed the view that novice program-
mers are limited to surface knowledge, and approach a program line by line
(Winslow, 1996).

Knowledge and strategy are two cognitive dimensions in the process of
programming. Knowledge is manifested in the ability of a programmer to

6 Chapter 2. Background

explain what a specific construct does (e.g. what a for loop does). The strat-
egy dimension describes ways that one might use knowledge of a construct,
such as a for loop, when writing a program. With regard to the knowledge
and strategy dimensions, Widowski and Eyferth (1986) compared novice
and expert programmers. They analyzed the number of consecutive lines
tested by a (novice or expert) programmer (defined as "run") and how many
lines of code a programmer looked at between runs. Experts were found
to read large amounts of "usual" code between runs, and thus used fewer
runs, but read fewer lines of "unusual" programs between runs. Novices
were found to read both conventional code and unusual code in the same
way.

In the literature, there are some studies which focus on the differences
and overlaps between code generation and code comprehension. Brooks
introduced a model for program comprehension (Brooks, 1977) based on
different domains starting from problem domains and ending with the pro-
gramming domain. Mapping from the problem domain into intermedi-
ate domains leading to the final programming domain is the foundation of
Brooks’ model. Brooks stated that the expert programmer forms hypothe-
ses based on programming knowledge in the top-down hypothesis-driven
model of program comprehension. On the other side, Rist introduced a
model for program generation based on the presentation of the knowledge
in the internal/external memory where knowledge is represented as nodes,
and each node represents a form of action (Rist, 1995). Nodes are indexed
using tuples of forms and have four ports such as use, make, obey and con-
trol. These components together form a control/data flow and hence can
be used as an alphabet of modeling the plan and more specifically, the code
generation strategy of the programmer. With respect to the given definition,
experts are mostly engaged with retrieving plans from their memory while
novices usually engage in creating plans which includes focal expansion
and backward reasoning.

Du Boulay identified a number of difficulties with learning to program
(Du Boulay, 1986). He pointed out the pitfalls of using mechanistic analo-
gies (e.g. the variable as a box), because such analogies are open to over
interpretation by the novice. The organising principle of Du Boulay’s pa-
per is the notional machine, an abstraction of the computer that one can use
for thinking about what a computer can and will do. He also discussed the
pragmatics of programming that a student needs so that she can use the
tools available to specify, develop, test and debug a program. Du Boulay’s
ideas were elaborated by subsequent researchers, including Rogalski and
Samurcay (Rogalski and Samurçay, 1990), who stated:

Acquiring and developing knowledge about programming is a highly complex
process. It involves a variety of cognitive activities, and mental representations

2.3. Data analysis 7

related to program design, program understanding, modifying, debugging (and
documenting). Even at the level of computer literacy, it requires construction of
conceptual knowledge, and the structuring of basic operations (such as loops, con-
ditional statements, etc.) into schemas and plans. It requires developing strategies
flexible enough to drive benefits from programming aids (programming environ-
ment, programming methods).

The capabilities and behaviors of the novice programmers differ from
those of the experts. Winslow states that novices are limited to the sur-
face knowledge, have limited mental models on the programming task, use
general problem solving skills rather than specific skills, and approach the
program on a line by line basis (Winslow, 1996). Linn and Dalbey reported
that the novices tend to spend less time testing the code (Linn and Dalbey,
1989). They are poor at tracing the code (Perkins et al., 1986), have a poor
understanding of the linear execution of the code (Du Boulay, 1986), and
are equipped with context specific knowledge rather than general knowl-
edge (Kurland et al., 1986).

2.3 Data analysis

Early work focused on on identifying and measuring variables that Evans
and Simkin described as being approximations for programming aptitude
(Evans and Simkin, 1989). Before 1975, much of the research was focused on
demographic factors such as educational background and previous course
grades, while by the end of the 1970’s, research was slowly moving to-
wards evaluating static tests that measure programming aptitude. A more
recent trend has been to investigate the effect of cognitive factors such as
abstraction ability and the ability to follow more complex processes and al-
gorithms (Evans and Simkin, 1989). These lines of research have continued
to this day by introducing factors related to study behavior, learning styles
and cognitive factors (Watson, Li, and Godwin, 2014).

This type of research has been motivated, among others, by (1) identi-
fication of students that have an aptitude for CS-related studies (e.g. (Tuki-
ainen and Mönkkönen, 2002)); (2) studying and identifying measures of
programming aptitude as well as combining them (e.g. (Bennedsen and
Caspersen, 2006; Bergin and Reilly, 2005; Rountree et al., 2004; Werth, 1986));
(3) improvement of education and the comparison of teaching methodolo-
gies (e.g. (Stein, 2002; Ventura Jr, 2005)); (4) and identifying at-risk students
and predicting course outcomes (e.g. (Jadud, 2006; Watson, Li, and Godwin,
2013)).

It has always been a sustained interest of researchers to identify per-
formance in programming subjects as early as possible (Biamonte, 1964).

8 Chapter 2. Background

Early work attempted to predict performance based on standardized apti-
tude testing. Most of the variables identified in this research can be catego-
rized according to the Bigg’s model of learning, a three stage model of learn-
ing (presage, process and product) (Biggs, 1978). A set of variables related
to the presage level are identifiable before the novice programmer starts the
program. Such factors are prior knowledge, intelligence quotient, demo-
graphic and psychological, academic, and cognitive factors, such as: pre-
vious programming experience, maths background, science background,
behavioral traits, self-esteem, learning styles, learning strategies, and at-
tributions of success. Process factors describe the learning context, which
includes student perceptions. Numerous studies have tried to find correla-
tions between programming performance and such variables. In the next
few sections, I’ll review those variables.

2.3.1 Static success factors

A range of demographic, cognitive and social factors have been investi-
gated to make models which can predict success in a computing course.

Brenda Cantwell Wilson and Sharon Shrock analysed twelve success
factors including maths background, attribution for success/failure (luck,
effort, difficulty of task, and ability), domain specific self-efficacy, encour-
agement, comfort level in the course, work style preference, previous pro-
gramming experience, previous non-programming computer experience,
and gender (Cantwell Wilson and Shrock, 2001). Their study revealed that
comfort level, maths, and attribution to luck for success/failure contributed
the most to success, where the first two of those factors had a positive in-
fluence and third factor had a negative influence. They also reported that
different types of previous computer experiences (including formal pro-
gramming class, self-initiated programming, internet use, game playing,
and productivity software use) were predictive of success.

In 2002, researchers (Rountree, Rountree, and Robins, 2002) investi-
gated the relationship between a set of attributes including gender, age, full-
time status, year, major, keenness, recent math, background, knowledge of
other languages, expected difficulty, expected workload, expected success,
and the intention to continue in computer science, with performance in an
introductory programming course. They reported that the group of novices
which indicated an intention to continue in computer science did not per-
form better than others. They also reported that the strongest single indica-
tor was the expectation that the student will “get an A from the course."

Katz et al. investigated the relationship between the score difference
from pre-test to post-test and preparation (SAT score, number of previous

2.3. Data analysis 9

computer science courses taken, and pre-test score), time spent on the tuto-
rial as a whole and on individual sections, amount and type of experimen-
tation, programming accuracy and/or proficiency, approach to materials
that involve mathematical formalism, and approach to learning highly un-
familiar material (string manipulation procedures) (Katz et al., 2003). Their
study included 65 students (47 male, 18 female) working through a tutorial
on the basics of Perl. They reported that students who were initially the
least proficient programmers, at least in Perl, seemed to benefit the most
from the tutorial. They also found the predictors of course grade to be pre-
test score (r = 0.28), post-test score (r =0.37), aptitude (SAT total, r = 0.40),
and various measures of time (negatively correlated; e.g., total time, r =
-0.30).

Bennedsen and Caspersen reported that of eight potential indicators of
success (grade, math, coursework, age, major, geology major, sex, math-
ematics major, and non-science major) only two of those indicators were
significant indicators of success in the programming course: math grade
from high school and course work (Bennedsen and Caspersen, 2005).

In 2005, Bergin and Reilly carried out an investigation of fifteen factors
that may influence performance on a first year object-oriented program-
ming module (Bergin and Reilly, 2005). The factors included prior aca-
demic experience, prior computer experience, self-perception of program-
ming performance and comfort level on the module and specific cognitive
skills. They reported that a student’s perception of their understanding of
the module had the strongest correlation with programming performance,
r = 0.76; p < 0:01. They also reported that Leaving Certificate (LC) mathe-
matics and science scores also had a strong correlation with performance.

Ventura investigated a number of potential success factors for an OO
first CS1 module (Ventura Jr, 2005). Those factors included prior program-
ming experience, mathematical ability, academic and psychological vari-
ables, gender, and measures of student effort. It was reported that cog-
nitive and academic factors such as SAT scores and critical thinking ability
offered little predictive value when compared to the other predictors of suc-
cess. On the other hand, student effort and comfort level were reported to
be the strongest predictors of success.

In 2005, Raadt et al. performed a multi-institutional study to investigate
the association between various factors and student performance in a first
programming subject. They reported the student’s approach to learning
(i.e. deep vs. surface) was the strongest indicator of success for the students
in the eleven participating institutes (Raadt et al., 2005).

Sheard et al. reported on the difficulty of predicting whether students
will complete a unit from the students’ interests and expectations of the
degree. They found that students with prior knowledge of programming,

10 Chapter 2. Background

English as the first language, and those who entered the degree after high
school received higher results in programming. They also reported a higher
drop out ratio for females (Sheard et al., 2008).

Gomez et al. reported that students’ results and their personal percep-
tions of competence during the course have a high correlation (Gomes,
Santos, and Mendes, 2012).

There are fundamental problems with using static success factors. The
generation of the data required to perform the analysis for the majority of
these predictors requires performing lengthy tests. As an example, Pintrich
et al. used up of 80 questions (Pintrich et al., 1993). Also, these factors
are not able to capture changes over time hence might not be reflecting the
current (for example psychological) stage of the student.

2.3.2 Success factors and contradictory reports

Traditional data include past course outcomes, questionnaire results, course
examinations or tests, as well as demographic factors such as age and gen-
der. Whilst the use of such data is (argumentatively) popular, it may also be
problematic. What if a student has not taken any courses previously, what
if the student declines to answer a questionnaire, or what if the student fails
a test due to focusing on another examination? A certain amount of noise
is always present in such data, and, as a consequence, the importance of
replication and reproduction studies increases.

In 2005, Lewis et al investigated the cross university performance and
individual differences (Lewis et al., 2005) on the data collected from 165
students enrolled in CS2 courses at two different universities. Through the
analysis of self-reported data, they measured experience in object-oriented
processing, UNIX programming, web design and computing platforms.
They also collected data to evaluate cognitive abilities measures of spatial
orientation, visualization, logical reasoning and flexibility. They reported
significant differences on all measures of cognitive ability and most mea-
sures of prior computer science experience and the relationship to success
among the two schools. Findings of Watson and Godwin also pinpointed
the tendency to yield inconsistent results (Watson, Li, and Godwin, 2013).

When considering the connections in more detail, there are studies that
indicate that there is no significant correlation between gender and pro-
gramming course outcomes (Werth, 1986; Byrne and Lyons, 2001; Ventura
Jr, 2005), while at least one other study indicated that gender may be an
explanatory factor of some course outcomes (Bergin and Reilly, 2005).

Similarly, when considering past academic performance, the results are
contradictory, and vary depending on the subject. One such example is
mathematics, where no significant correlation is observed in some stud-
ies (Werth, 1986; Watson, Li, and Godwin, 2014), while others have found

2.3. Data analysis 11

correlations (Stein, 2002). In addition to mathematics, overall grades and,
for example SAT scores have been studied as well. For example, in one
study, the verbal SAT score was found to have a mediocre correlation with
the introductory programming course grade (Leeper and Silver, 1982), and
similarly, the university-level grade average and introductory program-
ming course grade had a mediocre correlation (Werth, 1986). Watson et
al. have also studied correlations between various secondary education
courses and course averages, but found no statistically significant correla-
tions (Watson, Li, and Godwin, 2014).

It is natural to assume that past programming experience influences
programming course scores, and thus, this connection has been studied
in a number of contexts. While a number of studies have reported that
past programming experience helps when learning to program (Hagan and
Markham, 2000; Cantwell Wilson and Shrock, 2001; Wiedenbeck, Labelle,
and Kain, 2004) – typically in a tertiary education context – there are, also
again, contradictory results. For example, Bergin and Reilly found that stu-
dents with no previous programming experience had a marginally higher
mean overall score in an introductory programming course, but found no
statistically significant difference (Bergin and Reilly, 2005). In another study,
Watson et al. found that while students with past programming experience
had significantly higher overall course points than those with no previous
programming experience (Watson, Li, and Godwin, 2014), programming
experience in years had a weak but statistically insignificant negative cor-
relation with course points (Watson, Li, and Godwin, 2014).

2.3.3 Dynamically accumulating data

Another stream of research is concerned with using data that is generated as
a byproduct of students using various learning management systems. The
systems may be for example learning management or course management
systems, where students’ course outcomes appear, or the systems may be
fine-grained course-specific systems that gather data as students are work-
ing on, for example, course assignments.

Researchers have analyzed course transcripts to discover sequences that
are often associated with course failure. Such information can be used
to help identify course patterns that students should not take, and conse-
quently, advise students on more suitable courses to take (Chandra and
Nandhini, 2010). An example of the use of data from a learning manage-
ment system is provided by Minaei-Bidgoli et al., who explored a num-
ber of classifiers to identify actions that relate to course outcomes (Minaei-
Bidgoli et al., 2003). Similarly, in-class clicker behavior has been recently
explored by Porter et al. (Porter, Zingaro, and Lister, 2014), who studied

12 Chapter 2. Background

students’ responses in a peer instruction setting, and identified that the per-
centage of correct clicker answers from the first three weeks of a course was
strongly correlated with overall course performance. In the work done by
Rodrigo et al., a series of observations based on student’s interaction with
the programming environment was used to investigate the relationship be-
tween different types of factors including affective states, behaviors and au-
tomatically dis-tillable measures and performance (Rodrigo et al., 2009a).
They found that students who felt confused, bored, and those students who
engaged in IDE-related on-task conversation, performed poorly in the mid
semester exam.

While the previous examples are related to coarser grained data such
as course results and answers to questions inside a learning management
system or during a lecture, a stream of research on dynamically accumulat-
ing programming process data has recently become more popular. In 2006,
Jadud suggested a metric to quantify a student’s tendency to create and
fix errors in subsequent source code snapshots (i.e. compiled states) and
found that there was a high correlation with the course exam score (Jadud,
2006). In essence, this suggests that the less programming errors a student
makes, and the better she solves them, the higher her grade will tend to
be (Jadud, 2006; Rodrigo et al., 2009b). Jadud’s finding was confirmed by
the study performed by Fenwick et al. (Fenwick et al., 2009) and has also
been explored in other contexts with the same programming environment
and language with similar results (Rodrigo et al., 2009b; Watson, Li, and
Godwin, 2013), while studies with a different programming environment
have had more modest results (Carter, Hundhausen, and Adesope, 2015).
Carter et al. presented the Normalized Programming State Model (NPSM),
characterizing students’ programming activity in terms of the dynamically-
changing syntactic and semantic correctness of their programs. The NPSM
accounted for 41% of the variances in students’ programming assignment
grades, and 36% of the variance in students’ final course grades. Using the
output of NPSM, they presented a formula capable of predicting students’
course programming performance with 36-67% percent accuracy.

The approach proposed by Jadud has been recently extended by Wat-
son et al. (Watson, Li, and Godwin, 2013), who included the amount of
time that students spend on programming assignments as a part of the ap-
proach (Watson, Li, and Godwin, 2013). This led to an improvement over
Jadud’s model. They also noted that a simple measure, the average amount
of time that a student spends on a programming error, is strongly corre-
lated with programming course scores (Watson, Li, and Godwin, 2013).
More recently, a similar approach that analyzes subsequent source code
snapshots was also proposed by Carter et al. (Carter, Hundhausen, and

2.3. Data analysis 13

Adesope, 2015). In addition to analyzing subsequent error states, snap-
shots have been used to elicit finer information. For example, Piech et al.
studied students’ approaches to solving two programming tasks (Piech
et al., 2012), and found that the solution patterns are indicative of course
midterm scores. Such patterns were also studied by Hosseini et al., who
analyzed students’ behaviors within a programming course – some stu-
dents were more inclined to build their code step by step, while others
started from larger quantities of code, and reduced their code in order to
reach a solution (Hosseini, Vihavainen, and Brusilovsky, 2014). A separate
stream of research was recently proposed by Yudelson et al., who sought
to model students’ understanding of fine-grained concepts through source
code snapshots (Yudelson et al., 2014). Becker (Becker, 2016) introduced
a new metric to quantify repeated errors, called the repeated error density
(RED). He compared the performance of his proposed metric to Jadud’s
Error Quotient and showed that RED has advantages over EQ including
being less context dependent, and being useful for short sessions.

There have been few direct comparisons of traditional and dynamic
predictors of programming success. Watson et al. looked at a total num-
ber of 50 potential success factors comprised of 12 dynamic predictors and
38 static predictors (Watson, Li, and Godwin, 2014). The dynamic pre-
dictors were extracted from the programming logged data. In that study,
seven instruments were used to collect data from the students including
past programming experience and academic background, attributes of suc-
cess, Rosenberg’s self-esteem scale (Pintrich et al., 1993), Kolb’s learning
style instrument, the Gregorc style delineator, the motivated strategies for
learning questionnaire (MSLQ), and a logging extension added to the BlueJ
IDE to collect source code snapshot data. They reported a strong correlation
between programming behavior, while observing a few strong correlations
between traditional factors and performance.

Interestingly, none of the mentioned studies have focused on data an-
alytics and the ways it could be used to increase our prediction accuracy
on the success/fail ratio of the novice programmer. The majority of these
studies have been focused on profiling the students progress after the data
collection is completed. In this dissertation, I aim to predict the course out-
come by training machine learning models which are trained on the data
collected early in the semester. To do so, it is important to know what the
data collection tools we have available, and what the collected data is like
and what are its features. Next, I attempt to review the available data col-
lection tools, their features, and the nature of the data collected by these
tools.

14 Chapter 2. Background

2.4 Dynamic Programming Source Code Snapshot Data

Collection Tools

The research reviewed in the previous subsection is based on the data col-
lected from different programming environments. The data used in the
above-mentioned studies is known as programming source code snapshot

data where the programming tool constantly captures copies from the most
recent state of the code throughout the whole programming session. These
snapshots, if placed next to each other, represent a sequence of different
states of the code. The following subsection provides a detailed overview
on the nature of the tools used in those studies. This provides a more clear
description of the data collection tools and highlights how the nature of
such tools can affect the quality of the collected data.

2.4.1 Blackbox

When BlueJ (Kölling et al., 2003) version 3.1.0 was released, the Blackbox
project (Brown et al., 2014) went live on 11th June 2013. Upon initial in-
stallation of BlueJ, the users were prompted with a dialog regarding par-
ticipation on the Blackbox project. The prompt did not reoccur unless the
user enabled it via the program options. Blackbox is a tool designed for
heterogeneous purposes. Blackbox data differs in from related tools in the
size of the data and its availability to the public user. Blackbox is capable
of collecting start and end times of programming sessions and capturing
the editing behavior of the user and the use of IDE tools. Blackbox is Java
specific within BlueJ which can be a constraining factor. Also, apart from
a persistent unique identifier, nothing else is known about the user. There
may also be an issue in tracking a user as BlueJ uses a unique identifier per
clientèle meaning if two people use a single account the data available to re-
searchers is inaccurate. Also the clientèle may use different accounts for dif-
ferent machines, for example, a different account for university, work and
home. BlueJ requires Internet access to record data. Therefore, any drops
in Internet connectivity can lead to gaps in the data. The main novelties of
Blackbox is that it is an endless data collection tool with little restriction on
data size and availability.

2.4.2 CloudCoder

CloudCoder (Hovemeyer and Spacco, 2013) is open source software which
supports C, C++, Java, Python and Ruby. CodingBat is a web based pro-
gram from which CloudCoder was created. Instructors are able to assign
students’ functions which allows them to carry out an analysis on whether
the students have grasped the concept. CloudCoder (Papancea, Spacco,

2.4. Dynamic Programming Source Code Snapshot Data Collection Tools15

and Hovemeyer, 2013) works by asking the user to write 5 - 15 lines of code,
whose fidelity is then tested by the system. While doing this, CloudCoder
has the ability to compile the submission as well as record the full text of
the submission. Being able to capture line edits is an important feature of
CloudCoder. When a student edits a line of code the system is able to de-
tect a stream of insertion and deletion which are captured and recorded.
CloudCoder allows detailed time - based analysis as data is recorded with
millisecond timestamps.

2.4.3 CodeWorkout

CodeWorkout (Buffardi and Edwards, 2014) is an online learning tool which
offers active learning drill and practice. The user is able to track progress
made as well as share ideas and discuss problems using the social features
present in CodeWorkout. CodeWorkout (“Adaptive and social mechanisms
for automated improvement of eLearning materials”) provides a compre-
hensive choice of exercises in the form of multiple-choice questions and
coding problems, which help the novices by improving their computer sci-
ence cognizance. JUnit can be used as a testing framework which allows
the novice to evaluate their solutions. Apart from indicating which tests
are correct, feedback is also provided in the form of hints which are based
on the performance of the novice’s code against test cases. CodeWorkout
also offers peer review feedback and once a student has finished, they can
write hints to help other peers who are struggling with the same problem.
Using peer based learning is the main novelty of CodeWorkout.

2.4.4 JS-Parsons

JS-Parsons (Ihantola and Karavirta, 2011) is an interactive puzzle solving
tool where the novice has to do simple code construction exercises. This
is an interactive method of learning which promotes an engaging learning
environment where immediate feedback is given to the students while they
code. Parson’s puzzles (Parsons and Haden, 2006) require novices to uti-
lize a drag and drop style. The novice drags their choice into a certain box
after which they click the check button which gives them a response on the
correctness of their choice. JS-Parsons provides many choices which help
the novice to improve their syntax skills. JS-Parsons also helps develop the
novice’s ability to model code better. The novices sometimes fail to recog-
nize that using, for example a nested if statement would be more efficient,
than using several individual if statements. However, it makes the student
repeat each puzzle until they have achieved the maximum mark, which in
turn can only be achieved through using model code. Being web based
makes it easier to have class activity for promoting active participation.

16 Chapter 2. Background

2.4.5 PCRS [118]

Python Classroom Response System (PCRS) (Zingaro et al., 2013) is a tool
designed to promote active learning through the use peer based multiple
choice discussion questions. Tutors are able to receive real time feedback
through code evaluation, which highlights the common errors made by the
novice. PCRS has both multiple choice questions and code writing ques-
tions. PCRS is open source and free to install by any public user with Inter-
net access. However, since the tool is entirely web based, the Internet con-
nection is always required which means that the tool would be rendered
useless during network failure. On the contrary, the work of the novice
can be viewed off-line for the purposes of lab participation mark and grad-
ing. PCRS aims to promote critical thinking and analysis as well as increase
classroom based interactions.

2.4.6 Problets

Problets (Kumar, 2016) core function is an online programming based tutor-
ing system. At the moment, it supports C, C++ and Java. Problets (Kumar,
2003) has a colossal number of features. It is able to generate questions
for the novice to attempt by randomly instantiating problem templates en-
coded into them in pseudo-BNF notation by either the tool designers or the
instructor using the tool. It also has an endless inventory of questions for
the novice to attempt. Problets also provides feedback to the solutions the
novice provides and logs the performance of the novice which is later made
available for the instructor to view. Its novel features include a mechanism
to decide if a novice has mastered a particular concept or whether he or she
still needs to attempt more questions to attain mastery of the topic.

2.4.7 TestMyCode

TestMyCode (TMC) (Vihavainen et al., 2013) reviews code fed into its sys-
tem by the novice and provides feedback. Its ability to collect data and per-
form code reviews makes it a useful tool for computer science researchers.
TMC has the ability to record snapshots from student’s code which helps
computer science researchers get a better understanding of the progression
of a novice programmer. The current version of TMC is able to gather data
from students’ programming processes, gives and receives data regarding
exercises, submits exercises to the assessment server and displays built-
in scaffolding messages. Having a reward based system encourages the
novice to participate more actively in class. TMC rewards the user with
points not just for completing the exercise but also for completing mini -
goals within the exercise. TMC has been successfully tested and utilized in
a few different courses.

2.4. Dynamic Programming Source Code Snapshot Data Collection Tools17

2.4.8 URI Online Judge

URI Online Judge (Tonin and Bez, 2013) is a tool which has been developed
to give a dynamic approach to programming for the novice. It has an array
of programming languages to choose from, provides real time feedback,
and creates an interactive learning environment through its user interac-
tivity feature. A novel feature of this tool is its availability in English and
Portuguese (Francisco and Ambrosio, 2015). After working on the code, the
novice can upload the code to see if it satisfies the given problem (Tonin,
Zanin, and Bez, 2012). The user is also given various difficulty levels to se-
lect from when attempting practice problems, which enables this tool to be
used by novices at different levels of proficiency.

2.4.9 UUhistle

UUhistle (Sorva and Sirkiä, 2011) is a program visualization system which
is mostly used to evaluate Python statements for introductory program-
ming education. The tool allows the novice to debug with animations which
enables UUhistle to serve as a very graphical and detailed debugger. Each
line of code can be animated as soon as each line of code is executed and
this creates an interactive learning environment which allows the novice
to better understand concepts. In addition, UUhistle has in-built stop and
think example programs for the novice to answer. As with most other tools,
UUhistle provides detailed feedback to the novice about their code. UUhis-
tle can develop a visual simulation for any code it can execute.

2.4.10 Web-CAT

Web-CAT (Shah, 2003) is a web based center for automated testing. It acts as
a guide for the novice by assessing the quality of his or her assignment. The
tool is capable of providing immediate feedback to the novice about their
assignment. Furthermore, it also supports unlimited submissions and as a
result enables the novice to submit as many times as they desire until they
receive a satisfying score. However, the instructor needs to provide the
novice with comments on style and order. Web-CAT has a wizard based
interface where upon launching the novice will be presented with a page
drive where they can make specific choices. Instructors are also able to trou-
bleshoot procedures as Web-CAT maintains an extensive log of all activities
performed by users as well as providing access to their old submissions on
a file server. One of the novelties of Web-CAT is its reward based system
where the user is given a reward for performing multiple testing for their
submissions.

18 Chapter 2. Background

2.5 Publicly Available Programming Source Code Snap-

shot Datasets

Among the tools mentioned in the previous section, only a few of them gen-
erate publicly available datasets. It is important to have a solid understand-
ing of the data used in the studies mentioned in the previous subsections
since this will lead to a more careful consideration for the data collection
process which is used in this dissertation. These dataset are reviewed in the
following section.

2.5.1 Blackbox

Blackbox is the largest repository of the programming source code snap-
shots (Ihantola et al., 2015). The publicly available dataset for Blackbox
however has a few issues associated with it. The main concern with this
repository is lack of features which are related to the context where the
source code snapshots originate from. That is, the only people who have
knowledge about the contextual/institutional settings of the experiments
are people who set up/opt in their subjects. The context where the data
comes from remains unknown to other researchers. Are the source code
snapshots generated by novices or advanced students? Is the data gener-
ated in a supervised environment? What’s the difficulty level of the exer-
cises/tests/assignments and, most importantly, what are the static/traditional
factors of success in programming associated with each subject? The an-
swer to such questions is crucial to the majority of research questions re-
lated to the study of the novice programmer.

2.5.2 Code Hunt

CodeHunt is an online learning game that helps novice programmers de-
velop fundamental programming skills. The game consists of a progres-
sion of worlds and levels, which become progressively more difficult. In
each level, the player needs to find a mystery code section and compile
code for it (Tillmann et al., 2014). The main concern with this repository
is lack of clarity, related to the context where the source code snapshots
originate from. Since this game can be played in an unsupervised environ-
ment, users may use publicly available solutions to complete a level (the
solutions can be found at https://genius.com/Code-hunt-solutions-with-
explanations-annotated). This in turn compromises the integrity of the pub-
licly available datasets for researchers to analyze. Furthermore, since there
is no identifier available, it is unknown whether the data generated comes
from an advanced level programmer or a novice. Moreover, since this game
always requires an Internet connection to run, in the event of a drop in data

2.6. Approaches for Data Analysis 19

connectivity there is the chance of gaps in the data stored in the dataset. The
scoring system of Code Hunt is based on the number lines of code rather
than the quality of the code.

2.5.3 Code.Org

Code.Org is a celebrity endorsed "blocky coding" tool (Kalelioğlu, 2015),
which uses a drag and drop approach to teaching programming. How-
ever, a drag and drop approach encourages the novice programmer to use
trial and error rather than critical thinking to solve the puzzle at hand.
Does such an approach give a real indication of whether the novice has
understood the concept behind the puzzles? Furthermore, is the data gath-
ered in a supervised environment? Since the exercises can be attempted at
home, the novice is able to seek help. Therefore, is the data available for
researchers to analyze generated from a novice level programmer or an ad-
vanced level programmer? In addition, the research done by kaleliouglu et
al. has shown that using code.org has no effect on the reflective thinking
of the novice. Is this an indicator that code.org is more of a memory based
learning tool?

2.6 Approaches for Data Analysis

The approaches used for analyzing student data can be broadly categorized
into two categories; (1) earlier work focussed on single- and multivariate
regression analysis, while (2) more recent work has focussed on machine
learning and data mining approaches. The use of single- and multivariate
regression as a means to analyze correlations between a number of vari-
ables is the primary analysis method used in the literature. Numerous ar-
ticles discuss the connection between a specific variable and introductory
programming course outcomes (Barker and Unger, 1983; Bennedsen and
Caspersen, 2006; Bergin and Reilly, 2005; Leeper and Silver, 1982; Stein,
2002; Werth, 1986; Wiedenbeck, Labelle, and Kain, 2004; Byrne and Lyons,
2001; Watson, Li, and Godwin, 2014; Tukiainen and Mönkkönen, 2002) ,
while less attention has been invested into multivariate analysis (Bergin
and Reilly, 2006; Rountree et al., 2004; Cantwell Wilson and Shrock, 2001;
Ventura Jr, 2005; Rodrigo et al., 2009a).

Educational data mining and learning analytics

The concept of learning analytics is a relatively new. The term was defined at
the first international conference on learning analytics as being "the measure-
ment, collection, analysis and reporting of data about learners and their contexts,
for the purposes of understanding and optimizing learning and the environments

20 Chapter 2. Background

in which it occurs". It is important not to confuse the definition of learning
analytics with academic analytics. The term academic analytics entered the
teaching community in 2005 but had previously been adopted by the We-
bCT company to describe the data collection functions enabled by course
management systems. There is a major difference between the target lev-
els of learning analytics and academic analytics. Learning analytics serves
at a course level with a focus on social networks, conceptual development,
discourse analysis, and intelligent curriculum, or at a departmental level
focusing on predictive modeling, and the recognition of success and failure
patterns, etc. Academic analytics however works on the institutional level,
regional level, or national/international levels. Educational data mining,
intelligent curriculum and adaptive learning are also activities that fall un-
der the banner of learning analytics.

Machine learning and data mining approaches

The implementation of data mining methods and tools for analyzing data
available at educational institutions, defined as Educational Data Mining
(EDM) is a relatively new stream in data mining research. Educational data
mining can be used to address a wide range of problems, such as retention
of students, improving institutional effectiveness, enrollment management,
targeted marketing, alumni management, and course outcome prediction.

Machine learning approaches are becoming more familiar for practition-
ers and researchers as they provide deep insight into the data regardless of
the sample size and dimensional complexity. There have been several ef-
forts made to evaluate different aspects of students progress by using ma-
chine learning techniques.

Data mining techniques have been used to predict course outcomes us-
ing data collected from enrollment forms (Kovačić and Green, 2010) as well
as using data from students’ self-assessment (Kumar and Vijayalakshmi,
2011). Techniques used range from basic machine learning algorithms to
more advanced ones such as decision trees (Quadri and Kalyankar, 2010).
There have been also experiments using real time data to detect student
failures (Attar and Kulkarni, 2015). Abdullah et al. proposed a student
performance prediction system using Multi Agent Data Mining to predict
the performance of the students based on their data. Kabakchieva used a
dataset of 10330 student grades categorized into different groups accord-
ing to their performance (Abdullah, Malibari, and Alkhozae, 2014). Using
the WEKA data mining tool, a series of classification models were trained
on the pre-university based and enrollment based features extracted from
student’s data with the goal of predicting performance. Ramaswami and
Bhaskaran used the CHAID prediction model to analyze the interrelation
among variables that are used to predict the outcome of the performance

2.7. Machine Learning in CSed 21

at higher secondary school education (Ramaswami and Bhaskaran, 2010).
They identified a set of attributes: medium of instruction, marks obtained in
secondary education, location of school, living area and type of secondary
education. Thai-Nghe et al. applied machine learning to predict academic
performances (Thai-Nghe, Busche, and Schmidt-Thieme, 2009). Arockiam
et al used the FP Tree and K-means clustering technique with the goal of
discovering the similarity between urban and rural students programming
skills (Arockiam et al., 2010). They identified differential skills in program-
ming tasks between rural and urban students. Cortez and Silva used de-
cision trees to predict failure in Mathematics and Portuguese classes using
the data collected from secondary school students. They used 29 features
to train four data mining algorithms including the decision tree, random
forest, neural networks, and support vector machine (N = 788 students).
They reported high prediction ratios for these classifiers and performed a
comparison between their performances. Ramesh et al. investigated the
predictive features in training classification models with a goal of predict-
ing the grade in a higher secondary exam (Ramesh, Parkavi, and Ramar,
2013). Ahmed and Elaraby used data mining techniques to predict course
outcome (Ahmed and Elaraby, 2014).

2.7 Machine Learning in CSed

Machine learning and data mining techniques have also found their way
into computer science education. In 2004, researchers (Rountree et al.,
2004) used a decision tree classifier to identify the combination of factors
that interact to predict success or failure. They reported that students who
chose to answer the survey were somewhat more likely to pass the course
(73% rather than 66%) and a little more likely to get a B or better (45% rather
than 39%). They also found that students who reported that they were “ex-
tremely” keen to do the course had an 85% pass rate, and students who
reported that they were intending to get an A-grade had a 90% pass rate.

Bergin and Reilly used logistic regression on a dataset containing over
25 attributes to train a classifier which was able to categorize novices with
an 80% accuracy ratio (Bergin and Reilly, 2006). The model was trained
based on the data collected from 123 students enrolled in a first-year intro-
ductory programming module.

Blikstein et al. studied how students learn computer programming,
based on data collected from 154K programming source code snapshots
of computer programs developed by approximately 370 students enrolled
in a CS1 course (Blikstein et al., 2014). They used methods from machine
learning to discover patterns in the data and predict final exam grades.

22 Chapter 2. Background

Allevato et al (Allevato et al., 2008) mined the data collected from Web-
CAT (Edwards, 2003), an automated testing system, with a goal of analyz-
ing the relationships between the number of submissions and final score,
code complexity and final score, early submission versus late submission
typifying student habits, and the affect of early/late testing on the final
score. Edwards et al. performed hierarchical clustering analysis on the data
collected from the Web-CAT system and found that students who score well
in programming tasks start the coding assignment early and finish earlier
than others (Edwards et al., 2009). They also reported that approximately
two-thirds of the students who scored well were those individuals who
started more than a day in advance of the deadline.

Lahtinen et al. used statistical cluster analysis on novice programmers
to investigate possible clusters of students in different levels of Bloom’s Tax-
onomy (Lahtinen, 2007).

Clustering methods have also been used to distinguish behavioral pat-
terns. For example, Berland mined source code snapshots and were able
to categorize novices into planners and tinkerers (those who “try to solve
a programming problem by writing some code and then making small changes in
the hopes of getting it to work”) (Berland and Martin, 2011), while in a fol-
low up study they determined how students progress from exploration,
through tinkering, to refinement (Berland et al., 2013). Becker and Mooney
reviewed the application of the principal component analysis in categoriz-
ing compiler errors (Becker and Mooney, 2016). They found a new way of
discovering categories of related errors from data produced by the novices
during the course of their programming activity.

In a recent work, Linden and colleagues utilized novel learning analytic
methods combined with learning management systems and were able to
identify the students at risk three weeks before the end of a seven week
programming course. They used all of the course events, such as exercise
submissions, lecture attendance and weekly assignments and performed
the analysis on the automatically collected data. In their work they basically
implemented a support vector machine (SVM) on the data collected by the
LMS system mainly the metadata of the assignment submission and class
attendance.

Other studies where students’ progress has been visualized have been
proposed by, for example, Mabinya (Mabinya, 2005) and Blikstein (Blik-
stein, 2011). Mabinya discussed the possibility of applying data mining
techniques and algorithms to visually model the behavior of novice pro-
grammers while they learn to code, while Blikstein described an automated
technique to assess, analyze and visualize students learning computer pro-
gramming (Blikstein, 2011).

2.8. Assessment 23

All the abovementioned studies have the element of machine learning in-
cluded. However, non of the mentioned studies is specific enough to focus
on the novice programmer, and the task of classification, or so called super-
vised machine learning. Also, there are a few points that I need to highlight
in this section. First, the models proposed in such studies are context de-
pendent. That is, the proposed models suffer from dependency to the local
environmental variables. Such models will fail in case they are adopted to
work with the data collected from other institutes. Secondly, in majority of
the cases, the goal is not to predict, but is to model. The primary differ-
ence between what is done in this dissertation and the works reviewed in
this section is that the result of this dissertation is context independent, and
specific to the task of prediction of performance. Nevertheless, it is impor-
tant to define performance, and how it is measured through assessment.
Next, I will review different means of assessment to clarify what do I mean
by performance in this context.

2.8 Assessment

Automated assessment of the programming task was initially carried out
through outcome analysis (Cooper et al., 2005), where a student’s source
code is tested using a series of test cases. Such methods are efficient and
fully automated. However, there have been debates about using outcome
analysis. The main issue with such systems manifests itself in the argument
that challenges the very definition of programming: a task which is not only
about typing the programming code, but also a way of thinking and solving
problems (Marion et al., 2007). The primary concern is the operationaliza-
tion of learning and knowing if such constructs in fact measure whether a
student learns to code or not.

Simon et al. examined the concept of thinking like a computer sci-
entist by analyzing students’ ability to apply computer programming to
real-world problems (Simon et al., 2008). They found that well before the
course, students already have considerable knowledge of core concepts but
not in the way a computer programmer has that same knowledge. Simon
et al. reported that although students showed skills for troubleshooting
problems (Simon et al., 2006), they were unable to efficiently identify prob-
lems. Soloway and Ehrlich analyzed novices to identify their programming
strategies (Soloway and Ehrlich, 1984). They logged the errors encountered
by the novices and noted that the majority of the errors were planning er-
rors.

24 Chapter 2. Background

2.9 Studies of the Novice Programming Process

With a focus on errors and coding process, multiple studies have attempted
to categorize novices based on their coding strategy. Perkins et al. inves-
tigated novices in a laboratory environment programming in BASIC. They
categorized the students as movers, tinkerers and stoppers (Perkins et al.,
1986). Stoppers, as the name implies, simply stop, when confronted with
a problem. and "they appear to abandon all hope of solving a problem on their
own" (Perkins et al., 1986). Movers keep trying, experimenting and modi-
fying the code. Tinkerers are those who are not able to trace their program
and they make changes at random. A total of five groups of novice pro-
grammer behaviours have been subsequently identified: followers, coders,
understanders, problem solvers, and participators (Booth, 1992; Bruce et
al., 2006).

Turkle and Papert also categorized novices into tinkerers and planners
(without using exactly those terms) (Turkle and Papert, 1992). However,
they reported that student performance can be high, regardless of which
category in to which they fall. Turkle and Papert showed that planning
and tinkering should not be seen as ideal attributes, but just different ways
of attacking the programming task without necessarily achieving good or
bad results. These findings were supported by Berland et al. in a study on a
larger scale (Basawapatna et al., 2011). They aimed to see whether students
recognized computational thinking patterns (Ruthmann et al., 2010).

Worsley and Blikstein presented an algorithm for studying changes in
programming styles among novice programmers (Worsley and Blikstein,
2013). They also concluded that looking at changes in students’ program-
ming update characteristics may provide useful insights for studying pro-
gramming proficiency, when measured by assessment.

2.10 The analysis of the novice programmer errors

Nowadays, many Interactive Development Environments (IDEs) can col-
lect data about the novice’s programming process. The data collected usu-
ally has the form of 1) metadata which reports features of different events
such as compilation, project open, line edit, etc, and 2) the source code snap-
shot data which reports the state of the code when the abovementioned
events are triggered.

Error messages are one of the most important means of communica-
tion between the programming environment and the programmer. The aim
of error messages is to help facilitate the program process and, as a trou-
bleshooting technique, help the user understand the problem underlying
the error. An insufficient or incomplete error message can be misleading

2.10. The analysis of the novice programmer errors 25

to the programmer who could spend an enormous amount of time spot-
ting the source of the problem. Multiple studies have attempted to analyze
the errors encountered by the novice programmers. This stream of research
gives insight in the challenges that novice programmers face when learning
to code. The analysis of such data also generates insights into how to im-
prove such error messages in a way that leads to better learning outcomes.

Marceau and colleagues demonstrated that error messages in general
fail to convey information accurately to students (Marceau, Fisler, and Kr-
ishnamurthi, 2011). Brown and Altadmri investigated the errors generated
by novices on a large scale (N = 100K) and noticed a poor overlap between
the educators’ beliefs of what the most common error messages were and
what they actually observed in their data (Brown and Altadmri, 2014). The
frequency of the most common mistakes has also been reviewed by Peter-
son et al. in different contexts (Petersen, Spacco, and Vihavainen, 2015).

Other researchers have used compilation error messages to quantify
students’ ability to handle errors. Among the early work in studying com-
mon mistakes of novices was the work by Joni et al (Joni et al., 1983). An-
derson and Jeffries studied errors that students made while writing LISP
functions (Anderson and Jeffries, 1985). They reported an increase in the
number of mistakes when the irrelevant aspects of the problem were in-
creased. They reported that "slips" are the main reason behind the errors
rather than misconceptions. They analyzed their results within a working
memory cognition framework and reported that errors occur when there
is a loss of information from the novice’s working memory. Bonar and
Soloway attempted to explain the errors generated by novices though a
model (Bonar and Soloway, 1985). In the work done by Johnson and
Soloway, PROUST was introduced: a tool which performs online analysis
of Pascal programs written by novice programmers (Johnson and Soloway,
1985). They used a knowledge base of programming plans and strategies,
together with common errors associated with them, to construct the model.
They reported correlations between the intention of the novice and the er-
rors generated by the novice. Pea reviewed a set of conceptual "bugs" and
how novice programmers understand their programs (Pea, 1986). These
language independent errors were observed in a range of novices with
varying education levels, from high school to college. They identified three
main classes of novice bugs – parallelism, intentionality, and egocentrism.
Sleeman used a set of screening tests on 68 students from grades 11 and
12 who had just finished a Pascal unit (Sleeman, 1984). He found that
over 50% of students had problems learning Pascal and he reviewed the fre-
quency of the errors generated. In the work done by Sopher et al., a descrip-
tive theory of buggy novice programs and an error categorization scheme

26 Chapter 2. Background

were introduced (Spohrer, Soloway, and Pope, 1985). The main idea be-
hind the presented theory was the cognitively plausible knowledge that
underlies programming. Spohrer and Soloway stated that novices must
be familiar with specific high frequency errors, and to learn as much as
possible about the origins of all bugs (Spohrer and Soloway, 1986). They
reported that just a few bugs account for most mistakes made by novices,
and unlike the common belief that most errors can be attributed to the stu-
dents’ misconceptions about the language constructs, the majority of errors
happen as a result of a plan composition problem. That is, novices struggle
to put different bits of the code together to achieve a certain goal.

In 2005, Jackson and Carver gathered compilation errors from 583 stu-
dents and 11 academics over a single semester, which they collected by a
custom-built Java IDE (Jackson, Cobb, and Carver, 2005). They found that
the top ten types of bugs accounted for more than half of the mistakes. They
reported a discrepancy between the programming bugs they observed and
what the faculty had believed to be the most common. Ahmadzadeh et
al. collected Java compilation errors with timestamps and the source code
data (Ahmadzadeh, Elliman, and Higgins, 2005). They categorized the er-
rors into three groups – semantic, logical and syntactic. They reported that
36% of the errors were syntactic, 63% were semantic and only one percent
were lexical. They concluded that a considerable number of students with a
good understanding of programming concepts were not able to debug their
code effectively. They also reported that the majority of the good debuggers
also perform well in the programming task, but not all who were good in
programming also performed well in debugging.

Later, Others (Jadud, 2006; Rodrigo et al., 2009b; Watson, Li, and God-
win, 2013; Carter, Hundhausen, and Adesope, 2015; Becker, 2016) exten-
sively studied the application of the generated errors with a goal of assess-
ing students’ ability to handle the errors in the code; hence quantifying
learning aptitude. Spacco et al. performed a preliminary exploratory anal-
ysis of data collected by the CloudCoder (Hovemeyer and Spacco, 2013)
in multiple contexts and reported that more difficult exercises require more
time and effort to complete, but are not more likely to result in compilation
failures (Spacco et al., 2015).

There are many open questions about profiling students errors. I have
addressed this issue in detail in the Discussion Chapter of the thesis. How-
ever, to make the dissertation easier to follow, I now highlight a few points
about the problems with profiling students error. Firstly, what we call an
error in one programming language may instead be defined as a warning
in another language. This is more evident when comparing interpreted
languages with compilation based languages. This leads to a major con-
cern that, for the same programming task in two different languages, a

2.10. The analysis of the novice programmer errors 27

novice might/will demonstrate a different error profile - which error pro-
file, in such cases, is valid? Secondly, a considerable number of errors are
due to typos. None of the mentioned studies have attempted to distin-
guish the typo based errors and filter them out before performing the anal-
ysis. As a result, the quality of the data itself is not guaranteed, hence any
model/algorithm which is trained/designed based on such data might not
be accurate. Lastly, considering a hypothetical algorithm which is truly able
to capture a precise profile of students errors, the very nature of such mod-
els is dynamic. That is, the same student will probably have different error
profiles if measured throughout the course and hence the generated results
might not be consistent. In this dissertation, I aim to design a model which
is not dependent on the errors generated by students and hence is free of
such variables.

29

Chapter 3

Results Overview

3.1 Results Overview

This chapter introduces the reader to my research story. Chapter 5 to Chap-
ter 12 inclusive each contain a published peer-reviewed conference/journal
paper that contributes to that story. Each paper chapter is preceded by a
contribution statement detailing any collaborations involved. What follows
in this chapter is an overview of the story that those papers tell.
Although the work that follows is predominantly mine, the use of the pro-
noun "we" is used instead of "I" out of respect for those who contributed
to the publications. See each of the papers (Chapter 5 to Chapter 12) and
Appendix B for details of coauthors’ contributions.

3.2 The Thesis About The Thesis

The main question investigated in my thesis is as follows:

Is it possible to identify differences in the source code programming data collected
from the novice programmers which can lead to distinguishing those who eventu-
ally learn to program and those who don’t?

To answer the above statement, I investigated the answers to two major
research questions. These research questions are presented in brief in Table
3.1 and reviewed in more details in subsections 3.2.1 and 3.2.2.

TABLE 3.1: Research Questions, the thesis about the thesis,
and the corresponding chapters

Research Question Description Chapters
RQ1 Is it possible to identify struggling students by

analyzing the source code snapshot data?
5, 6, 7, 8, 9

RQ2 Can we address the problem of the sensitivity
of the prediction (of the struggeling novice pro-
grammers) in a more context-independent man-
ner?

10, 11, 12

30 Chapter 3. Results Overview

3.2.1 Research Questions 1

Research question one is mainly concerned with the quantitative metrics
derived from the source code snapshot and their associations with stu-
dents’ performance. I have investigated this matter in two different con-
texts where the major difference between the two contexts is the language
used to teach novices: Java, and SQL. Throughout Chapters 5, 6, 7, 8 and
9, I demonstrate how the data collected from the novices can be used to a.

review associations between different programming tasks, and b. perform
machine learning tasks to identify course outcome.

Paper 1. Chapter 5: Geek genes, prior knowledge, stumbling points and

learning edge momentum: parts of the one elephant?

What we have demonstrated in this paper is that advocates of the various
hypotheses – Geek Genes, Prior Knowledge, Stumbling Points and Learn-
ing Edge Momentum – can all find support for their respective hypotheses,
in aspects of the data in this paper. This paper demonstrates, among other
things, that there are substantial differences between students in their pro-
gramming ability as early as the third week of semester, using test questions
based only on the concept of assignment.

Paper 2. Chapter 6: Exploring machine learning methods to automatically

identify students in need of assistance

This work is a starting point for using machine learning techniques on nat-
urally accumulating programming process data. In this work, we show that
the information obtained from the novices can be used in a machine learn-
ing context to identify students’ performance in course outcomes. When
combining source code snapshot data that is recorded from students’ pro-
gramming process with machine learning methods, we are able to detect
high and low-performing students with high accuracy after the very first
week of an introductory programming course. In this paper, two primary
types of information are collected from the novices’ source code snapshot
data: a. the performance in completing lab exercises, and b. the number of
steps/attempts taken during the programming task.

Paper 3. Chapter 7: A Quantitative Study of the Relative Difficulty for

Novices of Writing Seven Different Types of SQL Queries

In this work, we extend the context to another language, the SQL. Data
collected on large scale for around 2300 students is analyzed with a focus
on association analysis of students’ performance writing different types of
SQL statements. Programming in Java and writing SQL SELECT statements

3.2. The Thesis About The Thesis 31

do not have high convergence, however they can both be viewed from the
same angles: performance and number of steps/attempts. In this study we
show that there is a high negative correlation between the number of at-
tempts spent on writing simple SQL SELECT statements and performance
in writing harder statements. Results of this paper supports what we found
in the result of the previous paper: novices who require more attempts to
complete a simple programming task tend to perform poorer in more com-
plicated assessments.

Paper 4. Chapter 8: Students’ Semantic Mistakes in Writing Seven Dif-

ferent Types of SQL Queries

In this study we attempted to analyze the SQL SELECT statements gener-
ated by novices in more detail. This paper aims to explore what we could
understand from the content of the data generated by the novices. We at-
tempted to understand the path that leads a novice to construct a correct
statement. The analysis of the data collected from novices revealed that
both semantic and syntactic mistake are inevitable and happen through the
process of the construction of the correct SQL statement.

Paper 5. Chapter 9: Students’ Syntactic Mistakes in Writing Seven Dif-

ferent Types of SQL Queries and its Application to Predicting Students’

Success

This study investigates the correctness and the compilation result of novice
SQL statements with the aim of identifying common mistakes made by
novices. We also studied how these mistakes predicted performance in
other assessments. The result of this study demonstrated that it is possi-
ble to predict students’ performance in assessments based on the number
of steps, and correctness of the SQL SELECT statements.

3.2.2 Research Question 2

This research question is mainly concerned with the element of context. To
put it in other words, the aim is to extend the research scope to under-
stand caveats of data, data derived models, and the application generality
to see if machine learning techniques can indeed be used to correctly pre-
dict performance of the novices. To explore the answer to this research
question, I investigate the sensitivity of the prediction outcome towards
changes in context. Based on the findings, I propose a machine learning
based method which is capable of analyzing the data in a more context-
independent fashion. I explore the application of this method in associa-
tion analysis of novices’ performance . Chapters 10, 11 and 12 review these

32 Chapter 3. Results Overview

findings.

Paper 6. Chapter 10: Performance and Consistency in Learning to Pro-

gram

In this work, we analyze students’ performance and consistency with pro-
gramming assignments in an introductory programming course. We demon-
strate how performance, when measured through progress in course as-
signments, evolves throughout the course, explore weekly fluctuations in
students’ work consistency, and contrast this with students’ performance in
the final course exam. Our results indicate that whilst fluctuations in stu-
dents’ weekly performance do not distinguish poor performing students
from well performing students with high accuracy, more accurate results
can be achieved when focusing on the performance of students on individ-
ual assignments which could be used to identify struggling students.

Paper 7. Chapter 11: On the Number of Attempts Students Made on

Some Online Programming Exercises During Semester and their Subse-

quent Performance on Final Exam Questions

In this chapter, I propose a method for analyzing programming source code
snapshot data which is not dependent on the static success factor. The
method is mainly concerned with the number of attempts/steps spent on a
programming task, and aims to investigate the association of this element
with the course outcome. This method in particular is concerned with iden-
tification of high/poor performing students.

Paper 8. Chapter 12: A Contingency Table Derived Methodology for An-

alyzing Course Data

This journal paper extends the scope of the method for data analysis pre-
sented in Chapter 11 by introducing new metrics which could be derived
from the contingency tables.

33

Chapter 4

Method

4.1 Introduction

In this chapter, I review the data collection tools, different features of the
generated data, and the context in which the data was generated. Section
4.2 reviews the concept of the programming source code snapshot. In sec-
tions 4.2.1 and 4.2.2. I review both the context and different aspects of data
collection.

4.2 Background

Data is the fuel of educational data mining and learning analytics. From the
survey of research projects involving routine data collection from CS learn-
ers, it is clear that there are wide variations in the nature and granularity of
data collected by different researchers. Collecting and preprocessing data
also plays a key role in verifying experimental findings. Hence, I will de-
scribe the state of the art in data collection of programming traces as well as
the differences in various data collection approaches, including the granu-
larity of the data which describes how novices have solved programming
problems. From the survey of research projects involving routine data col-
lection from CS learners, it is clear that there are wide variations in the
nature and granularity of data collected by different researchers.

Figure 4.1 shows a general way of characterizing a student’s interaction
with a software tool or system while they work on a programming prob-
lem. Each interaction can be thought of as an event, consisting of some ac-
tion performed by the student, along with any feedback or results that are
received in response. At the same time, the student is interacting with tools
in order to construct a solution such as a function or program. That means
that, in addition to the action performed by the student, there is also the
current state of the solution that is being constructed. Data collected by var-
ious research projects while computing students work on course activities
involves capturing one or both of these entities: the events, with or without

34 Chapter 4. Method

the associated feedback, and/or the state of the solution being constructed.

FIGURE 4.1: An abstract view of the logical services
where data instrumentation and collection are typically
performed. Note that some data collection tools encom-
pass multiple logical services (Adapted from Ihantola et al.,

2015).

Figure 4.2 depicts the most common points on the granularity spectrum
from smallest (individual key strokes) to largest (complete assignment sub-
missions to some form of assessment or feedback system). In many cases,
differences between the data collected and used by different researchers can
be characterized by describing which point(s) on the granularity continuum
were chosen, and whether event actions, event actions plus feedback, or the
states of the solution were captured.

Researchers have commonly used different varieties of tools for system-
atic collection of student data:

• Automated grading systems – tools used to collect and process student
work that is presented for assessment are commonly used in data col-
lection. These systems typically result in data sets at the granularity
of submissions (a complete solution state representation, usually iden-
tified by the student as ready for evaluation). Although full event
information about the student’s submission action and the associated
feedback received may be recorded, a significant limitation is the rela-
tive sparseness of these events, and the lack of visibility into solution
states or actions between submission events. Web-CAT (Edwards and
Perez-Quinones, 2008) is a typical example of a tool used for this kind
of data collection.

4.2. Background 35

FIGURE 4.2: Data can be collected at different levels of
granularity, which implies different collection frequencies
and associated data set sizes (Adapted from Ihantola et al.,

2015).

• IDE instrumentation – tools used to collect individual events within a
student’s IDE usually focus on “project”-level events, including file
saving, compilation, and execution. Some systems, such as HackyS-
tat (Johnson et al., 2004), focus more on recording information about
events, while others, such as Marmoset (Spacco et al., 2006), focus on
capturing snapshots of the solution being constructed. Some web-
based programming tools also collect data at this level of granularity.

• Version control systems – some systems that focus on the state of the
solution only, rather than event tracking, use version control systems
to store histories of snapshots of the code being developed. This can
be done with voluntary source code commitments when students are
actively using source code control on their projects, or by using auto-
mated instrumentation to transparently commit the state of the source
code to a version control system.

• Key logging – at the finest level of granularity, some systems track
and store events at the level of individual keystrokes. Effectively, the
working environment has to be augmented with a keylogger. This
technique appears to be more common in web-based problem solv-
ing environments at present, as well as newer IDE instrumentations.
Here, there are also multiple levels of granularity — some contexts
store progress, e.g. during a pause, leading to small bulk inserts,
while others store each event individually.

In the next three subsections, I review the data used to generate the
results in different chapters of this PhD thesis.

36 Chapter 4. Method

4.2.1 Programming source code snapshots, collected at the Uni-

versity of Helsinki.

One set of data was collected from two semesters of an introductory pro-
gramming course organized at the University of Helsinki. The course lasts
six weeks, is taught in Java, and uses a blended online textbook that covers
variables, basic I/O, methods, conditionals, loops, lists, arrays, elementary
search algorithms and elementary objects.

In this programming course, the main focus is on working on practi-
cal programming assignments, accompanied by a weekly two-hour lecture
that covers the basics needed to get started with the work. Support is avail-
able in open computer labs, where teaching assistants and course instruc-
tors are available some 20-30 hours each week.

Students work on a relatively large number of programming assign-
ments each week. In the first week, an assignment may be for example
"Create a program that reads in two integers and prints their sum".

Although no socioeconomic factors were available, the studied popula-
tion is relatively homogenic, and the educational system in the context is so-
cially inclusive, meaning that there is both a minimal under representation
of students from a low educational background and a minimal over rep-
resentation of students from a high educational background (Orr, Gwosć,
and Netz, 2011). There are also no tuition fees, and students receive stu-
dent benefits such as direct funding from the state, assuming they progress
in their degree work.

The students’ programming process was recorded using a system called
Test My Code (Vihavainen et al., 2013) that is used for automatically assess-
ing students’ work in the course. For each student that consented to having
their programming process recorded, every key-press and related informa-
tion such as time and assignment details was stored. The students used
the same programming environment both from home and at the univer-
sity. Students were asked to provide information on whether they had prior
programming experience. Access to information on students’ age, gender,
grade average, and major was given. In the studied context, major is se-
lected before enrollment, and in both semesters, over 50% of the students
had subjects other than computer science as their major.

In the first semester, a total of 86 students participated in the data collec-
tion, and in the second semester (fall), a total of 210 students participated in
the data collection. Full fine-grained key-log data is available only for the
first semester, while for the second semester, only higher level actions such
as saves, compilation events, run events and test events are available. As
the educational system in Finland forces students to choose their major at

4.2. Background 37

the time they apply to the university, the introductory programming course
is typically the first course for the CS students, while students who major
in other subjects often take the course later in their studies. However, many
students with CS as a major have completed the course already before start-
ing their university studies.

While attendance in the course activities is not mandatory, 50% of total
course points comes from completing programming assignments. The rest
of the course points comes from a written exam, where students answer
both essay-type questions as well as programming questions. To pass the
course, the students have to receive at least half of the points from the exam
as well as half of the points from the programming assignments, while the
highest grade in the course can be received by gathering over 90% of the
course points.

A full list of the assignments used by TestMyCode is available at
http://mooc.fi/courses/2013/programming-part-1/material.html/. Appendix
F reviews the topics and the course structure for the subject Introduction to
Programming at University of Helsinki. Details of the material and assign-
ments used in the first week of the semester is presented in Appendix I.
Due to limitations in page count of this thesis, the whole material used in
other weeks of the semester were not used in the body of this thesis.

4.2.2 Database source code snapshots, collected at the University

of Technology Sydney.

Data collected from a database course has fundamental differences with the
data collected from a programming course. However, the data collected
from the SELECT statements generated by novices has interesting topical
convergence which makes it of interest for analysis. In regards to the scope
of this thesis, each SQL SELECT statement can be either correct, incom-
plete, or syntactically incorrect. While the nature of these statements is non-
procedural, the expansion of the initial template by which the novice starts
the construction of the SELECT statement is similar to the idea of chunking
in programming. Regardless of the content, the initial template, the devel-
opment and the correctness status of a SQL SELECT statement compared to
a piece of code in Java, could be seen on the same level: both datasets can
be used to extract the same details which is in the data analytics process.
However, the fundamental differences in context is the main reason for its
inclusion in this thesis: Can I integrate the findings from data collected in a
programming context with data collected in a database context?

38 Chapter 4. Method

This data was collected in a purpose-built online assessment system,
AsseSQL (Prior and Lister, 2004) (See Appendix E for more information).
The students in this study were all undergraduates at UTS, studying Bach-
elor degrees in Information Technology or Software Engineering.

In the online test, students are allowed 50 minutes to attempt seven SQL
questions. On their first test page in AsseSQL, students see all seven ques-
tions 4.3, and they may attempt the questions in any order. All seven ques-
tions refer to a "scenario" database that is familiar to the students prior to
their test. An example of such a scenario database is given in Figure 4.4
as an entity relationship diagram (ERD). Each question is expressed in En-
glish, and might begin, "Write an SQL query that ...". A student’s answer is
in the form of a complete SQL SELECT statement.

FIGURE 4.3: Student’s home screen at AsseSQL. Students
may attempt questions in any order, as many times as they

wish.

When a student submits a SELECT statement for any of the seven ques-
tions, the student is told immediately whether their answer is right or wrong.
If the student’s answer is wrong, the system presents both the desired ta-
ble and the actual table produced by the student’s query (see Figure 4.5).
The student is then free to provide another SELECT statement, and may
repeatedly do so until they either answer the question correctly, run out of
time, or choose to move on to a different question. A database SQL SELECT
statement source code snapshot is generated every time the novice presses
the submit button. If a student moves to a new question without having
successfully completed the previous question, the student may return to

4.2. Background 39

FIGURE 4.4: Screen for an individual question. The ques-
tion and the simple output to clarify the question are pre-

sented for each question in the test.

that question later (see Figure 4.6).

FIGURE 4.5: Feedback screen for an individual question
with the output of model answer as well as the student’s

answer are presented in this page.

The grading of the answers is binary – the student’s attempt is either

40 Chapter 4. Method

correct or incorrect. As there may be more than one correct SQL statement
for a specific question, a student’s SQL statement is considered to be cor-
rect when the table produced by the student’s SELECT statement matches
the desired table. (Some simple ’sanity checks’ are made to ensure that a
student doesn’t fudge an answer with a brute force selection of all required
rows.)

FIGURE 4.6: Back to the student’s home screen: students
may return to this at anytime.

Prior to taking a test, the students are familiarized with both AsseSQL
and the database scenario that will be used in the test. About a week before
the test, students receive the Entity Relationship Diagram (ERD) (See Fig-
ure 4.7 for an example of such ERDs used) and the CREATE statements for
the scenario database. The sample practice ERD and its CREATE statements
are included in Appendix G. Note, however, that students are not provided
with the data that will fill those tables, nor are they provided with sample
questions for that database scenario. Several weeks before the actual test,
students are provided with access to a ’practice test’ in AsseSQL, which has
a different scenario database from the scenario database used in the actual
test.

A more detailed description of the online test software, AsseSQL, fol-
lows. All the data about each test to be taken are stored in a database, for

4.2. Background 41

FIGURE 4.7: A sample of the ERD used in the test.

example, test date, duration, total number of marks, number of questions
and type of SQL query to be tested in each question; in other words, the de-
sign of the test. Also stored in this database is a query pool (See Appendix
G)– a selection of SQL problems and model answers (i.e. queries) that test
different types of SQL statements. The structure of each test is such that
although all the students in a class will do Test 1, for instance, each student
will be given their own unique version of Test 1 when they actually take
the test, as questions for each student are chosen at random from the pool.
In the query pool, there are a number of problems that could be used for
different question types. When a particular student logs on to do the test,
the program chooses one of these queries for different questions of this stu-
dent’s test, and similarly for each of the other questions in other students’
tests. A second, ’scenario’ database contains the tables against which both
the model solutions (queries) and the students’ attempts for each test ques-
tion are executed. For example, there might be an Order Entry database
containing Customer, Product and Order tables for Test 1. The questions
for a test would require queries to be constructed for querying data stored
in this scenario database.

The data collected from AsseSQL is from tests run over the last 10 years
and contains around 163000 SQL SELECT statement snapshots from around
2300 novices. More details about the data is presented in Chapters 7, 8, and
9.

43

Chapter 5

Geek genes, prior knowledge,

stumbling points and learning

edge momentum: parts of the

one elephant?

5.1 Introduction

This paper aims to find evidence for different theories for explaining why
novices struggle with programming. In this paper, we demonstrate that
our results can be interpreted in a variety of ways, hence different inter-
pretations can be obtained from the data. In this paper we stress that the
design of the experiment. Our findings in this paper shed light on the ex-
periment design and the data analysis methods that motivated the studies
in subsequent chapters of the thesis.

5.1.1 Statement of Contribution of Co-Authors

The authors listed below have certified that:

1. they meet the criteria for authorship in that they have participated in
the conception, execution, or interpretation, of at least that part of the
publication in their field of expertise;

2. they take public responsibility for their part of the publication, except
for the responsible author who accepts overall responsibility for the
publication;

3. there are no other authors of the publication according to these crite-
ria;

4. potential conflicts of interest have been disclosed to (a) granting bod-
ies, (b) the editor or publisher of journals or other publications, and
(c) the head of the responsible academic unit; and

44
Chapter 5. Geek genes, prior knowledge, stumbling points and learning

edge momentum: parts of the one elephant?

5. they agree to the use of the publication in the student thesis and its
publication on the QUT ePrints database consistent with any limita-
tions set by publisher requirements.

In the case of this chapter:

Title: Geek genes, prior knowledge, stumbling points and learning
edge momentum: parts of the one elephant?

Conference: International Computing Education Research confer-
ence 2013

URL: http://dl.acm.org/citation.cfm?id=2493416&dl=ACM&coll
=DL&CFID=862572254&CFTOKEN=60379727

Status: Presented, August 2013

TABLE 5.1: Authors’ Area of Contribution for The Paper
Corresponding to Chapter 5

Contributor Area of contribution (See appendices A and B)
(a) (b) (c)(i) (c)(ii)

Alireza Ahadi
Raymond Lister

Candidate confirmation:

I have collected email or other correspondence from all co-authors confirm-
ing their certifying authorship and have directed them to the principal su-
pervisor.

Alireza Ahadi

Name Signature Date

Principal supervisor confirmation:

5.1. Introduction 45

I have sighted email or other correspondence from all co-authors confirm-
ing their certifying authorship.

Raymond Lister

Name Signature Date

46
Chapter 5. Geek genes, prior knowledge, stumbling points and learning

edge momentum: parts of the one elephant?

5.2 PDF of the Published Paper

ustralia ustralia

123

124

125

126

127

128

5.3. Discussion 53

5.3 Discussion

This paper demonstrates that differences in the programming knowledge
of students are evident from very early in an introductory programming
course, when the only concept upon which students are tested is the very
basic concept of assignment.

The data collected for this study was mainly extracted from a pen and
paper environment. No source code snapshot data was analyzed at this
stage. The only instrument of analysis was correlation analysis of the test
outcome among multiple tests. In the next chapter, I demonstrate how the
data collected from the coding environment of the novices can be used in
the machine learning based correlation analysis to identify struggling stu-
dents.

55

Chapter 6

Exploring machine learning

methods to automatically

identify students in need of

assistance

6.1 Introduction

The paper presented in the previous chapter demonstrated that differences
in the programming knowledge of students are evident from very early
in an introductory programming course. The results in that paper were
generated by simple correlation analysis of test questions. In that paper, no
attempt was made to capture the process that led a student to a particular
test answer.

The paper presented in this chapter aims to predict the performance in
the course outcome through analysis of the very basic quantitative values
collected from the source code snapshot data collected from novices in the
early stages of the semester. The outcome of this paper shows that it is
possible to predict the final exam mark of the subject with a high accuracy
using dynamic data extracted from programming source code snapshots.

6.1.1 Statement of Contribution of Co-Authors

The authors listed below have certified that:

1. they meet the criteria for authorship in that they have participated in
the conception, execution, or interpretation, of at least that part of the
publication in their field of expertise;

2. they take public responsibility for their part of the publication, except
for the responsible author who accepts overall responsibility for the
publication;

3. there are no other authors of the publication according to these crite-
ria;

56
Chapter 6. Exploring machine learning methods to automatically identify

students in need of assistance

4. potential conflicts of interest have been disclosed to (a) granting bod-
ies, (b) the editor or publisher of journals or other publications, and
(c) the head of the responsible academic unit; and

5. they agree to the use of the publication in the student thesis and its
publication on the QUT ePrints database consistent with any limita-
tions set by publisher requirements.

In the case of this chapter:

Title: Exploring machine learning methods to automatically identify
students in need of assistance

Conference: International Computing Education Research conference
2015

URL: http://dl.acm.org/citation
.cfm?id=2787717&dl=ACM&coll=DL&CFID=862572254&CFTOKEN=60379727

Status: Presented, August 2015

TABLE 6.1: Authors’ Area of Contribution for The Paper
Corresponding to Chapter 6

Contributor Area of contribution (See appendices A and B)
(a) (b) (c)(i) (c)(ii)

Alireza Ahadi
Raymond Lister
Heikki Haapala
Arto Vihavainen

Candidate confirmation:

I have collected email or other correspondence from all co-authors confirm-
ing their certifying authorship and have directed them to the principal su-
pervisor.

Alireza Ahadi

Name Signature Date

6.1. Introduction 57

Principal supervisor confirmation:

I have sighted email or other correspondence from all co-authors confirm-
ing their certifying authorship.

Raymond Lister

Name Signature Date

58
Chapter 6. Exploring machine learning methods to automatically identify

students in need of assistance

6.2 PDF of the Published Paper

Exploring Machine Learning Methods to Automatically
Identify Students in Need of Assistance

Alireza Ahadi and Raymond Lister
University of Technology, Sydney

Australia
alireza.ahadi@uts.edu.au

raymond.lister@uts.edu.au

Heikki Haapala and Arto Vihavainen
Department of Computer Science

University of Helsinki
Finland

heikki.haapala@cs.helsinki.fi
arto.vihavainen@cs.helsinki.fi

ABSTRACT
Methods for automatically identifying students in need of
assistance have been studied for decades. Initially, the work
was based on somewhat static factors such as students’ edu-
cational background and results from various questionnaires,
while more recently, constantly accumulating data such as
progress with course assignments and behavior in lectures has
gained attention. We contribute to this work with results on
early detection of students in need of assistance, and provide
a starting point for using machine learning techniques on
naturally accumulating programming process data.

When combining source code snapshot data that is recorded
from students’ programming process with machine learning
methods, we are able to detect high- and low-performing
students with high accuracy already after the very first week
of an introductory programming course. Comparison of our
results to the prominent methods for predicting students’
performance using source code snapshot data is also provided.

This early information on students’ performance is benefi-
cial from multiple viewpoints. Instructors can target their
guidance to struggling students early on, and provide more
challenging assignments for high-performing students. More-
over, students that perform poorly in the introductory pro-
gramming course, but who nevertheless pass, can be moni-
tored more closely in their future studies.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education; H.2.8 [Database Applica-
tions]: Data mining

Keywords
introductory programming; source code snapshot analysis;
programming behavior; educational data mining; learning
analytics; novice programmers; detecting students in need of
assistance

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICER ’15 August 9 – 13, 2015, Omaha, Nebraska, USA

Copyright 2015 ACM 978-1-4503-3630-7/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2787622.2787717.

1. INTRODUCTION
Every year, tens of thousands of students fail introductory

programming courses world-wide, and numerous students
pass their courses with substandard knowledge. As a con-
sequence, studies are retaken and postponed, careers are
reconsidered, and substantial capital is invested into student
counseling and support. World-wide, on average one third
of students fail their introductory programming course [4,
40]. Even when looking at statistics describing pass rates
after teaching interventions, as many as one quarter of the
students still fail the courses [38].

One of the challenges in organizing teaching interventions
is that any change is likely to also affect students for whom
the prevalent situation is more suitable. For example, if
a student is already at a stage where she could work on
more challenging projects on her own, mandatory excessively
structured learning activities that everyone needs to follow
may even be counterproductive for her [16, 31]. To provide
another example, while collaborative learning practices such
as pair programming [45] have been highlighted as efficient
teaching approaches for introductory programming [23, 38],
there are contexts in which students mostly work from a
distance and rarely attend an institution.
This diversity of institutions, students, and teaching ap-

proaches is the setting upon which our work builds. We
believe that the appropriate next step in teaching interven-
tions is the transition towards interventions that address
only those students that are in need of guidance, and work
towards that goal by analyzing methods for detecting such
students as early as possible. More specifically, in this work,
we explore methods for detecting high- and low-performing
students in an introductory programming course already
based on the performance during the very first week of the
course. Variants of the topic have been investigated previ-
ously, for example, by Jadud, who proposed an approach to
quantify students’ ability to solve errors using source code
snapshots [15], Ahadi et al., who measured students’ knowl-
edge using tests [1, 2], and Porter et al., who used in-class
clicker data as a lens into students’ performance [24, 25].
This work is organized as follows. First, in Section 2, we

provide an overview of the evolution of the field of under-
standing factors that contribute to students’ performance
in introductory programming. Then, in Sections 3 and 4
we outline our research questions and data in more detail,
as well as explain the methodology and outline the results.
The results are discussed in Section 5, and finally, Section 6
concludes the work and outlines future research questions.

2. BACKGROUND
In the article ”What best predicts computer proficiency” [9],

Evans and Simkin describe early advances into understand-
ing attributes that contribute to the ability of learning to
program. This ability, programming aptitude, is often defined
as the student’s ability to succeed in an introductory pro-
gramming course, and is measured through e.g. the course
grade or a finer-grained measure such as within-course point
accumulation. Before 1975, the research focused mainly on
demographic factors such as educational background and
scores from previous courses, while by the end of the 1970s,
the focus moved slowly to evaluating static tests that mea-
sure programming aptitude. This was followed by research
that started to investigate the effect of cognitive factors such
as abstraction ability and the ability to follow more complex
processes and algorithms [9]. Such research has continued
to this day by introducing factors related to study behavior,
learning styles and cognitive factors [42]. However, recently,
dynamically accumulating data from students’ learning pro-
cess has gained researchers’ attention [15, 25, 37, 41].
Overall, this stream of research has been motivated by

multiple viewpoints, which include identification of students
that have an aptitude for CS-related studies (e.g. [35]); study-
ing and identifying measures of programming aptitude as
well as combining them (e.g. [3, 5, 30, 43]); improvement
of education and the comparison of teaching methodologies
(e.g. [34, 36]); and identifying at-risk students and predicting
course outcomes (e.g. [15, 41]).
Next, we outline some of this work in more depth. We

begin by focusing on factors that do not change at all or
change very slowly, and continue towards dynamic factors
that change more rapidly and where new information may
be constantly accumulated.

2.1 Gender
Studies in past often investigated gender as one of the

factors that may explain programming aptitude – one of the
reasons may be that the field of computing is at times seen as
being dominated by males, and thus exhibits a male-oriented
culture. However, the results show no clear trend. For ex-
ample, in an analysis of introductory programming course
grade and gender, Werth found no significant correlation
(r = 0.080) [43]. In a similar study, Byrne and Lyons found
that female participants in introductory programming course
had a marginally higher point average than their male coun-
terparts, but the difference was not statistically significant [6].
The role of gender was also investigated by Ventura, who
studied the effect of gender by comparing students’ program-
ming assignment, exam, and overall course points, and found
no effect that could be explained by gender [36].

Studies exist that suggest a referential connection between
programming aptitude and gender. For example, in a small
study (n = 11), Bergin and Reilly observed that female
students had statistically significant and strong correlations
(r = 0.72− 0.93) between an Irish high-school leaving certifi-
cate test and programming course scores [5] – an effect that
was not visible among male counterparts.

2.2 Academic Performance
The connection between students’ academic performance

and programming aptitude has been investigated in several
studies. For example, Werth analyzed the connection be-
tween the amount of tertiary education mathematics courses

and programming aptitude, but found no significant corre-
lation (r = −0.019; p > 0.1). She suggested that a large
amount of mathematics courses in tertiary education may
actually be an indicator of improving a weak mathemat-
ics background [43]. Other studies have found connections
between mathematics and introductory programming. For
example, Stein studied the connection between Calculus and
Discrete Mathematics and the grade from an introductory
programming course. The correlations, overall, were weak
(Calculus: r = 0.244; Discrete Math: r = 0.162) [34]. Wat-
son, Li and Goldwin did a similar study, and, similarly, found
no significant correlation between the Discrete Math and the
introductory programming grade (r = 0.06; p > 0.05). How-
ever, there was a mediocre albeit not statistically significant
effect between the Calculus course grade and programming
course points (r = 0.37; p = 0.06) [42].

In addition to mathematics, factors such as language per-
formance and overall grade averages have also been stud-
ied. For example, Leeper and Silver studied students’ En-
glish language scores and the score of the verbal part of the
SAT test. In their study, only the verbal SAT score had
a mediocre correlation with the introductory programming
course grade (r = 0.3777) [19]. Werth found no significant
correlation between secondary education grade average and
the grade achieved in an introductory programming course
(r = 0.074; p > 0.1), but she did find a weak correlation
between university-level grade average and the introductory
programming course grade (r = 0.252; p < 0.01) [43]. Sim-
ilarly, Watson et al. studied correlations between various
secondary education courses and course averages, but found
no statistically significant correlations [42].

2.3 Past Programming Experience
It is natural to assume that past programming experience

influences programming course scores, and thus, the con-
nection has been studied in a number of contexts, albeit
with contradictory results. Hagan and Markham found that
students with previous programming experience received con-
siderably higher course marks than the students with no
programming experience [10]. Wilson and Shrock utilized
five variables related to programming and computer use,
such as formal programming education, the use of internet,
and the amount of time spent on gaming. The combina-
tion of these variables had a significant correlation with
the midterm score in an introductory programming course
(r = 0.387; p < 0.01) [7]. Similarly, in 2004, Wiedenbeck et
al. reported on a study in which the number of ICT courses
taken by students, the number of programming courses taken,
the number of programming languages students had used,
the number of programs students had written, and the length
of those programs were combined into a single factor. The
combination had a weak but significant correlation with the
introductory programming score (r = 0.25; p < 0.05) [44].
While multiple studies indicate a positive correlation be-

tween past programming experience and introductory pro-
gramming course outcomes, somewhat contradictory results
also exist. For example, Bergin and Reilly found that stu-
dents with no previous programming experience had a margi-
nally higher mean overall score in an introductory program-
ming course, and found no statistically significant difference
between students with and without previous programming ex-
perience [5]. In another study, Watson et al. found that while
students with past programming experience had significantly

higher overall course points than those with no previous pro-
gramming experience [42], programming experience in years
had a weak but statistically insignificant negative correlation
with the course points (r = −0.20) [42].

2.4 Behavior in Lectures and Labs
Rodrigo et al. studied students’ observed behavior in

programming labs [26]. They studied students’ gestures,
outbursts, and other factors including collaboration with
other students, and sought to identify factors that are po-
tentially related to students’ success. In addition, they col-
lected source code snapshots from students’ programming
process. Six statistically significant factors (p < 0.05) that
had a mediocre correlation with an introductory program-
ming course midterm score were identified. Four of them
were related to students’ behaviors; confusion (r = −0.432),
boredom (r = −0.389), focus (r = 0.346), and discussion
about the programming environment (−0.316), while two
were related to snapshots. The number of consecutive snap-
shots with errors (r = −0.326) and compilation events in
which the student had worked on the same area in the source
code (r = −0.336) were both negatively correlated with the
midterm score [26].

Another angle at studying students behavior was recently
proposed by Porter et al. [25], who studied students’ re-
sponses to clicker questions in a peer instruction setting.
In their study, they identified that the percentage of cor-
rect clicker answers from the first three weeks of a course
was strongly correlated with overall course performance
(r = 0.61; p < 0.05).

2.5 Source Code Snapshots
In ”Methods and Tools for Exploring Novice Compiling

Behaviour” [15], Jadud presents a method to quantify a
student’s tendency to create and fix errors, which he called
the error quotient. In his study, the correlation between
the error quotient and the average score from programming
assignments was mediocre and statistically significant (r =
0.36; p = 0.012), while the correlation between the error
quotient and the grade from a course exam was high (r =
0.52; p = 0.0002) [15]. Rodrigo et al. used an alternative
version of Jadud’s error quotient, and found that in their
context the correlation between the error quotient and the
midterm score of an introductory programming course was
strong and statistically significant (r = −0.54; p < 0.001) [27].
In essence, this suggests that the less programming errors a
student makes, and the better she solves them, the higher
her midterm grade will tend to be [27].

Watson et al. also conducted a study using Jadud’s error
quotient, and found a significant correlation between the error
quotient and their programming course scores (r = 0.44) [41].
They proposed that the amount of time that students spend
on programming assignments should be taken into account,
and that one should consider the files that a student is editing
as a part of the error quotient calculation [41]. They proposed
an improvement to the error quotient called Watwin, and
found that with this improvement the correlation increased
from (r = 0.44) to (r = 0.51) [41]. They also noted that a
simple measure, the average amount of time that a student
spends on a programming error, is strongly correlated with
programming course scores (r = −0.53; p < 0.01).

Source code snapshots have been used to elicit information
in finer detail as well. For example, Piech et al. [22] stud-

ied students’ approaches to solving two programming tasks,
and found that students’ solution patterns are indicative
of course midterm scores. Programming patterns were also
studied by Hosseini et al., who identified students’ behaviors
within a programming course – some students were more
inclined to build their code step by step, while others started
from larger quantities of code, and reduced their code in
order to reach a solution [14]. Another approach recently
proposed by Yudelson et al. was to use fine-grained concepts
extracted from source code snapshots, and to model students’
understanding of these concepts as they proceed [46].
Next, we explore some of these methods for source code

snapshot analysis, as well as provide researchers with an
outline for performing such studies.

3. RESEARCH DESIGN
This study is driven by the question of identifying high-

and low-performing students as early as possible in a pro-
gramming course to provide better support for them. By
high- and low-performing students, we mean students in the
upper- and lower-half of course scores, and by early, we mean
after the very first week of the programming course. This
means that instructors could plan and provide additional
guidance to specifically selected students already during the
second week of the course.

For the task, we explore previously proposed methods for
predicting students’ performance from source code snapshots,
and evaluate a number of machine learning techniques that
have previously received little attention for the task at hand.

3.1 Research Questions
Our research questions for this study are as follows.

RQ1 Given our dataset, how do the methods proposed by
Jadud and Watson et al. perform for detecting high-
and low-performing students?

RQ2 Given our dataset, how do standard machine learn-
ing techniques perform for detecting high- and low-
performing students?

To answer the first question, we have implemented the
algorithms described in [15, 41], and evaluate their perfor-
mance on our data. For the second question, we first identify
relevant features from a single semester, then evaluate differ-
ent machine learning techniques to build a predictive model
using the extracted features to determine a top-performing
approach. Finally, the top-performing predictive model is
evaluated on a dataset from a separate semester to determine
cross-semester performance of the selected model.

3.2 Data
The data for the study comes from two semesters of an

introductory programming course organized at the University
of Helsinki. The course lasts six weeks, is taught in Java,
and uses a blended online textbook that covers variables,
basic I/O, methods, conditionals, loops, lists, arrays, ele-
mentary search algorithms and elementary objects. In the
programming course, the main focus is on working on prac-
tical programming assignments, accompanied by a weekly
two-hour lecture that covers the basics needed to get started
with the work. Support is available in open computer labs,
where teaching assistants and course instructors are available
some 20-30 hours each week (see [18] for details).

Although no socio-economic factors were available for this
study, the studied population is relatively homogenic, and

the educational system in the context is socially inclusive,
meaning that there is both a minimal underrepresentation
of students from low education background and a minimal
overrepresentation of students from high education back-
ground [21]. There are also no tuition fees, and students
receive student benefits such as direct funding from the state,
assuming that they progress in their degree work.
For the purposes of this study, students’ programming

process was recorded using Test My Code [39] that is used for
automatically assessing students’ work in the course. For each
student that consented to having their programming process
recorded, every key-press and related information such as
time and assignment details was stored. The students used
the same programming environment both from home and at
the university. Students were asked to provide information
on whether they had prior programming experience, and
access to information on students’ age, gender, grade average,
and major was given for the researchers for the purposes of
this study. In the studied context, major is selected before
enrollment, and in both semesters, over 50% of the students
had other subjects than computer science as their major –
for students with CS as a major, the studied course is the
first course that they take.

In the first semester (spring), a total of 86 students partic-
ipated in the study, and in the second semester (fall), a total
of 210 students participated in the study. Full fine-grained
key-log data is available only for the first semester, while for
the second semester, only higher level actions such as saves,
compilation events, run events and test events are available.

While attendance in the course activities is not mandatory,
50% of total course points comes from completing program-
ming assignments. The rest of the course points comes from
a written exam, where students answer both essay-type ques-
tions as well as programming questions. To pass the course,
the students have to receive at least half of the points from
the exam as well as half of the points from the programming
assignments, while the highest grade in the course can be
received by gathering over 90% of the course points.

4. METHODOLOGY AND RESULTS
The students were divided into groups based on their per-

formance in (1) an algorithmic programming question given
in the exam, (2) the overall course, and (3) a combination
of the two. The first division into groups is motivated by
students’ struggling with writing programs even at a later
phase of their studies [20], and has also been the focus in
related studies, such as the work by Porter et al. [25]. The
algorithmic programming question is a variant of the Rainfall
Problem [32], where students have to create a program that
reads numbers, possibly filters them, and prints attributes
such as the average of the accepted numbers. The second di-
vision into groups outlines the students’ overall performance,
and the third division combines the previous. Table 1 shows
student counts in these groups for the dataset that is used to
evaluate the algorithms in RQ1, and to train the predictive
model for RQ2.

4.1 Research Question 1
To answer the first research question, ”Given our dataset,

how do the methods proposed by Jadud and Watson et al.
perform for detecting high- and low-performing students?”,
we implemented these algorithm’s as they were described [15,
41]. Both algorithms use a set of successive compilation event

Table 1: Student counts for the studied population,
binned based on the predicted variable.

Target class Median or Above Below Median

Exam Question 47 39
Final Grade 48 38
Combined 43 43

pairings to quantify the students’ ability to fix syntactic errors
in the programs that they are writing. The main difference
between Jadud’s error quotient and the Watwin-algorithm
is that the Watwin-algorithm also considers the possibility
that students may be working on multiple files, where one
file has errors, and the other does not. Thus, changing from
one file to the other is not seen as if the user fixed the errors.
Moreover, the Watwin algorithm also takes into account the
amount of time that students spend on fixing errors.

Unlike the data used by Jadud and Watson et al., the data
recorded from standard programming environments do not
have explicit compilation events as the environments continu-
ously compile the code and highlight errors to developers. To
approximate these explicit compilation events for Jadud EQ
and Watwin algorithm, two options were evaluated: (1) use
only snapshots where students perform an action that does
not involve changing the code, i.e. run their code, test their
code, or submit the code to the assessment server (i.e. action
in Table 2), and (2) use only snapshot pairs between which
the students have taken at least a ten second pause from
programming (pause in Table 2). The value for the pause
was determined by evaluating the algorithms with 60, 30, 10
and 5 second pauses, after which the value which resulted
in the best average performance was selected. Our rationale
for the use of actions is that in such cases, the students want
explicit feedback from the system, while the rationale for
pauses is that the students have stopped to, for example,
debug their program. Option (2) is only available for the
first semester, as fine-grained key-log data is not available
for the second studied semester.

Pearson correlation coefficients between the predicted vari-
ables (Table 1) and Jadud’s error quotient and Watwin-score
are given in Table 2. The correlations are given as absolute
values, and are all low (r < 0.3).

Table 2: Pearson Correlation coefficients for be-
tween the Jadud’s error quotient, the Watwin-score,
and the predicted variables.
Variable Semester Jadud Watwin

action pause action pause

Exam Quest. First .15 .21 .25 .18
Second .20 - .09 -

Final Grade First .03 .08 .01 .13
Second .10 - .005 -

Combined First .02 .08 .01 .13
Second .12 - .01 -

4.2 Research Question 2
To answer the second research question, ”Given our dataset,

how do standard machine learning techniques perform for
detecting high- and low-performing students?”, the problem
was approached as a supervised learning task, where existing
data is used to infer a function that can be used to categorize
incoming data into groups [13].

First, features were extracted from the dataset. Then, to
avoid the use of irrelevant or redundant features, feature
selection was used to identify relevant features. Once a
relevant subset of features had been selected, we evaluated
a number of classifiers. Finally, when a classifier had been
selected from the evaluated classifiers, we tested the model
against a data set from a separate semester. Feature selection
and classifier evaluation was performed using the WEKA
Data Mining toolkit [11].

Feature Extraction

For the study, we extracted two types of attributes: (a) At-
tributes based on previously studied success factors, such as
previous academic performance (tertiary education) and past
programming experience; (b) programming assignment spe-
cific Source-code snapshot attributes that potentially reflect
students’ persistence and success with the course assignments.
For each assignment, the number of steps that a student took,
measured in key-presses and other actions, as well as the
maximum achieved correctness when measured by automated
tests was extracted. The Source-code snapshot attributes
were programmatically extracted from the programming pro-
cess data, which is recorded by Test My Code as students
are working on the assignments. An overview of the used
attributes is given in the Table 3. The datasets were also
normalized.

Table 3: Features extracted for the study
Features Type

Gender Categorical
Major Categorical
Grade Average Numerical
Age Numerical
Programming experience Binary
Maximum obtained correctness for
each programming assignment

Numerical [0− 1]

Amount of steps taken in each of
the programming assignment

Numerical [0−∞]

Feature Selection

After the feature extraction phase, there was a total of
53 features. To reduce the amount of overlapping features,
possible over fitting, and to potentially improve predictive
accuracy of the feature set, feature selection was performed.
We used correlation-based feature subset selection [12], where
individual predictive ability of each feature along with the
degree of redundancy between them was evaluated using
three methods; (1) genetic search, (2) best first method and
(3) greedy stepwise method. Results of the feature selection
phase are given in Table 4.

After this phase, the information gain of each feature was
measured to reveal features that had little or no predictive
value. Information gain, or Kullback-Leibler divergence [17],
is used to measure the amount of information that the feature
brings about a predicted value, assuming that they are the
only two existing variables, and is measured by the difference
of two probability distributions (in our case, e.g., the differ-
ence of the probability distributions of the exam question
results and grade average). After measuring information
gain for each of the features and predicted value, the low-
contributing features were removed. The features above the
line in Table 5 were retained in the training set.

Table 5: Information gain of the features. Features
below the line were excluded from further use.

Feature Exam question Grade Both

Grade Average 0.34 0.36 0.44
Correctness of a20 0.40 0.40 0.38
Steps for a23 0.44 0.32 0.29
Steps for a21 0.23 0.20 0.20
Steps for a22 0.22 0.16 0.19
Major 0.17 0.11 0.13
Steps for a17 0.27 0.15 0.12
Steps for a20 0.26 0.15 0.12
Steps for a18 0.14 0.15 0.12
Steps for a19 0.23 0.13 0.11
Age 0.11 - 0.11
Prog. Exp - 0.05 0.07
Gender 0.01 0.008 0.003

Classifier Evaluation

As is typical for studies that explore machine learning
methodologies, a number of classifiers were evaluated. In
our case, we evaluated three families of classifiers; Bayesian
classifiers, Rule-learners, and Decision tree -based classifiers,
and chose a total of nine classifiers from these three families.
All of these approaches are commonly used for classifying
students [28, 29]. The evaluation was performed using two
separate validation options: k-fold cross validation (with
k=10), and percentage split (2/3 of the dataset used for
training and 1/3 for testing). This means that during the
classifier training and evaluation phase, parts of the data
was hidden during the training, and was then used for the
evaluation. Table 6 presents the results for the classification
algorithms that were investigated in this study.

As can be seen in Table 6, the overall accuracy of decision
trees is higher than that of the other two classifier families.
Among decision trees, Random Forest has on average the
highest accuracy for all predictive variables with 86%, 90%
and 90% accuracy for predicting Exam question, Final Grade
and the combination of both. To show the predictive accuracy
in more detail, Table 7 shows the confusion matrix of the
Random Forest classifier when predicting the combination
of the Exam Question and Final grade, when using 10-fold
cross-validation on the training data set.

Table 7: Confusion matrix of Random Forest on pre-
dicting whether students are equal-to-or-above or
below the median score on the combination of exam
question and final grade

Predicted above Predicted below
Actual above 38 5
Actual below 3 40

Thus, we selected the Random Forest as the classifier that
is used to evaluate students’ performance. More detailed
evaluation of the performance of the Random Forest classi-
fier is given in Table 8. The F1-Measure, which represents
the balanced precision-recall, shows that Random Forest
provides a strong result in this prediction task. Moreover,
the Receiver operating characteristic value (ROC) suggests
that the classifier still performs well when the classification
threshold is changed from the median, i.e. if we would rather

Table 4: Features selected during feature selection. The left-hand side describes the feature selection method,
and the columns describe the features selected for the different predictive variables. Steps denotes the number
of recorded events for a student on a specific programming assignment. Correctness denotes the percentage of
tests passed by a student on a specific programming assignment.
Method Exam question Final Grade Both

Best First Age; Grade Average; Steps for
a17, a21, and a23

Grade Average; Steps for a21
and a23; Correctness for a23

Grade Average; Steps for a21
and a23; Correctness for a20

Genetic Search Age; Grade Average; Steps for
e17, e19, e20, e21, and e23; Cor-
rectness for e2, e6, e11, and e12

Grade Average; Steps for e20,
e21, and e23; Correctness for e23

Grade Average; Steps for e21,
and e23; Correctness for e20

Greedy Stepwise Age; Grade Average; Steps for
e17, e21, and e23

Grade Average; Steps for e21
and e23; Correctness for e23

Grade Average; Steps for e21
and e23; Correctness for e20

Table 6: Classifier accuracy when performing evaluation of the classifiers on the training set from a single
semester. The highest accuracies are marked with bold. Exam question is shown as Q in the Table.

Classifier Family 10-fold cross-validation accuracy percentage split accuracy
Q Final grade Q + Final grade Q Final grade Q + Final grade

Naive Bayes Bayesian 80% 80% 77% 86% 86% 86%
Bayesian Network Bayesian 81% 77% 76% 82% 76% 72%
Decision Table Rule Learner 78% 73% 84% 86% 76% 90%
Conjuctive Rule Rule Learner 73% 80% 83% 72% 86% 90%
PART Rule Learner 85% 79% 93% 90% 76% 82%
ADTree Decision Tree 80% 85% 86% 90% 83% 83%
J48 Decision Tree 83% 82% 93% 93% 89% 83%
Random Forest Decision Tree 86% 90% 90% 90% 90% 93%
Decision Stump Decision Tree 73% 76% 84% 83% 90% 90%

seek to identify the lowest performing quartile of students,
and the Matthews correlation coefficient (MCC) shows a high
correlation (r = 0.71− 0.81) between the classifier and the
predicted values.

Evaluation on a Separate Semester

As the data that is produced within educational settings
varies between semesters, due to variations in student co-
horts and course changes, the generalizability of the model
needs to be evaluated using data from a separate semester.
Accordingly, we evaluated the Random Forest -classifier (i.e.
our best performing classifier from above) on data from a
separate semester with n = 210 students. We found that the
Random Forest -classifier was able to categorize students on
the Exam Question, the Final Grade, and the combination of
both with the accuracy of 80%, 73%, and 71% respectively,
when the training of the model was performed on the data
from the first semester with n = 86 students.

5. DISCUSSION

5.1 Research Question 1
To answer research question one, ”Given our dataset, how

do the methods proposed by Jadud and Watson et al. per-
form for detecting high- and low-performing students?”, the
performance of the approaches differs from the studies in
which the algorithms have traditionally been evaluated. Next,
we discuss factors which may explain this result.

First, we use data from a considerably shorter period
than Jadud and Watson et al. use in their studies. The
first results in the article by Watson et al. [41] are given
after three weeks into the course, and at that time, the
correlation coefficients are near 0.3 for both Watwin-score

and Jadud’s error quotient – marginally better than our
results. Moreover, in Watson et al.’s work, the analysis
is performed against overall coursework mark, that is, the
overall score from programming assignments [41], and not
against the performance in a written exam.

Second, the programming environment used in the studies
by Jadud and Watson et al. expects the student to take
an extra step for her to receive information on whether her
code compiles or not, while such a step is not necessary in
current programming environments. It is possible that such
a feature stimulates specific working behavior, which in turn
may have contributed to previously observed outcomes.
A third factor is related to the quantity and type of the

programming assignments. In the context of our study, the
students work on a relatively large number of programming
assignments during the very first week. Many of the assign-
ments are relatively straightforward, and have been designed
to help students gain confidence. This means that it is
possible that the predictive approaches that are based on
students’ programming errors may also be dependent on the
programming assignments being non-trivial for the students,
which is not always the case in the studied context. These
details from the contexts of Jadud and Watwin are not at
our disposal.
Finally, the fourth factor is the guidance that students

receive during the course. For example, in the context of
Watson et al. [41], the students have specific and limited
lab hours during which they can receive support on the
programming assignments, while in the context that we
studied, the labs are open most of the time, and anyone can
attend. It is also possible that the type of guidance provided
in labs differs.

Table 8: Statistical measures for the Random Forest -classifier when predicting the considered target variables.
TPR stands for True Positive Rate, FPR stands for False Positive Rate, ROC stands for Receiver Operating
Characteristic, and MCC stands for Matthews Correlation Coefficient.

Class TPR FPR Precision Recall F1-Measure ROC MCC

Exam question 0.86 0.14 0.86 0.86 0.86 0.92 0.71
Final grade 0.89 0.10 0.89 0.89 0.89 0.92 0.78
Exam question & Final grade 0.90 0.09 0.90 0.90 0.90 0.95 0.81

5.2 Research Question 2
To answer research question two, ”Given our dataset, how

do standard machine learning techniques perform for detect-
ing high- and low-performing students?”, we both described
the workflow of creating and evaluating machine learning
algorithms as well as outlined the results. The process starts
with feature extraction, continues with feature selection that
is followed by classifier evaluation, and finally concludes with
evaluation with a separate data set – in our study, from
a separate semester. While the performance of the classi-
fier was high when evaluating the approach within a single
semester, ranging from 86% to 90% accuracy with 10-fold
cross-validation, the performance was lower (ranging from
71% to 80%) when the predictive model was evaluated on
data from a separate semester.
When extracting and selecting the most important fea-

tures, it was observed that most a priori features such as past
programming experience, age, and gender made relatively
little contribution to the predicted values. This is in line
with previous research, which was discussed in Section 2.
The information provided by a priori features was lower than
that of the performance in the actual programming assign-
ments. The most important features were students’ grade
average, the maximum percentage of automated tests that
a student’s solution to a specific programming assignment
reached, number of steps that students took in a number of
programming assignments, and the students’ major. Note
that for the students who have CS as their major, no grade
average was available as the programming course was the
very first course that they took – tree-based models handle
this well.

5.3 Analysis of Programming Assignments
The feature selection process selected a number of program-

ming assignments as important for the predictive process.
All of the programming assignments were from the later part
of the week – assignments 17 to 23 were selected, out of
a total of 24 assignments in the first week. In all of these
programming assignments from the first week, students were
given a class that had an empty main-method. In the as-
signments leading to assignment 17, students had practiced
producing different kinds of outputs, the use of variables
such as int and String, reading input from the keyboard,
simple comparisons with if and if-else structures, and
combinations of these. Instructions for assignments 17 to
23 are given in Table 9. In addition to what is shown in
the table, students had one or two examples of the program
output. Also, assignment 23 had an API description of the
visualization library.

As with assignments 1-16, assignments 17 and onwards
introduce new concepts step-by-step. For example, in as-
signment 17, the students practice the use of an else if

structure for the first time, and in assignment 18, the stu-

Table 9: Programming assignments that were high-
lighted during the feature selection process. Exam-
ples of input/output were also given to students.
assignment instructions

17 Write a program that reads in two numbers from the
user, and prints the larger of them. If the numbers are
equal, the program should output ”they are equal.”

18 Write a program that reads in a number between 0 and
60, and transforms it to a grade using the following
rules: 0-35 should be F, 36-40 D, 41-45 C, 46-50 B, and
51-60 A.

19 Write a program that reads in a number and checks
that it is a valid age [0-120]. If the number is within
the range, the program should output ”OK!”, otherwise
the program should output ”Impossible!”.

20 Write a program that reads an username and a pass-
word, and compares them to user credentials that are
given with the assignment. The program should print
”correct”, if the credentials are correct, otherwise, ”false”.

21 Write a program that reads in a number, and determines
whether it is a leap year or not.

22 Write a program that continuously asks for a password
until the user types in the right password.

23 Write a program that continuously reads in numbers,
if the numbers are between [-30, 40], they are to be
added to a plot (a ready library given). The program
execution should never end.

dents are expected to use multiple else if statements. In
assignment 19, the students are practicing the same concepts
as in assignment 18, but with a different task and a smaller
number of cases that need to be taken into account. As-
signment 20 is the first assignment in which the students
compare String variables. Assignments 21 is more algorith-
mic in nature than earlier assignments. Finally, assignments
22 and 23 are programs that require the student to use a
loop for the first time. These are concepts that are known
not to be easy in other contexts as well (see e.g. [8]).

It is somewhat surprising that assignment 20 was the only
assignment for which the student’s maximum achieved cor-
rectness, i.e. the percentage of tests passed, was highlighted
as an important feature. Upon further analysis, as the stu-
dents were accustomed to comparing numbers, many had
initially challenges with comparing strings and the use of the
equals method, which was needed in the assignment. Most
of the students eventually did tackle this, and some of those
that did not seemed to be confused with comparing multiple
strings at the same time; even if not completing the assign-
ment, students eventually moved forward. At the same time,
a persistent student could work through the assignments with
the support from the programming environment and course
staff, given that she would not start too late, which likely also
explains parts of the correctness not being important. From

the viewpoint of a material designer, the first finding could
imply that it might be beneficial to consider an assignment
with simpler string comparisons at first, e.g. by comparing
just a single string, instead of the first assignment being one
where two strings are compared at the same time. However,
this was no longer an issue in assignment 22, where the
students combined the same behavior with a loop construct.
Overall, when considering the number of steps that the

students took to reach a solution, the students in the high-
performing group took more steps on average than the stu-
dents in the low-performing group. While initially one would
assume that this would be explained simply by the low-
performing students not attempting the assignments, this
was not the case. It simply seems that the students in the
high-performing group, when generalized, tried out more
than a single approach and were not always content with
simply reaching a working solution. Such behavior was also
encouraged by the course staff.

5.4 Misclassified Students
We also performed an analysis of the students who were

misclassified, i.e. students who were classified into another
category than that to which they belonged. When consider-
ing the students who were classified as high-performing but
belonged to the low-performing group, a number of them
had adopted a work behavior where they diligently worked
through the assignments by battling their way through the
automatic tests. This is likely due to a result that has been
previously pointed out by Spacco, i.e., if students are given
full test results, they may adopt the habit of ”programming
by ’Brownian motion’, where students make a series of small,
seemingly random changes to the code in the hopes of making
their program pass the next test case” [33] – currently, the
programming environment used does not provide ways to
battle this behavior.
Similarly, when considering the students who were classi-

fied as low-performing, but were high-performing, some of
them used copy-paste in a quantity that had the classifier
consider them as students who did not explore the solutions
at length. Note that this does not mean that these students
were plagiarizing their solutions from others, but seemed to
extensively utilize their solutions from previous assignments.

5.5 Practical Implications
Our work implies that one can differentiate between the

high- and low-performing students in a programming class
already based on the performance of a single week with a
relatively high accuracy. This means that instructors may,
potentially, provide targeted interventions already during
the second week. Practices such as additional rehearsals
could be introduced for low-performing students, while high-
performing students may benefit from additional challenges.
The results also indicate that students’ programming be-

havior during the class is more important than background
variables such as age, gender, or past programming experi-
ence, which is in line with previous studies. Moreover, in
the studied context, the correctness of the students’ solu-
tions was not as important as the effort. That is, students
who simply pushed towards a solution did not benefit from
the programming tasks as much as the students who did
additional experiments. It is plausible that such information
on students’ behavior can also be used to guide students
towards more productive learning strategies.

5.6 Limitations of work
Predictive models are generalizations over a dataset gath-

ered during a single or a number of semesters, and should
always be validated using an additional dataset. As is evident
in our case, the new dataset, when gathered within the same
context but during a different semester, had different results
than those from the initial evaluation. At the same time, the
comparison was strict as we compared the performance of
a model built on data from a spring semester against data
from a fall semester. This effectively demonstrates that if
the teaching approach, materials, or other related variables
change, the performance of the predictive model may also
change. That is, the predictive model is tuned to a specific
context and dataset, and thus, it should be adjusted if the
context changes.

Naturally, while the machine learning approach described
in this article generalizes to other contexts, one should not
assume that the same features would be the best features in
other contexts as well. That is, the process should be started
from the first step, i.e. extracting features, and followed
as described in this article. That is, the predictive model
that works on our data set would likely be different from a
predictive model from other data sets – how different is a
question that is left for future work. This is likely similar for
all related studies.

6. CONCLUSIONS AND FUTURE WORK
In this work, we explored methods for early identification of

students to guide from naturally accumulating programming
process data. Such information can be useful for instructors
and course designers, and can be used to create targeted
interventions and to adjust materials accordingly. For exam-
ple, the students who are performing well in the course may
benefit from additional, more challenging tasks, while the
students who are performing poorly are likely to benefit from
rehearsal tasks as well as other activities that are typically
used to help at-risk students.
The three main contributions of this article are as fol-

lows: (1) Analysis of the performance of existing source
code snapshot-based methods for identifying high- and low-
performing students in a new context; (2) Exploration of
machine learning techniques for identifying high- and low-
performing students; and (3) Analysis of cross-semester per-
formance of the predictive models.

When analyzing the performance of the methods proposed
by Jadud and Watson et al., we observed that the approaches
had relatively poor performance on the data at our disposal.
When exploring the performance of the machine learning tech-
niques, the within-dataset performance was higher than that
of the cross-semester performance, which was measured based
on the predictive performance during a separate semester.
This is explainable by the natural variance between semesters
and student populations. Even so, with the cross-semester
accuracy that ranges between 70% and 80%, reaching many
of the right students is possible.

As a part of our future work, we are tuning the predictive
models using additional data, seeking to further understand
the students’ behavior by delving deeper into their program-
ming process, and conducting interviews that hopefully will
shed further light on students’ working practices as well as
to those students who were misclassified. We are also per-
forming targeted interventions within the studied context.

7. REFERENCES
[1] A. Ahadi and R. Lister. Geek genes, prior knowledge,

stumbling points and learning edge momentum: Parts
of the one elephant? In Proceedings of the Ninth
Annual International ACM Conference on
International Computing Education Research, ICER
’13, pages 123–128, New York, NY, USA, 2013. ACM.

[2] A. Ahadi, R. Lister, and D. Teague. Falling behind
early and staying behind when learning to program. In
Proceedings of the 25th Psychology of Programming
Conference, PPIG ’14, 2014.

[3] J. Bennedsen and M. E. Caspersen. Abstraction ability
as an indicator of success for learning object-oriented
programming? ACM SIGCSE Bulletin, 38(2):39–43,
2006.

[4] J. Bennedsen and M. E. Caspersen. Failure rates in
introductory programming. ACM SIGCSE Bulletin,
39(2):32–36, 2007.

[5] S. Bergin and R. Reilly. Programming: factors that
influence success. ACM SIGCSE Bulletin,
37(1):411–415, 2005.

[6] P. Byrne and G. Lyons. The effect of student attributes
on success in programming. In ACM SIGCSE Bulletin,
volume 33, pages 49–52. ACM, 2001.

[7] B. Cantwell Wilson and S. Shrock. Contributing to
success in an introductory computer science course: a
study of twelve factors. In ACM SIGCSE Bulletin,
volume 33, pages 184–188. ACM, 2001.

[8] Y. Cherenkova, D. Zingaro, and A. Petersen.
Identifying challenging CS1 concepts in a large problem
dataset. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE
’14, pages 695–700, New York, NY, USA, 2014. ACM.

[9] G. E. Evans and M. G. Simkin. What best predicts
computer proficiency? Communications of the ACM,
32(11):1322–1327, 1989.

[10] D. Hagan and S. Markham. Does it help to have some
programming experience before beginning a computing
degree program? ACM SIGCSE Bulletin, 32(3):25–28,
2000.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA data
mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[12] M. A. Hall. Correlation-based feature selection for
machine learning. PhD thesis, The University of
Waikato, 1999.

[13] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie,
J. Friedman, and R. Tibshirani. The elements of
statistical learning, volume 2. Springer, 2009.

[14] R. Hosseini, A. Vihavainen, and P. Brusilovsky.
Exploring problem solving paths in a Java
programming course. In Proceedings of the 25th
Workshop of the Psychology of Programming Interest
Group, 2014.

[15] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the second
international workshop on Computing education
research, pages 73–84. ACM, 2006.

[16] H. Jang, J. Reeve, and E. L. Deci. Engaging students
in learning activities: It is not autonomy support or
structure but autonomy support and structure. Journal

of Educational Psychology, 102(3):588, 2010.

[17] S. Kullback and R. A. Leibler. On information and
sufficiency. Ann. Math. Statist., 22(1):79–86, 03 1951.

[18] J. Kurhila and A. Vihavainen. Management, structures
and tools to scale up personal advising in large
programming courses. In Proceedings of the 2011
Conference on Information Technology Education,
SIGITE ’11, pages 3–8, New York, NY, USA, 2011.
ACM.

[19] R. Leeper and J. Silver. Predicting success in a first
programming course. In ACM SIGCSE Bulletin,
volume 14, pages 147–150. ACM, 1982.

[20] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,
I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of programming
skills of first-year CS students. SIGCSE Bull.,
33(4):125–180, Dec. 2001.

[21] D. Orr, C. Gwosć, and N. Netz. Social and economic
conditions of student life in Europe: synopsis of
indicators; final report; Eurostudent IV 2008-2011. W.
Bertelsmann Verlag, 2011.

[22] C. Piech, M. Sahami, D. Koller, S. Cooper, and
P. Blikstein. Modeling how students learn to program.
In Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education, SIGCSE ’12, pages
153–160, New York, NY, USA, 2012. ACM.

[23] L. Porter, M. Guzdial, C. McDowell, and B. Simon.
Success in introductory programming: What works?
Communications of the ACM, 56(8):34–36, 2013.

[24] L. Porter and D. Zingaro. Importance of early
performance in CS1: Two conflicting assessment stories.
In Proceedings of the 45th ACM Technical Symposium
on Computer Science Education, SIGCSE ’14, pages
295–300, New York, NY, USA, 2014. ACM.

[25] L. Porter, D. Zingaro, and R. Lister. Predicting student
success using fine grain clicker data. In Proceedings of
the tenth annual conference on International computing
education research, pages 51–58. ACM, 2014.

[26] M. M. T. Rodrigo, R. S. Baker, M. C. Jadud, A. C. M.
Amarra, T. Dy, M. B. V. Espejo-Lahoz, S. A. L. Lim,
S. A. Pascua, J. O. Sugay, and E. S. Tabanao. Affective
and behavioral predictors of novice programmer
achievement. ACM SIGCSE Bulletin, 41(3):156–160,
2009.

[27] M. M. T. Rodrigo, E. Tabanao, M. B. E. Lahoz, and
M. C. Jadud. Analyzing online protocols to
characterize novice Java programmers. Philippine
Journal of Science, 138(2):177–190, 2009.

[28] C. Romero and S. Ventura. Educational data mining: a
review of the state of the art. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 40(6):601–618, 2010.

[29] C. Romero, S. Ventura, P. G. Espejo, and C. Hervás.
Data mining algorithms to classify students.
Educational Data Mining 2008.

[30] N. Rountree, J. Rountree, A. Robins, and R. Hannah.
Interacting factors that predict success and failure in a
CS1 course. In ACM SIGCSE Bulletin, volume 36,
pages 101–104. ACM, 2004.

[31] E. Sierens, M. Vansteenkiste, L. Goossens, B. Soenens,
and F. Dochy. The synergistic relationship of perceived

autonomy support and structure in the prediction of
self-regulated learning. British Journal of Educational
Psychology, 79(1):57–68, 2009.

[32] E. Soloway. Learning to program = learning to
construct mechanisms and explanations. Commun.
ACM, 29(9):850–858, Sept. 1986.

[33] J. Spacco. Marmoset: a programming project
assignment framework to improve the feedback cycle for
students, faculty and researchers. PhD thesis, 2006.

[34] M. V. Stein. Mathematical preparation as a basis for
success in CS-II. Journal of Computing Sciences in
Colleges, 17(4):28–38, 2002.

[35] M. Tukiainen and E. Mönkkönen. Programming
aptitude testing as a prediction of learning to program.
In Proc. 14th Workshop of the Psychology of
Programming Interest Group, pages 45–57, 2002.

[36] P. R. Ventura Jr. Identifying predictors of success for
an objects-first CS1. 2005.

[37] A. Vihavainen. Predicting students’ performance in an
introductory programming course using data from
students’ own programming process. In Advanced
Learning Technologies (ICALT), 2013 IEEE 13th
International Conference on. IEEE, 2013.

[38] A. Vihavainen, J. Airaksinen, and C. Watson. A
systematic review of approaches for teaching
introductory programming and their influence on
success. In Proceedings of the Tenth Annual Conference
on International Computing Education Research, ICER
’14, pages 19–26, New York, NY, USA, 2014. ACM.

[39] A. Vihavainen, T. Vikberg, M. Luukkainen, and
M. Pärtel. Scaffolding students’ learning using Test My
Code. In Proceedings of the 18th ACM conference on
Innovation and technology in computer science

education, pages 117–122. ACM, 2013.

[40] C. Watson and F. W. Li. Failure rates in introductory
programming revisited. In Proceedings of the 2014
conference on Innovation & technology in computer
science education, pages 39–44. ACM, 2014.

[41] C. Watson, F. W. Li, and J. L. Godwin. Predicting
performance in an introductory programming course by
logging and analyzing student programming behavior.
In Advanced Learning Technologies (ICALT), 2013
IEEE 13th International Conference on, pages 319–323.
IEEE, 2013.

[42] C. Watson, F. W. Li, and J. L. Godwin. No tests
required: comparing traditional and dynamic predictors
of programming success. In Proceedings of the 45th
ACM technical symposium on Computer science
education, pages 469–474. ACM, 2014.

[43] L. H. Werth. Predicting student performance in a
beginning computer science class, volume 18. ACM,
1986.

[44] S. Wiedenbeck, D. Labelle, and V. N. Kain. Factors
affecting course outcomes in introductory programming.
In 16th Annual Workshop of the Psychology of
Programming Interest Group, pages 97–109, 2004.

[45] L. Williams, C. McDowell, N. Nagappan, J. Fernald,
and L. Werner. Building pair programming knowledge
through a family of experiments. In Proc. Empirical
Software Engineering, pages 143–152. IEEE.

[46] M. Yudelson, R. Hosseini, A. Vihavainen, and
P. Brusilovsky. Investigating automated student
modeling in a Java MOOC. In Proceedings of The
Seventh International Conference on Educational Data
Mining 2014, 2014.

6.3. Discussion 69

6.3 Discussion

The information extracted from the data collected from the novices was
originally representing two main features: the so called "number of at-
tempts" and the "performance". One of the issues with throwing data at a
data mining algorithm is how the data is treated within the algorithm and
consequently how it is interpreted at the final result level. The mark of each
programming task in the data preprocessing step was either zero or one. I
assigned the value one to the exercise mark if the mark was greater than
the median of the mark of all novices doing that particular assignment, or a
zero if it was not. This means that the mark allocated to a student’s assign-
ment is calculated based on the comparison of his mark to the whole class.
On the other side, what exactly does the "number of attempts" represent?
Is it a ratio of level of engagement to course? Is it reporting on how much
the novice struggled with the code, or how much attention was given by
the student to the code? Regardless of what can be understood from the
data, I understood something from the very nature of the machine learning
tools: it is very important to understand the relationship between what the
data is representing and what is going to be predicted. There might be a
strong positive correlation between the distance from the student’s home
to the university, and the performance in the course. However, this is not
explained by the machine learning algorithm and might simply distract the
prediction algorithm from the core concepts that might give clues towards a
better understanding of the novice. There is fundamental intelligence miss-
ing behind most state of the art machine learning techniques: they can’t
make sense of the data.

These questions all evolve from the data and the data analysis. The find-
ings of this chapter shed lights on the experiment design and indicates that
there is more in depth analysis of the data required so that the researcher
can draw general comments on the novices. I then aimed to explore the ap-
plication of the machine learning tools on the information extracted from
another context. This not only opens other windows on the caveats of data
analysis and data collection in other contexts, but also gives clues on issues
that may be raised in other context, and also a sense of consistency on the
findings reported in this chapter.

71

Chapter 7

A Quantitative Study of the

Relative Difficulty for Novices

of Writing Seven Different

Types of SQL Queries

7.1 Introduction

As reviewed in the previous chapter, the basic information extracted from
the source code snapshot data generated by the novices can be used in a ma-
chine learning context to predict the final exam performance of the novices
in an introduction to programming course. I discussed the importance of
a solid understanding of the data, and how it is generated, processed and
interpreted. In this chapter, I aim to perform the analysis done in Chapter
5 using the data collected from the novices in another context: the SQL SE-
LECT statements.

The information which is extracted from novices used to perform data
analysis in this chapter and the next two chapters is basically extracted from
the SQL source code snapshots generated by novices during their attempt
to answer seven different types of SQL questions in a built-in online assess-
ment environment called AsseSQL (Prior, 2014). Features extracted from
these snapshots includes "number of attempts" and "performance" collected
through analysis of around 163000 SQL SELECT statement snapshots gen-
erated by around 2300 database novices. In this chapter, I perform a corre-
lation analysis between the performance of different questions of the online
SQL tests.

7.1.1 Statement of Contribution of Co-Authors

The authors listed below have certified that:

72
Chapter 7. A Quantitative Study of the Relative Difficulty for Novices of

Writing Seven Different Types of SQL Queries

1. they meet the criteria for authorship in that they have participated in
the conception, execution, or interpretation, of at least that part of the
publication in their field of expertise;

2. they take public responsibility for their part of the publication, except
for the responsible author who accepts overall responsibility for the
publication;

3. there are no other authors of the publication according to these crite-
ria;

4. potential conflicts of interest have been disclosed to (a) granting bod-
ies, (b) the editor or publisher of journals or other publications, and
(c) the head of the responsible academic unit; and

5. they agree to the use of the publication in the student thesis and its
publication on the QUT ePrints database consistent with any limita-
tions set by publisher requirements.

In the case of this chapter:

Title: A Quantitative Study of the Relative Difficulty for Novices of
Writing Seven Different Types of SQL Queries

Conference: ACM Conference on Innovation and Technology in
Computer Science Education

URL: http://dl.acm.org/citation.cfm?id=2742620&CFID=862572
254&CFTOKEN=60379727

Status: Presented, June 2015

TABLE 7.1: Authors’ Area of Contribution for The Paper
Corresponding to Chapter 7

Contributor Area of contribution (See appendices A and B)
(a) (b) (c)(i) (c)(ii)

Alireza Ahadi
Julia Prior TBA TBA TBA TBA
Vahid Behbood TBA TBA TBA TBA
Raymond Lister TBA TBA TBA TBA

Candidate confirmation:

7.1. Introduction 73

I have collected email or other correspondence from all co-authors confirm-
ing their certifying authorship and have directed them to the principal su-
pervisor.

Alireza Ahadi

Name Signature Date

Principal supervisor confirmation:

I have sighted email or other correspondence from all co-authors confirm-
ing their certifying authorship.

Raymond Lister

Name Signature Date

74
Chapter 7. A Quantitative Study of the Relative Difficulty for Novices of

Writing Seven Different Types of SQL Queries

7.2 PDF of the Published Paper

A Quantitative Study of the Relative Difficulty for Novices
of Writing Seven Different Types of SQL Queries

Alireza Ahadi, Julia Prior, Vahid Behbood and Raymond Lister

University of Technology, Sydney, Australia

{Alireza.Ahadi, Julia.Prior, Vahid.Behbood, Raymond.Lister}@uts.edu.au

ABSTRACT
This paper presents a quantitative analysis of data collected by an
online testing system for SQL “select” queries. The data was
collected from almost one thousand students, over eight years. We
examine which types of queries our students found harder to
write. The seven types of SQL queries studied are: simple queries
on one table; grouping, both with and without "having"; natural
joins; simple and correlated sub-queries; and self-joins. The order
of queries in the preceding sentence reflects the order of student
difficulty we see in our data.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages – query languages.

General Terms
Management, Measurement, Human Factors.

Keywords
Online assessment; databases; SQL queries.

1. INTRODUCTION
The chief executive officer of edX, Anant Agarwal, has been
quoted as saying that Massive Open Online Courses (MOOCs)
will be the “particle accelerator for learning" (Stokes, 2013). A
similar sentiment was expressed 30 years earlier. In her study of
the usability of database query languages, Reisner (1981) asked
rhetorically, "Why experiment at all?" before answering:

... should not just using one's own judgment, or the judgment of
some expert, suffice? ... Unfortunately, the computer scientist
is not necessarily a good judge of the abilities of [students];
there are no experts whose opinions would be generally
accepted, and if there were, they might not agree. ... A more
cogent reason to forego judgment by peers or by an expert is
that such judgment is not quantitative.

With the same spirit as Agarwal and Reisner, in this paper we use
data collected over eight years, from 986 students, to study
quantitatively the relative difficulty our students had with
completing seven different types of SQL queries.

2. BACKGROUND
Many reports have been published about online SQL
tutoring/assessment tools. However, most of these reports focus
on the functionality of the tool itself, or on how the system
supports a certain pedagogical model (e.g. Brusilovsky et al.,
2008 & 2010; Mitrovic, 1998 & 2003; Prior et al., 2004 & 2014).
Those reports do not analyze the data collected by those systems
to determine the difficulties students have with SQL queries.

From the literature, we identified only Reisner (1981) as a
published systematic study of student difficulties with SQL
queries. She found that the subjects in her study had difficulty
recognizing when they should use “group by”, but her subjects
could successfully use “group by” when explicitly told to do so.
Reisner’s focus was on comparing SQL with three other query
tools that were then seen as competitors to SQL. Thus, the “group
by” case was her only discussion of an aspect of SQL that was
troublesome for novices. Over 30 years later, we believe a new
study is warranted that focuses on SQL and looks at multiple
aspects of SQL.

We also found some papers in which the authors mentioned their
intuitions about student difficulties, based upon their teaching
experiences. These intuitions were mentioned briefly in the
introductory/motivation sections of the authors’ papers, before
those authors went on to describe the architecture of their
tutoring/assessment system. Kearns et al. (1997) and also
Mitrovic (1998) mentioned “group by” as a problem, especially
aggregate functions and the use of “having”. They also mentioned
as a problem the complete specification of all necessary “where”
conditions when joining multiple tables. Sadiq et al. (2004)
nominated the declarative nature of SQL as a problem for students
as it “requires learners to think sets rather than steps” (p. 224).

3. ASSESQL
We collected our data in a purpose-built online assessment
system, AsseSQL. It is therefore necessary to describe some
aspects of how AsseSQL works, so that readers can assess for
themselves the validity of our data. In this paper, we provide the
briefest possible description of the system. Further details of
AsseSQL, and how we used it to test our students, can be found in
prior publications (Prior et al., 2004 & 2014). The students in this
study were all undergraduates at our university, studying Bachelor
degrees in Information Technology or Software Engineering.

In the online test, students were allowed 50 minutes to attempt
seven SQL questions. On their first test page in AsseSQL,
students see all seven questions, and they may attempt the
questions in any order. All seven questions refer to a database that
is familiar to the students prior to their test.

 Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ITiCSE’15, July 4–8, 2015, Vilnius, Lithuania.
Copyright © 2015 ACM 978-1-4503-3440-2/15/07…$15.00.
http://dx.doi.org/10.1145/2729094.2742620

Each question is expressed in English, and might begin, “Write an
SQL query that …” A student’s answer is in the form of a
complete SQL “select” statement.

When a student submits a “select” statement for any of the seven
questions, the student is told immediately whether their answer is
right or wrong. If the student’s answer is wrong, the system
presents both the desired table and the actual table produced by
the student’s query. The student is then free to provide another
“select” statement, and may repeatedly do so until they either
answer the question correctly, run out of time, or choose to move
on to a different question. If a student moves to a new question,
the student may return to this question later.

The grading of the answers is binary – the student’s attempt is
either correct or incorrect. As there may be more than one correct
SQL statement for a specific question, a student’s SQL statement
is considered to be correct when the table produced by the
student’s “select” statement matches the desired table. (Some
simple ‘sanity checks’ are made to ensure that a student doesn’t
fudge an answer with a brute force selection of all required rows.)

Prior to taking a test, the students are familiarized with both
AsseSQL and the database scenario that will be used in the test.
About a week before the test, students receive the Entity
Relationship Diagram (ERD) and the “create” statements for the
scenario database. Note, however, that students are not provided
with the data that will fill those tables, nor are they provided with
sample questions for that database scenario. Several weeks before
the actual test, students are provided with access to a ‘practice
test’ in AsseSQL, which has a different scenario database from
the scenario database used in the actual test.

4. A SCENARIO DATABASE: BICYCLE
One of the scenario databases that we use in the online SQL test is
called “Bicycle”, based on a database from Post (2001). This is
the database from which most of the results described in this
paper are generated. The Bicycle database is composed of four
tables, as shown in the Entity Relationship Diagram (ERD) of
Figure 1. A bicycle is made up of many components; each
component can be installed in many bicycles. Each installed
component on a bicycle is called a `bikepart’. Just one
manufacturer supplies each component, but one manufacturer may
supply many components to the store, so there is a 1:M
relationship between Manufacturer and Component. There is a
self-referencing relationship in Component, as one component
may be made up of many other components.

5. PRELIMINARIES TO RESULTS

5.1 A Wrong Answer versus No Attempt
Suppose for a given question, one third of students answered the
question correctly, one third attempted the question but never
answered it correctly, and one third never attempted the question
‒ what should we consider the success rate to be? There are two
options:

• 33%, if non-attempts are treated as incorrect answers.
• 50%, if non-attempts are ignored.

In the results presented below, we have supplied both options
when reporting success rates for one of the seven types of
questions. In cases where we are comparing two different types of

questions, the issue arises as to whether a student did not attempt
one of the two questions because the student knew they could not
do it, or because they ran out of time. For that reason, when
comparing performance between question types, we have applied
the option where non-attempts are ignored.

5.2 Differences in a Pool of Variations
In the online test, students are presented with seven questions.
Each question requires a different type of SQL “select” statement
(e.g. a “group by”, a natural join, etc). Each of the seven
questions presented to a specific student is chosen at random from
a small pool. In this paper, to avoid confusion between the actual
questions presented to a student, and the questions in a pool, we
henceforth refer to the questions in a pool as “variations”.

In this section we discuss differences in success rates among
variations within a single pool. To make the discussion more
clear, we will focus on a concrete example – the four “group by”
variations of the Bicycle Database. We chose this example as
these four “group by” variations exhibited the greatest differences
in success rate of any pool. The performance of each of these
“group by” variations is shown in Figure 2.

In Figure 2, the line beginning “Baseline” provides the aggregate
statistics when the data from all four variations are combined.
That baseline row shows that a total of 986 students were assigned
one of these four variations. Of those 986 students, 742 students
successfully provided a correct answer, which is 75% of the total
number of students. While 986 students is a large sample, if we
collected data from another set of students, of similar ability, the
success rate for that new sample is likely to be at least a little
different. Equally, Figure 2 shows that the success rate for
Variation 1 is 87% and 70% for Variation 2, but if we collected
data from more students, how likely is it that the success rate for
Variation 1 would drop below the success rate for Variation 2?
To address those sorts of issues, we assumed a normal distribution
of student abilities and estimated a 95% confidence interval for
the success rate of the baseline and each of the four variations,
using a well known statistical technique ‒ the offset to the upper
and lower bounds of the confidence interval is 1.65 × Standard
Eror (SE), where the SE is estimated as:

For instance, the lower and upper bounds of the Success Rate for
the baseline shown in Figure 2 are 72% and 78% respectively (i.e.
the offset was estimated as being 3%). That confidence interval
and the confidence intervals for all four variations are also
represented graphically in Figure 2. The colors in the confidence
intervals of the variations show the proportion of those confidence
intervals that are outside the baseline confidence interval.

In Figure 2, the column headed “p-value” indicates the probability
that the difference in the success rate of a variation from the
baseline is due to the existing sample being atypical. Those p-
values indicate that the success rates of variations 1 and 3 are
likely to remain higher than the baseline, and variation 4 remain
lower, if another sample of data was collected from an equivalent
group of students. The column headed “improvement” shows the
difference in success rate between each variation and the baseline.
The 95% confidence interval shown in that “improvement”
column was calculated the same way as above.

 Figure 1. Bicycle Database ERD.

 Figure 2. Variation in Success Rate for the “group by” pool.

The analysis illustrated in Figure 2 indicates that, even among
questions considered to be variations that test the same
fundamental SQL concept (i.e. “group by”), the success rates of
the variations can be quite different. (Recall, however, that the
“group by” example illustrated here manifested the greatest
differences of any set of pool variations.) The reason for those
differences is an issue we will return to in the “Results” section.

6. RESULTS
Table 1 summarizes the performance of students on the Bicycle
database. In AsseSQL, the order in which the seven questions are
presented on the computer screen to the students is fixed. (Recall,
however, that students may attempt the questions in any order.)
That same ordering is used in Table 1. Our choice of this ordering
reflects our a priori intuition (i.e. when AsseSQL was built), of
the relative difficulty of the seven query types.
As a general rule of thumb, based upon the estimation of the 95%
confidence interval described in the previous section, the success
rate percentages in Table 1 that differ by more than 5% can be
considered to be significantly different. Table 1 shows that, in
general, our intuition was correct ‒ the success rate tends to fall
from question type 1 to 7. Our intuition proved to be incorrect at
the bottom of the table, as students were substantially less
successful on self-joins then they were on correlated sub-queries.

Table 1. Query Success rates for various types of queries on
the Bicycle database.

Type of
“Select”

statement
required in

answer

No. of
question

variations

Success
Rate:
non-

attempts
wrong

Success
Rate:
non-

attempts
ignored

Non-
attempts

1 Simple,
one table 6 89% 90% 1%

2 “group
 by” 4 74% 75% 2%

3
“group

by” with
“Having”

4 58% 61% 5%

4 Natural
Join 3 57% 61% 6%

5 Simple
subquery 4 53% 58% 9%

6 Self-join 3 18% 24% 23%

7 Correlated
subquery 6 39% 46% 16%

substituted by

supplies

usesmade_up_of

BikeParts

BikePosition
QuantityInstalled
DateInstalled

Manufacturer

ManufacturerID
ManufacturerNam
ContactName
Phone
Address
Zipcode
City
BalanceDue

Component

ComponentID
ManufacturerPro
Road
Category
Length
Height
Width
Weight
Description
ListPRice
EstimatedCost
QuantityOnHand
SubstituteID

Bicycle

SerialNumber
ModelType
PaintColor
FrameSize
StartDate
CompletionDate
FrameAssembler
Construction
TopTube
ChainStay
ListPrice
FramePrice
TotalComponentC

6.1 Simple Queries on a Single Table
We begin a more detailed analysis by considering the simplest
queries in the system: queries made on a single table, using only
the reserved words “select”, “from”, “where” and “and”. Table 1
summarizes student performance on these queries for the Bicycle
database (see row 1). For that particular database, there are six
variations. AsseSQL randomly assigned one of these six queries
to each student.

As Table 1 shows, 90% of the students were able to provide a
correct query. That students did so well is not surprising, given
the simplicity of this type of query, but it does establish that at
least 90% of the students were able to understand the English-
language instructions given by AsseSQL (which could not be
taken for granted, since many of our students have English as a
second language) and that 90% of the students are competent
users of AsseSQL.

6.2 “Group By”
Table 1 shows that around 75% of students were able to answer a
question that required “group by”. However, as described in the
method section, the “group by” pool exhibited the greatest
differences in success rate of any set of variations.

One possible explanation for the difference in the success rate is
the linguistic complexity of the four variations, since English is
the second language of many of our students. However, Table 2
shows that there is no clear relationship between success rate and
linguistic complexity, when linguistic complexity is estimated by
the number of words in each variation. In fact, the variation with
the lowest success rate also has the lowest word count.

Table 2. Success rates for the “group by” variations.

Variation
Success Rate:

non-attempts
considered wrong

Word
count Signal words

1 87% 17 “average”

2 70% 24 “average total”

3 87% 19 “average”

4 57% 16 “number of”

On inspection of the text of the four questions represented in
Figure 2, another explanation suggests itself as to why variation 4
was substantially harder. This explanation is consistent with
Reisner’s (1981) observation that the subjects in her study had
difficulty knowing when to use “group by”, but they could
successfully use “group by” when explicitly told to do so. With
the exception of variation 4, all the variations use the word
“average”, which is a clear signal to the student that the aggregate
function “avg” is required, and hence “group by” is probably
required. In contrast, the use of “number of” in variation 4 does
not transparently signal that a specific aggregate function is
required. In variation 2 the use of “average total” may have
confused students, as those words signal two possible aggregate
functions, which perhaps explains that variation’s middling
success rate.

This analysis of differences in the success rates of the “group by”
variations demonstrates the pedagogical value of looking at the
data collected by our “particle accelerator” (i.e. AsseSQL).
Because of this analysis, our teaching team was led to discuss
exactly what it is that we are looking to test when we ask a “group
by” question. Is our goal to (1) test whether a student recognizes

that “group by” is required, or (2) merely test whether a student
can actually write such a query when they know that “group by” is
required? If our goal includes the former, then variations 1-3 need
to be reworded or replaced. If the latter is our goal, then variation
4 needs to be replaced.

6.3 “Group By” Queries with “Having”
Table 3 compares the performance of students on two types of
“group by” queries ‒ queries with “having” and queries without
“having” (i.e. the queries in rows 2 and 3 of Table 1). Table 3
shows that these two types of queries are significantly correlated
(p < 0.0001), but only moderately so (phi = 0.49). The 19% in the
top right of Table 3 may understate how much difficulty students
have with “having”, as that is a percentage of all 986 students
represented by the entire table. When the 186 in the top right cell
is expressed as a percentage of the 742 in the top row, the figure is
25%. That is, a quarter of all students who could provide a correct
“group by” without a “having” could not provide a correct “group
by” that required a “having”.

Table 3. Comparison of “group by” with and without
“having”. (N =986; phi correlation 0.49; χ2 test p < 0.0001)

 with “having”
right

with “having”
wrong

“group by” right 556 (56%) 186 (19%)

“group by” wrong 49 (5%) 197 (20%)

6.4 Natural Join and Self-join
Table 4 shows that the correlation between natural joins and self-
joins is a moderate 0.41. The 38% in the top right of Table 4 is a
percentage of all 986 students represented by that table. When the
371 in that top right cell is expressed as a percentage of the 599
students in the top row, the figure is 62%. That is, 62% of all
students who could answer a natural join could not provide a
correct self-join.

Table 4. Comparison of natural join and self-join.
(N = 599; phi correlation 0.41; χ2 test p < 0.0001)

 self-join right self-join wrong

natural join right 228 (23%) 371 (38%)

natural join wrong 9 (1%) 380 (38%)

Table 5. Comparison of simple and correlated sub-queries.

(N =986; phi correlation 0.49; χ2 test p < 0.0001)
 Correlated right Correlated wrong

Simple right 387 (39%) 189 (19%)

Simple wrong 71 (7%) 341 (35%)

6.5 Simple and Correlated Sub-queries
Table 5 shows, perhaps unsurprisingly, that the correlation
between simple and correlated sub-queries is a moderate 0.49.
The 189 (19%) in the top right of Table 5 is a percentage of all
986 students represented by that table. Expressed as a percentage
of the 576 students in the top row, this figure is 33%. That is, one
third of all students who could provide a correct simple sub-query
could not provide a correct correlated sub-query.

6.6 Generalizing to Other Databases
We also collected data from students for two other databases, of
similar complexity to the Bicycle database. Figure 3 compares the
success rates for each query type in the Bicycle database with the
success rates for those other two databases. (The numbers on the
horizontal axis refer to the row numbers in Table 1.) All three
databases show approximately the same pattern. The success rate
for self-joins (point 6 on the horizontal axis) is the lowest success
rate for all three databases. The only major difference between the
three databases is that the “having” questions (point 3 on the
horizontal axis) were especially difficult in “Bicycle2”.

Figure 3. Success rates of the Bicycle database compared with
two other databases.

6.7 Number of Attempts
In the “real world”, nobody knows the desired result table before
they write their query. In that sense, AsseSQL and most other
online SQL testing systems are unnatural environments, as these
systems provide the student with the desired table. We have
therefore wondered whether a large portion of students may have
answered questions correctly, particularly the easier questions, by
brute force ‒ that is, by making many attempts at the question,
with quasi-random changes.

Analysis shows that this does not appear to be the case. For all
three databases, the correlation (Pearson) between the median
number of attempts at a question and that question’s success rate
is between -0.6 and -0.7, which is a strong negative correlation.
The average number of attempts also exhibited a strong negative
correlation between -0.6 and -0.7 for all three databases.

For the Bicycle database, this negative correlation is illustrated in
Figure 4. The middle plot in that figure indicates the median
number of attempts by the students who eventually provide a
correct answer. A surprising aspect of Figure 4 is that students
required relatively few attempts for the correlated sub-query.
Note, however, that in this figure (and throughout this section of
the paper) we are only considering students who eventually
provide a correct answer. Thus, the figure merely shows that 39%
of students (as shown in Table 1) who did provide a correct
correlated sub-query were able to do so in relatively few attempts.
The speed of those students on correlated sub-queries further
emphasizes the difficulty of self-joins, since only 18% of the
students could provide a correct self-join, half of whom needed 9
or more attempts, with a quarter requiring 16 or more attempts.

Figure 5 compares the median number of attempts needed to
answer questions correctly in each of the three databases. All
three databases show approximately the same pattern. There are
two major differences across the three databases: (1) the number

of attempts for simple sub-queries (i.e. point 5 on the horizontal
axis) is relatively low in the “Bicycle2” and “athletics” databases,
and (2) the number of attempts for self-joins (i.e. point 6 on the
horizontal axis) is relatively low in the “athletics” database.

Figure 4. The distribution of number of attempts needed to
answer each question type correctly in the Bicycle database.
In AsseSQL, we do not distinguish between attempts that are
wrong because of a syntactic error, and attempts that are
syntactically correct but return an incorrect table. It would be
interesting to study data where that distinction is made.

Figure 5. The median number of attempts needed to answer
questions correctly in each of the three databases.

7. DISCUSSION
Many of our quantitative results are probably consistent with the
intuitions of experienced database educators. It is important,
however, that intuitions are tested. (After all, to return to
Agarwal’s metaphor quoted in the introduction, the Large Hadron
Collider was expected to find the Higgs’ Boson).

Perhaps our most surprising result ‒ it was certainly a surprise to
the authors of this paper ‒ is that students found self-joins to be
the most difficult of the query types we tested. Our intuition from
many years of teaching databases was that correlated sub-queries
were the most difficult type of query. Furthermore, we were
surprised that our students found self-joins to be far harder than
simple sub-queries, when these two types of queries can often be
used interchangeably. A slightly surprising result was the extent
of the difficulty of “having”. While we suspected from experience
that “having” troubled many students, we were surprised that a
quarter of our students who could answer a “group by” that did
not require “having” could not also correctly use “having”.

Why are self-joins and (to a lesser extent) “having” troublesome
for so many students? Our students have an equal opportunity to

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

bicycle

bicycle2

athletics

0

2

4

6

8

10

12

1 2 3 4 5 6 7

bicycle

bicycle2

athletics

practice all the query types, so we are less inclined to believe that
the trouble lies with insufficient practice. (But the prevalence in
the database education literature of online tutoring systems may
imply that the many educators believe that the problem is a lack of
practice.) We are more inclined to believe that self-joins and
“having” expose a conceptual problem for students. In the
traditional teaching of SQL queries, the early emphasis is on the
concept of a table. This leads to students thinking of operations on
database tables as being much like the “real world” tables, such as
spreadsheets. But self-joins and “having” have no common “real
world” analog, so those operations are troublesome for many
students. Reisner (1981) hypothesized a similar explanation,
specifically about "group by". She wrote "We suspect that ...
[students] ... adopt an "operations-on-tables" strategy ... [which]
... does not work for the "group by" function, which requires users
to think in terms of partitioning a table into subgroups". As many
database educators know, the foundational data structure for
databases is the row, not the table, and database educators need to
communicate that knowledge explicitly to their students.
Furthermore, while we agree with Sadiq et al. (2004) that the
declarative nature of SQL is a problem for some students, we
suspect that it is especially a problem in the very early stages of
learning SQL, and after students have begun to acquire that
declarative understanding on simpler SQL queries, they are then
taught “having”, self-joins and correlated sub-queries, which do
require a procedural grasp of SQL.

Part of the contribution of our work is the establishment of a
method for studying the difficulties students have with SQL
queries. Our principal methodological contribution is our focus on
the relative difficulties students have with SQL queries. For
example, of our students who could provide a correct simple sub-
query, one third could not provide a correct correlated sub-query,
but it would be absurd to claim that this same ratio (i.e. one third)
is universal. Clearly, that ratio will vary from database to
database, from institution to institution, and even semester to
semester within an institution. What we are claiming is that, when
a cohort of students manifests significantly different success rates
at (for example) simple and correlated sub-queries, then it will be
the correlated sub-query that exhibits the lower success rate. (And
likewise for other pairs of query types.) Note that our claim is not
negated by cohorts that do not display any difference in success
rates on simple and correlated queries. Clearly, an immature or
low achieving cohort will find both simple and correlated sub-
queries to be difficult, while a mature or high achieving cohort
will find both simple and correlated sub-queries to be easy. What
our quantitative results suggest are developmental stages in
learning SQL ‒ for example, competence at simple sub-queries
precedes competence at correlated sub-queries. (And likewise for
other pairs of query types.)

As another methodological issue, we advocate that prior to
studying the relative difficulty of two different query types, a third
query type be used as a screening test. In our study, a simple
select on a single table (i.e. row 1 of Table 1) served that purpose.
The purpose of the screening test is to establish that students have
an interesting minimum level of knowledge. In our case, since
90% of our students met the minimum requirement, and since
students in AsseSQL can answer questions in any order, we
elected not to remove that 10% from our analysis. However, in
future studies, it may be useful to conduct the screening test as a
pre-test, and remove from the data those students who fail the
screening test, especially when the percentage of students who fail
the screening test is much greater than 10%.

Our analysis of the four variations in the “group by” pool points to
one interesting future research direction. In that pool, three of the
four variations clearly signaled that a “group by” was required,
while the fourth variation did not. It would be interesting to verify
and extend upon Reisner’s (1981) observation, that her subjects
had difficulty recognizing when they should use “group by”, but
they could successfully use “group by” when explicitly told to do
so ‒ does that observation hold for any other query types?

8. CONCLUSION
At the back end of many internet applications there is a database.
However, the prevalence and importance of databases is not
reflected in the computing education literature. There certainly is
education literature on databases, but nothing like the literature on
(for example) learning to program. Furthermore, most of the
existing database education literature focuses on the architecture
of online tutorial and assessment systems. There is very little
literature on what students find difficult about writing database
queries. This paper is the first published quantitative study of the
relative difficulty for novices of different types of SQL queries.
This paper provides a quantitative and methodological foundation
upon which further studies may be built.

9. REFERENCES
Brusilovsky, P., Sosnovsky, S., Lee, D., Yudelson, M.,

Zadorozhny, V., and Zhou, X. (2008) An open integrated
exploratorium for database courses. ITiCSE '08. pp. 22-26.
http://doi.acm.org/10.1145/1384271.1384280

Brusilovsky, P., Sosnovsky, S., Yudelson, M. V., Lee, D. H.,
Zadorozhny, V., and Zhou, X. (2010) Learning SQL
Programming with Interactive Tools: From Integration to
Personalization. Trans. Comput. Educ. 9, 4, Article 19 (January
2010). http://doi.acm.org/10.1145.1656255.1656257

Kearns, R., Shead, S. and Fekete, A. (1997) A teaching system for
SQL. ACSE '97. pp. 224-231.

 http://doi.acm.org/10.1145/299359.299391
Mitrovic, A. (1998). Learning SQL with a computerized tutor.

SIGCSE '98, pp. 307-311.
 http://doi.acm.org/10.1145/273133.274318

Mitrovic, A. (2003) An Intelligent SQL Tutor on the Web. Int. J.
Artif. Intell. Ed. 13, 2-4 (April 2003), pp. 173-197.

Post, G.V. (2001) Database management systems: designing and
building business applications. McGraw-Hill.

Prior, J., and Lister, R. (2004) The Backwash Effect on SQL Skills
Grading. ITiCSE 2004, Leeds, UK. pp. 32-36.

 http://doi.acm.org/10.1145/1007996.1008008
Prior, J. (2014) AsseSQL: an online, browser-based SQL skills

assessment tool. ITiCSE 2014. pp. 327-327.
 http://doi.acm.org/10.1145/2591708.2602682

Reisner, P. (1981) Human Factors Studies of Database Query
Languages: A Survey and Assessment. ACM Comput. Surv. 13,
1 (March), pp. 13-31. doi.acm.org/10.1145/356835.356837

Sadiq, S., Orlowska, M., Sadiq, W., and Lin, J. (2004) SQLator:
an online SQL learning workbench. ITiCSE '04. pp. 223-227.
http://doi.acm.org/10.1145/1007996.1008055

Stokes, P. (2013) The Particle Accelerator of Learning. Inside
Higher Ed. https://www.insidehighered.com/views/2013/
02/22/look-inside-edxs-learning-laboratory-essay

7.3. Discussion 81

7.3 Discussion

In this chapter I performed correlation analysis on the mark of different
questions of an online SQL test. The findings of this chapter demonstrated
the validity of the statistical approach we used in Chapter 5 in another con-
text. However, before I move on to the application of machine learning
tools in predicting struggling students in (Chapter 9, I attempt to better un-
derstand the data to see what the number of attempts and correctness mean
in this context. These are what I learned from the findings in Chapter 6.

83

Chapter 8

Students’ Semantic Mistakes in

Writing Seven Different Types

of SQL Queries

8.1 Introduction

The aim of this chapter is to better understand the meaning of the features
extracted and analyzed from the source code snapshots collected from SQL
novices SELECT. Given my discussion on the results presented in the pa-
per allocated to Chapter 6, it is important to understand the data before
inputting it to the machine learning algorithm. This helps us to have a sense
of the data. In this Chapter, I demonstrate what the precise definition of
an attempt is in this context and how it could relate to the ways the novices
complete the construction of the SQL statement, including specific aims and
hypotheses.

8.1.1 Statement of Contribution of Co-Authors

The authors listed below have certified that:

1. they meet the criteria for authorship in that they have participated in
the conception, execution, or interpretation, of at least that part of the
publication in their field of expertise;

2. they take public responsibility for their part of the publication, except
for the responsible author who accepts overall responsibility for the
publication;

3. there are no other authors of the publication according to these crite-
ria;

4. potential conflicts of interest have been disclosed to (a) granting bod-
ies, (b) the editor or publisher of journals or other publications, and
(c) the head of the responsible academic unit; and

84
Chapter 8. Students’ Semantic Mistakes in Writing Seven Different Types

of SQL Queries

5. they agree to the use of the publication in the student thesis and its
publication on the QUT ePrints database consistent with any limita-
tions set by publisher requirements.

In the case of this chapter:

Title: Students’ Semantic Mistakes in Writing Seven Different Types
of SQL Queries

Conference: ACM Conference on Innovation and Technology in Com-
puter Science Education

URL: http://dl.acm.org/citation.cfm?id=2899464&CFID=86257
2254&CFTOKEN=60379727

Status: Presented, July 2016

TABLE 8.1: Authors’ Area of Contribution for The Paper
Corresponding to Chapter 8

Contributor Area of contribution (See appendices A and B)
(a) (b) (c)(i) (c)(ii)

Alireza Ahadi
Julia Prior
Vahid Behbood
Raymond Lister

Candidate confirmation:

I have collected email or other correspondence from all co-authors confirm-
ing their certifying authorship and have directed them to the principal su-
pervisor.

Alireza Ahadi

Name Signature Date

Principal supervisor confirmation:

8.1. Introduction 85

I have sighted email or other correspondence from all co-authors confirm-
ing their certifying authorship.

Raymond Lister

Name Signature Date

86
Chapter 8. Students’ Semantic Mistakes in Writing Seven Different Types

of SQL Queries

8.2 PDF of the Published Paper

Students’ Semantic Mistakes in Writing Seven Different
Types of SQL Queries

Alireza Ahadi, Julia Prior, Vahid Behbood and Raymond Lister

University of Technology, Sydney, Australia

{Alireza.Ahadi, Julia.Prior, Vahid.Behbood, Raymond.Lister}@uts.edu.au

ABSTRACT
Computer science researchers have studied extensively the
mistakes of novice programmers. In comparison, little attention
has been given to studying the mistakes of people who are novices
at writing database queries. This paper represents the first large
scale analysis of students’ semantic mistakes in writing different
types of SQL SELECT statements. Over 160 thousand snapshots
of SQL queries were collected from over 2300 students across
nine years. We describe the most common semantic mistakes that
these students made when writing different types of SQL
statements, and suggest reasons behind those mistakes. We
mapped the semantic mistakes we identified in our data to
different semantic categories found in the literature. Our findings
show that the majority of semantic mistakes are of the type
“omission”. Most of these omissions happen in queries that
require a JOIN, a subquery, or a GROUP BY operator. We
conclude that it is important to explicitly teach students
techniques for choosing the appropriate type of query when
designing a SQL query.

Categories and Subject Descriptors
H.2.3 [Database Management]: Language – query languages.

General Terms
Performance, Human Factors.

Keywords
Online assessment; databases; SQL queries.

1. INTRODUCTION
The Structured Query Language (SQL) is the standard language
for relational and object-oriental databases, as well as the industry
standard language for querying databases. As with other computer
languages, SQL queries can be semantically or syntactically
wrong. However, limited attention has been given to
understanding novice programmers’ challenges in writing correct

SQL queries [5]. A deep understanding of the common semantic
mistakes that novices make when writing SQL queries will
improve teaching and learning outcomes.

In this paper, we use data collected over nine years from ~2300
students taking online SQL exams. One of the ways that we have
analyzed this data is to qualitatively study the semantic mistakes
committed by these students. We review these mistakes in seven
different types of SQL queries and investigate the reasons behind
them. More specifically, we map these mistakes to proposed
mistake categories introduced in the literature, and explain why
students are likely to make these mistakes.

In section 2, we review the literature on analysis of errors in SQL.
In Section 3, we describe the data collection and analysis of the
data to explore the types of SQL query errors made by students. In
section 4, we review our findings on common semantic mistakes
of novices in writing different SQL SELECT statements. Section
5 expands and discusses these findings, before our conclusions are
given in Section 6.

2. RELATED WORK
Most computing education researchers who have studied database
education have focused on tutoring and/or assessment tools. Most
of that work has been concerned with the functionality of the tool
itself, or on how the system supports a certain pedagogical model
[1-4]. There has been relatively little work on novice errors and
misconceptions when using SQL.

A few studies have investigated these challenges with
programming in SQL. Reisner performed the first experimental
study investigating SEQUEL, the predecessor of SQL [7]. In that
study, a series of psychological experiments were conducted on
college students to investigate learnability of the language, as well
as the type and frequency of errors made by subjects. Reisner
categorized students’ mistakes into “intrusion”, “omission”,
“prior-knowledge”, “data-type”, “consistency” and “over-
generalization”.

Welty and Stemple [8] explored users’ difficulty in writing
queries in SQL compared to TABLET. Their comparison revealed
that constructing difficult queries in more procedurally-oriented
languages was easier than less procedurally-oriented languages.
They categorized SQL statements into “correct”, “minor language
error”, “minor operand error”, “minor substance error”,
“correctable”, “major substance error”, “major language error”,
“incomplete” and “unattempted”, where the first four of those
categories were considered essentially correct and the other five
categories were classified as incorrect. Their categorization of the
SQL statements was based on Reisner’s categorization [7]. A few
years later, Welty ran an experiment on a small group to test how
assistance with error correction would affect user performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ITiCSE '16, July 09-13, 2016, Arequipa, Peru
© 2016 ACM. ISBN 978-1-4503-4231-5/16/07…$15.00
DOI: http://dx.doi.org/10.1145/2899415.2899464

[9]. In that study, he categorized subject responses into “correct”,
“minor error in problem comprehension”, “minor syntactic”,
“complex errors”, “group by”, “s-type error”, “incorrect” and
“unattempted”.

Buitendijk [10] introduced a classification of natural language
questions, as well as possible errors within each class which
resulted in four general groups of logical errors including
“existence”, “comparison”, “extension” and “complexity”. This
categorization is not only based on SQL anomalies, but also
focuses on user mistakes.

Smelcer [11] developed a model of query writing that integrated a
GOMS-type analysis of SQL query construction with the
characteristics of human cognition. This model introduced four
common cognitive causes of JOIN clause omission and resulted in
the categorization of common mistakes in writing SQL queries to
“omitting the join clause”, “AND/OR difficulties”, “omitting
quotes”, “omitting the FROM clause”, “omitting qualifications”,
“misspellings” and “synonyms”. Brass [12] reports an extensive
list of conditions that are strong indications of semantic mistakes.
However, none of these studies analysed student mistakes in large
datasets.

3. METHOD
3.1 Snapshot Collection
The data collected in this study forms a total number of ~161000
SQL SELECT statement snapshots from ~2300 students. Each
snapshot is of one student attempt at a particular test question. The
students in this study were all novice undergraduate students
enrolled in an introductory database course. The tool used to
collect the data is a purpose-built online assessment system named
AsseSQL. Further details on the tool and how it was used to test
the students can be found in prior publications [5, 6]. These
snapshots were generated during supervised 50 minute online tests
in which students attempted to answer seven SQL questions based
on a given case study database. Students were provided with the
case study, which included the description of the database, the
Entity Relationship Diagram (ERD), and the CREATE statements
corresponding to the database tables. Each question tests a
student’s ability to design a SELECT statement that covers a
specific concept. Table 1 shows the concepts covered in the online
test and statistics of snapshots related to each concept. A more
detailed explanation on the nature of these concepts and their
relative difficulty levels can be found in an earlier publication
[13].

Table 1. Different SQL concepts and the number of snapshots.

Concept Snapshot count
Group by with having ~32k (20%)

Self-join ~27k (17%)
Group by ~25k (15%)

Natural join ~24k (15%)
Simple subquery ~19k (12%)
Simple, one table ~18k (11%)

Correlated subquery ~16k (10%)

3.2 Snapshot Categorization
In order to produce the execution result of the collected snapshots,
all snapshot SQL statements were re-executed in PostgreSQL and

the output of each snapshot was obtained. Depending on the
output returned by the PostgreSQL and the marking results of
AsseSQL, each snapshot was tagged as correct, syntactically
wrong or semantically wrong. We categorized each snapshot as a)
correct if its result set was exactly the same as desired solution for
the question corresponding to the snapshot, b) syntactically wrong
when an error message was returned by the PostgreSQL, or c)
semantically wrong when the execution of snapshot resulted in
either an empty result set or a result set which was not exactly the
same as the desired solution for the question corresponding to the
snapshot. In this study, a student’s snapshot is considered to be
semantically incorrect if the output generated by the snapshot is
different from the correct output. The categorization of the
snapshots and its breakdown for each concept is shown in Table 2.
While some of the snapshots in each level are correct, the majority
of snapshots introduce an error (Figure 1). A detailed exploration
of the reasons behind the syntactic errors is available in an earlier
publication [14].

Table 2. Categorization of snapshots based on their output
and their breakdown for different SQL concepts.

Concept Correct Syntactically
wrong

Semantically
wrong

Group by with
having

4% 58% 37%

Self-join 2% 37% 61%

Group by 7% 63% 30%
Natural join 4% 64% 32%

Simple
subquery

5% 61% 34%

Simple, one
table

11% 48% 41%

Correlated
subquery

6% 52% 42%

Among
all snapshots 6% 54% 40%

Figure 1. Categorization of collected SQL snapshots (N =
~161k). Snapshots in the hatched area were generated by
students who subsequently fixed their error.

3.3 Semantic Mistake vs. Syntactic Error
As could be seen in Table 2 above, a considerable number of
snapshots introduce an error, with the majority of snapshots
falling into the syntactic error category. As the number of
syntactic errors observed in students’ attempts is higher than
number of semantic mistakes, one could argue the importance of

syntactic errors over semantic mistakes. However, in this study
we chose to investigate the snapshots with semantic mistakes for
the following reasons. Firstly, our analysis suggests that syntactic
errors are more likely to be the result of lack of practice or
carelessness. This is supported by the fact that among all syntactic
error snapshots, ~69% of them are due to a typing errors in the
SELECT statement (N = ~61000). These typing errors are due to
wrong column names, wrong table names, or wrong syntax in one
or more clauses of the SELECT statement. Excluding the syntax
errors due to typing mistakes, the majority of mistakes made by
novices are semantic. The second reason is related to the last
snapshots generated by the unsuccessful students, which reflect
the point where students stopped trying to get a query right. The
number of students’ last attempts with semantic mistakes is
almost three times more than the number of last attempts that are
syntactically incorrect (including typing mistakes). Another
reason supporting our decision is that a SQL query that suffers
from a syntactic error might already have a semantic mistake
encapsulated in it. Our preliminary result suggests that a
considerable number of fixed syntactic error snapshots are not
correct as they include semantic mistakes (N = ~21000). Finally,
the error code and the error message returned by PostgreSQL are
usually enough to indicate the reason for a syntax error. In
contrast, the output of a query that suffers from a semantic
mistake is not as easily diagnosed as a syntactic error. This makes
a semantic mistake much harder to fix.

3.4 Selection of Database Case Study
The set of ~161000 snapshots in this study are based on three
different database case studies that are used in the online tests.
The ERD structure as well as data complexity of these three
databases are very similar. They consist of four to five tables,
including one associate relation and three to four relationships,
one of which is a unary relationship. The success rates of these
case studies are only slightly different (Figure 2). The relative
numbers of syntactic errors generated by students among these
case studies are similar, however, the relative number of semantic
mistakes made by students differs from one database case study to
another. To make the result of our work less dependent on the
comparative difficulty level of these case studies, we decided to
limit our investigation dataset to the set of snapshots collected
from only one database case study. We selected database case
study ‘Bicycle’, which is based on a database from Post [15]. This
database case study has the highest median success rate among
different SQL query types, which reflects its lower level of
difficulty relative to the other two case studies. For this case study
we have ~45000 snapshots collected from ~700 students.

3.5 Primary Cause of Semantic Errors
According to Figure 1, the vast majority (94%) of snapshots do
not generate the correct result, due to either a syntactic error or a
semantic mistake. Almost half of these incorrect snapshots (46%)
are from students who eventually were able to correct the errors
and answer the question correctly. Figure 3 shows the frequency
of incorrect snapshots as a function of the attempt number for
these students who did eventually answer a question correctly.
Among ~3200 cases where a student was able to answer a
question correctly, 57% of students constructed at least one
semantically incorrect SQL statement before they produced the
correct SQL snapshot. Hence, we conclude that not all
semantically wrong snapshots/student attempts are unfixable. This
is also reported by Ogden et al. [16]. As a result, we elected to
identify and investigate only those semantic mistakes that students
were not able to correct. We limited our investigation to the set of

snapshots (N = 551) that are final attempts with a semantic error.
Those snapshots were generated by 321 students.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

sim
ple

, o
ne

 ta
ble

gro
up

 by

sim
ple

 su
bq

ue
ry

na
tur

al
joi

n

orr
ela

ted
 su

bq
ue

ry

gro
up

 by
 w

ith
 ha

vin
g

sel
f-j

oin

bicycle

bicycle2

athletics

Figure 2. Success rates of different database case studies.

Figure 3. Distribution of correct (green), semantically
incorrect (red) and syntactically incorrect (orange) snapshots,
as a function of the number of attempts. X axis represents the
nth attempt and Y axis represents number of snapshots.

A snapshot may contain multiple semantic mistakes. We focused
upon the primary semantic mistake. Our process for manually
identifying the primary semantic mistake in the 551 snapshots is
illustrated in the following example:

List the given name, family name, address, the employee ID and
the number of managers of those employees who are less than 25
years and have been managed by more than one manager.

The correct query for such a question could be:

SELECT EMP_ID, FNAME, LNAME, ADDRESS , COUNT(EMPID) AS
NUMBER_OF_MANAGERS FROM EMP_DETAILS NATURAL JOIN
EMP_MANAGER WHERE EMP_AGE < 25 GROUP BY EMPID
HAVING COUNT(EMP_ID) > 1;

A student’s attempt for this question might be:

SELECT * FROM EMP_DETAILS WHERE EMPAGE < 24;

This SELECT statement has multiple semantic mistakes;
however, the most important mistake is the absence of the
EMP_MANAGER relation in this query. Even if all other aspects
of the given query related to EMP_DETAILS table are corrected,
this query will not produce the correct result set unless the
EMP_MANAGER table is included in the query. Thus the
principle semantic error is the omission of the table.

4. RESULTS
Queries of type self-join have the highest number of semantically
wrong last attempts (178 snapshots). Questions of type natural
join, group by with having and correlated subqueries have the
second highest frequency. The simple with one table and group by
categories have the lowest frequencies. In all categories, the main
reason behind the semantic mistake is students’ lack of skill in
identifying the required type of query (as listed in Table 2). Table
3 reviews different clauses of a SELECT statement and the
mistakes allocated to those clauses.

 Table 3. Clause based categorization of principle semantic
mistakes.

Clause Mistake/s Concepts

where (46%) Missing/wrong
condition

Simple, self-
join, correlated
subquery, join

from (26%) Self-join not used Self-join

having (13%)

Missing group by
or having clause,

use of wrong
column

Having

order by (5%)

Missing order by
clause,

incorrect/incompl
ete column

Simple, group
by

select (5%) Missing/extra
column

Simple, group
by

group by (5%)
Missing group by

clause, use of
wrong column

Group by,
group by with

having

4.1 Simple Query with One Table
Construction of simple queries with one table is the first concept
that novices learn at the authors’ institute. The students
investigated in this study have the highest success ratio for
questions of this type. However, snapshots that belong to this
category also suffer from semantic mistakes. The most common
mistakes observed for this query type includes
missing/unnecessary columns in a SELECT clause or an ORDER
BY clause. The absence of an appropriate condition or the
presence of irrelevant condition in a WHERE clause is also a
common mistake. In a few cases, the GROUP BY clause was
irrelevantly used. The majority of these snapshots fall into
Reisner’s category of “essentially correct”, as they are mostly the
result of carelessness.

4.2 Group By
Four common mistakes were identified, including mistakes related
to the GROUP BY clause, SELECT clause, WHERE clause or
ORDER BY clause. The most frequent mistakes include missing
the GROUP BY clause entirely or including unnecessary columns
in the GROUP BY clause. Wrong conditions in the WHERE
clause and a missing ORDER BY clause were also among the
most frequent mistakes for GROUP BY queries. Also, a missing
aggregate function in the SELECT clause was a common mistake,
which has direct correlation with the absence of a signal word in
the question (e.g. “average” or “sum”). This was originally
observed in Reisner’s experiments and further supported by the
findings of Ahadi et al. [13].

4.3 Simple Subquery
More than 80% of the investigated snapshots in this category did
not use a subquery at all. This could indicate that either students
were not able to identify the skill required to answer these
questions, or they did not have the skill required to construct such
a query.

4.4 Correlated Subquery
More than 70% of snapshots in this category lacked the structure
of a correlated subquery. In other words, the identification by
students of the need for a correlated subquery was the most
common problem. A further 13% of snapshots followed the
syntax of a simple subquery. The rest of the snapshots included a
wrong condition in the WHERE clause of the inner query.

4.5 Join
More than 80% of the snapshots in this category lacked the JOIN
clause, that is, either the ON clause or the JOIN clause in the
WHERE clause was missing. This is perhaps explained by the fact
that the use of “NATURAL JOIN” in a SQL SELECT does not
require the specification of the joining keys in the query. As a
result, students who wrote the join queries may have forgotten
that, unlike the NATURAL JOIN, the INNER JOIN requires the
indication of the keys involved in the join. Unnecessary use of
aggregate functions and incorrect joining conditions in the
WHERE clause were also observed.

4.6 Group By with Having
Around 75% of the snapshots in this category lacked a HAVING
clause and 15% of them did not even include the GROUP BY
clause. Upon closer inspection, we noticed that the condition that
is supposed to appear in the HAVING clause was often
mistakenly written in the WHERE clause. Around 15% of the
snapshots included the wrong conditions in the HAVING clause.

4.7 Self-join
Around 75% of the snapshots in this category demonstrated that
students did not understand that they needed a self-join. While the
remaining snapshots had a self-join, the self-join lacked a
condition in the WHERE clause by which the result set is limited
to non-overlapping sections of the main table and its replicate. In
rare cases, unnecessary/incorrect conditions were included in the
WHERE clause.

4.8 Mapping Semantic Mistakes
We mapped the 551 snapshots to the categorizations provided by
Reisner, by Welty and Stemple, by Welty, and by Buitendijk [7-
10]. Note, however that most error categorizations in the literature
are a mix of semantic and syntactic mistakes.

4.8.1 Psychological experiments and error
categorization
Reisner has done most of the work in experimental analysis of
learnability of SQL [7]. She categorized students’ mistakes into
“intrusion”, “omission”, “prior-knowledge”, “data-type”,
“consistency” and “over-generalization”. More than half of the
observed semantic mistakes in the snapshots analyzed in this
study are of type omission. This error usually happens when a
signal word such as “average” is not given in the question. Our
results support Reisner’s experiment. While omissions were
reported by Reisner, her observations were limited to GROUP BY
omission, and also AND clause omissions. Welty’s “incomplete”
category is (to some extent) similar to Reisner’s omission error

category. Table 4 reviews different omission errors observed
among the set of 551 snapshots in our study.

Table 4. Omission errors in semantically incorrect snapshots.
The second number in each row represents the percentage
among all omission errors.

category Frequency
Omitting JOIN clause 218 (48%)
Omitting SUBQUERY 115 (25%)

Omitting HAVING clause 58 (12%)
Omitting ORDER BY clause 23 (5%)
Omitting GROUP BY clause 17 (3%)
Omitting aggregate function 8 (1%)

Omitting WHERE clause 6 (1%)
Omitting column in SELECT 3 (<1%)

Omitting DISTINCT 3 (<1%)
Omitting column in ORDER BY 2 (<1%)

4.8.2 Categorization based on ease of error
correction
Welty’s experiment classified subject’s responses into multiple
categories according to the amount of effort needed to correct
their mistakes [9]. In our data, snapshots with a semantic mistake
of type “minor spelling errors” were frequent. Most of the time, in
our data, a misspelling resulted in a syntactic error – e.g. typing
“SELCT” instead of “SELECT” – but there are cases where a
misspelling results in a semantic mistake, for example, using the
string ‘hawaii’ instead of ‘Hawaii’ when referring to data stored in
a table.
A similar error to Welty’s “minor spelling error” is the
“overgeneralization” error proposed by Reisner. For a given
question “List the names of employees…”, an overgeneralized
solution would be:
SELECT NAMES FROM EMPLOYEE … etc.

The overgeneralization error happens when the information given
in the question is directly extracted and used to construct the
query, in the case above the names and employees. Reisner’s
overgeneralization category overlaps with Buitendijk’s
“comparisons” error category.

In some cases, snapshots of this type appeared immediately after a
syntactically wrong attempt where the name of the columns or the
tables were directly extracted from the question itself. Reisner
classifies this kind of syntactic error as “intrusion error”. The
result of syntactic error analysis investigated by Ahadi et al.[14]
reported that this type of mistake was common. In that study,
syntactic errors due to prior knowledge – e.g. using AVERAGE
instead of AVG – were also reported to be common.
Some semantic mistakes fall into Welty and Stemple’s “major
substance” error [8]. This error happens when the query is
syntactically correct but the query answers a different question.
Such errors are hard for students to detect and fix. Examples of
these types of errors are a missing second column in an ORDER
BY clause, an unnecessary condition in a WHERE clause, or the
use of an incorrect aggregate function. This error was not
common in our snapshots.

4.8.3 Natural Language based Categorization
Proposed by Buitendijk [10], this categorization of logical errors
introduces “existence”, “comparison”, “extension” and
“complexity” errors. Among our data, over one quarter of the
semantic mistakes fall into the complexity category. An example
of such cases is when more than one subquery needs to be
included in the query.

Semantic mistakes due to the complexity of the written query are
hard to detect. A query is regarded as complex if the translation
the natural language question to the SQL answer is difficult.
Interestingly, there is no relationship between the complexity of
the given question and its corresponding answer. For example,
longer questions do not necessarily require a complex query.
However, longer queries are usually more complex and as a result
more likely to contain errors.

5. DISCUSSION
Ogden et al. [16] categorized the knowledge of query writing into
knowledge of the data, knowledge of the database structure and
knowledge of the query language. The lack of knowledge of the
first two categories is best reflected in syntactic errors,
particularly those errors due to misspelling or referring to
undefined columns or tables. On the other side, lack of knowledge
of the query language is better reflected in semantic mistakes. Our
findings suggest that the primary reason behind semantic mistakes
is students’ poor skill in selecting the right technique to design the
query needed to answer the test question. The presence of a signal
word such as “average” in the question seems to be helpful;
however, students’ dependency on a such “clue” in the question is
not ideal.

Semantic mistakes also have implications for students’
development in writing queries. Reisner’s [7] model for the
development of a query consists of three phases; generation of a
template, transformation of English words to database terms, and
insertion of database terms into the template. However, we
noticed that the majority of our students who abandoned the
question due to a semantic mistake had problems with the
generation of the initial template. The first step in generating the
template is to identify which technique – e.g. natural join, simple
subquery, self-join, etc. – is most suitable. Our results suggest that
there should be a greater emphasis on this matter when teaching
students how to write SQL queries.

Our results show that the majority of semantic mistakes occur in
the WHERE clause of the SELECT statement. This error may
occur when the capacity of a student’s working memory is
surpassed [17]. For example, a high number of conditions in the
WHERE clause could result in working memory overload,
especially when many WHERE conditions are required to join
two or more tables. This has been previously shown in the
experiment performed by Smelcer [11]. This problem could
perhaps be avoided by putting greater emphasis in teaching on
following a systematic, step-by-step procedure in segmenting the
question and formulating the correct answer in SQL.

6. CONCLUSION
This study attempts to both qualitatively and quantitatively
investigate the semantic mistakes made by students. The results of
our analysis show that syntactic mistakes are more common than
semantic mistakes. However, semantic mistakes are much harder
to correct, even among successful students. Our findings show
that the majority of semantic mistakes are of type omission,
indicating that students have difficulty with selecting the correct

type of query, and they also lack a systematic approach to
formulating the query.

The majority of omission errors happen in queries that require a
JOIN, or a subquery, or a GROUP BY. This has implications for
the way that we teach SQL query design, in that we should
emphasize techniques that deal with the identification of the type
of query necessary to return the requested information, e.g. a
JOIN or a subquery. Furthermore, we believe that the selection of
the right terminology by the teacher in articulating the question
will decrease the chance of students’ semantic mistakes that are
due to complexity or the comprehension of the question. We are
carrying out additional research to confirm this assertion.

7. REFERENCES
[1] Brusilovsky, P., Sosnovsky, S., Lee, D., Yudelson, M.,

Zadorozhny, V., and Zhou, X. (2008). An open integrated
exploratorium for database courses. ITiCSE '08. pp. 22-26.
http://doi.acm.org/10.1145/1384271.1384280.

[2] Brusilovsky, P., Sosnovsky, S., Yudelson, M. V., Lee, D. H.,
Zadorozhny, V., and Zhou, X. (2010) Learning SQL
programming with interactive tools: From integration to
personalization. Trans. Comput. Educ. 9, 4, Article 19
(January 2010).
http://doi.acm.org/10.1145.1656255.1656257

[3] Mitrovic, A. (1998) Learning SQL with a computerized tutor.
SIGCSE '98, pp. 307-311.
http://doi.acm.org/10.1145/274790.274318

[4] Mitrovic, A. (2003) An intelligent SQL tutor on the web. Int.
J. Artif. Intell. Ed. 13, 2-4 (April 2003), pp. 173-197.

[5] Prior, J., and Lister, R. (2004) The Backwash Effect on SQL
Skills Grading. ITiCSE 2004, Leeds, UK. Pp. 32-36.
http://doi.acm.org/10.1145/1007996.1008008

[6] Prior, J. (2014) AsseSQL: an online, browser-based SQL
Skills assessment tool. ITiCSE 2014. Pp. 327-327.
http://doi.acm.org/10.1145/2591708/2602682

[7] Reisner, P. (1977) Use of psychological experimentation as
an aid to development of a query language. IEEE Trans.
Softw. Eng. SE-3, 3, 218-229.
http://doi.acm.org/10.1145/1103669.1103673

[8] Welty, C., and Stemple, D. W. (1981) Human factors
comparison of a procedural and a nonprocedural query
language. ACM Transactions on Database Systems (TODS)
6.4:626-649. http://doi.acm.org/10.1145/319628.319656

[9] Welty, C. (1985) Correcting user errors in SQL.
International Journal of Man-Machine Studies 22(4): 463-
477.

[10] Buitendijk, R. B. (1988) Logical errors in database SQL
retrieval queries. computer Science in economics and
management 1, 79-96.
http://doi.acm.org/10.1007/BF00427157

[11] Smelcer, J. B. (1995) User error in database query
composition. Int. J. Human-Computer Studies 42, 353-381.
http://doi.acm.org/10.1006/ijhc.1995.1017

[12] Brass, S. and Goldberg, C. (2006) Semantic error in SQL
queries: A quite complete list. The Journal of Systems and
Software 79, 630–644.
http://doi.acm.org/10.1016/j.jss.2005.06.028

[13] Ahadi, A., Prior, J., Behbood, V., and Lister, R. (2015) A
Quantitative Study of the Relative Difficulty for Novices of
Writing Seven Different Types of SQL Queries. In
Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education, pp. 201-206.
ACM, 2015.

[14] Ahadi, A., Behbood, V., Vihavainen, A., Prior, J., & Lister,
R. (2016, February). Students' Syntactic Mistakes in Writing
Seven Different Types of SQL Queries and its Application to
Predicting Students' Success. In Proceedings of the 47th
ACM Technical Symposium on Computing Science
Education (pp. 401-406). ACM.

[15] Post, G. V. (2001) Database management systems: designing
and building business applications. McGraw-Hill.

[16] Ogden, W. D., Korenstein, R., Smelcer, J. B. (1986) An
Intelligent Front-End for SQL, IBM, San Jose, CA.

[17] Miller, G. A. (1994). The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. Psychological review, 101(2), 343.

8.3. Discussion 93

8.3 Discussion

In this Chapter, I reviewed the semantic mistakes the novices make through
the construction of SQL SELECT statements. My understandings from the
data analysis led me to hypothesize that making semantic mistakes is an
inevitable matter. Those novices which have a higher abstraction skill com-
plete the construction of the correct SQL statement in less attempts and
those who are challenging with this construction require more time/steps/effort
to do it. I also hypothesize that given the short capacity of the working
memory, it is recommended that the novices construct the SQL statement
in a step by step manner, starting with an initial template and adding differ-
ent bits of the statement to different clauses one at a time. This walks hand
in hand with the idea of chunking and how it establishes the development
of coding skills of the novices in programming tasks. The fundamental
message to be taken along to the next chapter is the solid understanding of
what the attempt means in this context: a sequence of attempts represent the
path through which the database novice walks to complete the construction
of the correct SQL statement. Challenged novices take more steps (gener-
ate more snapshots) while more advanced students complete the question
in less attempts. Hence, the semantically incorrect SQL SELECT statement
is best interpreted as incomplete, not necessarily incorrect. Understanding
the ideal path (what is an ideal path for construction of a SQL statement?)
that a less challenging (If the novice is not really challenging much with
the code, then is he or she a novice in the first place?) novice would take
however, is beyond the scope of this study.

95

Chapter 9

Students’ Syntactic Mistakes in

Writing Seven Different Types

of SQL Queries and its

Application to Predicting

Students’ Success

9.1 Introduction

In the previous chapter, I gave an explanation for the definition of an "at-
tempt" in the context of SQL SELECT statements for database novices. In
this chapter, I’ll take into account that information used to construct ma-
chine learning models which best predict the performance in the course. At
this stage, I have awareness of the definition of an "attempt", hence giving
the data to the machine learning algorithm will also produce some sense of
the data. As I show in the paper, the rule based machine learning, the error
code of the syntactic mistakes and the performance on different SQL ques-
tions can altogether be strong predictors of other assessments in the course.

9.1.1 Statement of Contribution of Co-Authors

The authors listed below have certified that:

1. they meet the criteria for authorship in that they have participated in
the conception, execution, or interpretation, of at least that part of the
publication in their field of expertise;

2. they take public responsibility for their part of the publication, except
for the responsible author who accepts overall responsibility for the
publication;

96
Chapter 9. Students’ Syntactic Mistakes in Writing Seven Different Types

of SQL Queries and its Application to Predicting Students’ Success

3. there are no other authors of the publication according to these crite-
ria;

4. potential conflicts of interest have been disclosed to (a) granting bod-
ies, (b) the editor or publisher of journals or other publications, and
(c) the head of the responsible academic unit; and

5. they agree to the use of the publication in the student thesis and its
publication on the QUT ePrints database consistent with any limita-
tions set by publisher requirements.

In the case of this chapter:

Title: Students’ Syntactic Mistakes in Writing Seven Different Types
of SQL Queries and its Application to Predicting Students’ Success

Conference: ACM Technical Symposium on Computing Science Ed-
ucation

URL: http://dl.acm.org/citation.cfm?id=2844640&CFID=862572
254&CFTOKEN=60379727

Status: Presented, February 2016

TABLE 9.1: Authors’ Area of Contribution for The Paper
Corresponding to Chapter 9

Contributor Area of contribution (See appendices A and B)
(a) (b) (c)(i) (c)(ii)

Alireza Ahadi
Vahid Behbood
Arto Vihavainen
Julia Prior
Raymond Lister

Candidate confirmation:

I have collected email or other correspondence from all co-authors confirm-
ing their certifying authorship and have directed them to the principal su-
pervisor.

Alireza Ahadi

Name Signature Date

9.1. Introduction 97

Principal supervisor confirmation:

I have sighted email or other correspondence from all co-authors confirm-
ing their certifying authorship.

Raymond Lister

Name Signature Date

98
Chapter 9. Students’ Syntactic Mistakes in Writing Seven Different Types

of SQL Queries and its Application to Predicting Students’ Success

9.2 PDF of the Published Paper

9.3. Discussion 105

9.3 Discussion

The result of this chapter and the result of Chapter 6 show that the "attempt"
in both contexts can be interpreted as the degree to which a novice struggles
with the given task. In both contexts, the more struggling novices generate
a greater number of snapshots, spending more time on the code, and show-
ing poorer performance in the course outcome. In both contexts, I used
the "number of attempts" and "correctness ratio" to construct the predic-
tion models. To investigate the applicability of the analysis of the proposed
features extracted from the source code snapshot data, I set to explore the
consistency of my findings in the next chapter by examining the data col-
lected during different stages of the semester.

107

Chapter 10

Performance and Consistency

in Learning to Program

10.1 Introduction

In this Chapter, I investigate the application of the machine learning tools,
on the data collected during different stages of the semester. I show that cor-
relation between performance and the number of attempts with the course
outcome is different when the analyzed data is collected from different time
periods of the same semester within the same institute.

10.1.1 Statement of Contribution of Co-Authors

The authors listed below have certified that:

1. they meet the criteria for authorship in that they have participated in
the conception, execution, or interpretation, of at least that part of the
publication in their field of expertise;

2. they take public responsibility for their part of the publication, except
for the responsible author who accepts overall responsibility for the
publication;

3. there are no other authors of the publication according to these crite-
ria;

4. potential conflicts of interest have been disclosed to (a) granting bod-
ies, (b) the editor or publisher of journals or other publications, and
(c) the head of the responsible academic unit; and

5. they agree to the use of the publication in the student thesis and its
publication on the QUT ePrints database consistent with any limita-
tions set by publisher requirements.

In the case of this chapter:

Title: Performance and Consistency in Learning to Program

108 Chapter 10. Performance and Consistency in Learning to Program

Conference: Australian Computing Education

URL:

Status: Presented, January 2017

TABLE 10.1: Authors’ Area of Contribution for The Paper
Corresponding to Chapter 10

Contributor Area of contribution (See appendices A and B)
(a) (b) (c)(i) (c)(ii)

Alireza Ahadi
Shahil Lal
Juho Leinonen
Raymond Lister
Arto Hellas

Candidate confirmation:

I have collected email or other correspondence from all co-authors confirm-
ing their certifying authorship and have directed them to the principal su-
pervisor.

Alireza Ahadi

Name Signature Date

Principal supervisor confirmation:

I have sighted email or other correspondence from all co-authors confirm-
ing their certifying authorship.

Raymond Lister

Name Signature Date

10.1. Introduction 109

110 Chapter 10. Performance and Consistency in Learning to Program

10.2 PDF of the Published Paper

Performance and Consistency in Learning to Program

Alireza Ahadi and
Raymond Lister

University of Technology,
Sydney
Australia

alireza.ahadi@uts.edu.au
raymond.lister@uts.edu.au

Shahil Lal
University of Sydney, Australia

shahil.lal7@gmail.com

Juho Leinonen and
Arto Hellas

Department of Computer
Science

University of Helsinki
Finland

juho.leinonen@helsinki.fi
arto.hellas@cs.helsinki.fi

ABSTRACT
Performance and consistency play a large role in learning.
Decreasing the effort that one invests into course work may
have short-term benefits such as reduced stress. However,
as courses progress, neglected work accumulates and may
cause challenges with learning the course content at hand.
In this work, we analyze students’ performance and con-

sistency with programming assignments in an introductory
programming course. We study how performance, when
measured through progress in course assignments, evolves
throughout the course, study weekly fluctuations in stu-
dents’ work consistency, and contrast this with students’
performance in the course final exam.
Our results indicate that whilst fluctuations in students’

weekly performance do not distinguish poor performing stu-
dents from well performing students with a high accuracy,
more accurate results can be achieved when focusing on the
performance of students on individual assignments which
could be used for identifying struggling students who are at
risk of dropping out of their studies.

Keywords
source code snapshot analysis; educational data mining; CS1

1. INTRODUCTION
Researchers have sought to determine whether factors such

as gender, age, high-school performance, ability to reason,
and the performance in various aptitude tests correlate with
the ability to create computer programs [6]. As many of
these factors are static and only rarely account for what the
students do while programming, studies that analyze the
learning process have started to emerge [11].
In these studies, researchers study features extracted from

programming process recordings at various granularity [1,5,
12, 24]. Process data has been collected also in other con-
texts, e.g. during in-class peer instruction [15]. With such
research, in the future, data analytics and support tools can
be regularly applied to provide instructors with greater in-
sight into what is actually occurring in the classroom, open-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACE ’17, January 31-February 03, 2017, Geelong, VIC, Australia
c© 2017 ACM. ISBN 978-1-4503-4823-2/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3013499.3013503

ing up new opportunities for identifying individual student
needs, providing targeted activities to students at the ends
of the learner spectrum, and personalizing the learning pro-
cess [11].
In our work, we are interested in how students’ perfor-

mance evolves during the course and how their performance
and consistency contribute to the course outcomes. More
specifically, we study how students’ performance, measured
through correctness of snapshots taken from students’ pro-
gramming process during an introductory programming course,
evolves over time and analyze whether students consistently
perform on the same level. The analysis is based on observ-
ing students’ average performance, and seeks to determine
whether the weekly performance fluctuates due to some un-
observed variables. Furthermore, we also study students’
performance using non-parametric and parametric cluster-
ing approaches with the goal of detecting those students who
could benefit from a teaching intervention.
This article is organized as follows. In the next Section,

we discuss related work. In Section 3, we describe the re-
search questions and data, and in Section 4, we outline the
methodology and results. The results are further discussed
in Section 5 and drawn together in Section 6.

2. RELATED WORK
2.1 Predictors for Success
Traditional predictors for students’ success include past

academic performance [2], previous exposure to program-
ming [7], and demographic factors such as age and gen-
der [25]. In addition, variables such as students’ expecta-
tions for course and for their grade correlates with the final
course outcomes [16]. However, as pointed out by Watson
et al. [23], many of the traditional predictors are sensitive
to the teaching context, and generalize relatively poorly.
There are studies that indicate that there is no signifi-

cant correlation between gender and programming course
outcomes [3, 21, 25], as well as studies that indicate that
the gender may explain some of the introductory program-
ming course outcomes [2]. Similarly, when considering past
mathematics performance, some studies indicate no signifi-
cant correlation between programming course outcomes and
mathematics outcomes [23,25], while others have found ref-
erential correlations [19].
Even the connection between introductory programming

course outcomes and past exposure to programming is con-
troversial. Whilst a number of studies have reported that
past programming experience helps when learning to pro-
gram [4,7,26], contradictory results also exist. For example,

Bergin and Reilly found that students with no previous pro-
gramming experience had a marginally higher mean overall
score in introductory programming [2]. Watson et al. [23]
also found that while students with past programming ex-
perience had significantly higher overall course points than
those with no previous programming experience, program-
ming experience in years had a weak but statistically in-
significant negative correlation with course points.
A more recent approach to identifying students who may

or may not succeed is related to the use of data that is
recorded from the environment in which the students are
learning to program. We focus on such studies next.

2.2 Work Patterns and Effort
In-class behavior has been explored by Porter et al. [15]

who observed that the proportion of correct clicker answers
early in a course was strongly correlated with final course
outcomes. Similarly, interaction with web-based program-
ming environments has been studied [18]; Spacco et al. no-
ticed statistically significant but weak relationships between
the final exam score and students’ effort.
Sequential captures of programming states have been used

to analyze students’ working patterns [11]. Jadud found a
high correlation with the course exam score and the stu-
dents’ ability to create and fix errors [12], and observed that
the less errors a student makes, and the better she solves
them, the higher her grade tends to be [12].
The approach proposed by Jadud has been extended by

Watson et al. [24] to include the amount of time that stu-
dents spend on programming assignments [24]. More re-
cently, a similar approach that analyzes subsequent source
code snapshots was also proposed by Carter et al. [5], who
analyzed the errors that students encounter in more detail.
Programming states have been used to elicit finer infor-

mation from the programming process. For example, Vi-
havainen et al. [22] analyzed the approaches that novices
take when building their very first computer programs. They
observed four distinctive patterns, which were related to
typing the program in a linear fashion, copy-pasting code
from elsewhere, using auto-complete features from the pro-
gramming environment, and using programming environ-
ment shortcuts. Similar work was conducted by Heinonen et
al. [8], who analyzed problem solving patterns of two pop-
ulations in an introductory programming course; those who
failed and those who passed. In the study, Heinonen et al.
noticed that a number of the students who failed had a pro-
gramming by incident -approach, where they sought a solu-
tion through a seemingly random process – a behavior that
has also observed in the past (see e.g. [17]).
One stream of research merges snapshots into states, and

analyzes students’ progress through those states. Piech et
al. [14] clustered students’ approaches to solving a few pro-
gramming tasks, and found that the solution patterns are
indicative of course midterm scores. Similarly, Hosseini et
al. [9] analyzed how students’ progress towards correct solu-
tions in a course, and noticed that some students were more
inclined to build their code step by step from scratch, while
others started from larger quantities of code, and progressed
towards a solution through reducing and altering the code.
Students have also been grouped based on features de-

scribing how they work on programming assignments (lines
changed, added, removed, and so on), followed by an evalu-
ation of how these features change over a number of assign-
ments [27]. Overall, students in different groups may differ

in the way how they benefit from help [27].
Our research is closely related to the work by Worsley et

al. [27] and Hosseini et al. [9]. However, whilst both have
focused more on change sizes and other similar metrics, our
focus is on changes in correctness of code. We also evaluate
new methodologies and visualizations for the task at hand,
and study the students’ performance across a course instead
of over a smaller set of assignments.

3. RESEARCH DESIGN
3.1 Research Questions
Our research questions are as follows:

• RQ1: How does students’ performance evolve dur-
ing a programming course?

• RQ2: How does the performance change across
course weeks? That is, how consistently do stu-
dents perform during the course?

• RQ3: To what extent can students’ consistency be
used to predict students’ course outcomes?

With research question one, we aim to both validate pre-
vious results by Spacco et al. [18] in a new context, and to
extend the work by analyzing students’ performance changes
from week to week. These changes are discussed in the light
of the content taught in the course. With research question
number two, we seek to determine whether working consis-
tency – i.e. does student perform similarly over the course
– affects course outcomes, and with the third research ques-
tion, we revisit multiple works where authors have sought to
determine those at risk of failing the introductory program-
ming course.

3.2 Context and Data
The data for the study comes from a six-week Java in-

troductory programming course organized at University of
Helsinki during Spring 2014. One of the authors of this ar-
ticle is responsible for organizing the course under study. In
the course, half of the grade comes from completing pro-
gramming assignments, and the rest of the grade comes
from a written exam, where students are expected to answer
both essay questions as well as programming questions. The
course has a set limit for the pass rate: at least half of the
overall points as well as half of the exam points need to be
attained to pass, and the highest grade is attained with over
90% of course points.
The course was based on a blended online textbook, had

a single two-hour lecture, and tens of hours of weekly sup-
port in open labs. The course provides students a view to
both procedural and object-oriented programming. Course
assignments start easy and small, helping students to first fo-
cus on individual constructs before they are combined with
others. After the students have become familiar with the
basic tools and commands, variables and conditional state-
ments are introduced, followed by looping. Students start
constructing their own methods during the second week in
the course, and start working with lists during the week
three. Principles of object-oriented programming are intro-
duced during the latter parts of the third week of the course,
and students start building their own objects during the
fourth week. Overall, during the course, the students slowly
proceed towards more complex assignments and topics.
For the purposes of this study, students were asked to

install a software component that records source code snap-

shots with metadata on assignment-specific correctness. Over-
all, 89 students agreed to provide their data for the purposes
of our study.
3.3 Measuring Performance and Consistency

Throughout this work, students’ performance and consis-
tency is measured through their progress and work on the
course assignments. For each assignment in the course, there
are automatic unit tests, which are used to both support the
students as they work on the assignment, and to provide in-
formation on the degree of correctness on the assignment.
As the students work on the assignments, data is gathered
for analysis. Finally, at the end of the course, the students
take an exam. In this work, when seeking to predict course
outcomes, we focus on predicting the outcomes of the exam.
Students’ average performance in an assignment means

the average correctness of snapshots that have been recorded
when the students have either saved, run, tested, or submit-
ted the code that they are working on. The average is cal-
culated for each assignment for all students who worked on
the assignment. Average performance provides a measure
of the degree to which students’ struggled on an assignment
and indicates overall performance throughout the course.
Students’ consistency is measured through whether they

perform on the same level throughout the course. More
specifically, for each week, we place students’ into weekly
performance quantiles and measure whether they perform
on the same level (i.e. stay in the same quantile), or whether
their performance level fluctuates (i.e. changes over the
weeks). The consistency is used both as a way to measure
the weekly struggle as well as the effort that the student in-
vests into the assignment at a specific state; if a student is
always in the upper quantile, most of the effort is invested
in complete or nearly complete assignments.

4. METHODOLOGY AND RESULTS
4.1 Students’ Performance over the Course

First, we performed statistical analysis on the assignment
correctness data gathered from the students’ programming
process. Average performance (Figure 1) was in focus to
analyze how students’ performance evolves during the pro-
gramming course.
A first order (i.e. linear) regression analysis of students’

performance throughout the course shows that average per-
formance declines throughout the course. Second order re-
gression shows that the average performance of students in-
creases until the middle of the course, and then declines
towards the end.
Overall, students performance decreases throughout the

course. This observation is partially explainable by the
incremental nature of programming. Students proceed to-
wards more complex assignments and topics and new con-
tent is added continuously. At the same time, the results
show that the peak average performance is reached at the
middle of the course when students start to work on object-
oriented programming.

4.2 Students’ Performance over Course Weeks
After analyzing the overall trend, we study whether stu-

dents perform consistently throughout the course, or whether
their performance varies. This analysis was performed using
weekly average performance quantiles.
In Figure 2, students are placed into four categories based

on their average performance throughout each week. If the
average performance of a student during the whole week was

Figure 1: First order and second order regression
plot of the mean of performance per exercise.

over 75%, she was in the high-performing quantile (green in
Fig. 2), whilst if the student’s average performance was less
than or equal to 25%, she was in the low-performing quantile
(red in Fig. 2). As the semester progresses, there is a no-
ticeable decline in the number of students who belong to the
high-performing quantile. At the end of the course, nearly
50% of the students are in the lowest performing quantile,
and only a very small number of students remained in the
high-performing quantile.

Figure 2: Frequency of students in different quan-
tiles per week in the course. The colors green, yel-
low, orange and red represent 1st, 2nd, 3rd and 4th
quantiles respectively.

We then set out to analyze the extent to which a stu-
dent’s performance during one week indicates performance
during the next week. To visualize this, a state transition
diagram for the student’s performance transition from one
week to the next week was constructed. These transitions
are calculated using the previous weekly performance quan-
tiles, where a student’s average performance in all weekly
assignments could fall in one of the four quantiles.
When analyzing the transitions (Figure 3), the majority

of students show neither progression or retrogression. That
is, a large part of the students perform somewhat consis-
tently between any two weeks of the course. At the same
time, early in the course, majority of the students fell either
into the upper quantile or the lower quantile, whilst at the
end of the course, majority of the participants had a low
performance average.

Figure 3: State transition diagram of students’ per-
formance throughout the course.

4.3 Consistency and Course Outcomes
Using students’ consistency to predict course outcomes is

performed in two parts. We first use the consistency over
the weeks for the course outcome prediction, and then, in
the next subsection, we delve into assignment-specific per-
formance and course outcomes.
The analysis was performed using t-Distributed Stochas-

tic Neighbor Embedding (t-SNE) clustering [20], which is
a technique for dimensionality reduction suitable for high-
dimension datasets. For the analysis, three separate datasets
were used. The first dataset contained students’ average per-
formance per week, the second dataset contained students’
weekly performance quantiles, and the third contained stu-
dents’ state transitions between performance quantiles.
For each dataset, an analysis of a limited range of weeks

was performed to evaluate whether the clustering method
could be used as an early indicator of performance, as well
as to identify weeks where students’ performance varied the
most. Kullback-Leibler divergence was used as a measure for
the difference between the clustering outcome and the course
outcome for each dataset. Values of the analysis are sum-
marized in Table 1. Here, the consistency dataset (dataset
3) has entries only in the rows with more data as transitions
between any two weeks did not yield meaningful results.

Table 1: t-SNE Kullback-Leibler divergences of
three different datasets.
period dataset 1 dataset 2 dataset 3

Weeks one and two 0.25 0.36 NA
Weeks two and three 0.27 0.36 NA
Weeks three and four 0.2 0.25 NA
Weeks four and five 0.23 0.29 NA
Weeks five and six 0.18 0.28 NA
Weeks one to three 0.25 0.33 0.38
Weeks two to four 0.24 0.35 0.35
Weeks three to five 0.26 0.24 0.34
Weeks four to six 0.28 0.25 0.35

The Kullback-Leibler divergence of the students’ state
transition data (dataset 3) is higher when compared to both
weekly performance (dataset 1) and weekly quantiles (dataset
2). That is, the average weekly performance performs bet-
ter as an indicator of final exam result than the transitions
between the performance quantiles.
The result of t-SNE clustering on students’ average per-

formance per week is shown in Figure 4 – here, we have used
the data from weeks four, five and six with Kullback-Leibler

divergence 0.28. T-SNE does not require an initial value for
the number of desired clusters, that is, it is a non-parametric
approach. One of the major benefits of non-parametric mod-
els is that the parameters are determined by the data, not
the chosen model.
As could be seen in Figure 4, t-SNE was able to cluster

students based on their performance into meaningful clusters
– few indicating mostly passing students, one with mostly
dropouts, and one with mixed data. The labels in the figure
depict those students who pass the subject (Y), those who
failed the subject (N), and those who drop out from the
course (Z).()

Figure 4: t-SNE based visualization of students final
course outcomes using data from weeks four, five
and six of students’ average performance.

4.4 Assignment-specific Performance and
Course Outcomes

Thus far, students were clustered based on their weekly
performance. We observed that performance fluctuations
between weeks is not as indicative of performance in the fi-
nal exam as the average weekly performance. We now move
from analyzing weekly performance to analyzing assignment-
specific performance and its relationship with course out-
comes. As the number of assignments is high, dimensionality
reduction over the assignments using principal component
analysis (PCA) [10] was performed.
Whilst performing PCA on the assignment data, we also

performed k-means clustering [13] to identify a meaningful
amount of groups into which the data could be split into.
Upon analysis of the k-means clustering results over k be-
tween 1 and 10, we observe that the projection of our data
could be best explained in a two-dimensional space with
two principal components. We then used those two princi-
pal components to divide the students into two groups. As
a result, 78% of students who failed or dropped the subject
are placed into the correct cluster.
The same analysis was then performed on three datasets

similar to the previously used datasets: (a) the quartile of
each student’s performance on each exercise; (b) the state
transition data based on the score of each exercise where the
student’s performance from one week to the next week could
be either progress, retrogress or no change; and (c) the state
transition data based on the quartile of the obtained score
of the student per exercise where the student’s performance
from one week to the week after could be either progress,
retrogress or no change.
When performing clustering on the three datasets, we ob-

served that the used k-means clustering does not show a

good separation of successful and unsuccessful students. The
result of our analysis suggests that at-risk students could
best be predicted by the scores or quantile of exercises (i.e.
datasets a and b, being able to correctly identify 78.72%
and 76.60% of the at-risk students respectively), compared
to the quartile state of student’s performance or performance
transition between exercises. However, the predictive infor-
mation stored in state transitions seem to be more effective
in identifying students who perform well in the final exam of
the course (identifying 66.67% of well-performing students
correctly).

5. DISCUSSION
5.1 Overall performance in the course

Overall, in line with previous studies, we observed that
students’ performance decreases during the course. This is
in line with both the general knowledge in introductory pro-
gramming as well as the literature where students’ perfor-
mance in the online programming environment has been an-
alyzed [18]. However, when contrasting our results to those
in Spacco et al. [18], students in our context are working in
a traditional programming environment, and the majority of
the course assignments expect that the students implement
more than a single function – thus, generalizing the previous
results to a new context.
Upon analysis of the average performance, in Fig. 1, we

observed through second order regression that the perfor-
mance first increases, and then decreases. We observe that
students in the course perform reasonably well until the in-
troduction of object-oriented programming, after which the
assignments become more complex.
Overall, course topics build on each other, and learning

each new topic depends on whether the student understands
the previous topic to a sufficient detail. If a student struggles
on a topic in the course and fails to grasp it, he or she will
likely struggle with upcoming topics as well. Second, as pro-
gramming courses progress, it is typical that the complexity
of the programming assignments increases.

5.2 Changes in performance
When analyzing the students performance transitions in

the course, we observe that for the majority of the students,
the performance stays nearly the same. When analyzing
performance through quantiles, nearly none of the students
perform at a level where their solutions would, on average
be over 75% correct. What we likely also observe here is
that as the course progresses, students become less likely
to tinker with their solutions after they have finished the
solution, leading to a smaller amount of snapshots in states
with high correctness.
At the same time, as the assignments are more complex,

starting an assignment becomes more challenging, and ap-
proaching a correct solution takes more steps than before.
This means that as students struggle, they perform worse in
the light of our metric. At the same time, struggling does
not necessarily indicate poor learning, only that the assign-
ments are more challenging.
We observe that fluctuations in average performance does

not transfer well to fluctuations in course performance. Our
results are in line with those in [27], indicating that stu-
dents’ performance does not drastically change during the
semester.

5.3 Clustering and at-risk students

When comparing the clustering results to the results pre-
viously presented in the literature, the outcomes are mediocre,
and we do not observe a good distinction between the stu-
dents who perform well and those who do not. Recent stud-
ies that have focused on selecting features that best deter-
mine students who are at risk of dropping out have reported
high correlations. For example, a recent result from [1] re-
ported MCC = 0.78, when using only the first week of data
in a course and seeking to predict whether students fall un-
der or over the class median, a significantly better result
than that from our study. At the same time, the data, fea-
tures and methodology was different to ours.
One of the reasons for the lack of performance in the

clustering is that distinguishing between those students who
pass and those who fail is not trivial. There is a clear sep-
aration between clusters of students who are far from the
fail/pass -border, while the course outcome for a student
who receives 49/100 (i.e. a fail in our system) and a student
who receives 50/100 (i.e. a pass in our system) is large in
terms of grading, there is very little difference in how they
fared in the course and in the exam.

5.4 Limitations of the study
Our study has several limitations. First, the sample size

in our dataset was only 89, which is relatively small for clus-
tering and PCA. Second, the exam results come from a pen-
and-paper exam, which does not fully reflect the activities
that students perform during the course. It is possible that
students handle programming tasks well, but are, for ex-
ample, not able to properly explain what they are doing
using pen and paper. On the other hand, students may get
lower course marks because they are not able to complete
the more complex assignments, but that does not necessar-
ily mean that a student did not learn the topic and would
not be able to do well in an exam.
Third, when analyzing performance transitions, we lim-

ited our work to quartiles. It is possible that better results
would have been achieved with different settings such as a
different interval for the quartiles.
Finally, we do not know if students do their best on the

assignments as it is possible that some students only seek to
pass the course. Additional details should be incorporated
to the clustering to take such students into account.

6. CONCLUSIONS
In this work we analyzed students performance and consis-

tency in an introductory programming course. For the anal-
ysis, we used sequential source code snapshots that described
students progress with the programming assignments. We
investigated course-level changes in students’ performance,
analyzed whether the performance varied over different weeks,
and evaluated clustering to identify students at risk.
Overall, to answer research question one, ”How does stu-

dents’ performance evolve during a programming course?”,
we observe that students’ performance declines throughout
the course. This result is in line with previous studies (see
e.g. [18]), and is explainable through the incremental nature
of programming. To proceed in a course, the student has to
learn the topics from the previous week.
Whilst the overall performance declined over the course,

at the same time, we observe that the majority of the stu-
dents have a constant performance from week to week. That
is, to answer the research question two, ”How does the per-
formance change across course weeks?”, the performance

mostly stays the same. This means that the majority of
the students perform similarly throughout the course, and
that the overall decline in the course performance is likely
explainable by the increasing complexity of the course as-
signments – a topic for future study.
When evaluating this performance as a predictor of fi-

nal course outcomes, we noticed that fluctuation in course
performance across weeks is a relatively poor metric for fi-
nal course performance. The most accurate clustering was
achieved using average performance. To answer the research
question three, ”To what extent can students’ performance
be used to identify those that may drop out from a course?”,
we posit that one could use the clusters built from average
performance. However, at the same time, one should seek
to verify that there is a sufficient number of study samples,
and that the measured outcome depicts the students’ work-
ing process.

7. REFERENCES
[1] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen.

Exploring machine learning methods to automatically
identify students in need of assistance. In Proceedings of the
Eleventh Annual International Conference on International
Computing Education Research, ICER ’15, pages 121–130,
New York, NY, USA, 2015. ACM.

[2] S. Bergin and R. Reilly. Programming: factors that
influence success. ACM SIGCSE Bulletin, 37(1):411–415,
2005.

[3] P. Byrne and G. Lyons. The effect of student attributes on
success in programming. In ACM SIGCSE Bulletin,
volume 33, pages 49–52. ACM, 2001.

[4] B. Cantwell Wilson and S. Shrock. Contributing to success
in an introductory computer science course: a study of
twelve factors. In ACM SIGCSE Bulletin, volume 33, pages
184–188. ACM, 2001.

[5] A. S. Carter, C. D. Hundhausen, and O. Adesope. The
normalized programming state model: Predicting student
performance in computing courses based on programming
behavior. In Proceedings of the Eleventh Annual
International Conference on International Computing
Education Research, ICER ’15, pages 141–150, New York,
NY, USA, 2015. ACM.

[6] G. E. Evans and M. G. Simkin. What best predicts
computer proficiency? Comm. of the ACM,
32(11):1322–1327, 1989.

[7] D. Hagan and S. Markham. Does it help to have some
programming experience before beginning a computing
degree program? ACM SIGCSE Bulletin, 32(3):25–28,
2000.

[8] K. Heinonen, K. Hirvikoski, M. Luukkainen, and
A. Vihavainen. Using codebrowser to seek differences
between novice programmers. In Proceedings of the 45th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’14, pages 229–234, New York, NY,
USA, 2014. ACM.

[9] R. Hosseini, A. Vihavainen, and P. Brusilovsky. Exploring
problem solving paths in a Java programming course. In
Proceedings of the 25th Workshop of the Psychology of
Programming Interest Group, 2014.

[10] H. Hotelling. Analysis of a complex of statistical variables
into principal components. Journal of educational
psychology, 24(6):417, 1933.

[11] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler,
J. Börstler, S. H. Edwards, E. Isohanni, A. Korhonen,
A. Petersen, K. Rivers, M. A. Rubio, J. Sheard, B. Skupas,
J. Spacco, C. Szabo, and D. Toll. Educational data mining
and learning analytics in programming: Literature review
and case studies. In Proceedings of the 2015 ITiCSE on

Working Group Reports, ITICSE-WGR ’15, pages 41–63,
New York, NY, USA, 2015. ACM.

[12] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the Second
International Workshop on Computing Education
Research, ICER ’06, pages 73–84, New York, NY, USA,
2006. ACM.

[13] J. MacQueen et al. Some methods for classification and
analysis of multivariate observations. In Proceedings of the
fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. Oakland, CA, USA.,
1967.

[14] C. Piech, M. Sahami, D. Koller, S. Cooper, and
P. Blikstein. Modeling how students learn to program. In
Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE ’12, pages 153–160,
New York, NY, USA, 2012. ACM.

[15] L. Porter, D. Zingaro, and R. Lister. Predicting student
success using fine grain clicker data. In Proceedings of the
tenth annual conference on International computing
education research, pages 51–58. ACM, 2014.

[16] N. Rountree, J. Rountree, and A. Robins. Predictors of
success and failure in a cs1 course. ACM SIGCSE Bulletin,
34(4):121–124, 2002.

[17] J. Spacco. Marmoset: a programming project assignment
framework to improve the feedback cycle for students,
faculty and researchers. PhD thesis, 2006.

[18] J. Spacco, P. Denny, B. Richards, D. Babcock,
D. Hovemeyer, J. Moscola, and R. Duvall. Analyzing
student work patterns using programming exercise data. In
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, SIGCSE ’15, pages 18–23,
New York, NY, USA, 2015. ACM.

[19] M. V. Stein. Mathematical preparation as a basis for
success in CS-II. Journal of Computing Sciences in
Colleges, 17(4):28–38, 2002.

[20] L. Van der Maaten and G. Hinton. Visualizing data using
t-sne. Journal of Machine Learning Research,
9(2579-2605):85, 2008.

[21] P. R. Ventura Jr. Identifying predictors of success for an
objects-first CS1. 2005.

[22] A. Vihavainen, J. Helminen, and P. Ihantola. How novices
tackle their first lines of code in an ide: analysis of
programming session traces. In Proceedings of the 14th Koli
Calling International Conference on Computing Education
Research, pages 109–116. ACM, 2014.

[23] C. Watson, F. W. Li, and J. L. Godwin. No tests required:
Comparing traditional and dynamic predictors of
programming success. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’14, pages 469–474, New York, NY, USA, 2014.
ACM.

[24] C. Watson, F. W. B. Li, and J. L. Godwin. Predicting
performance in an introductory programming course by
logging and analyzing student programming behavior. In
Proceedings of the 2013 IEEE 13th International
Conference on Advanced Learning Technologies, ICALT
’13, pages 319–323, Washington, DC, USA, 2013. IEEE
Computer Society.

[25] L. H. Werth. Predicting student performance in a beginning
computer science class, volume 18. ACM, 1986.

[26] S. Wiedenbeck, D. Labelle, and V. N. Kain. Factors
affecting course outcomes in introductory programming. In
16th Annual Workshop of the Psychology of Programming
Interest Group, pages 97–109, 2004.

[27] M. Worsley and P. Blikstein. Programming pathways: A
technique for analyzing novice programmers’ learning
trajectories. In Artificial intelligence in education, pages
844–847. Springer, 2013.

10.3. Discussion 117

10.3 Discussion

The findings of this chapter show that the data collected from different
stages of the semester do not show consistent features. This gives implica-
tions and clues to the importance of considering variations in the context.
Investigating the quantity of the difference is beyond the scope of this PhD
research, however the finding of this paper shows the importance of the
researcher’s level of awareness from the data and its features. In the next
chapter, I set out to investigate the degree of context specificity of the data
analysis result via a minimal variation made to the course structure. The
finding of this chapter and the following chapter demonstrates the need for
more context-independent methods of data analysis.

119

Chapter 11

On the Number of Attempts

Students Made on Some

Online Programming Exercises

During Semester and their

Subsequent Performance on

Final Exam Questions

11.1 Introduction

The result of the previous chapters showed that the information extracted
from the source code snapshot can be used to perform data analytics with
the goal of identification of students who are likely to struggle with the
learning objectives of the course. I demonstrated that two main features in-
cluding attempts and correctness ratio alone can predict the course outcome
in a different context. However, since the models could be trained at differ-
ent stages of the semester, the variances of the data used in the training set
might in fact change the prediction performance of the prediction model.
Hence, there is a need for a machine learning based model which relies
on these two features while performing in a less context dependent fash-
ion. This chapter represents a new method for analyzing the source code
snapshot data which is based on contingency tables. A 2 by 2 contingency
table can be interpreted as a confusion matrix, representing the association
between two variables. The proposed method is easy to implement, more
suitable to fit the real time data analysis tools, and is adaptable in different
contexts.

11.1.1 Statement of Contribution of Co-Authors

The authors listed below have certified that:

120
Chapter 11. On the Number of Attempts Students Made on Some Online

Programming Exercises During Semester and their Subsequent
Performance on Final Exam Questions

1. they meet the criteria for authorship in that they have participated in
the conception, execution, or interpretation, of at least that part of the
publication in their field of expertise;

2. they take public responsibility for their part of the publication, except
for the responsible author who accepts overall responsibility for the
publication;

3. there are no other authors of the publication according to these crite-
ria;

4. potential conflicts of interest have been disclosed to (a) granting bod-
ies, (b) the editor or publisher of journals or other publications, and
(c) the head of the responsible academic unit; and

5. they agree to the use of the publication in the student thesis and its
publication on the QUT ePrints database consistent with any limita-
tions set by publisher requirements.

In the case of this chapter:

Title: On the Number of Attempts Students Made on Some Online
Programming Exercises During Semester and their Subsequent Performance
on Final Exam Questions

Conference: ACM Conference on Innovation and Technology in Com-
puter Science Education

URL: http://dl.acm.org/citation.cfm?id=2899452&CFID=862572
254&CFTOKEN=60379727

Status: Presented, July 2016

TABLE 11.1: Authors’ Area of Contribution for The Paper
Corresponding to Chapter 11

Contributor Area of contribution (See appendices A and B)
(a) (b) (c)(i) (c)(ii)

Alireza Ahadi
Raymond Lister
Arto Vihavainen

Candidate confirmation:

11.1. Introduction 121

I have collected email or other correspondence from all co-authors confirm-
ing their certifying authorship and have directed them to the principal su-
pervisor.

Alireza Ahadi

Name Signature Date

Principal supervisor confirmation:

I have sighted email or other correspondence from all co-authors confirm-
ing their certifying authorship.

Raymond Lister

Name Signature Date

122
Chapter 11. On the Number of Attempts Students Made on Some Online

Programming Exercises During Semester and their Subsequent
Performance on Final Exam Questions

11.2 PDF of the Published Paper

On the Number of Attempts Students Made on Some
Online Programming Exercises During Semester and their

Subsequent Performance on Final Exam Questions

Alireza Ahadi and Raymond Lister
University of Technology, Sydney

Australia
alireza.ahadi@uts.edu.au

raymond.lister@uts.edu.au

Arto Vihavainen
Department of Computer Science

University of Helsinki
Finland

arto.vihavainen@cs.helsinki.fi

ABSTRACT
This paper explores the relationship between student per-
formance on online programming exercises completed dur-
ing semester with subsequent student performance on a final
exam. We introduce an approach that combines whether or
not a student produced a correct solution to an online ex-
ercise with information on the number of attempts at the
exercise submitted by the student. We use data collected
from students in an introductory Java course to assess the
value of this approach. We compare the approach that uti-
lizes the number of attempts to an approach that simply
considers whether or not a student produced a correct so-
lution to each exercise. We found that the results for the
method that utilizes the number of attempts correlates bet-
ter with performance on a final exam.

Keywords
Programming; educational data mining; learning analytics

1. INTRODUCTION
For decades, students who were learning to program sub-

mitted their assignments on paper. Thus, the only artifact
available for analysis was a student’s final program. But
in recent years, with the advent of web-based systems for
teaching programming, it is now possible to study the stu-
dent behaviour that culminates in the final program.

Jadud [2] studied the sequence of source code snapshots
generated by students, where a snapshot is collected each
time a student compiles their code. Jadud introduced a met-
ric that quantifies how students fix errors, which he called
the error quotient. Using a version of the error quotient,
Rodrigo et al. [4] found a strong correlation between error
quotient and midterm score in an introductory programming
course. Watson et al. [5] proposed an improvement to the
error quotient called Watwin. Watson et al. also noted that
a simple measure, the average amount of time that a student

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE ’16, July 09-13, 2016, Arequipa, Peru
c© 2016 ACM. ISBN 978-1-4503-4231-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2899415.2899452

spends on a programming error, is strongly correlated with
final course score.

1.1 Motivation for this Study
While the aforementioned research work on the error quo-

tient and other measures is very promising, in this paper the
authors study students in a simpler way, without directly
analyzing student code, for the following reasons:

1. As practising teachers, we often find ourselves focus-
ing on two simpler aspects of a student’s performance
on practical programming tasks, before we look at the
student’s code: (1) whether or not the student pro-
vided a piece of code that generates correct answers,
and (2) how long it took the student to write the code.

2. As practising teachers, we also want ways of assessing
the quality of the exercises we are giving the students.

3. As education researchers, we feel the work on the er-
ror quotient and other measures currently lacks a suit-
able benchmark, a simpler approach, upon which those
more complicated approaches are incumbent to im-
prove.

In the next section, we describe our simpler approach,
which does not directly analyze student code. We then
present and discuss results generated with this approach.

2. METHOD AND DATA

2.1 Educational Context and Data
The data for this study was collected from students en-

rolled in a 6 week introductory Java programming course at
the University of Helsinki. In the course, 50% of the overall
mark comes from completing online exercises during the 6
week semester, while the other 50% comes from a final exam.
Furthermore, to pass the course, students must achieve at
least half of the available marks in both the exercises and
the final exam.

There are 106 online exercises available for inspection at
http://mooc.fi/courses/2013/programming-part-1/material.
html but only 77 of those exercises are used in the course.
Students were allowed to make multiple submissions of an
exercise, henceforth referred to as ”attempts”. Attempts
could fail for both syntactic and semantic reasons, and the
online system provides feedback to students. There were lab

218

sessions where students could seek assistance with the ex-
ercises from teaching staff, but students were also allowed
to work on and submit the exercises at any other time and
place of their choosing. More information about the educa-
tional context and the data could be found in [1]. As data
for this paper, each student’s performance on each exercise
was recorded as two values:

1. A dichotomous variable; 0 if the student did not suc-
ceed in answering the exercise correctly, or 1 if the
student did provide a correct answer.

2. An integer; the number of attempts a student submit-
ted for the exercise (irrespective of whether or not the
student provided a correct answer).

The three final exam questions analyzed in this paper are
provided in an appendix to this paper. As data for this pa-
per, a student’s performance on each of those three questions
was recorded as a dichotomous variable; 0 if the student’s
mark for the question was below the class median mark for
that question, or 1 if it was above the median.

2.2 Construction of Contingency Tables
A 2 × 2 contingency table is illustrated in Figure 1. The

four variables in Figure 1, ”a”, ”b”, ”c” and ”d” represent
the number of students who satisfy each of the four possible
combinations of the two dichotomous variables, for exercise
X and final exam question Y. The simplest example of a
criterion for an exercise X is that students answered the
exercise correctly. Given that criterion, then according to
the example value in Figure 1 for ”a”, 32 students answered
exercise X correctly and also scored above the class median
mark on final exam question Y.

Figure 1: A 2× 2 Contingency Table for Exercise X
and Final Exam Question Y.

2.2.1 Number of Student Attempts
More complicated criteria for exercise X in Figure 1 were

constructed by combining whether or not students answered
an exercise correctly with the number of attempts. That is,
for each combination of exercise X and final exam question
Y, a number of contingency tables were generated, where
the dichotomous criteria for exercise X was that students
answered the exercise ...

1. Correctly

2. Correctly, and in <2n attempts

3. Correctly, and in ≥2n attempts

4. Incorrectly, and in <2n attempts

5. Incorrectly, and in ≥2n attempts

6. In <2n attempts

7. In ≥2n attempts

The largest number of attempts by a student on any exercise
was 513, so ”n” in each of the list items takes on all values
from 0 to 10.

2.3 Measures of Performance
We use two measures to describe the relationship between

an exercise and a final exam question, in terms of the values
within the contingency table, which are described below.

2.3.1 Accuracy
Accuracy, which ranges from 0 to 1, is the fraction of

occasions when a student either (1) meets the criteria on
exercise X and is in the upper half of the class on final exam
question Y, or (2) did not meet the criteria on exercise X and
is in the lower half on exam question Y. Formally, in terms
of the contingency table values shown in Figure 1, accuracy
is defined as:

acc =
a+ d

a+ b+ c+ d
(1)

2.3.2 Phi Correlation Coefficient
The phi correlation coefficient is a standard measure of the

correlation of two binary variables. The Pearson correlation
coefficient for two binary variables is equivalent to the phi
coefficient. The phi coefficient ranges from 1 (where the
two binary variables are always equal), through zero (where
the two binary variables are not related), to -1 (where the
two binary variables are never equal). The phi coefficient is
computed for a 2 by 2 contingency table as follows:

phi =
ad− bc

2
√

(a+ b) (c+ d) (a+ c) (b+ d)
(2)

2.4 Contingency Table Pruning Rules
To select the statistically significant and most useful con-

tingency tables, the following pruning rules were used to
eliminate some contingency tables. In these pruning rules,
where a rule refers to two contingency tables, the two contin-
gency tables are for the same exercise and same final exam
question. Also, of those two contingency tables, the table
with a wider range of student attempts is the more general
table (e.g. ≥8 attempts is more general than ≥16 attempts).

1. Contingency tables with any cell value of less than 5
were pruned. This is a well known and widely used cri-
terion for ignoring a contingency table, which reduces
the likelihood of over-fitting a model to data, for the
reasons explained in [6].

2. Contingency tables with a negative phi were pruned.
Such contingency tables always have ”mirror image”
contingency table with a positive phi.

3. Contingency tables with p> 0.01 (χ2 test) were pruned.

4. If the phi values of two contingency tables differed by
less than 0.01, then the less general bin was pruned.

5. If the phi values of two contingency tables differed by
more than 0.01, and the phi value of the more general
contingency table was higher than the phi value of less
general table, then the less general table was pruned.

219

6. If the phi value of a more general contingency table was
lower than the phi value of another table, but a sta-
tistical test for significant difference (z score transfor-
mation [3]) revealed no significant difference (p<0.05),
then the less general bin was pruned.

3. RESULTS

3.1 When number of attempts is ignored
Table 1 shows the exercises with the highest correlation

to final exam questions 2, 3 and 4, when the number of
attempts by students is ignored. The final exam question
numbers are designated in the table’s second column, the
column headed ”ExamQ”. Questions 2, 3 and 4 from the
final exam are provided as an appendix to this paper.

For final exam question 2, the three highest correlating
exercises are 59, 70 and 61, as shown in the third column,
headed ”Ex”. These three exercises (and all other exercises)
are available for inspection at http://mooc.fi/courses/2013/
programming-part-1/material.html. The column with the
heading ”Week” indicates that all the exercises are from
weeks 3 and 4 of the 6 week semester.

The columns headed ”Q1”, ”Q2” and ”Q3” show the quar-
tile boundaries for the number of attempts made by stu-
dents. For example, row 1.1 of the table shows that 25%
of the students made 10 attempts or less on the exercise,
50% of the students made 15 attempts or less, and 50% of
the students made between 10 and 20 attempts. Note that
these quartile boundaries are for all students, irrespective of
whether or not they answered the exercise correctly.

The values in the column headed ”Correct” indicate that,
for the contingency table used to construct each row of this
table, answering each exercise correctly is the sole ”criteria
on exercise X” in Figure 1.

The columns headed ”Phi” and ”Accuracy” show the mea-
sures of performance as defined earlier. For each exam ques-
tion, the rows of Table 1 are ordered on ”Phi”, from highest
to lowest. Both ”Phi” and ”Accuracy” in each row are cal-
culated using a contingency table as shown in Figure 1. In
Table 1, the columns headed ”a”, ”b”, ”c” and ”d” show the
values for each of these contingency tables. For each row of
Table 1, ”Meet criterion on exercise x” in Figure 1 is ”yes”
if a student answered the exercise correctly. For example,
column ”a” in row 1.1 of Table 1 shows that 32 students
answered exercise 59 correctly and also scored above the
median mark on final exam question 2. The values recorded
for ”a”, ”b”, ”c” and ”d” in that row of Table 1 are the four
example values shown in Figure 1. The column ”sum”is sim-
ply the sum of the values in columns ”a”, ”b”, ”c” and ”d”,
which show that this table used data from approximately
70 students. The sum values in that column vary as some-
times a student did not attempt an exercise. The column
headed ”p” shows the statistical significance of the contin-
gency table for each exercise, using the standard χ2 test.
All exercises shown in this table easily meet the traditional
p<0.05 criteria for statistical significance.

3.2 When number of attempts is considered
Table 2 shows the exercises with the highest correlation

to final exam questions 2, 3 and 4, when the number of at-
tempts made by students on an exercise is considered. Most
of the columns in this table contain the same type of infor-

mation as the previous table. The differences between the
previous table and this table are:

• The column headed ”Attempts” describes the range of
the number of attempts a student must have made on
an exercise as part of meeting the criteria on exercise
X (as shown in Figure 1). For example, the ”≥8” in
row 2.1 indicates that a student needed to make at
least 8 attempts at the exercise to be counted within
either cell ”a” or ”b” of the contingency table. In rows
2.6 and 2.7, ”<16” indicates that a student needed to
make less than 16 attempts to meet the criteria.

• Some rows in the column headed ”Correct” contain an
asterisk. Each of those asterisks indicates that whether
a student answered the exercise correctly is irrelevant;
the sole criterion for including a student in cell ”a” or
”b” of the contingency table is the number of attempts
the student made on the exercise.

• Rows 2.8 and 2.9 contain ”correct”in the column headed
”Correct”, indicating there are two criteria that need
to be met for a student to be counted in either cell
”a” or ”b” of the contingency table: (1) the student
must have answered the exercise correctly, and (2) the
student must have done so in the number of attempts
specified in the ”Attempts” column.

4. DISCUSSION
There are differences between Tables 1 and 2, which il-

lustrate the utility of considering the number of attempts
students make, rather than focusing on correctness alone:

• Table 1 shows no exercise correlated significantly with
final exam question 3, but Table 2 shows several exer-
cises correlated with that question.

• For final exam question 2, the phi correlation and ac-
curacy of each exercise is much higher in Table 2 than
in Table 1.

• In Table 1, all the exercises listed are from weeks 3 and
4 of the 6 week semester. The authors believe that it
is counter-intuitive that exercises from mid-semester
would always correlate better with a final exam ques-
tion than exercises done late in semester. That in-
tuition is supported by Table 2, where 6 out of 10
exercises listed in Table 2 are from weeks 5 and 6.

Before generating the results in the tables, the authors
had thought that the column ”Attempts” in Table 2 would
be dominated by criteria that placed an upper bound on the
number of attempts, not a lower bound (i.e. we thought
there would have been more ”<” symbols in the ”Attempts”
column, not the ”≥” symbols that actually dominate). Our
intuition was that stronger students would consistently com-
plete exercises in fewer attempts than weaker students. Our
explanation as to why ”≥” symbols dominate is three-fold:

1. Students do the exercises at any time or place of their
choosing. Students who complete some exercises in an
unusually small number of attempts may be receiving
too much assistance from someone else.

2. The reader may recall one of the pruning rules for con-
tingency tables; that the smallest value in any cell of

220

Table 1: The exercises with the highest correlation to final exam questions 2, 3 and 4, where the sole criterion
is whether a student answered the exercise successfully; the number of attempts prior to success is ignored.
No exercises correlated significantly (p < 0.05) with final exam question 3.

Row No. ExamQ Ex Week Q1 Q2 Q3 Correct Phi Acc a b c d sum p
1.1 2 59 3 10 15 20 correct 0.33 0.66 32 6 18 16 72 0.004
1.2 2 70 4 15 40 70 correct 0.32 0.63 29 5 21 17 72 0.005
1.3 2 61 3 11 14 20 correct 0.28 0.61 27 5 23 17 72 0.01

1.4 3 — — — — — ——— — — — — — — — ——

1.5 4 52 3 16 24 35 correct 0.34 0.66 30 6 18 17 71 0.004
1.6 4 59 3 10 15 20 correct 0.33 0.66 31 7 17 17 72 0.004
1.7 4 55 3 19 26 35 correct 0.31 0.65 30 7 18 17 72 0.007

Table 2: The exercises with the highest correlation to final exam questions 2, 3 and 4, when the number of
attempts by students is considered.

Row No. ExamQ Ex Week Q1 Q2 Q3 Correct Attempts Phi Acc a b c d sum p
2.1 2 92 5 4 53 91 * ≥ 8 0.57 0.82 43 7 6 15 71 <0.001
2.2 2 102 6 2 113 199 * ≥ 16 0.48 0.77 38 6 10 15 69 <0.001
2.3 2 103 6 1 86 190 * ≥ 4 0.46 0.76 38 6 11 15 70 <0.001

2.4 3 92 5 4 53 91 * ≥ 4 0.43 0.77 44 10 6 11 71 <0.001
2.5 3 93 5 2 40 69 * ≥ 16 0.36 0.72 38 8 12 13 71 0.002
2.6 3 28 2 7 9 14 * < 16 0.35 0.75 46 12 6 9 73 0.003
2.7 3 49 3 12 14 18 * < 16 0.34 0.70 37 8 13 13 71 0.004

2.8 4 52 3 16 24 35 correct ≥ 8 0.38 0.68 30 5 18 18 71 0.001
2.9 4 59 3 10 15 20 correct ≥ 8 0.37 0.68 31 6 17 18 72 0.002
2.10 4 103 6 1 86 190 * ≥ 16 0.37 0.70 34 7 14 15 70 0.002

the contingency table must be at least 5. Given that
the data is only from approximately 70 students, many
contingency tables that place an upper bound on the
number of attempts are pruned.

3. The occurrence of a ”≥” symbol in the ”Attempts” col-
umn is an indication that an exercise is non-trivial.
We note that in rows 2.6 and 2.7, where ”<” symbols
appear, the values in columns ”Q1”, ”Q2” and ”Q3”
indicate that most students required relatively few at-
tempts to complete the exercise. If the desire of the
instructor is to provide students with a set of exercise
in which the level of difficulty increases slowly, then
the dominance of ”≥” symbols may be an indication
that some exercises need to be added to the pool to
reduce sudden jumps in difficulty.

On initial consideration, the many asterisks in the ”Cor-
rect”column of Table 2 might be thought to indicate that the
value for students in doing the exercises resides in the effort
of doing the exercises, more so than getting the exercises
right. However, there is also a more prosaic explanation,
which is related to the contingency table pruning rule that
the smallest value in any cell of the contingency table must
be at least 5. For example, consider column ”b” in row 2.1
of Table 2. The value in that column is 7, so the associ-
ated contingency table only narrowly avoided being pruned.
Adding the extra criterion that students must also get exer-
cise 92 right would shift some of the students from cells ”a”

and ”b” to cells ”c” and ”d”. In doing so, the value in cell ”b”
is likely to drop from 7 to below 5. We note that in rows
2.8 and 2.9 of Table 2, where the selection criteria includes
getting the exercise right, the values in the ”b” column are
5 and 6, so the associated contingency tables only narrowly
avoided being pruned. If data became available from many
more students, it is the authors’ suspicion that fewer aster-
isks would appear in the ”Correct” column of Table 2.

Our method can identify gaps in a set of exercises. For
example, the relatively low values of phi and accuracy for
question 4, for all six exercises in both Tables 1 and 2, may
indicate that the exercises did not prepare students well for
this exam question – perhaps the exercises do not cover
Object-Oriented concepts adequately.

Note that neither Table 1 or Table 2 show all the exercises
that correlate significantly with each final exam question.
Only the highest correlating exercises are shown.

4.1 Over-fitting
With data from only 70 students, a natural concern for

any analysis is the danger of over-fitting. That is, there is a
danger that the exercises selected for Table 2 exploit unrep-
resentative patterns in the relatively small data set; patterns
that would not be present in a much larger data set. The
specific problem with our method is that, for each pair of
final exam question and exercise, there is only one contin-
gency table that ignores the number of attempts, but there
are several contingency tables that consider the number of

221

attempts. For example, consider row 2.2 of Table 2. The
column ”Q3” indicates that a quarter of the students made
199 attempts or more at this exercise. If we assume that the
highest number of attempts by any student was less than
512, there are 9 attempt ranges to consider: 1 attempt, 2-3
attempts, 4-7 attempts, 8-15 attempts ... 256-511 attempts.
Furthermore, for each of those attempt ranges, there are two
contingency tables: one that considers correctness and an-
other that ignores correctness. It might therefore be argued
that the reason why the exercises selected for Table 2 have
higher phi and accuracy values is simply because there are
more contingency tables to choose from when constructing
Table 2. There are at least two reasons to discount that ar-
gument, which we describe in the remainder of this section.

The primary reason for discounting the danger of over-
fitting is the pruning rule that all values in a contingency
table must be ≥ 5. Table 3 shows the number of contingency
tables after pruning for each of the final exam questions,
across all exercises, for both when the number of attempts
at each exercise are ignored and when the number of at-
tempts are considered. For final exam questions 2 and 4,
the small ratio between contingency tables when attempts
are considered and contingency tables when attempts are
ignored (as shown in the final column of Table 3) is unlikely
to be large enough to explain the consistent superiority of
phi and accuracy values in Table 2 over Table 1.

The second reason for discounting the above argument
about over-fitting is that the argument incorrectly assumes
statistical independence among all contingency tables. Con-
sider two contingency tables for a given exercise and final
exam question, where both contingency tables either ignore
correctness or both consider it. Furthermore, assume that
one of the contingency tables is for the case where the num-
ber of attempts is ≥ 2n and the other contingency table is
for the case where the number of attempts is ≥ 2n+1. The
students who meet the criteria for the latter contingency ta-
ble also meet the criteria for the former contingency table,
so the two tables are not statistically independent.

Table 3: The number of contingency tables after
pruning for final exam questions 2, 3 and 4, across
all exercises, when the number of attempts at each
exercise are ignored and considered.

Attempts Attempts
Row No. ExamQ Ignored Considered Ratio

3.1 2 10 35 3.5
3.2 3 0 16 —
3.3 4 15 34 2.3

5. CONCLUSION
Our method can be used to benchmark more sophisticated

methods for analyzing student performance on coding exer-
cises. But practising teachers can also use this approach to
identify weaknesses in a set of exercises, and identify stu-
dents who may need help. Furthermore, the information
that emerges from our method is simple enough to provide
to students, as a guide to how many attempts it might take
them to complete an exercise. Doing so might calm some
students who are slow to understand that programming is
an iterative process. It might also act as an indication to

other students that they either need to become more sys-
tematic in their approach, or they need to seek help from
teaching staff.

6. REFERENCES
[1] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen.

Exploring machine learning methods to automatically
identify students in need of assistance. In Proceedings of
the Eleventh Annual International Conference on
International Computing Education Research, ICER
’15, pages 121–130, New York, NY, USA, 2015. ACM.

[2] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the second
international workshop on Computing education
research, pages 73–84. ACM, 2006.

[3] A. Papoulis. Probability and Statistics. Prentence-Hall
International Editions, 1990.

[4] M. M. T. Rodrigo, E. Tabanao, M. B. E. Lahoz, and
M. C. Jadud. Analyzing online protocols to characterize
novice Java programmers. Philippine Journal of
Science, 138(2):177–190, 2009.

[5] C. Watson, F. W. Li, and J. L. Godwin. Predicting
performance in an introductory programming course by
logging and analyzing student programming behavior.
In Advanced Learning Technologies (ICALT), 2013
IEEE 13th International Conference on, pages 319–323.
IEEE, 2013.

[6] F. Yates. Contingency tables involving small numbers

and the ÏĞ2 test. Supplement to the Journal of the
Royal Statistical Society, 1(2):217–235, 1934.

7. APPENDIX
The exam questions discussed in detail in this paper:

Question 2, part a
Create a program that outputs (using a loop statement such
as while or for) all integers divisible 2, starting with 1000 and
ending in 2. The output must occur so that 5 integers are
printed on each row, and that each column must be aligned.
The program output should look like this:

1000 998 996 994 992

990 988 986 984 982

980 978 976 974 972

(lots of rows)

10 8 6 4 2

Question 2, part b
Create a program where the input is integers representing
the exam points gained by students. The program starts by
reading the numbers of points from the user. The reading
of the points stops when the user enters the integer -1.

The number of points must be an integer between 0 and 30.
If some other integer is input (besides -1 that ends the pro-
gram), the program ignores it.

After reading the numbers of points, the program states
which number of points (between 0 and 30) is the great-
est. Out of the number of points, the integers under 15 are
equivalent to the grade failed, and the rest are passed. The
program announces the number of passed and failed grades.

222

Example:

Enter numbers of exam points, -1 ends the program:

20

12

29

15

-1

best number of points: 29

passed: 3

failed: 1

In the above example, 12 points failed and the points 20, 29
and 15 passed exams. Thus, the program announces that 3
students passed and 1 student failed.
Please note that the program must ignore all integers outside
0-30. An example of a case where there are integers that
have to be ignored among the input numbers:

Enter numbers of exam points, -1 ends the program:

10

100

20

-4

30

-1

best number of points: 30

passed: 2

failed: 1

As shown, the points -4 and 100 are ignored.

Question 3, part a
Create the method public static void printInterval(int

edge1, edge2) that prints, in ascending order, each integer
in the interval defined by its parameters.

If we call printInterval(3, 7), it prints

3 4 5 6 7

The methods also works if the first parameter is greater
than the second one, i.e. if we call printInterval(10, 8),
it prints

8 9 10

Thus, the integers are always printed in ascending order, re-
gardless of which method parameter is greater, the first one
or the second one.

Question 3, part b
Create the method public static boolean bothFound(int[]

integers, int integer1, integer2), which is given an in-
teger array and two integers as parameters. The method
returns true if both integers given as parameters (integer1
and integer2) are in the array given as method parameter.
In other cases the method returns false.

If the method receives as parameters for example the array
[1,5,3,7,5,4], and the integers 5 and 7, it returns true. If the
method received the array [1,5,3,2] and the integers 7 and 3
as parameters, it would return false.

Create a main program, as well, which demonstrates how to
use the method.

Note! If you don’t know how to use arrays, you can create
public static boolean bothFound(ArrayList

<Integer> integers, int integer1, int integer2),
where the method is given as parameters an ArrayList con-
taining the integers and the integers to be found.

Question 4.
Create the class Warehouse. The warehouse has a capacity,
which is an integer, and the amount of wares stored in the
warehouse is also stored as an integer. The warehouse ca-
pacity if specified with the constructor parameter (you can
assume that the value of the parameter is positive). The
class has the following methods:

• void add(int amount), that adds the amount of wares
given in the parameter to the warehouse. If the amount
is negative, the status of the warehouse does not change.
When adding wares, the amount of wares in the ware-
house cannot grow larger than the capacity. If the
amount to be added does not fit into the warehouse
completely, the warehouse is filled and the rest of the
wares are ’wasted.”

• int space(), that returns the amount of empty space
in the warehouse.

• void empty(), that empties the warehouse.

• toString(), which returns a text representation of the
warehouse status, formulated as in the example below;
observe the status when the warehouse is empty!

Next is an example that demonstrates the operations of a
warehouse that has been implemented correctly:

public static void main(String[] args) {

Warehouse warehouse = new Warehouse(24);

warehouse.add(10);

System.out.println(warehouse);

System.out.println("space in warehouse "

+ warehouse.space());

warehouse.add(-2);

System.out.println(warehouse);

warehouse.add(50);

System.out.println(warehouse);

warehouse.empty();

System.out.println(warehouse);\\

if the class has been implemented correctly, the output is
capacity: 24 items 10
space in warehouse 14
capacity: 24 items 10
capacity: 24 items 24
capacity: 24 empty

223

11.3. Discussion 129

11.3 Discussion

In this Chapter, I presented a new method for the analysis of the source
code snapshot data with the goal of identification of the students who are
likely to struggle in the subject. This method has two primary differences
with the work presented in Chapter 6. Firstly, this method is rooted more in
statistical data mining rather than machine learning. Secondly, it deploys
multiple statistical measurements where each of the measurements corre-
spond to a specific research question. Therefore, we are not talking about a
single target class of fail or pass labels, and are focused on multiple aspects
of the learning progress. In the following Chapter, I extend this method to
include more statistical measurements to provide a way to find the answers
to the more frequently asked research questions.

131

Chapter 12

A Contingency Table Derived

Method for Analyzing Course

Data

12.1 Introduction

As reviewed in the previous chapter, there are a considerable number of
quantitative metrics which could be calculated from a single contingency
table. These metrics can be used to answer different research questions and
each have an interest in looking at the data from a particular perspective.
This chapter represents the extended version of the data analytics method-
ology presented in previous chapters. In this chapter, new metrics are in-
troduced, implemented and interpreted with an aim to answer different
questions of the computer science education researcher.

12.1.1 Statement of Contribution of Co-Authors

The authors listed below have certified that:

1. they meet the criteria for authorship in that they have participated in
the conception, execution, or interpretation, of at least that part of the
publication in their field of expertise;

2. they take public responsibility for their part of the publication, except
for the responsible author who accepts overall responsibility for the
publication;

3. there are no other authors of the publication according to these crite-
ria;

4. potential conflicts of interest have been disclosed to (a) granting bod-
ies, (b) the editor or publisher of journals or other publications, and
(c) the head of the responsible academic unit; and

132
Chapter 12. A Contingency Table Derived Method for Analyzing Course

Data

5. they agree to the use of the publication in the student thesis and its
publication on the QUT ePrints database consistent with any limita-
tions set by publisher requirements.

In the case of this chapter:

Title: A Contingency Table Derived Methodology for Analyzing Course
Data

Journal: ACM Transactions on Computing Education

URL:

Status: Submitted, October 2017

TABLE 12.1: Authors’ Area of Contribution for The Paper
Corresponding to Chapter 12

Contributor Area of contribution (See appendices A and B)
(a) (b) (c)(i) (c)(ii)

Alireza Ahadi
Raymond Lister
Arto Hellas

Candidate confirmation:

I have collected email or other correspondence from all co-authors confirm-
ing their certifying authorship and have directed them to the principal su-
pervisor.

Alireza Ahadi

Name Signature Date

Principal supervisor confirmation:

I have sighted email or other correspondence from all co-authors confirm-
ing their certifying authorship.

12.1. Introduction 133

Raymond Lister

Name Signature Date

134
Chapter 12. A Contingency Table Derived Method for Analyzing Course

Data

12.2 PDF of the Submitted Paper

13

A Contingency Table Derived Method for Analyzing
Course Data

ALIREZA AHADI, University of Technology, Sydney

ARTO HELLAS, University of Helsinki

RAYMOND LISTER, University of Technology, Sydney

We describe a method for analyzing student data from online programming exercises. Our approach uses
contingency tables that combine whether or not a student answered an online exercise correctly with the
number of attempts that the student made on that exercise. We use this method to explore the relationship
between student performance on online exercises done during semester with subsequent performance on
questions in a paper-based exam at the end of semester. We found that it is useful to include data about the
number of attempts a student makes on an online exercise.

CCS Concepts: • Mathematics of computing → Contingency table analysis; • Information systems

→ Data mining; • Social and professional topics → Computer science education;

Additional Key Words and Phrases: Data mining, programming novices, Java

ACM Reference Format:

Alireza Ahadi, Arto Hellas, and Raymond Lister. 2017. A Contingency Table Derived Method for Analyzing
Course Data. ACM Trans. Comput. Educ. 17, 3, Article 13 (August 2017), 19 pages.
https://doi.org/10.1145/3123814

1 INTRODUCTION

Recent studies of novice programmers have used dynamically accumulated online data, such as
source code snapshots [2, 16, 22, 41]. The methods used to analyze such data range from statis-
tical analysis of a single variable constructed from the programming process—such as the error

quotient [22] or the watwin-score [41]—to the use of a multiple variables combined by machine
learning methods [2].

In this article, we use contingency tables to represent student behavior in online exercises and
explore the relationship between that behavior and student performance on final exam questions.
For the purposes of this study, we have extracted log data from students’ programming processes
that contains the number of attempts and the degree of achieved correctness for each online
exercise.

Authors’ addresses: A. Ahadi, Faculty of Engineering and Information Technology, University of Technology, Sydney, 15
Broadway, Ultimo NSW 2007, Australia; email: Alireza.Ahadi@uts.edu.au; A. Hellas, Department of Computer Science,
Ernst Lindelöfin katu 1, 00560 Helsinki Finland; email: Arto.Hellas@cs.helsinki.fi; R. Lister, Faculty of Engineering and
Information Technology, University of Technology, Sydney, 15 Broadway, Ultimo NSW 2007, Australia; email: Raymond.
Lister@uts.edu.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM 1946-6226/2017/08-ART13 $15.00
https://doi.org/10.1145/3123814

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

13:2 A. Ahadi et al.

Using ourmethod based on contingency tables, we have studied the following research question:

RQ: Does the number of attempts students make on an online programming exercise during
semester relate to student performance on final exam questions?

This article is organized as follows. In Section 2, we review the related literature on analyzing
students’ performance and provide an overview of contingency tables and their statistical mea-
sures of performance. This is followed by a description of the data used for this study, as well
as the method used for constructing the contingency tables. In Section 4, we apply the method
to our data and study how well the contingency tables identify different student populations. In
Section 5, we discuss the results, and finally, in Section 6, we conclude the article with suggestions
for future work.

2 BACKGROUND

Early work on attempting to identify success factors for programming focused on variables that
preceded the period in which the novice learns to program. Such variables included demographic
profiles, high school achievement, prior programming experience, cognitive styles, and generic
problem-solving abilities. Evans and Simkin [19] described these variables as approximations for
programming aptitude. With the development of recent online technologies, there has been a move
to studying data collected during the period in which the novice is learning to program [22, 29, 39,
41]. In this article, we focus on such data.

2.1 Continuously Accumulating Data

Continuously accumulating data are generated as a byproduct of students using various learn-
ing management systems. One technologically unsophisticated example is the analysis of course
transcripts to discover sequences that are often associated with course failure [17].

Another example, which uses more sophisticated technology, is the analysis of in-class clicker
behavior. Porter et al. [29] studied students’ clicker responses in a peer instruction setting and
identified that the percentage of correct clicker answers from the first three weeks of a course was
strongly correlated with overall course performance.

While the previous examples are related to coarser grained data, a stream of research on contin-
uously accumulating programming process data has recently become more popular [21]. In 2006,
Jadud suggested quantifying a student’s ability to fix errors in a sequence of source code snap-
shots (collected at code compilations) and found that there was a high correlation with final exam
score [22]. In essence, this suggests that the less programming errors a student makes, and the
more successful she is in solving them, the higher her grade will tend to be [22, 34]. The method
has also been explored in other institutional contexts, with the same BlueJ programming envi-
ronment and Java programming language, and with similar results [34, 41], while studies with a
different programming environment have reported somewhat different results [2, 16].
Watson et al. [41] improved on Jadud’s results by including the amount of time that students

spent on programming assignments [41]. Watson et al. also noted that a simple measure, the av-
erage amount of time that a student spends on a programming error, is strongly correlated with
programming course scores [41]. More recently, a similar approach that analyzes programming
states was proposed by Carter et al. [16]. Piech et al. studied students’ approaches to solving pro-
gramming tasks and found that the solution patterns are indicative of course midterm scores [28].
Different types of patterns were also studied by Hosseini et al., who analyzed students’ behav-
iors within a programming course: some students were more inclined to build their code step by
step, while others started from larger quantities of code and then reduced their code to reach a

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

A Contingency Table Derived Method for Analyzing Course Data 13:3

Table 1. A 2 by 2 Contingency Table

V1VV
Category=α Category=β row totals

V2VV
Category=γ a b r1
Category=δ c d r2
column totals c1 c2 n

solution [20]. A separate and more recent stream of research has sought to model students’ un-
derstanding of fine-grained source code-based concepts using source code snapshots [31, 46].

2.2 Approaches for Data Analysis

The approaches used for analyzing student data can be broadly categorized into two main
groups: (1) single- and multivariate regression analysis and (2) machine learning and data mining
approaches.

2.2.1 Single- and Multivariate Regression. The use of single- and multivariate regression is the
primary analysis method in the literature. Numerous articles discuss the connection between a
specific variable and introductory programming course outcomes [6–8, 14, 26, 36, 37, 42–44], whilst
less attention has been invested in multivariate analysis [9, 15, 33, 35, 38, 47].

2.2.2 Machine-Learning and Data Mining Approaches. This approach is becoming more com-
mon as it provides insight into data regardless of dimensional complexity. Some uses of this ap-
proach are described in the remainder of this subsection.

Data mining techniques have been used to predict course outcomes using data from enrollment
forms [23] and also data from students’ self-assessment [24]. The mining techniques used range
from basic machine learning algorithms to more advanced techniques such as decision trees [30].
There have also been experiments in using real-time data to detect student failure [4].
Machine learning and data mining techniques have also been used in computer science edu-

cation. Ahadi et al. [1] described the common syntactic mistakes of novices writing SQL “select”
statements. Using that data, they trained decision trees to predict student outcomes in a data-
base course. Most other studies have focused on the novice programmer. Lahtinen [25] used sta-
tistical cluster analysis to place novice programmers into clusters based on Bloom’s Taxonomy.
Berland [10] mined source code snapshots to categorize novice programmers into “planners” and
“tinkerers.” In a follow-up study, Berland determined that students progress through three stages,
from “exploration,” through “tinkering,” to “refinement” [11]. Blikstein [13] described an auto-
mated technique to assess, analyze, and visualize the behavior of novice programmers.

2.3 Contingency Tables

In statistics, a contingency table is a matrix that displays the frequency distribution of two cate-
gorical variables. In this article, we restrict ourselves to dichotomous variables, V1VV and V2VV , which
is illustrated as a 2×2 contingency table in Table 1. The two values for each variable are shown
in Table 1 as α , β , γ , and δ . In Table 1, the values in the four cells (a, b, c , and d) represent the
frequency of each category. For example, a, is the frequency for V1VV equals α and simultaneously
V2VV equals γ . The values r1, r2, c1, and c2 correspond to the row and column sums; for example, r1
is the sum of a and b, and c1 is the sum of a and c . The sample size n = r1 + r2 = c1 + c2.

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

13:4 A. Ahadi et al.

V1VV and V2VV may in reality be numeric variables, in which case the binary categorization is deter-
mined by a threshold value. The choice of threshold value is theoretically arbitrary, but intuitive
choices are the mean or median value.

In the context of computing education research, examples of variables V1VV and V2VV could be
whether or not a student answered an exercise correctly, the time spent on answering the ex-
ercise, the number of compilation errors while answering the exercise, or the number of attempts
needed to answer the exercise; this last example is a variable of particular interest in this article,
where an attempt is any action leading to an indication of whether or not the student’s answer is
correct, such as a compilation, a test run by the student, or an upload to a testing system.

Statistical measures of performance associated with contingency tables are summarized in
Table 2, where the variables a, b, c , and d on the right-hand side of the equations are the same
as in Table 1.

3 METHOD

In this section, we describe the data we used and the method we devised for constructing and
selecting the contingency tables.

3.1 Data

The data for this study is from 96 students in an introductory programming course conducted
in 2014 at the University of Helsinki. The course topics are similar to many introductory
programming courses around the world and include input and output, variables, loops, lists, and
objects. The course is taught in Finnish, but English translations (albeit dated) of the course
materials are available online.1 The students used an integrated development environment (IDE),
and their programming process data was captured using a plugin called TestMyCode [40]. For each
exercise, the IDE plugin stored the details of every key press made by a student.

Each of the 77 exercises is graded using a suite of unit tests, which have been constructed to
provide step-wise feedback to students as they work on the exercises. For the purposes of this
study, the correctness of each exercise has been mapped to either 1 if a student’s score on an
exercise is equal to or above the median score of the class, and 0 if it is not. Moreover, when
counting the number of attempts made by a student, we only counted running, testing, and
submitting the exercise.

A student’s overall course grade is composed of the online exercises (worth 50%) and a
paper-based final exam consisting of five questions (the remaining 50%). The first question in
the final exam required students to explain course concepts, while the other four questions were
program writing tasks. That first exam question was excluded from analysis in this article. The
remaining questions (Q2–Q5), which are given in Appendix A, focused on the following topics:
(Q2) algorithmic problem solving with loops, on small problems, (Q3) the use and construction of
methods that include algorithmic problem solving, (Q4) the creation and use of classes, where the
students must write a class for a specified domain, and (Q5) the creation and use of a composite
object (i.e., an object that contains a list of other objects).

3.2 Notation

In our approach, we combine whether or not a student answered an online exercise correctly with
the number of attempts that the student made on that exercise. To describe such combinations
precisely but concisely, we use the notation described in this section.

1http://mooc.fi/courses/2013/programming-part-1/material.html.

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

A Contingency Table Derived Method for Analyzing Course Data 13:5

Table 2. Statistical Measures of Performance

Measure Explanation and Equation, where a, b, c , and d are from Table 1

Precision Also known as Positive Predictive Value (PPV) is the proportion
of predicted positive cases that are actually positive [32].

PPV =
a

a + b

Recall Also known as sensitivity [3] measures the portion of actual
positives that are correctly identified as such.

TPR =
a

a + c

F1-Score Is the harmonic mean of precision and recall [18]. It can also be
interpreted as a weighted average of precision and recall.

F1 − Score = 2a

2a + b + c

Specificity Also known as True Negative Ratio [3] measures the portion of
actual negatives that are correctly identified as such.

SPC =
d

b + d

Negative
Predictive
Value

The ratio of actual negatives to actual and false negatives [32].

NPV =
d

d + c

Accuracy Also known as Overall Fraction Correct, is defined as the
quotient of the number of correct classifications and the sample
size [12].

ACC =
a + d

n

Matthews
Correlation
Coefficient

Also known as the “phi coefficient” (Φ), it is a measure of the
degree of association between two binary variables derived
from the Pearson product-moment correlation coefficient [5].

MCC = Φ =
ad − bc√

r1 ∗ r2 ∗ c1 ∗ c2

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

13:6 A. Ahadi et al.

Table 3. The Seven Variables Used and Associated ResearchQuestions

Contingency table Sample research question
X(x)C(1)A(*) How does performing well on exercise x relate to performance

on final exam question y?
X(x)C(*)A(<2n) How does the number of attempts on exercise x , regardless of

correctness, relate to performance on final exam question y?
X(x)C(*)A(>2n) (similar to above)
X(x)C(1)A(<2n) How does performing well on exercise x within a certain

number of attempts influence the performance in final exam
question y?

X(x)C(1)A(>2n) (similar to above)
X(x)C(0)A(<2n) How does attempting but not performing well on exercise x

relate to performance on final exam question y?
X(x)C(0)A(>2n) (similar to above)

Let X(x) denote exercise x. Letxx C(a) denote the correctness a for that exercise, where a = 1
refers to a score on the exercise that is greater than or equal to the median score for the whole
class, and a = 0 means a score lower than the median. Let A(n) denote the number of attempts n
for that exercise. For example, X(23)C(1)A(4) refers to those students who answered exercise 23
with a score equal to or greater than the median score, in exactly four attempts.

We bucket the number of attempts students make into intervals based on powers of two. Let
A(< 2n) refer to any number of attempts less than 2n , and let A(> 2n) refer to any number of
attempts greater than 2n .
Sometimes we do not combine correctness and the number of attempts. This is indicated by an

asterisk. For example, X(23)C(*)A(<23) refers to those students who, on exercise 23, made less
than 8 attempts (irrespective of correctness) and X(23)C(1)A(*) refers to those students who had
a score higher than median score on exercise 23 (irrespective of the number of attempts).

3.3 Selecting the Variables of Interest

Table 3 describes the seven variables we used in the construction of the contingency tables and
provide examples of research questions that each of these contingency tables could be used to
answer. In the examples, we assume that the other variable forming the contingency table is one
of the code writing final exam questions, 2 � y � 5.

The maximum number of different contingency tables generated for each combination of online
exercise and final exam question is 61. However, a combination of online exercise and final exam
question often generated fewer contingency tables, because we only generate attempt buckets up
to the smallest power of two that exceeds the maximum number of attempts made by any student
on that exercise.

3.4 Pruning the Contingency Tables that Contain Little Information

To select a limited number of contingency tables that represent a general and statistically
significant association between investigated variables, the following pruning rules were applied:

(1) Contingency tables with a cell value (i.e., a, b, c , or d) of less than 5 are pruned, since the
chi-square is suspect if values are less than 5 [45].

(2) Contingency tables with a non-significant chi-square p-value (p((> 0.01) are pruned.

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

A Contingency Table Derived Method for Analyzing Course Data 13:7

(3) If the phi coefficient is the same for two attempt buckets related to the same exercise, then
the less general of the attempt buckets is pruned. That is, the attempt bucket that covers
a wider range of number of attempts is kept, and the other bucket is discarded.

(4) If the phi coefficients of two attempt buckets related to the same exercise are different,
and if the phi value of the more general bucket is higher than the phi value of the less
general bucket, then the less general bucket is pruned.

(5) For a given exercise, if the phi value of the more general bucket is less than the phi value
of the less general bucket, a test of the significance of the difference between the two phi
values is performed (using z score transformation [27]). If there is no significant difference
between the two phi values, then the less general bucket is pruned.

(6) Contingency tables with an Accuracy or a F1-score of less than 0.5 are pruned.

3.5 Statistical Measures of Performance for the Proposed Variables

In this section, we briefly describe again the statistical measures of performance described in
Table 2, but here in the context of student performance on the exercises and exam questions:

• The precision of a given contingency table X(x)C(1) indicates to what degree students
who performed well on exercise x scored above the median on a final exam question.

• The recall of a given contingency table X(x)C(1) indicates to what degree students who
scored above the median on a final exam question also performed well on exercise x.xx

• The specificity of a given contingency table X(x)C(1) indicates to what degree students
who scored less than the median score on a final exam question also performed poorly on
exercise x.xx

• The negative predictive value indicates to what degree students who scored less than the
median score on a final exam question also performed poorly on a given exercise.

• The accuracy of a contingency table X(x)C(1) could be interpreted as the percentage of the
students whose performance on a final exam question could be directly identified from their
performance on exercise x. (This definition, however, applies to only those contingencyxx

tables for which the number of positive and negatives samples are equal.)
• With respect to the Matthews Correlation Coefficient, the closer |Φ| is to one, the

stronger the association between student performance on an exercise and the final exam
question.

4 ANALYSIS AND RESULTS

We analyzed data from the introductory programming course outlined in Section 3.1. The
maximum number of attempts by a student on any of the 77 online exercises was 513.

Approximately half (55.4%) of the contingency tables were pruned, because the table had a cell
containing a number less than 5. Of the remaining contingency tables, only 4.9% (N = 410) had
p < 0.01. After the remaining pruning rules were applied, 330 contingency tables remained. Given
that there are 4 × 77 = 308 pairings of exam questions to online exercises, 330 contingency tables
is an approximate average of only one contingency table for each pair (cf. up to 61 tables prior
to pruning). Such a low average after pruning suggests that the results we present below are not
simply due to the overfitting of models to data.

4.1 Exercises and Final ExamQuestions with the Highest Correlation

Identification of those exercises that have the highest correlation with final exam questions can be
determined using the Matthews Correlation Coefficient. Table 4 shows the top four exercises with
highest correlations to each final exam question. For most of these highest correlating exercises,

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

13:8 A. Ahadi et al.

Table 4. The Four Exercises with Highest Correlation to Each

Final ExamQuestion

Exercise Correctness Attempts Exam question MCC

92 * >7 Q2 0.56
102 * >15 0.48
103 * >3 0.46
93 * >15 0.46
92 * >3 Q3 0.43
93 * >15 0.36
28 * <15 0.35
49 * <15 0.34
52 1 >7 Q4 0.38
59 1 >7 0.37
103 * >15 0.36
44 * >7 0.36
70 * >15 Q5 0.54
102 * >3 0.52
70 * >7 0.50
92 * >15 0.47

Table 5. Number of Exercises with Significant Correlation to Final ExamQuestions

Exam question No. significant tables No. exercises in those tables Phi mean

Q2 45 29 0.30
Q3 16 15 0.29
Q4 49 30 0.28
Q5 60 33 0.31

correctness is not an issue; just the number of attempts. Therefore, the answer to our research
question is “yes.” That is, the number of attempts a student makes on a programming exercise does
contain useful information; specifically, there is a relationship between the number of attempts on
a programming exercise and a student’s performance on a final exam question.

Some caution should be exercised, however, before concluding that getting an online exercise
correct is less important than the number of attempts on that exercise. Inspection of some
contingency tables suggests that the pruning of tables with a cell value less than 5 may favour
tables where correctness is not considered. Consider two contingency tables for the same exercise,
the same exam question, and same attempt bucket. Let one table be forC (∗) and the other forC (1).
It may be the case that the two tables have very similar values for a, b, c , and d , but one cell in the
table forC (1) has a value just under 5 and is therefore pruned, but the value in corresponding cell
of the table for C (∗) is just above 5 and is therefore not pruned.

Some of the high-ranked exercises in Table 4 appear more than once. Exercise 92 appears in
three out of four questions. That exercise has been included in Appendix B.

4.2 Number of Exercises Associated with Each Final ExamQuestion

Table 5 shows, for each final exam question, the number of online exercises with a significant
correlation to that exam question. This information indicates which online exercises are especially
helpful in preparing students for each of the final exam questions.

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

A Contingency Table Derived Method for Analyzing Course Data 13:9

Table 6. The Precision, Recall and F1-Score of given Contingency Tables

and Final ExamQuestion 2

Exercise Correctness Attempts Precision Recall F1 score

92 * >7 0.86 0.88 0.87
70 * >15 0.80 0.86 0.83
102 * >15 0.86 0.79 0.83
93 * >15 0.85 0.80 0.82
103 * >3 0.86 0.78 0.82
99 * <32 0.76 0.88 0.82
28 * <16 0.76 0.88 0.81
69 * >7 0.75 0.90 0.81
29 * <16 0.74 0.90 0.81
82 * >3 0.76 0.86 0.81
59 1 * 0.84 0.64 0.73
52 1 <64 0.85 0.59 0.70
55 1 <64 0.83 0.60 0.70
70 1 * 0.85 0.58 0.69
52 1 >7 0.83 0.59 0.69
52 1 <128 0.83 0.59 0.69
56 1 * 0.81 0.60 0.69
55 1 * 0.81 0.60 0.69
23 1 <64 0.82 0.59 0.68
56 1 <64 0.83 0.58 0.68

4.3 Identifying Students who Are Likely to PerformWell

Table 6 represents Precision, Recall, and F1-score of the twenty highest ranking contingency tables
(out of 45) that correlate with final exam question two. The rows of the table are ordered on
F1-score, the harmonic mean of precision and recall.

Note that the F1-Score of allC (∗) rows in the table are higher than the F1-Score of allC (1) rows.
Thus once again the answer to our research question is “yes.” That is, the number of attempts a
student makes on a programming exercise does contain useful information. However, once again
some caution should be exercised before concluding that getting an online exercise correct is less
important than the number of attempts on that exercise, due to the pruning of tables with a cell
value less than 5.

4.4 Identifying Students who are Likely to Perform Poorly

Precision, Recall, and F1-Score are measures that focus on positive cases; in our case, on students
who perform well. None of those measures capture information on negative cases; in our case, on
students who perform poorly.
The statistical measure dealing with unsuccessful students is specificity. We inspected the top

ten contingency tables according to their specificity in predicting the students’ performance on Q2
of the final exam. In all cases, however, the negative predictive value of those contingency tables
was less than 0.5, indicating that these contingency tables performed at a level less than chance
at identifying poor students. That we could not, from the exercises, identify students who would
subsequently perform poorly on Q2 is probably attributable to the nature of the exercises and/or
the exam question, rather than our method.

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

13:10 A. Ahadi et al.

Table 7. Ten Contingency Tables with Highest Accuracy for Q2

of Final Exam

Exercise Correctness Attempts ACC MCC

92 * >7 0.81 0.56
102 * >15 0.76 0.48
93 * >15 0.76 0.46
103 * >3 0.75 0.46
70 * >15 0.75 0.38
28 * <15 0.72 0.31
99 * <31 0.72 0.29
82 * >3 0.72 0.32
69 * >7 0.71 0.26
21 * >15 0.71 0.29

4.5 General Evaluators of Students’ Performance

Whilst the previous metrics have focused on identifying high-performing students and
low-performing students, it is also meaningful to consider metrics that would be useful in
identifying performance in general. Here, accuracy is an appropriate choice, assuming that the
categorization of variables is balanced. Accuracy characterizes the increase in probability of a
student being in the top 50% on the final exam question, for those answering the exercise correctly,
and the decrease in probability for those answering the exercise incorrectly. Table 7 represents
the accuracy and Matthews Correlation Coefficient of the ten contingency tables with the highest
accuracy for Q2 in the final exam.

In all the rows of Table 7, correctness does not matter. The accuracy of all the statistically
significant contingency tables related to Q2 (not just the top ten shown in Table 7) range from
0.57 to 0.81. Both the mean and median of those contingency tables where correctness does not
matter is 0.72, which is relatively higher than the mean and median of those contingency tables
where correctness does matter, 0.61 and 0.62, respectively. Once again, the number of attempts a
student makes on a programming exercise does contain useful information. But also once again
some caution should be exercised before concluding that getting an online exercise correct is less
important than the number of attempts on that exercise.

The MCC values in the rows of Table 7 are not high, implying that individual exercises are not
highly accurate predictors of performance on Q2 of the final exam.

5 DISCUSSION

Beforewe produced our results, our hypothesis was that the exercises that would separate low- and
high-achieving students would be the final exercise for each week, as these exercises essentially
divided the students into those who worked on all the exercises and those who did not. However,
our results show this is not the case. The last exercise of a specific week were typically not in the
list of exercises that separate low and high achieving students. Thus, it was not the sheer number
of exercises that students did that led to above-median performance on exam questions.

5.1 What Makes for a Highly Predictive Exercise?

For some contingency tables, we observed high accuracies (up to 81% with 0.56 MCC). The
exercises associated with these contingency tables were inspected. Many of the high-correlating
exercises were from late in the course and combined multiple concepts (e.g., both object-oriented
programming and algorithmic thinking). Also, these exercises tended to contain concepts that were

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

A Contingency Table Derived Method for Analyzing Course Data 13:11

the culmination of a sequence of concepts. For example, consider exercise 92 (see Appendix A),
which correlated relatively highly with three of the four analyzed exam questions. This exercise
requires the student to augment a “Date” class to include a method that calculates the difference
between the date within an object and the date within another object passed as a parameter. To
complete the exercise, the student needed to be able to work with the notion of “this,” also an
object passed as a parameter, as well as being able to perform calculations.

5.2 The Number of Attempts

To better understand the importance of the number of attempts at an exercise, we compared
those contingency tables that only used information about the number of attempts (i.e., X(x)
C(*) A(either < 2n or > 2n), to those contingency tables that ignored the number of attempts,
and only used information about correctness (i.e., X(x) C(1) A(*)). We observed that none of the
contingency tables from the latter category (i.e., ignored attempts) correlated significantly with
the final exam question related to constructing methods, while several contingency tables from
the former category showed a significant and high correlation. This may indicate that for the
student to succeed in the exam question related to methods, it is important that she practices, but
she does not necessarily have to get every exercise right. Moreover, the timing of the practice is
important—the majority of exercises in the contingency tables of the former category are from
weeks 3 and 4 of the 6-week course—when the exercises first focus on building simple methods.

5.3 Data Granularity and Validity

Different tools collect data at different levels of granularity [21]. While some tools record each
keystroke, other tools may generate snapshots on line edit, compile, run, or save actions or only
when students submit the program.
For any study similar to this study, it is important to have a clear definition of an attempt. If

snapshots are generated on each compile, and the number of compilations is used as the measure
of attempts, then what exactly does the snapshot count represent? A straightforward metric for
effort may be the number of key strokes. If that was our metric, suppose that two students both
answered an exercise correctly with a single compile, but one student’s program was much longer
than the other student’s program—then would it be appropriate to conclude that the student with
the longer program had put in more effort? In our study, we used actions that are related to saving,
running, testing and compiling the code—actions that have the virtue of being easily collected by
several tools—but exactly what does a count of those actions mean?

5.4 Limitations and Concerns

The quality of data could be sensitive to subtle institutional settings. For example, in a
programming course in which answering an exercise correctly is a must for unlocking the next
exercise, it is likely that some struggling students will answer an exercise “correctly” by cheating.
In the class from which we collected our data, students needed to attain 85% of the points from
one week’s batch of exercises before they could access the following week’s exercises.

Accuracy has good predictive value as it is based on all cells of the contingency table. However,
accuracy is a less useful metric when the number of instances in each class (a + c versus b + d) are
not balanced. To address this problem with accuracy, we selected for our data an equal number of
successful students and unsuccessful students.

The data for this study is from 96 students, which is a relatively small sample. A small sample
size automatically raises the issue of over-fitting. That is, the results found with these 96 students
might not be present in a larger dataset. It might be argued that the reason why some contingency
tables have high correlation and accuracy values is simply because there were up to 61 tables to

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

13:12 A. Ahadi et al.

choose from for each pair of exercise and final exam question. However, there are at least two
reasons to discount that argument. The primary reason for discounting the danger of over-fitting
are the pruning rules, especially the rule that the value in each of the four cells of a contingency
table must be at least five. As we have already explained in the results section, after pruning there
was approximately an average of only one contingency table for each pairing of exam question to
online exercise. Such a low average is a strong argument against overfitting.

The second reason for discounting the above argument about over-fitting is that the argument
incorrectly assumes statistical independence among the contingency tables. To illustrate why all
the contingency tables are not statistically independent, consider two contingency tables for a
given exercise and final exam question, where both contingency tables either ignore correctness
or both consider it. Furthermore, assume that one of the contingency tables is for the case where
the number of attempts is >2n and the other contingency table is for the case where the number
of attempts is >2n+1. The students who meet the criteria for the latter contingency table also meet
the criteria for the former contingency table, so the two tables are not statistically independent.

6 CONCLUSION

The results presented in this article demonstrate that there can be a statistically significant
relationship between the number of attempts on a programming exercise and performance on
a final exam question. Almost half of our exercises had a moderate to strong predictive value for
a final exam question, when the number of attempts at the exercise was taken into account.

The pedagogical benefit of our approach is twofold. First, students who aremaking an inordinate
number of attempts at exercises could be identified early and offered help. Second, exercises that
require a high average number of attempts for success could be analyzed to identify topics that
are vital to success but hard to understand.

One of the key advantages of the proposed method is its strength in handling small datasets,
such as the ones that researchers typically gather in computing education. Given the small number
of features used in the construction of the contingency table, and our pruning rules, the likelihood
of over-fitting the data is low.

We are extending this analysis to include students’ background details, such as their course
major. We will also analyze the highly predictive exercises in more detail to tease out the factors
related to students’ performance.

Our method of using contingency tables could be used in many contexts. We are considering
making our method of data analysis publicly available via a web-server. The server could not only
be then used by researchers, but non-research educators might also use the server to evaluate their
own exercises.

APPENDIX

This appendix first provides the four final exam questions that were used to construct the
second variable of the contingency tables explored as the case study. Then, we provide a sample
exercise—here 92—that outlines the way the exercises are presented to the students.

A EXAM QUESTIONS

Question 2

Part A (3p)

Create a program that outputs (using a loop statement, such as while or for) all integers divisible
with 2, starting with 1000 and ending in 2. The output must occur so 5 integers are printed on each
row, and each column must be aligned. The program output should look like this:

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

A Contingency Table Derived Method for Analyzing Course Data 13:13

1000 998 996 994 992
990 988 986 984 982
980 978 976 974 972

(lots of rows)
10 8 6 4 2

Part B (4p)

Create a program where the input is integers representing the exam points gained by students.
The program starts by reading the numbers of points from the user. The reading of the points
stops when the user enters the integer −1.

The number of pointsmust be an integer between 0 and 30. If some other integer is input (besides
−1 that ends the program), then the program ignores it.

After reading the numbers of points, the program states which number of points (between 0
and 30) is the greatest. Out of the number of points, the integers under 15 are equivalent to the
grade failed, and the rest aredd passed. The program also announces the number of passed and failedd

grades.

Example:

Enter numbers of exam points, -1 ends the program:
20
12
29
15
-1
best number of points: 29
passed: 3
failed: 1

In the above example, 12 points failed and the points 20, 29, and 15 passed exams. Thus, the program
announces that three students passed and one student failed.

Please note that the program must ignore all integers outside 0–30. An example of a case where
there are integers that have to be ignored among the input numbers:

Enter numbers of exam points, -1 ends the program:
10
100
20
-4
30
-1

best number of points: 30
passed: 2
failed: 1

As shown, the points −4 and 100 are ignored.

Question 3

Part A (3p)

Create the method public static void printInterval(int edge1, edge2) that prints, in
ascending order, each integer in the interval defined by its parameters.

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

13:14 A. Ahadi et al.

If we call printInterval(3, 7), then it prints

3 4 5 6 7

The method also works if the first parameter is greater than the second one, that is, if we call
printInterval(10, 8), then it prints

8 9 10

Thus, the integers are always printed in ascending order, regardless of which method parameter
is greater, the first one or the second one.

Part B (3p)

Create the method public static boolean bothFound(int[] integers, int integer1,
integer2), which is given an integer array and two integers as parameters. The method returns
true if both integers given as parameters (integer1 and integer2) are in the array given asmethod
parameter. In other cases, the method returns false.

If the method receives as parameters, for example, the array [1,5,3,7,5,4], and the integers 5
and 7, then it returns true. If the method received the array [1,5,3,2] and the integers 7 and 3 as
parameters, then it would return false.

Create a main program, as well, which demonstrates how to use the method.
Note! If you don’t know how to use arrays, then you can create public static boolean

bothFound (ArrayList<Integer> integers, int integer1, int integer2), where the
method is given as parameters an ArrayList containing the integers and the integers to be found.

Question 4 (6 points)

Create the class Warehouse. The warehouse has a capacity, which is an integer, and the amount
of wares stored in the warehouse is also stored as an integer. The warehouse capacity if specified
with the constructor parameter (you can assume that the value of the parameter is positive). The
class has the following methods:

• void add(int amount), that adds the amount of wares given in the parameter to the
warehouse. If the amount is negative, then the status of the warehouse does not change.
When adding wares, the amount of wares in the warehouse cannot grow larger than the
capacity. If the amount to be added does not fit into the warehouse completely, then the
warehouse is filled and the rest of the wares are “wasted.”

• int space(), which returns the amount of empty space in the warehouse.
• void empty(), which empties the warehouse.
• toString(), which returns a text representation of the warehouse status, formulated as in

the example below; observe the status when the warehouse is empty!

Next is an example that demonstrates the operations of a warehouse that has been implemented
correctly:

public static void main(String[] args) {
Warehouse warehouse = new Warehouse (24);
warehouse.add(10);
System.out.println(warehouse);
System.out.println("space in warehouse " + warehouse.space());
warehouse.add(-2);

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

A Contingency Table Derived Method for Analyzing Course Data 13:15

System.out.println(warehouse);
warehouse.add(50);
System.out.println(warehouse);
warehouse.empty();
System.out.println(warehouse);

}

if the class has been implemented correctly, then the output is

capacity: 24 items 10
space in warehouse 14
capacity: 24 items 10
capacity: 24 items 24
capacity: 24 empty

Question 5 (6 points)

This assignment is about making a program to manage the contents of a bookshelf. You have at
your disposal the class Book:

public class Book{
private String author;
private String title;

public Book(String author, String title) {
this.author = author;
this.name = name;

}

public String getAuthor() {
return this.author;

}
@Override
public String toString() {

return this.author + ": " + this.name;
}

}

Please program the class Bookshelf, which works like the example described below:

public static void main(String[] args) {
Bookshelf shelf = new Bookshelf();
shelf.addBook("Kent Beck", "Test Driven Development");
shelf.addBook("Kent Beck", "Extreme Programming Embraced");
shelf.addBook("Martin Fowler", "UML Distilled");
shelf.addBook("Fedor Dostoyevski", "Crime and Punishment");

shelf.print();
System.out.println();
shelf.get("Kent Beck");

}

if the class has been implemented correctly, then the output is

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

13:16 A. Ahadi et al.

books total 4
books:
Kent Beck: Test Driven Development
Kent Beck: Extreme Programming Embraced
Martin Fowler: UML Distilled
Fedor Dostoyevski: Crime and Punishment

found:
Kent Beck: Test Driven Development
Kent Beck: Extreme Programming Embraced

The class must save books added to the shelf in an ArrayList containing Book objects.
As we can see in the example, the following methods have to be implemented for the class:

• void addBook(String author, String title), which adds a book with the author and
title given as parameters to the shelf.

• void print(), which prints the information of the bookshelf formulated as in the example
above.

• find(String author), which outputs the books in the shelf with the author given as
method parameter, the output should be in the same form as in the example above.

B EXERCISES

Exercise 92: Difference of two dates

[This assignment has been formatted for printing. Students receive a ready-made class called
MyDate, and their goal in this assignment is to add features to the class.]

First, add the method public int differenceInYears(MyDate comparedDate) to the class MyDate.
The method should calculate the difference in years between the object for which the method is
called and the object given as parameters.

Note that the first version of the method is not very precise as it only calculates the difference
of the years and does not take the day and month of the dates. The method needs to work only in
the case where the date given as parameter is before the date for which the method is called.

Try out your code with the following:

MyDate first = new MyDate(24, 12, 2009);
MyDate second = new MyDate(1, 1, 2011);
MyDate third = new MyDate(25, 12, 2010);

print(second + " and " + first + " difference in years: " +
second.differenceInYears(first));

print(third + " and " + first + " difference in years: " +
third.differenceInYears(first));

print(second + " and " + third + " difference in years: " +
second.differenceInYears(third));

The output should be:

// as 2011-2009 = 2
1.1.2011 and 24.12.2009 difference in years: 2
// as 2010-2009 = 1

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

A Contingency Table Derived Method for Analyzing Course Data 13:17

25.12.2010 and 24.12.2009 difference in years: 1
// as 2011-2010 = 1
1.1.2011 and 25.12.2010 difference in years: 1

Next, you need to add more accuracy to the method. Calculation of the previous version was not
very exact, for example, the difference of dates 1.1.2011 and 25.12.2010 was one year, which is not
true. Modify the method so it can calculate the difference properly: only full years in difference
count. So, if the difference of two dates would be 1 year and 364 days, only the full years are
counted and the result should be one.

The method still needs to work only in the case where the date given as parameter is before the
date for which the method is called.

After improving the code, the output for the previous example should be:

1.1.2011 and 24.12.2009 difference in years: 1
25.12.2010 and 24.12.2009 difference in years: 1
1.1.2011 and 25.12.2010 difference in years: 0

Finally, modify the method so it works no matter which date is the latter one, the one for which
the method is called or the parameter.

MyDate first = new MyDate(24, 12, 2009);
MyDate second = new MyDate(1, 1, 2011);

print(first + " and " + second + " difference in years: " +
second.differenceInYears(first));

print(second + " and " + first + " difference in years: " +
first.differenceInYears(second));

24.12.2009 and 1.1.2011 difference in years: 1
1.1.2011 and 24.12.2009 difference in years: 1

REFERENCES

[1] Alireza Ahadi, Vahid Behbood, Julia Prior, Arto Vihavainen, and Raymond Lister. 2016. Students’ syntactic mistakes
in writing seven different types of SQL queries and its application to predicting students’ success. In Proceedings of

the 47th ACM Technical Symposium on Computing Science Education (SIGCSE’16). 401–406.
[2] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015. Exploring machine learning methods to

automatically identify students in need of assistance. In Proceedings of the Eleventh Annual International Conference

on International Computing Education Research (ICER’15). ACM, New York, NY, 121–130. DOI:https://doi.org/10.1145/
2787622.2787717

[3] D. G. Altman and J. M. Bland. 1994. Diagnostic tests. 1: Sensitivity and specificity. BMJ 308, 6943 (1994), 1552.
[4] Sadaf Fatima Salim Attar and Y. C. Kulkarni. 2015. Precognition of students academic failure using data mining

techniques. Int. J. Adv. Res. Comput. Commun. Eng. (2015).
[5] Pierre Baldi, Søren Brunak, Yves Chauvin, Claus A. F. Andersen, and Henrik Nielsen. 2000. Assessing the accuracy

of prediction algorithms for classification: An overview. Bioinformatics 16, 5 (2000), 412–424.
[6] Ricky J. Barker and E. A. Unger. 1983. A predictor for success in an introductory programming class based upon

abstract reasoning development. In ACM SIGCSE Bull. 15. ACM, 154–158.
[7] Jens Bennedsen and Michael E. Caspersen. 2006. Abstraction ability as an indicator of success for learning object-

oriented programming? ACM SIGCSE Bull. 38, 2 (2006), 39–43.
[8] Susan Bergin and Ronan Reilly. 2005. Programming: Factors that influence success. ACM SIGCSE Bull. 37, 1 (2005),

411–415.

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

13:18 A. Ahadi et al.

[9] Susan Bergin and Ronan Reilly. 2006. Predicting introductory programming performance: A multi-institutional mul-
tivariate study. Comput. Sci. Edu. 16, 4 (2006), 303–323.

[10] M. Berland and T. Martin. 2011. Clusters and patterns of novice programmers. In Proceedings of the Meeting of the

American Educational Research Association. New Orleans, LA.
[11] Matthew Berland, Taylor Martin, Tom Benton, Carmen Petrick Smith, and Don Davis. 2013. Using learning analytics

to understand the learning pathways of novice programmers. J. Learn. Sci. 22, 4 (2013), 564–599.
[12] IEC BiPM, ILAC IFCC, IUPAC ISO, and OIML IUPAP. 2008. International vocabulary of metrology—Basic and general

concepts and associated terms, 2008. JCGM 200 (2008), 99–12.
[13] Paulo Blikstein. 2011. Using learning analytics to assess students’ behavior in open-ended programming tasks. In

Proceedings of the 1st International Conference on Learning Analytics and Knowledge. ACM, 110–116.
[14] Pat Byrne and Gerry Lyons. 2001. The effect of student attributes on success in programming. In ACM SIGCSE Bull.

33. ACM, 49–52.
[15] Brenda Cantwell Wilson and Sharon Shrock. 2001. Contributing to success in an introductory computer science

course: A study of twelve factors. In ACM SIGCSE Bull. 33. ACM, 184–188.
[16] Adam S. Carter, Christopher D. Hundhausen, and Olusola Adesope. 2015. The normalized programming state model:

Predicting student performance in computing courses based on programming behavior. In Proceedings of the 11th

Annual International Conference on International Computing Education Research (ICER’15). ACM, New York, NY, 141–
150. Retrieved from DOI:https://doi.org/10.1145/2787622.2787710

[17] E. Chandra and K. Nandhini. 2010. Knowledge mining from student data. Eur. J. Sci. Res. 47, 1 (2010), 156–163.
[18] Eric Gaussier and Cyril Goutte. 2005. A probabilistic interpretation of precision, recall and F-score, with implication

for evaluation. In Lect. Notes Comput. Sci. 3408. 345–359.
[19] Gerald E. Evans and Mark G. Simkin. 1989. What best predicts computer proficiency? Commun. ACM 32, 11 (1989),

1322–1327.
[20] RoyaHosseini, Arto Vihavainen, and Peter Brusilovsky. 2014. Exploring problem solving paths in a java programming

course. In Proceedings of the 25th Workshop of the Psychology of Programming Interest Group.
[21] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler, Stephen H. Edwards, Essi Isohanni,

Ari Korhonen, Andrew Petersen, Kelly Rivers, Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco,
Claudia Szabo, and Daniel Toll. 2015. Educational data mining and learning analytics in programming: Literature
review and case studies. In Proceedings of the 2015 ITiCSE on Working Group Reports (ITICSE-WGR’15). ACM, New
York, NY, 41–63. DOI:https://doi.org/10.1145/2858796.2858798

[22] Matthew C. Jadud. 2006. Methods and tools for exploring novice compilation behaviour. In Proceedings of the 2nd

International Workshop on Computing Education Research. ACM, 73–84.
[23] Zlatko J. Kovačić and J. S. Green. 2010. Predictive working tool for early identification of “at risk” students (2010).
[24] S. Anupama Kumar and M. N. Vijayalakshmi. 2011. Implication of classification techniques in predicting students

recital. Int. J. Data Mining Knowl. Manage. Process (IJDKP) 1, 5 (2011), 41–51.
[25] Essi Lahtinen. 2007. A categorization of novice programmers: A cluster analysis study. In Proceedings of the 19th

Annual Workshop of the Psychology of Programming Interest Group, Joensuu, Finnland. Citeseer, 32–41.dd

[26] R. R. Leeper and J. L. Silver. 1982. Predicting success in a first programming course. In ACM SIGCSE Bull. 14. ACM,
147–150.

[27] Athanasios Papoulis. 1990. Probability and Statistics. Prentence-Hall International Editions.
[28] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein. 2012. Modeling how students learn

to program. In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education (SIGCSE’12). ACM,
New York, NY, 153–160. DOI:https://doi.org/10.1145/2157136.2157182

[29] Leo Porter, Daniel Zingaro, and Raymond Lister. 2014. Predicting student success using fine grain clicker data. In
Proceedings of the 10th Annual Conference on International Computing Education Research. ACM, 51–58.

[30] M. N. Quadri and N. V. Kalyankar. 2010. Drop out feature of student data for academic performance using decision
tree techniques. Global J. Comput. Sci. Technol. 10, 2 (2010).

[31] Kelly Rivers, Erik Harpstead, and Ken Koedinger. 2016. Learning curve analysis for programming: Which concepts
do students struggle with? In Proceedings of the 2016 ACM Conference on International Computing Education Research

(ICER’16). ACM, New York, NY, 143–151. DOI:https://doi.org/10.1145/2960310.2960333
[32] Suzanne W. Fletcher and Robert H. Fletcher. 2005. Clinical Epidemiology: The Essentials. Vol. 1. Lippincott Williams

and Wilkins.
[33] Maria Mercedes T. Rodrigo, Ryan S. Baker, Matthew C. Jadud, Anna Christine M. Amarra, Thomas Dy, Maria Beatriz

V. Espejo-Lahoz, Sheryl Ann L. Lim, Sheila A. M. S. Pascua, Jessica O. Sugay, and Emily S. Tabanao. 2009. Affective
and behavioral predictors of novice programmer achievement. ACM SIGCSE Bull. 41, 3 (2009), 156–160.

[34] Maria Mercedes T. Rodrigo, Emily Tabanao, Maria Beatriz E. Lahoz, and Matthew C. Jadud. 2009. Analyzing online
protocols to characterize novice Java programmers. Philippine J. Sci. 138, 2 (2009), 177–190.

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

A Contingency Table Derived Method for Analyzing Course Data 13:19

[35] Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah. 2004. Interacting factors that predict success
and failure in a CS1 course. In ACM SIGCSE Bull. 36. ACM, 101–104.

[36] Michael V. Stein. 2002. Mathematical preparation as a basis for success in CS-II. J. Comput. Sci. Colleges 17, 4 (2002),
28–38.

[37] Markku Tukiainen and Eero Mönkkönen. 2002. Programming aptitude testing as a prediction of learning to program.
In Proceedings of the 14th Workshop of the Psychology of Programming Interest Group. 45–57.

[38] Philip R. Ventura Jr. 2005. Identifying predictors of success for an objects-first CS1 (2005).
[39] Arto Vihavainen. 2013. Predicting students’ performance in an introductory programming course using data from

students’ own programming process. In Proceedings of the IEEE 13th International Conference on Advanced Learning

Technologies (ICALT’13). IEEE.
[40] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013. Scaffolding students’ learning using

test my code. In Proceedings of the 18th ACM Conference on Innovation and Technology in Computer Science Education.
ACM, 117–122.

[41] Christopher Watson, Frederick W. B. Li, and Jamie L. Godwin. 2013. Predicting performance in an introductory pro-
gramming course by logging and analyzing student programming behavior. In Proceedings of the IEEE 13th Interna-

tional Conference on Advanced Learning Technologies (ICALT’13). IEEE, 319–323.
[42] Christopher Watson, Frederick W. B. Li, and Jamie L. Godwin. 2014. No tests required: Comparing traditional and

dynamic predictors of programming success. In Proceedings of the 45th ACMTechnical Symposium on Computer Science

Education. ACM, 469–474.
[43] Laurie Honour Werth. 1986. Predicting Student Performance in a Beginning Computer Science Class. Vol. 18. ACM.
[44] SusanWiedenbeck, Deborah Labelle, and Vennila N. R. Kain. 2004. Factors affecting course outcomes in introductory

programming. In Proceedings of the 16th Annual Workshop of the Psychology of Programming Interest Group. 97–109.
[45] F. Yates. 1934. Contingency tables involving small numbers and the 2 test. Suppl. J. Roy. Stat. Soc. 1, 2 (1934), 217–235.
[46] Michael Yudelson, Roya Hosseini, Arto Vihavainen, and Peter Brusilovsky. 2014. Investigating automated student

modeling in a Java MOOC. In Proceedings of the 7th International Conference on Educational Data Mining 2014.
[47] Daniel Zingaro. 2014. Peer instruction contributes to self-efficacy in CS1. In Proceedings of the 45th ACM Technical

Symposium on Computer Science Education (SIGCSE’14). 373–378. DOI:https://doi.org/10.1145/2538862.2538878

Received September 2016; revised April 2017; accepted May 2017

ACM Transactions on Computing Education, Vol. 17, No. 3, Article 13. Publication date: August 2017.

155

Chapter 13

Discussion and Conclusion

13.1 Introduction

In this Chapter, I will review the research carried out throughout my PhD
candidature. I will be giving an overview on what I have done, what I have
learned, and discuss what could be done as future work to further improve
the automated identification of the difficulties that a novice programmer
experiences in learning to code. More specifically, I will focus on the chal-
lenges with the methods and the source code snapshot data collected from
novice programmers.

13.2 Overview of Research

The primary research question that I have been trying to answer could be
paraphrased as using programming source code snapshot data, how can we iden-
tify the students who are in need of assistance in time? In this chapter I review
my answer to that question by looking at the programming source code
snapshot data collected from two different contexts: Java programming,
and database queries (SQL). The collected data from students have been an-
alyzed quantitatively where different static (traditional) and dynamic suc-
cess factors have been analyzed to identify correlation between the students
coding attempts and their results when assessed by different means includ-
ing final exam mark, the programming assignment marks, and the success
ratio in answering other coding tasks.

13.3 Research Questions

The primary focus of this dissertation has been to answer the following
research questions.

RQ1 Is it possible to identify struggling students by analyzing the source
code snapshot data?

156 Chapter 13. Discussion and Conclusion

RQ2 Can we address the problem of the sensitivity of the prediction (of
the struggling novice programmers) in a more context-independent
manner?

The work done in this dissertation has successfully answered both pro-
posed research questions: the combination of machine learning techniques,
statistical data mining, and the source code snapshot data have lead to de-
sign a predictive model which is able to identify students in need of as-
sistance at early stages of the semester. Considering context independent
factors and using dynamic source code snapshot data and static success fac-
tor together have helped to design a tool (ArAl) which does not suffer from
the effects which are due to local changes.

13.4 Research Outcome

The primary outcome of my research is a programming source code snap-
shot analysis tool (ArAl) which is implemented as an online web-server (see
http://online-analysis-demo.herokuapp.com/). Aral is mainly designed to
assist computer science researchers to perform data analysis on the source
code snapshot data collected from their institutes. The tool relies on infor-
mation on the quantity of students’ attempts on specific problems, whether
the student was able to solve the problem, and on students’ course out-
comes. The tool produces a set of metrics for the researcher; these metrics
include information on assignments and their predictive power over course
exam.

13.5 Research highlights

During my candidature, I was mainly focused on using different analysis

methods on data with different nature collected from different contexts. A
combination of rich data and machine learning / data mining tools helped
me to get deep insights on the quality of how novice programmers handle
different coding tasks. The main focus of my research is on the notion of
an attempt, with a general definition that could be applied to different con-
texts: how many steps does it take a novice programming to tackle a coding task
successfully? I also observed that the notion of attempt can be quantified
using different parameters such as time, number of steps, number of mis-
takes, etc. Appropriate selection of the data analysis tool, awareness of the
details of the context from which the data is collected, and fine grained rich
dataset all play an important role in the interpretation of the results.

13.6. Research Significance 157

13.6 Research Significance

Multiple studies of novice programmers have used dynamically accumu-
lated online data, such as source code snapshots (Jadud, 2006; Watson, Li,
and Godwin, 2013; Ahadi et al., 2015; Carter, Hundhausen, and Adesope,
2015). The methods used to analyze such data range from statistical anal-
ysis of a single variable constructed from the programming process – such
as the error quotient (Jadud, 2006) or the watwin-score (Watson, Li, and God-
win, 2013) – to the use of a multiple variables combined by machine learn-
ing methods (Ahadi et al., 2015). The findings of the research carried out
by the author of this PhD thesis and the above mentioned authors will re-
dound to the benefit of the computer science education research society
considering that generating strong performing programmers plays an im-
portant role in teaching IT courses today. The greater demand for gradu-
ates with strong coding background justifies the need for more effective,
life-changing teaching approaches. Thus, scholars that apply results and
the recommended data analysis approach derived from the results of this
study will be able to train students better. Administrators will be guided on
what should be emphasized by instructors in the school curriculum to im-
prove students’ performance in programming/database courses. My find-
ings will help the computer science education researchers to uncover criti-
cal areas in the educational processes that many researchers were not able
to explore.

13.7 Research Findings

In this section, I’ll review what I have found throughout my research. I will
review my finding based on the results of the publications which together
form the backbone of this thesis.

13.7.1 Data

Nowadays, the majority of the programming IDEs have the capability of
collecting data from the programming environments. The data collected
by these tools usually have the form of 1) metadata which reports features
of different events such as compilation, project open, line edit, etc, and 2)
the source code snapshot data which reports the state of the code when
the above mentioned events are triggered. Error messages are one of the
most important means of communication between the programming envi-
ronment and the programmers.

158 Chapter 13. Discussion and Conclusion

Error messages facilitate the progress of the user and, as a troubleshoot-
ing technique, error messages help the user understand the problem un-
derlying the error. An insufficient or incomplete error message can be mis-
leading to the programmer who could spend an enormous amount of time
spotting the source of the problem. Multiple studies have attempted to an-
alyze the errors encountered by the novice programmers. The study of the
error messages generated by the novice programmer has roots in the inter-
est of recognition of difficult topics and misconceptions of the novices of
programming. This stream of research gives insight in the challenges that
novice programmers face when learning to code. The analysis of such data
also generates insights into how to improve such error messages in a way
that leads to better learning outcomes.

Error messages are not the only dynamic factor which can quantify the
degree to which a student is struggling. As this thesis demonstrates, the
number of attempts required to complete a programming task is also a strong
determinant of success in programming. Related parameters such as the
time spent on the programming task, the number of edits given to a spe-
cific line of code, the amount of time spent on different methods with dif-
ferent difficulty levels, and the number of compiles were also found to con-
tribute to model/s for predicting students’ success with another program-
ming task, or course grade.

13.7.2 Method

Machine learning, and more specifically, data mining techniques were shown
to be useful tools in finding the answer to the research questions. Super-
vised machine learning techniques were used in two publications presented
in this thesis. These techniques helped to 1) train models that classify stu-
dents into multiple groups based on the data collected from their program-
ming environment, 2) find associations between the class that a student
belongs to and their performance in the course, and 3) early identification
of those students who might experience difficulty during the programming
course.

13.7.3 Context

I investigated the data collected from two contexts: the Java programming
IDE, and the SQL server log files collected from an online database assess-
ment tool. The nature of the data collected from these two different environ-
ments is different hence the data mining techniques which are applicable to
one context was not necessarily applicable to the other context. A change
of parameters was needed to fit the model which was successfully used in
the other context.

13.8. Discussion 159

13.8 Discussion

In this section, I’ll open discussions on different aspects of the research car-
ried out. I will focus on answering the question what else I could possibly
understand from my findings?

13.8.1 Data

As I discussed, the notion of attempt can be quantified using different pa-
rameters such as number of steps taken to complete a programming task,
the number of compiles, the number of errors encountered, the time re-
quired to complete a programing task, etc. But what concepts exactly are
quantified by the number of attempts? Are we quantifying how much the
novice struggles with the code, or is it an indicator of how much thinking
the student has put in the code? Even if equipped with the best explana-
tion of what the number of attempts means, can we conclude that students
with a lower number of attempts will eventually be better programmers?
Perhaps it is context dependent to draw a conclusion on how the number
of attempts can explain the learning aptitude. On the other side, it is not
certain how the notion of number of attempts can be operational in terms
of explaining the intention behind the code. How this factor can quantify
why a student chose to get the answer to a question right by taking less
steps?

The trained classifiers investigated in this thesis were based on data col-
lected from students early in the semester. A student’s learning experience
however has a dynamic nature throughout the semester. Would I get the
same sort of results if I trained my classifiers based on the data collected at
different stages of the semester? For example, wouldn’t the accuracy level
of the classifier be higher if the training model was based on the data col-
lected from one week before the final exam?

A strong classifier would be able to predict the same course outcome
if it was given the information collected from the same student on another
test. However, due to lack of data, it was not possible to replicate the ex-
periments in multiple tests. Would the final exam mark of a student who
performed moderately in a programming exercise be classified correctly if
the training model was based on the data collected on the very same week
but from another programming exercise?

13.8.2 Method

The basis of the majority of supervised machine learning techniques is to
group the input based on the similarity between the data points. That is,
for a given set of students, if two students fall into the same cluster, then

160 Chapter 13. Discussion and Conclusion

they share similar values for their static and dynamic success factors. A
fundamental question in this case would be if the data itself is capturing all
the necessary information to form such clusters. This affects the design of
the training model. Since the majority of data mining techniques are sensi-
tive to the quality of the data, then perhaps the data analysis technique se-
lected to analyze the data should be less sensitive to the data points. On the
other side, there is always a small portion of the data points which are not
properly captured by the training model. In designing different classifiers, I
noticed that decision trees and neural networks seem to be less sensitive to
such outliers; hence decision trees and neural networks are recommended
by the author of this thesis analyzing source code snapshot data. However,
if the goal of the data mining technique is to group students based a very
small number of dynamic and static success factors, then the contingency
table approach introduced in this thesis is recommended.

Sequential data mining has received attention from the educational data
mining community, but not to the same degree in the computer science ed-
ucation community, especially those who study the novice programmer.
Sequential data mining looks at the data (in this case, the data could be stu-
dents’ submission to the automated grading system, or the sequential data
collected from the programming environment) and tries to find patterns in
students coding. These patterns can give the instructors clues on how stu-
dents go about coding. Would a combination of a sequential data mining
and the demographic data collected from students reveal common pattern
in their coding and if so, what conceptual framework would explain that
best?

13.8.3 Context

As an instructor, I have seen many cases where two students with com-
pletely different learning styles arrive at the same result. Thus two stu-
dents might have different learning styles but be categorised as members of
the same cluster. It is important to know what course specific parameters
should be captured by the data and used by the classifiers to model stu-
dents groups based on their activity similarity. These factors change from
subject to subject, course to course, and institute to institute.

Replication of a research study is a good strategy to check if the results
from one context can be applied in many other contexts: would I get the
same sort of results if I used my trained model in other contexts?

13.9. Limitations 161

13.9 Limitations

Here, I’ll be reviewing my findings with a focus on answering the question
what aspects of the data, context and the method limited and affected my research?

13.9.1 Data

The source code snapshot data is limited in nature. The primary limitation
of the source code snapshot data is its inability to capture students inten-
tion. It is extremely difficult to say what exactly the novice has been think-
ing about when writing the code. It is hard to tell if pressing the compile
button was for the purpose of checking the correctness of syntax of a line of
code, or simply a habit? Such data doesn’t provide enough information on
a student’s plan in tackling the programming exercise. This becomes even
more complicated in the case for database SQL SELECT statements as there
are no compilation buttons in that environment and hence pressing enter
after the semicolon cannot be interpreted as an act of checking the syntax
but instead as a check of the semantics.

There are also limitations to the data availability as well. At the moment
of writing this PhD thesis, only a limited number of programming source
code snapshot databases are freely available to the public.

13.9.2 Context

Changes in context is one of the main reasons why replication studies are
not able to generate the same results as an original study. It is important
to know the data and the environment the data is collected from. One
of the issues experienced throughout this research was the lack of demo-
graphic data on the students. Also, the programming source code snapshot
data collected at Helsinki university was generated by students in a non-
invigilated environment. Thus, it was not clear if the Helsinki students did
their programming assessments together or individually.

13.10 Recommendations

In this section, I’ll recommend what else can be done in future research to
get more insights from the data collected from the novices. I will break
down my recommendations based on the data, method, and the context
from which the data was collected.

162 Chapter 13. Discussion and Conclusion

13.10.1 Data

Static data

Prior to the beginning of the semester, the instructors should start collect-
ing information on students static success factors such as gender, age, pro-
gramming experience, maths scores, and etc. Some of this information is
available in university’s information systems but others need to be collected
through surveys. It is never a bad practice to collect as much data from the
student as possible prior to the beginning of the semester.

Dynamic data

At the moment, the majority of the programming IDEs collect both the
metadata and the data from the programming environment. This data
needs to become available to other researchers. At the moment, only two
programming source code snapshot tools are publicly available. This is the
primary issue regarding the data and the research done to study the novice
programmer. The limitations in the publicly available datasets forces the re-
searcher to collect their own data which usually takes at least a few months.

13.10.2 Method

Using different data analytics techniques, I realized that there is no unique
technique capable of classifying every single student accurately. The accu-
racy level of the class prediction varies but is usually less than 85%.

13.10.3 Features of a strong algorithm to capture students learn-

ing from the source code snapshot data

In this section, I will propose a set of features which needs to be considered
in the designing process of future data analysis algorithms of the novice
programmer.

General Attributes

The strength of a metric in quantifying learning aptitude is dependent on
a variety of parameters. I argue that the operationalization of the metric
can be best achieved by comparing an individual’s performance on one
programming task with another programming task. Also, a strong met-
ric should demonstrate replicability. That is, a strong metric should report a
similar error profile/progress for the same individual on two near-identical
programming tasks done in quick succession.

13.10. Recommendations 163

Other attributes to be considered when designing a metric are ease of
implementation, language independence, applicability, context indepen-
dence, no use of free parameters, minimal sensitivity to the bias, and pop-
ulation independence.

The last item is concerned with the fact that the amount of progress that
a student makes should not be compared to a cohort of students but with
the previous learning state of the same individual. We believe that compar-
ing an individual to a whole student cohort is related to the applicability of
a particular teaching strategy and the difficulty level of a particular exercise,
rather than the student’s learning ability.

Language Independence

The majority of universities use Java as the primary programming language
for their CS1 course, while some universities use Python, C or even Perl. Pe-
terson et al Petersen, Spacco, and Vihavainen, 2015 reported the impact of
the language taught on the outcome of the EQ metric and its derivations. In
general, programming languages can be divided into two groups: compi-
lation based, or interpreted languages. Compilation based errors are either
compile-time errors or run-time errors. In an interpreted language, both of
these error types are detectable through interpretation. In general, a seman-
tic mistake which could manifest itself in a run-time error is not as easily
detected as it is in a compilation based language: there is a need for the
piece of code to be actually run so that the run-time error is revealed. This
is not necessarily the case for interpreted languages. This fundamentally
is a matter of differences in the data generated in different environments,
however a strong metric for quantifying learning to code should not be af-
fected crucially by such changes.

The definition of what is called an error is also in many cases arbitrary:
many syntax errors in one language are not regarded as errors in other lan-
guages, but rather presented as warnings. Even if one has fixed all compi-
lation errors, the compiler of some languages (such as C and C++) may still
give you "warnings". These warnings won’t keep the code from compiling
(unless the compiler is asked to treat warnings as errors). These warnings
could be treated as errors in another programming language.

I believe that a new metric profiling students’ learning ability to code
should not be trained based on the features of a specific language, but rather
be based on universal features that are all programming languages have in
common.

164 Chapter 13. Discussion and Conclusion

Distribution Independence

In the metric proposed by Watson et al, the time required to fix the error
encountered by each novice is compared with the rest of the population.
Based on the median and the standard deviation of the time spent on fixing
the given code, a penalty value of either 1 or 26 is considered in the calcu-
lation of the final Watwin score. The fundamental issues with comparing
one’s quantified attribute of coding (in this case, the time spent to fix the
code) to the rest of the population is that the given parameter is a) forming
a big part of the calculation in the given algorithm, b) without including
other contributing features to the element of time, this comparison over-
writes the hidden effect of those features, and 3) there are other features
which are not present in the algorithm which can distinguish one particu-
lar student from others. In this case a student who has spent a lot more time
on the code compared to others has not necessarily failed to complete the
exercise successfully. Including time and comparing it with the whole pop-
ulation is highly dependent on context and could be very misleading. For
example, the majority of students in the institute where the data is collected
and analyzed to evaluate EQ and its deviations in this thesis, finish the ex-
ercises very quickly and leave the test room. This is not due to the fact that
they are good programmers, but mainly because their primary way of han-
dling the code is to memorize it. Our analysis shows that these students in
fact get lower marks in the final exam compared to those who demonstrate
some engagement with understanding the code.

Cross-Context Parameter Variation in the Construction of a Metric

Some features used in the construction of a metric are highly affected by
the changes in the context. For example, the element of time is directly
affected by the condition under which the data is generated. Under exam
conditions, a novice wouldn’t necessarily have enough time to sit and think
about how to fix the code in a particular exercise. However, if the data is
collected from students working on their assignments in an unsupervised
condition, then it is almost impossible to say what exactly the novice has
been doing: the novice could have left the machine after facing an error,
gone to have some lunch, while another could have been talking about it on
the phone to a friend. Thus, such attributes are not good contributors in the
construction of a strong metric as they are greatly impacted by educational
settings.

Validity of the Operationalization

Operationalization is the process through which an abstract concept is trans-
lated into measurable variable/s. Operationalized concepts are related to

13.11. Conclusion 165

theoretical concepts but are not coincident with each other. The major prob-
lem with operationalization is the problem of validity. How can one be sure
that the operational measurement still measures the theoretical concept?
There are no ways in which validity can be rigorously "tested" because of
the break between theory and practice (empirical data) that is integral to
the quantitative research tradition. Also, to what extent can one quantify
the concept? For example, what is the difference between a novice with an
EQ score of 0.4 and a novice with a score of 0.6? A robust validated met-
ric should consider representing a measurement which is truly reflective of
how much the novice has learned to code.

13.10.4 Context

There is a need for a data collection doctrine which explains in detail what
sort of information should be collected from the novices, what sort of in-
formation should be collected from the data generation environment, and
what sort of information should be collected from the programming envi-
ronment At the moment, the present data collection tools do not follow a
specific common set of steps in collecting the data from the programmers.

13.11 Conclusion

The purpose of this research was to study the data from novice computer
programmer in a way that has not been done before: a machine learning
based framework which can best predict who it going to struggle to learn
programming and who is not. The results of this research have valuable
pedagogical implications.

167

Appendix A

Definition of Authorship and

Contribution to Publication

The Australian Code for the Responsible Conduct of Research defines authorship
as having substantial contributions in a combination of:

a. conception and design of a project;

b. analysis and interpretation of research data;

c. (i) drafting significant parts of a work;

c. (ii) critically revising it so as to contribute to the interpretation.

169

Appendix B

Specific Contributions of

Co-Authors for Thesis by

Published Papers

This appendix provides specific information about the contribution of each
of the authors of the papers presented in this thesis.

170
Appendix B. Specific Contributions of Co-Authors for Thesis by

Published Papers

Chapter 5: Geek genes, prior knowledge, stumbling points and learn-

ing edge momentum: parts of the one elephant? [ICER 2013]

STATEMENT OF CONTRIBUTIONS OF JOINT AUTHORSHIP

Ahadi, Alireza: (Candidate)
Discussed the research question with the principal supervisor. Planned the
research methodology with principal supervisor. Planned the data collec-
tion with the principal supervisor. Conducted the data collection and col-
lation. Analyzed the data under the principal supervisor’s guidance. Co-
wrote the outline of the paper with the principal supervisor. Took the lead
in writing the paper with the principal supervisor. Revised the paper for
publication with input from reviewers and principal supervisor.

Lister, Raymond: (Principal Supervisor)
Provided editorial feedback on drafts and revisions. Co-wrote the outline
of the paper with the candidate. Co-wrote the paper with the candidate.
Presented the paper at the conference.

Appendix B. Specific Contributions of Co-Authors for Thesis by
Published Papers

171

Chapter 6: Exploring machine learning methods to automatically iden-

tify students in need of assistance. [ICER 2015]

STATEMENT OF CONTRIBUTIONS OF JOINT AUTHORSHIP

Ahadi, Alireza: (Candidate)
Discussed the research question with the principal supervisor and the re-
search colleague. Planned the research methodology with the research col-
league. Conducted the data collation. Analyzed the data under the princi-
pal supervisor’s guidance. Wrote the outline of the paper with the principal
supervisor. Took the lead in writing the paper with the research colleague.
Revised the paper for publication with input from reviewers, principal su-
pervisor and the research colleague.

Lister, Raymond: (Principal Supervisor)
Provided guidance in designing the research methodology. Provided feed-
back in writing the paper.

Haapala, Heikki: (Research Colleague)
Provided feedback on the manuscript and the research methodology.

Vihavainen, Arto: (Research Colleague)
Provided the data, co-wrote the paper and presented the paper.

172
Appendix B. Specific Contributions of Co-Authors for Thesis by

Published Papers

Chapter 7: A Quantitative Study of the Relative Difficulty for Novices

of Writing Seven Different Types of SQL Queries. [ITiCSE 2015]

STATEMENT OF CONTRIBUTIONS OF JOINT AUTHORSHIP

Ahadi, Alireza: (Candidate)
Discussed the research question with the principal supervisor and the re-
search colleagues. Planned the research methodology with the research col-
leagues. Conducted the data collation. Analyzed the data under the princi-
pal supervisor’s guidance. Wrote the outline of the paper with the principal
supervisor and the research colleagues. Took the lead in writing the paper
with the research colleagues. Revised the paper for publication with in-
put from reviewers, principal supervisor and the research colleagues. Pre-
sented the paper at the conference.

Prior, Julia: (Research Colleague)
Provided the data, provided feedback in planning the research methodol-
ogy and co-wrote the paper.

Behbood, Vahid: (Research Colleague)
Contributed in the data pre-processing, provided feedback in planning the
research methodology and co-wrote the paper.

Lister, Raymond: (Principal Supervisor)
Provided feedback in planning the research methodology and co-wrote the
paper.

Appendix B. Specific Contributions of Co-Authors for Thesis by
Published Papers

173

Chapter 8: Students’ Semantic Mistakes in Writing Seven Different

Types of SQL Queries. [ITiCSE 2016]

STATEMENT OF CONTRIBUTIONS OF JOINT AUTHORSHIP

Ahadi, Alireza: (Candidate)
Discussed the research question with the principal supervisor. Planned the
research methodology. Conducted the data collation. Analyzed the data
under the principal supervisor’s guidance. Wrote the outline of the paper.
Took the lead in writing the paper. Revised the paper for publication with
input from reviewers and the principal supervisor. Presented the paper at
the conference.

Prior, Julia: (Research Colleague)
Provided the data and proofread the paper.

Behbood, Vahid: (Research Colleague)
Had a previous role in the data preparation step hence was included as an
author in the paper.

Lister, Raymond: (Principal Supervisor)
Provided feedback on the manuscript.

174
Appendix B. Specific Contributions of Co-Authors for Thesis by

Published Papers

Chapter 9: Students’ Syntactic Mistakes in Writing Seven Different

Types of SQL Queries and its Application to Predicting Students’ Suc-

cess. [SIGCSE 2015]

STATEMENT OF CONTRIBUTIONS OF JOINT AUTHORSHIP

Ahadi, Alireza: (Candidate)
Discussed the research question with the principal supervisor. Planned the
research methodology. Conducted the data collation. Analyzed the data
under the principal supervisor’s guidance. Wrote the outline of the paper.
Took the lead in writing the paper. Revised the paper for publication with
input from reviewers and the principal supervisor. Presented the paper at
the conference.

Behbood, Vahid: (Research Colleague)
Had a previous role in the data preparation step hence was included as an
author in the paper.

Vihavainen, Arto: (Research Colleague)
Presented the paper at the conference and proofread the paper.

Prior, Julia: (Research Colleague)
Provided the data and proofread for the paper.

Lister, Raymond: (Principal Supervisor)
Provided feedback on the manuscript.

Appendix B. Specific Contributions of Co-Authors for Thesis by
Published Papers

175

Chapter 10: Performance and Consistency in Learning to Program.

[ACE 2017]

STATEMENT OF CONTRIBUTIONS OF JOINT AUTHORSHIP

Ahadi, Alireza: (Candidate)
Discussed the research question with the principal supervisor and the re-
search colleague. Planned the research methodology with the principal su-
pervisor and the research colleague. Conducted the data collation. Ana-
lyzed the data under the principal supervisor’s guidance. Wrote the out-
line of the paper with the principal supervisor. Took the lead in writing the
paper with the research colleague. Revised the paper for publication with
input from reviewers, principal supervisor and the research colleague.

Lal, Shahil: (Research Colleague)
Presented the paper at the conference and proofread the paper.

Leinonen, Juho: (Research Colleague)
Provided feedback on the manuscript.

Lister, Raymond: (Principal Supervisor)
Provided feedback on the manuscript.

Hellas, Arto: (Research Colleague)
Provided the data and co-wrote the paper. Also provided feedback on the
manuscript.

176
Appendix B. Specific Contributions of Co-Authors for Thesis by

Published Papers

Chapter 11: On the Number of Attempts Students Made on Some On-

line Programming Exercises During Semester and their Subsequent Per-

formance on Final Exam Questions. [ITiCSE 2016]

STATEMENT OF CONTRIBUTIONS OF JOINT AUTHORSHIP

Ahadi, Alireza: (Candidate)
Discussed the research question with the principal supervisor. Planned the
research methodology with the principal supervisor. Conducted the data
collation. Analyzed the data under the principal supervisor’s guidance.
Wrote the outline of the paper with the principal supervisor. Took the lead
in writing the paper with the principal supervisor. Revised the paper for
publication with input from reviewers and principal supervisor. Presented
the paper at the conference.

Vihavainen, Arto: (Research Colleague)
Provided the data and proofread the manuscript.

Lister, Raymond: (Principal Supervisor)
Provided feedback on the manuscript.

Appendix B. Specific Contributions of Co-Authors for Thesis by
Published Papers

177

Chapter 12: A Contingency Table Derived Methodology for Analyz-

ing Course Data [TOCE 2017]

STATEMENT OF CONTRIBUTIONS OF JOINT AUTHORSHIP

Ahadi, Alireza: (Candidate)
Discussed the research question with the principal supervisor and the re-
search colleague. Planned the research methodology with the principal
supervisor and the research colleague. Conducted the data collation. Ana-
lyzed the data under the principal supervisor’s guidance. Wrote the outline
of the paper with the principal supervisor and the research colleague. Took
the lead in writing the paper with the research colleague. Revised the paper
for publication with input from reviewers and principal supervisor.

Lister, Raymond: (Principal Supervisor)
Provided feedback on the manuscript.

Hellas, Arto: (Research Colleague)
Provided the data and co-wrote the manuscript.

179

Appendix C

Complete list of Publications

by Candidate

1. Teague, D., Corney, M., Fidge, C., Roggenkamp, M., Ahadi, A. and
Lister, R., 2012. Using neo-Piagetian theory, formative in-Class tests
and think alouds to better understand student thinking: a prelimi-
nary report on computer programming. In Profession of Engineering
Education: Advancing Teaching, Research and Careers: 23rd Annual
Conference of the Australasian Association for Engineering Educa-
tion 2012, The (p. 772). Engineers Australia.

2. Corney, M., Teague, D., Ahadi, A. and Lister, R., 2012, January. Some
empirical results for neo-Piagetian reasoning in novice programmers
and the relationship to code explanation questions. In Proceedings of
the Fourteenth Australasian Computing Education Conference-Volume
123 (pp. 77-86). Australian Computer Society, Inc..

3. Teague, D., Corney, M., Ahadi, A. and Lister, R., 2012, January. Swap-
ping as the Hello World of relational reasoning: replications, reflec-
tions and extensions. In Proceedings of the Fourteenth Australasian
Computing Education Conference-Volume 123 (pp. 87-94). Australian
Computer Society, Inc..

4. Teague, D., Corney, M., Ahadi, A. and Lister, R., 2013, January. A
qualitative think aloud study of the early neo-piagetian stages of rea-
soning in novice programmers. In Proceedings of the Fifteenth Aus-
tralasian Computing Education Conference-Volume 136 (pp. 87-95).
Australian Computer Society, Inc..

5. *Ahadi, A. and Lister, R., 2013, August. Geek genes, prior knowledge,
stumbling points and learning edge momentum: parts of the one ele-
phant?. In Proceedings of the ninth annual international ACM con-
ference on International computing education research (pp. 123-128).
ACM.

180 Appendix C. Complete list of Publications by Candidate

6. Ahadi, A., Lister, R. and Teague, D., 2014. Falling behind early and
staying behind when learning to program. In Proceedings of the 25th
Psychology of Programming Conference, PPIG (Vol. 14).

7. Teague, D., Lister, R. and Ahadi, A., 2015, January. Mired in the Web:
Vignettes from Charlotte and Other Novice Programmers. In Pro-
ceedings of the 17th Australasian Computing Education Conference
(ACE 2015) (Vol. 27, p. 30).

8. *Ahadi, A., Prior, J., Behbood, V. and Lister, R., 2015, June. A Quanti-
tative Study of the Relative Difficulty for Novices of Writing Seven
Different Types of SQL Queries. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Edu-
cation (pp. 201-206). ACM.

9. Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Ed-
wards, S.H., Isohanni, E., Korhonen, A., Petersen, A., Rivers, K. and
Rubio, M.Á., 2015, July. Educational data mining and learning ana-
lytics in programming: Literature review and case studies. In Pro-
ceedings of the 2015 ITiCSE on Working Group Reports (pp. 41-63).
ACM.

10. *Ahadi, A., Lister, R., Haapala, H. and Vihavainen, A., 2015, July. Ex-
ploring machine learning methods to automatically identify students
in need of assistance. In Proceedings of the eleventh annual Inter-
national Conference on International Computing Education Research
(pp. 121-130). ACM.

11. Ahadi, A., Applying Educational Data Mining to the Study of the
Novice Programmer, within a Neo-Piagetian Theoretical Perspective.

12. *Ahadi, A., Behbood, V., Vihavainen, A., Prior, J. and Lister, R., 2016,
February. Students’ Syntactic Mistakes in Writing Seven Different
Types of SQL Queries and its Application to Predicting Students’ Suc-
cess. In Proceedings of the 47th ACM Technical Symposium on Com-
puting Science Education (pp. 401-406). ACM.

13. *Ahadi, A., Prior, J., Behbood, V. and Lister, R., 2016, July. Students’
Semantic Mistakes in Writing Seven Different Types of SQL Queries.
In Proceedings of the 2016 ACM Conference on Innovation and Tech-
nology in Computer Science Education (pp. 272-277). ACM.

14. Leinonen, J., Longi, K., Klami, A., Ahadi, A. and Vihavainen, A., 2016,
July. Typing Patterns and Authentication in Practical Programming
Exams. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education (pp. 160-165). ACM.

Appendix C. Complete list of Publications by Candidate 181

15. *Ahadi, A., Lister, R. and Vihavainen, A., 2016, July. On the Number
of Attempts Students Made on Some Online Programming Exercises
During Semester and their Subsequent Performance on Final Exam
Questions. In Proceedings of the 2016 ACM Conference on Innova-
tion and Technology in Computer Science Education (pp. 218-223).
ACM.

16. Ahadi, A., 2016, August. Early Identification of Novice Programmers’
Challenges in Coding Using Machine Learning Techniques. In Pro-
ceedings of the 2016 ACM Conference on International Computing
Education Research (pp. 263-264). ACM.

17. *Ahadi, A., Hellas, A., Lister, R.A.Y.M.O.N.D. and Leinonen, J., 2017,
January. Performance and Consistency in Learning to Program. In
Australasian Computing Education Conference, pp. 11 – 16. Won the
award for Best Student Paper.

18. Castro-Wunsch, K., Ahadi, A. and Peterson, A., 2017, March. Evalu-
ating Neural Networks as a Method for Identifying Students in Need
of Assistance. In SIGCSE technical symposium on computer science
education.

19. *Ahadi, A., Lister, R. and Hellas, A., 2017. A Contingency Table De-
rived Methodology for Analyzing Course Data. ACM Transactions
on Computing Education.

* Publications forming part of this PhD thesis.

183

Appendix D

UTS Human Ethics Approval

Certificate - UTS HREC -

ETH16-0340

193

Appendix E

Extract from UTS Subject

Outline – 31271 "Database

Fundamentals" Sem. 2 2016

Every tutorial session will include a short written quiz that will test the individual
student's knowledge of two concepts covered in the Review Questions section of that
week's tutorial (previous week's lecture). Before the class, students are expected to
complete the Review Questions section, which relate to the previous week's lecture topic.

Each quiz will be marked during the tutorial session.

Students may score 0, 1 or 2 for each quiz. These weekly scores will be added together
to give the student's total quiz mark, out of a possible total of 20 (as there are ten
tutorial sessions).
The total quiz mark is weighted 10% of the student's final weighted mark.

No Special Consideration requests will be granted for these quizzes

207

Appendix F

Extract from Helsinki Subject

Outline – 581325 "Introduction

to Programming" Sem. 2 2016

This chapter reviews the topics and the course structure for the subject In-
troduction to Programming at University of Helsinki.

OBJECT-ORIENTED PROGRAMMING

How to get started

Material

Instructions

IRC guide

Google Groups

Scoreboard

Material

MOOC.fi

581325 Introduction to programming
Principal
theme

Prerequisite
knowledge

Approaches
the learning
objectives

Reaches the
learning
objectives

Deepens the learning
objectives

Algorithms
and control
structures

• No pre-
requisites
(comprehensive-
school
mathematics)

• Know and can
explain the
concept of
programming
languages,
compilation, and
interpretation.
• Can explain the
significance of
assignment
operations and
the sequential
execution of
algorithms.
• Can simulate
simple
algorithms.

• Can formulate simple
algorithms.
• Can explain the
concept "algorithm
state."
• Understand how
logical expressions are
statements on
algorithm's state.
• Know how to use
basic control
structures.
• Understand the
concept of a program
that asks for input data
and writes output data,
and can implement
one.
• Know the concept of
arrays and can
program sequential
search, binary search,
and some way to sort
the elements of an
array.

• Can understand why a
sequential search is a linear
operation, a binary search
logarithmic, and sorting squared.
• Can create programs that are
elegant both in their logic and
their appearance.

Variables and
types

• The concept of
algorithms

• Grasp the
concept of the
type and value of
variables.

• Can use variables
and write expressions
of the types int,
double, boolean and
String.
• Know the difference
between simple types
and reference types.
• Know the
significance of
assignment
compatibility in
programming.

• Know some of the history of type
categorisation and can assess the
consequences of different options.

• Understand the
behaviour of formal
parameters and local
variables.

• Know how to use
classes as types.
• Know how to index
the array.

Sub-
programs

• The concept of
algorithms

• Grasp the
principles of
naming and
calling
algorithms.

• Can define and call
sub-programs, Java
methods.
• Can describe and
use formal and actual
parameters.
• Know how a method
can change the value
of a parameter, if the
parameter's class
allows it.
• Know the technique
for overloading
methods and also
know how to program
overloaded methods
and constructors in
practice.

• Know that the Java value
parameters is just one alternative
for parameter technique: there are
languages with reference
parameters, for example.
•

Classes,
objects and
encapsulation

• Variables,
algorithms,
methods,
parameters

• Can outline the
objects for a
class
specification as
"drawings" for
creating objects.

• Can program
instance variables and
accessors.
• Know the technique
for encapsulation and
can apply it in
programming.
• Know the concept of
'object state.'
• Know the lifespan of
an object and how it
differs from the
lifespan of the local
variables of methods.
• Can give objects as
parameters.
• Know the
significance of
automatic garbage

• Understand the significance of
encapsulation in software design
and the need for program
validation.
• Understand the consequences
of automatic garbage collection in
the applicability of the Java
language and what Java is
suitable for for this reason, and
what it is completely unsuitable
for.

Last updated: 22.09.2011 - 09:28 Arto Wikla
Post date: 05.09.2011 - 13:02 Marina Kurtén
Permanent link: https://www.cs.helsinki.fi/en/node/65659

collection.

Printer-friendly version

215

Appendix G

Extract from UTS Database

Fundamentals – 31271, Practice

Questions and Answers

G.1 Introduction

This appendix reviews the material corresponding to the practice version
of online sQL test used at UTS. The practice database schema, the CREATE
statements corresponding to each table, the sample data stored in each table
as well as different questions designed based on this information and their
answered are reviewed.

G.2 Pizza Database

Page 1 of 3

Relational Model:

create table menu
(
pizza char(20),
price real,
country char(20),
base char(20),
PRIMARY KEY (pizza)
);

create table items
(
ingredient char(12),
type char(8),
PRIMARY KEY (ingredient)
);

create table recipe
(
pizza char(20),
ingredient char(12),
amount int,
PRIMARY KEY (pizza, ingredient),
FOREIGN KEY (pizza) REFERENCES
menu,
FOREIGN KEY (ingredient)
REFERENCES items
);

P.T.O. for table data.

11 M M

Menu
Pizza
Price
Country
Base

Recipe
Pizza*
Ingredient*
Amount

Items
Ingredient
Type

Page 2 of 3

recipe
pizza ingredient amount

margarita spice 5
margarita cheese 120
ham ham 150
ham spice 5
napolitana anchovies 100
napolitana olives 75
napolitana spice 10
hawaiian ham 100
hawaiian pineapple 100
hawaiian spice 5
cabanossi cabanossi 150
cabanossi spice 10
siciliano onion 50
siciliano capsicum 75
siciliano olives 50
siciliano anchovies 50
siciliano spice 15
americano salami 120
americano pepperoni 75
americano spice 10
mexicano onion 75
mexicano capsicum 75
mexicano mushroom 50
mexicano chilli 25
mexicano spice 20
seafood seafood 200
seafood spice 5

recipe
pizza ingredient amount

garlic garlic 25
garlic spice 10
vegetarian onion 50
vegetarian capsicum 50
vegetarian mushroom 50
vegetarian peas 50
vegetarian tomato 50
vegetarian spice 5
mushroom mushroom 100
mushroom spice 5
special cheese 25
special tomato 25
special ham 25
special anchovies 25
special olives 25
special mushroom 25
special bacon 25
special egg 25
special pineapple 25
special cabanossi 25
special salami 25
special capsicum 25
special onion 25
special peas 25
special seafood 25
special spice 10
stagiony ham 75
stagiony mushroom 50
stagiony olives 50
stagiony anchovies 25
stagiony spice 10

Page 3 of 3

menu
pizza price country base

margarita 6.2 italy Wf
ham 7.3 Wf

napolitana 7.4 italy Wf
stagiony 7.8 italy Wm
hawaiian 7.4 hawaii Wm
cabanossi 7.4 italy Wf
special 9.9 Wf

siciliano 7.4 italy Wm
americano 7.4 usa Wm
mexicano 7.4 mexico Wf
vegetarian 7.4 Wm

mushroom 7.3 Wm

seafood 9.2 Wm

garlic 3.5 Wm

items
ingredient type

cheese dairy
tomato veg
ham meat
anchovies fish
olives veg
mushroom veg
prawn fish
garlic spice
egg dairy
pineapple fruit
cabanossi meat
salami meat
pepperoni meat
capsicum veg
onion veg
bacon meat
chilli spice
peas veg
seafood fish
spice spice

G.2. Pizza Database 219

G.2.1 Questions Used in The Practice Online SQL Test

Table G.1 reviews the questions designed for different difficulty levels based
on the Pizza database.

G.2.2 Proposed Answers for The Questions Used in The Practice

Online SQL Test

Table G.2 reviews the proposed answers for different questions presented
in Table G.1.

220
Appendix G. Extract from UTS Database Fundamentals – 31271, Practice

Questions and Answers

TABLE G.1: List of questions and their corresponding cov-
ered topic.

Question No. Question Topic
1.1 List pizzas with the substring ’i’ any-

where within the pizza name.
Simple

1.2 List all pizzas, giving pizza name, price
and country of origin where the country
of origin has NOT been recorded (i.e. is
missing).

Simple

1.3 List all price categories recorded in the
MENU table, eliminating duplicates.

Simple

2.1 Give the average price of pizzas from
each country of origin.

Group by

2.2 Give the most expensive pizzas from
each country of origin.

Group by

2.3 Give the cheapest pizzas from each coun-
try of origin.

Group by

3.1 Give the average price of pizzas from
each country of origin, do not list coun-
tries with only one pizza.

Group by with having

3.2 Give the average price of pizzas from
each country of origin, only list countries
with ’i’ in the country’s name

Group by with having

3.3 Give cheapest price of pizzas from each
country of origin, only list countries with
cheapest price of less than $7.00

Group by with having

4.1 List all ingredients and their types for the
’margarita’ pizza. Do not use a subquery.

Natural join

4.2 List all ’fish’ ingredients used in pizzas,
also list the pizza names. Do not use a
subquery.

Natural join

4.3 List all ’meat’ ingredients used in pizzas,
also list the pizza names. Do not use a
subquery.

Natural join

5.1 Give pizzas and prices for pizzas that are
more expensive than all Italian pizzas.
You must use a subquery.

Simple sub-query

5.2 List all ingredients for the Mexican pizza
(i.e. country = ’mexico’). You must use a
subquery.

Simple sub-query

5.3 List pizzas with at least one ’meat’ ingre-
dient.You must use a subquery.

Simple sub-query

6.1 Give all pizzas that originate from the
same country as the ’siciliano’ pizza.

Self-join

6.2 List all pizzas that cost more than ’sta-
giony’ pizza, also give their prices.

Self-join

6.3 List all pizzas that cost less than ’sicil-
iano’ pizza, also give their prices.

Self-join

7.1 List each ingredient and the pizza that
contains the largest amount of this ingre-
dient.

Correlated sub-query

7.2 List ingredients used in more than one
pizza.

Correlated sub-query

7.3 List the ingredients, and for each ingre-
dient, also list the pizza that contains the
largest amount of this ingredient.

Correlated sub-query

G.2. Pizza Database 221

TABLE G.2: Proposed Answers for the questions presented
in G.1

Question No. Proposed answer
1.1 select pizza from menu where pizza like ’%i%’
1.2 select pizza, price, country from menu where country is null
1.3 select distinct price from menu
2.1 select country, AVG(price) AS Average from menu where country

is not null group by country
2.2 Select country, MAX(price) AS Most from menu where country is

not null group by country
2.3 Select country, MIN(price) AS Least from menu where country is

not null group by country
3.1 Select country, AVG(price) from menu where country is not null

group by country having COUNT(*) > 1
3.2 Select country, AVG(price) from menu where country is not null

group by country having country LIKE ’%i%’
3.3 Select country, MIN(price) from menu where country is not null

group by country having MIN(price) < 7.00
4.1 Select i.ingredient, type from recipe r, items i where pizza = ’mar-

garita’ and i.ingredient = r.ingredient
4.2 Select i.ingredient, pizza from items i, recipe r where

i.ingredient=r.ingredient and type = ’fish’
4.3 Select i.ingredient, pizza from items i, recipe r where

i.ingredient=r.ingredient and type = ’meat’
5.1 select pizza, price from menu where price > all (select price from

menu where country = ’italy’)
5.2 Select distinct ingredient from recipe where pizza in (select pizza

from menu where country like ’%mexico%’)
5.3 Select distinct pizza from recipe where ingredient = any (select

ingredient from items where type like ’%meat%’)
6.1 Select m1.pizza from menu m1, menu m2 where m1.country =

m2.country and m2.pizza = ’siciliano’ and m1.pizza <> ’siciliano’
6.2 Select m1.pizza, m1.price from menu m1, menu m2 where

m1.price > m2.price and m2.pizza = ’stagiony’
6.3 Select m1.pizza, m1.price from menu m1, menu m2 where

m1.price < m2.price and m2.pizza = ’siciliano’
7.1 select ingredient, pizza, amount from recipe r where amount =

(select max(amount) from recipe where ingredient = r.ingredient)
7.2 Select distinct ingredient from recipe r where ingredient in (select

ingredient from recipe where pizza <> r.pizza)
7.3 Select ingredient, pizza, amount from recipe r where amount =

(select MAX(amount) from recipe where ingredient = r.ingredient)

223

Appendix H

The Final Exam Questions

Used at Helsinki University

This appendix review four questions of the final exam. Due to local admin-
istrative regulations, the complete final exam is not to be released.

Question 2, part a (3p)

Create a program that outputs (using a loop statement such as while or for)
all integers divisible with 2, starting with 1000 and ending in 2. The output
must occur so that 5 integers are printed on each row, and that each column
must be aligned. The program output should look like this:

1000 998 996 994 992

990 988 986 984 982

980 978 976 974 972

(lots of rows)

10 8 6 4 2

Question 2, part b (4p)

Create a program where the input is integers representing the exam points
gained by students. The program starts by reading the numbers of points
from the user. The reading of the points stops when the user enters the in-
teger -1.

The number of points must be an integer between 0 and 30. If some other
integer is input (besides -1 that ends the program), the program ignores it.

After reading the numbers of points, the program states which number of
points (between 0 and 30) is the greatest. Out of the number of points, the
integers under 15 are equivalent to the grade failed, and the rest are passed.
The program also announces the number of passed and failed grades.

Example:

224 Appendix H. The Final Exam Questions Used at Helsinki University

Enter numbers of exam points, -1 ends the program:

20

12

29

15

-1

best number of points: 29

passed: 3

failed: 1

In the above example, 12 points failed and the points 20, 29 and 15 passed
exams. Thus, the program announces that 3 students passed and 1 student
failed.
Please note that the program must ignore all integers outside 0-30. An ex-
ample of a case where there are integers that have to be ignored among the
input numbers:

Enter numbers of exam points, -1 ends the program:

10

100

20

-4

30

-1

best number of points: 30

passed: 2

failed: 1

As shown, the points -4 and 100 are ignored.

Question 3, part a (3p)

Create the method public static void printInterval(int edge1,

edge2) that prints, in ascending order, each integer in the interval defined
by its parameters.

If we call printInterval(3, 7), it prints

3 4 5 6 7

The methods also works if the first parameter is greater than the second
one, i.e. if we call printInterval(10, 8), it prints

8 9 10

Appendix H. The Final Exam Questions Used at Helsinki University 225

Thus, the integers are always printed in ascending order, regardless of which
method parameter is greater, the first one or the second one.

Question 3, part b (3p)

Create the method public static boolean bothFound(int[] integers,

int integer1, integer2), which is given an integer array and two
integers as parameters. The method returns true if both integers given as
parameters (integer1 and integer2) are in the array given as method
parameter. In other cases the method returns false.

If the method receives as parameters for example the array [1,5,3,7,5,4], and
the integers 5 and 7, it returns true. If the method received the array [1,5,3,2]
and the integers 7 and 3 as parameters, it would return false.

Create a main program, as well, which demonstrates how to use the method.

Note! If you don’t know how to use arrays, you can create public static

boolean bothFound(ArrayList<Integer> integers, int integer1,

int integer2), where the method is given as parameters an ArrayList
containing the integers and the integers to be found.

Question 4. (6 points)

Create the class Warehouse. The warehouse has a capacity, which is an in-
teger, and the amount of wares stored in the warehouse is also stored as an
integer. The warehouse capacity if specified with the constructor parameter
(you can assume that the value of the parameter is positive). The class has
the following methods:

• void add(int amount), that adds the amount of wares given in
the parameter to the warehouse. If the amount is negative, the status
of the warehouse does not change. When adding wares, the amount
of wares in the warehouse cannot grow larger than the capacity. If the
amount to be added does not fit into the warehouse completely, the
warehouse is filled and the rest of the wares are ’wasted.”

• int space(), that returns the amount of empty space in the ware-
house.

• void empty(), that empties the warehouse.

• toString(), which returns a text representation of the warehouse
status, formulated as in the example below; observe the status when
the warehouse is empty!

226 Appendix H. The Final Exam Questions Used at Helsinki University

Next is an example that demonstrates the operations of a warehouse that
has been implemented correctly:

public static void main(String[] args) {

Warehouse warehouse = new Warehouse(24);

warehouse.add(10);

System.out.println(warehouse);

System.out.println("space in warehouse " + warehouse.space());

warehouse.add(-2);

System.out.println(warehouse);

warehouse.add(50);

System.out.println(warehouse);

warehouse.empty();

System.out.println(warehouse);\\

if the class has been implemented correctly, the output is
capacity: 24 items 10
space in warehouse 14
capacity: 24 items 10
capacity: 24 items 24
capacity: 24 empty

Question 5. (6 points)

This assignment is about making a program to manage the contents of
a bookshelf. You have at your disposal the class Book:

public class Book {

private String author;

private String title;

public Book(String author, String title) {

this.author = author;

this.name = name;

}

public String getAuthor() {

return this.author;

}

@Override

public String toString() {

Appendix H. The Final Exam Questions Used at Helsinki University 227

return this.author + ": " + this.name;

}

}

Please program the class Bookshelf, that works like the example described
below:

public static void main(String[] args) {

Bookshelf shelf = new Bookshelf();

shelf.addBook("Kent Beck", "Test Driven Development");

shelf.addBook("Kent Beck", "Extreme Programming Embraced");

shelf.addBook("Martin Fowler", "UML Distilled");

shelf.addBook("Fedor Dostoyevski", "Crime and Punishment");

shelf.print();

System.out.println("---");

shelf.get("Kent Beck");\\

}

if the class has been implemented correctly, the output is
books total 4
books:
Kent Beck: Test Driven Development
Kent Beck: Extreme Programming Embraced
Martin Fowler: UML Distilled
Fedor Dostoyevski: Crime and Punishment

found:
Kent Beck: Test Driven Development Kent Beck: Extreme Programming
Embraced

The class must save books added to the shelf in an ArrayList containing
Book objects.

As we can see in the example, the following methods have to be imple-
mented for the class:

• void addBook(String author, String title), which adds
a book with the author and title given as parameters to the shelf.

• void print(), which prints the information of the bookshelf for-
mulated as in the example above.

228 Appendix H. The Final Exam Questions Used at Helsinki University

• find(String author), which outputs the books in the shelf with
the author given as method parameter, the output should be in the
same form as in the example above.

229

Appendix I

Extract from Helsinki Subject

Content – 581325 "Introduction

to Programming" Sem. 2 2016,

Week 1.

This chapter reviews detailed information on the content of the first week
material used in Introduction to Programming at University of Helsinki.

Object-Oriented Programming with Java, part I ››

Material

Material

Exercises

Exercises

This material is licensed under the Creative

Commons BY-NC-SA license, which means

that you can use it and distribute it freely so long as you do

not erase the names of the original authors. If you do

changes in the material and want to distribute this altered

version of the material, you have to license it with a similar

free license. The use of the material for commercial use is

prohibited without a separate agreement.

Authors: Arto Vihavainen, Matti Luukkainen

Translators to English: Emilia Hjelm, Alex H. Virtanen, Matti

Luukkainen, Virpi Sumu, Birunthan Mohanathas

1. 1. THE PROGRAM AND THE SOURCE CODE

1.1 1.1 SOURCE CODE

A computer program is composed of commands written in the source code. A computer generally

runs commands in the source code from top to bottom and from left to right. Source code is saved in

a textual format and will be executed somehow.

1.2 1.2 COMMANDS

Computers execute different operations, or actions, based on the commands. For example, when

printing the text "Hello world!" on the screen, it is done by the command System.out.println.

System.out.println("Hello world!");

The System.out.println command prints the string given inside the brackets on the screen. The

suffix ln is short for the word line. Therefore, this command prints out a line. This means that after

the given string has been printed, the command will also print a line break.

KURSSIT ›› MIKÄ ON MOOC? ›› JÄRJESTÄVÄSTÄ TAHOSTA ››

1.3 1.3 COMPILER AND INTERPRETER

Computers do not directly understand the programming language we are using. We need a compiler

between the source code and the computer. When we are programming using the command line

interface, the command javac Hello.java will compile the Hello.java file into bytecode, which can be

executed using the Java interpreter. To run the compiled program, you can use the command java

Hello where Hello is the name of the original source code file.

When using a modern development environment (more on this later), it will take care of compiling

the source code. When we choose to run the program, the development environment will compile

and execute the program. All development environments compile source code while it is being

written by the programmer, which means that simple errors will be noticed before executing the

program.

1.4 1.4 COMPONENTS OF COMMANDS

1.4.1 1.4.1 SEMICOLON

A semicolon ; is used to separate different commands. The compiler and the interpreter both ignore

line breaks in the source code, so we could write the entire program on a single line.

In the example below we will use the System.out.print command, which is similar to the

System.out.println command except that it will not print a line break after printing the text.

Example of how the semicolons are used

System.out.print("Hello "); System.out.print("world");
System.out.print("!");

Hello world!

Even though neither the compiler nor the interpreter need line breaks in the source code, they are

very important when considering human readers of the source code. Line breaks are required to

divide source code in a clear manner. Readability of source code will be emphasized throughout this

course.

1.4.2 1.4.2 PARAMETERS (INFORMATION PASSED TO COMMANDS)

The information processed by a command are the parameters of a command. They are passed to the

command by placing them between () brackets that follow the command name. For example, the

System.out.print command is given the text hello as a parameter as follows:

System.out.print("hello").

1.4.3 1.4.3 COMMENTS

Comments are a useful way to make notes in the source code for yourself and others. Everything on a

line after two forward slashes // is treated as a comment.

1.4.4 1.4.4 EXAMPLE OF USING COMMENTS

// We will print the text "Hello world"
System.out.print("Hello world");

System.out.print(" and all the people of the world."); // We print more text to the sam

// System.out.print("this line will not be executed, because it is commented out"

The last line of the example introduces a particularly handy use for comments: you can comment out

code instead of completely deleting it if you want to temporarily try out something.

1.5 1.5 MORE ABOUT PRINTING

As we can see from the examples above, there are two commands for printing.

System.out.print prints the text without the line break at the end

System.out.println prints the text and the line break

The printed text can contain both traditional characters and special characters. The most important

special character is \n, which stands for a line break. There are also other special characters.

System.out.println("First\nSecond\nThird");

When executed, the example above prints:

First
Second
Third

2. 2. MAIN PROGRAM BODY

The body for a program named "Example" is as follows:

public class Example {
 public static void main(String[] args) {
 // program code
 }
}

The program is stored in a text file named after the program with the .java extension. For a program

named Example, the file should be named Example.java.

The execution of the program begins at the part marked with the // program code comment above.

During our first week of programming, we will limit ourselves to this part. When we are talking about

commands such as printing, we need to write the commands into the program body. For example:

System.out.print("Text to be printed");

public class Example {
 public static void main(String[] args) {
 System.out.print("Text to be printed");
 }
}

From this point on, the main program body will be omitted from the examples.

3. 3. GETTING TO KNOW YOUR
DEVELOPMENT ENVIRONMENT

Programming these days takes place in development environments almost without exceptions. The

development environment provides several tools and features to assist the programmer. Although

the development environment does not write the program on behalf of the programmer, it contains

several handy features such as hinting about mistakes in code and assisting the programmer to

visualize the structure of the program.

In this course, we will use the NetBeans development environment. A guide for using NetBeans is

available here.

Until you become familiar with NetBeans, follow the guides and steps precisely. Most of the following

exercises show what needs to be printed to the screen for the program to function correctly.

Note: Do not do the exercises by writing code and then clicking the test button. You should also

execute the code manually (green arrow) and observe the result on the screen. This is especially

useful if an exercise fails to pass the tests.

In the following exercises, we will practice the use of NetBeans and printing of text on the

screen.

Remember to read the guide on using NetBeans before you continue!

Please answer to our survey: here. It will take less than five minutes.

Exercise 1: NameExercise 1: Name

Exercise 1: NameExercise 1: Name

Exercise 2: Hello world! (And all the people of the world)Exercise 2: Hello world! (And all the people of the world)

Exercise 2: Hello world! (And all the people of the world)Exercise 2: Hello world! (And all the people of the world)

Exercise 3: SpruceExercise 3: Spruce

Exercise 3: SpruceExercise 3: Spruce

Note: You probably wrote System.out.println("...") quite a few times. Try typing only sout on

an empty line in NetBeans and then press the tab key. What happened? This tip will save a lot of

your time in the future!

4. 4. VARIABLES AND ASSIGNMENT

4.1 4.1 VARIABLES AND DATA TYPES

A variable is one of the most important concepts in computer programming. A variable should be

imagined as a box in which you can store information. The information stored in a variable always

has a type. These types include text (String), whole numbers (int), decimal numbers (double), and

truth values (boolean). A value can be assigned to a variable using the equals sign (=).

int months = 12;

In the statement above, we assign the value 12 to the variable named months whose data type is

integer (int). The statement is read as "the variable months is assigned the value 12".

The value of the variable can be appended to a string with the plus + sign as shown in the following

example.

String text = "includes text";
int wholeNumber = 123;
double decimalNumber = 3.141592653;
boolean isTrue = true;

System.out.println("The variable's type is text. Its value is " + text);
System.out.println("The variable's type is integer. Its value is " + wholeNumber);
System.out.println("The variable's type is decimal number. Its value is " + decimalNumber);
System.out.println("The variable's type is truth value. Its value is " + isTrue);

Printing:

The variable's type is text. Its value is includes text
The variable's type is integer. Its value is 123
The variable's type is decimal number. Its value is 3.141592653
The variable's type is truth value. Its value is true

A variable holds its value until it is assigned a new one. Note that the variable type is written only

when the variable is first declared in the program. After that we can use the variable by its name.

int wholeNumber = 123;
System.out.println("The variable's type is integer. Its value is " + wholeNumber);

wholeNumber = 42;
System.out.println("The variable's type is integer. Its value is " + wholeNumber);

The output is:

The variable's type is integer. Its value is 123
The variable's type is integer. Its value is 42

4.2 4.2 VARIABLE DATA TYPES ARE IMMUTABLE

When a variable is declared with a data type, it cannot be changed later. For example, a text variable

cannot be changed into an integer variable and it cannot be assigned integer values.

String text = "yabbadabbadoo!";
text = 42; // Does not work! :(

Integer values can be assigned to decimal number variables, because whole numbers are also

decimal numbers.

double decimalNumber = 0.42;
decimalNumber = 1; // Works! :)

Exercise 4: Varying variablesExercise 4: Varying variables

Exercise 4: Varying variablesExercise 4: Varying variables

4.3 4.3 ALLOWED AND DESCRIPTIVE VARIABLE NAMES

There are certain limitations on the naming of our variables. Even though umlauts, for example, can

be used, it is better to avoid them, because problems might arise with character encoding. For

example, it is recommended to use A instead of Ä.

Variable names must not contain certain special characters like exclamation marks (!). Space

characters cannot be used, either, as it is used to separate commands into multiple parts. It is a good

idea to replace the space character using a camelCase notation. Note: The first character is always

written in lower case when using the camel case notation.

int camelCaseVariable = 7;

Variable names can contain numbers as long it does not start with one. Variable names cannot be

composed solely of numbers, either.

int 7variable = 4; // Not allowed!

int variable7 = 4; // A valid, but not descriptive variable name

Variable names that have been defined before cannot be used. Command names such as

System.out.print cannot be used, either.

int camelCase = 2;
int camelCase = 5; // Not allowed, the variable camelCase is already defined!

It is strongly recommended to name variables so that their purpose can be understood without

comments and without thinking. Variable names used in this course must be descriptive.

4.3.1 4.3.1 VALID VARIABLE NAMES

lastDay = 20

firstYear = 1952

name = "Matti"

4.3.2 4.3.2 INVALID VARIABLE NAMES

last day of the month = 20

1day = 1952

watchout! = 1910

1920 = 1

5. 5. CALCULATION

The calculation operations are pretty straightforward: +, -, * and /. A more peculiar operation is the

modulo operation %, which calculates the remainder of a division. The order of operations is also

pretty straightforward: the operations are calculated from left to right taking the parentheses into

account.

int first = 2; // variable of whole number type is assigned the value 2
int second = 4; // variable of whole number type is assigned the value 4
int sum = first + second; // variable of whole number type is assigned the value of
 // (which means 2 + 4)

System.out.println(sum); // the value of the sum of variables is printed

int calcWithParens = (1 + 1) + 3 * (2 + 5); // 23
int calcWithoutParens = 1 + 1 + 3 * 2 + 5; // 13

The parentheses example above can also be done step by step.

int calcWithParens = (1 + 1);
calcWithParens = calcWithParens + 3 * (2 + 5); // 23

int calcWithoutParens = 1 + 1;
calcWithoutParens = calcWithoutParens + 3 * 2;
calcWithoutParens = calcWithoutParens + 5; // 13

Calculation operations can be used almost anywhere in the program code.

int first = 2;
int second = 4;

System.out.println(first + second);
System.out.println(2 + second - first - second);

5.1 5.1 FLOATING POINT NUMBERS (DECIMAL NUMBERS)

Calculating the division and remainder of whole numbers is a little trickier. A floating point number

(decimal number) and integer (whole number) often get mixed up. If all the variables in a calculation

operation are integers, the end result will also be an integer.

int result = 3 / 2; // result is 1 (integer) because 3 and 2 are integers as well

int first = 3:
int second = 2;
double result = first / second; // the result is again 1 because first and second ar

The remainder can be calculated using the remainder operation (%). For example, the calculation 7 %

2 yields 1.

int remainder = 7 % 2; // remainder is 1 (integer)

If either the dividend or the divisor (or both!) is a floating point number (decimal number) the end

result will also be a floating point number.

double whenDividendIsFloat = 3.0 / 2; // result is: 1.5
double whenDivisorIsFloat = 3 / 2.0; // result is: 1.5

If needed, integers can be converted to floating point using the type cast operation (double) as

follows:

int first = 3;
int second = 2;
double result1 = (double)first / second; // result is: 1.5

double result2 = first / (double)second; // result is: 1.5

double result3 = (double)(first / second); // result is: 1

In the last example calculation, the result is rounded incorrectly because the calculation between the

integers is done before the type cast to a floating point number.

If the quotient is assigned to a variable of integer type, the result will be an integer as well.

int integerResultBecauseTypeIsInteger = 3.0 / 2; // quotient is automatically intege

The next example will print "1.5" because the dividend is transformed into a floating point number

by multiplying it with a floating point number (1.0 * 3 = 3.0) before the division.

int dividend = 3;
int divisor = 2;

double quotient = 1.0 * dividend / divisor;
System.out.println(quotient);

What does the following code print?

int dividend = 3;
int divisor = 2;

double quotient = dividend / divisor * 1.0;
System.out.println(quotient);

From now on, make sure that you name your variables that follow good
conventions like the variables in the examples above.

Exercise 5: Seconds in a yearExercise 5: Seconds in a year

Exercise 5: Seconds in a yearExercise 5: Seconds in a year

6. 6. CONCATENATION OR COMBINING
STRINGS

Let us take a closer look on combining strings with the + operator.

If the + operator is used between two strings, a new string is created with the two strings combined.

Note the clever use of space characters in the values of the variables below!

String greeting = "Hi ";
String name = "John";
String goodbye = ", and goodbye!";

String sentence = greeting + name + goodbye;

System.out.println(sentence);

Hi John, and goodbye!

If a string is on either side of the + operator, the other side is converted to a string and a new string

is created. For example, the integer 2 will be converted into the string "2" and then combined with

the other string.

System.out.println("there is an integer --> " + 2);
System.out.println(2 + " <-- there is an integer");

What we learned earlier about the order of operations is still valid:

System.out.println("Four: " + (2 + 2));
System.out.println("But! Twenty-two: " + 2 + 2);

Four: 4
But! Twenty-two: 22

Using this information, we can print a mix of strings and values of variables:

int x = 10;

System.out.println("variable x has the following value: " + x);

int y = 5;
int z = 6;

System.out.println("y has the value " + y + " and z has the value " + z);

This program obviously prints:

variable x has the following value: 10
y has the value 5 and z has the value 6

Exercise 6: AdditionExercise 6: Addition

Exercise 6: AdditionExercise 6: Addition

Exercise 7: MultiplicationExercise 7: Multiplication

Exercise 7: MultiplicationExercise 7: Multiplication

7. 7. READING USER INPUT

So far our programs have been rather one-sided. Next we will learn how to read input from the user.

We will use a special Scanner tool to read the user input.

Let us add the Scanner to our existing main program body. Do not worry if the main program body

seems obscure as we will continue to write our code in the part marked // program code.

import java.util.Scanner;

public class ProgramBody {
 public static void main(String[] args) {
 Scanner reader = new Scanner(System.in);

 // program code
 }
}

7.1 7.1 READING A STRING

The following code reads the user's name and prints a greeting:

System.out.print("What is your name? ");
String name = reader.nextLine(); // Reads a line of input from the user and assigns i
 // to the variable called name

System.out.println("Hi, " + name);

What is your name? John
Hi, John

The program above combined along with the main program body is shown below. The name of the

program is Greeting, which means that it must be located in a file named Greeting.java.

import java.util.Scanner;

public class Greeting {
 public static void main(String[] args) {
 Scanner reader = new Scanner(System.in);

 System.out.print("Who is greeted: ");
 String name = reader.nextLine(); // Reads a line of input from the user and a
 // to the variable called name

 System.out.print("Hi " + name);
 }
}

When the program above is executed, you can type the input. The output tab in NetBeans (at the

bottom) looks as follows when the program has finished (the user inputs the name "John").

run:
Who is greeted: John
Hi John
BUILD SUCCESSFUL (total time: 6 seconds)

7.2 7.2 READING INTEGERS

Our Scanner tool is not good for reading integers, so we will use another special tool to read an

integer. The command Integer.parseInt converts the string given to it into an integer. The

command's parameter is given between brackets and it returns an integer that can be assigned to an

integer variable.

Basically, we are joining two commands together. First we read the input as a string from the user

and immediately give it to the command Integer.parseInt.

System.out.print("Type an integer: ");
int number = Integer.parseInt(reader.nextLine());

System.out.println("You typed " + number);

Next we will ask the user to give us his name and age. The program body is included this time.

import java.util.Scanner;

public class NameAndAgeGreeting {
 public static void main(String[] args) {
 Scanner reader = new Scanner(System.in);

 System.out.print("Your name: ");
 String name = reader.nextLine(); // Reads a line from the users keyboard

 System.out.print("How old are you: ");
 int age = Integer.parseInt(reader.nextLine()); // Reads a string variable fro

 System.out.println("Your name is: " + name + ", and you are " + age + " years old, n
 }

}

7.3 7.3 SUMMARY

The program body for interaction with the user is as follows:

import java.util.Scanner;
public class ProgramName {
 public static void main(String[] args) {
 Scanner reader = new Scanner(System.in);

 // code here
 }
}

Reading a string:

String text = reader.nextLine();

Reading an integer:

int number = Integer.parseInt(reader.nextLine());

Exercise 8: AdderExercise 8: Adder

Exercise 8: AdderExercise 8: Adder

Exercise 9: DividerExercise 9: Divider

Exercise 9: DividerExercise 9: Divider

Exercise 10: Calculating the circumferenceExercise 10: Calculating the circumference

Exercise 10: Calculating the circumferenceExercise 10: Calculating the circumference

Exercise 11: Bigger numberExercise 11: Bigger number

Exercise 11: Bigger numberExercise 11: Bigger number

Exercise 12: Sum of the agesExercise 12: Sum of the ages

Exercise 12: Sum of the agesExercise 12: Sum of the ages

Exercise 13: NHL statistics, part 1Exercise 13: NHL statistics, part 1

Exercise 13: NHL statistics, part 1Exercise 13: NHL statistics, part 1

8. 8. CONDITIONAL STATEMENTS AND
TRUTH VALUES

So far, our programs have progressed from one command to another in a straightforward manner. In

order for the program to branch to different execution paths based on e.g. user input, we need

conditional statements.

int number = 11;

if (number > 10) {
 System.out.println("The number was greater than 10");
}

The condition (number > 10) evaluates into a truth value; either true or false. The if command only

handles truth values. The conditional statement above is read as "if the number is greater than 10".

Note that the if statement is not followed by semicolon as the condition path continues after the

statement.

After the condition, the opening curly brace { starts a new block, which is executed if the condition is

true. The block ends with a closing curly brace }. Blocks can be as long as desired.

The comparison operators are:

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equals

!= Not equal

int number = 55;

if (number != 0) {
 System.out.println("The number was not equal to 0");
}

if (number >= 1000) {
 System.out.println("The number was greater than or equal to 1000");
}

A block can contain any code including other if statements.

int x = 45;
int number = 55;

if (number > 0) {
 System.out.println("The number is positive!");
 if (number > x) {
 System.out.println(" and greater than the value of variable x");
 System.out.println("after all, the value of variable x is " + x);
 }
}

The comparison operators can also be used outside the if statements. In such case the truth value

will be stored in a truth value variable.

int first = 1;
int second = 3;

boolean isGreater = first > second;

In the example above the boolean (i.e. a truth value) variable isGreater now includes the truth value

false.

A boolean variable can be used as a condition in a conditional sentence.

int first = 1;
int second = 3;

boolean isLesser = first < second;

if (isLesser) {
 System.out.println(first + " is less than " + second + "!");
}

1 is less than 3!

8.1 8.1 CODE INDENTATION

Note that the commands in the block following the if statement (i.e. the lines after the curly brace, {

) are not written at the same level as the if statement itself. They should be indented slightly to the

right. Indentation happens when you press the tab key, which is located to the left of q key. When the

block ends with the closing curly brace, indentation ends as well. The closing curly brace } should be

on the same level as the original if statement.

The use of indentation is crucial for the readability of program code. During this course and

generally everywhere, you are expected to indent the code properly. NetBeans helps with the correct

indentation. You can easily indent your program by pressing shift, alt, and f simultaneously.

8.2 8.2 ELSE

If the truth value of the comparison is false, another optional block can be executed using the else

command.

int number = 4;

if (number > 5) {
 System.out.println("Your number is greater than five!");
} else {
 System.out.println("Your number is equal to or less than five!");
}

Your number is equal to or less than five!

Exercise 14: A positive numberExercise 14: A positive number

Exercise 14: A positive numberExercise 14: A positive number

Exercise 15: Age of majorityExercise 15: Age of majority

Exercise 15: Age of majorityExercise 15: Age of majority

Exercise 16: Even or odd?Exercise 16: Even or odd?

Exercise 16: Even or odd?Exercise 16: Even or odd?

8.3 8.3 ELSE IF

If there are more than two conditions for the program to check, it is recommended to use the else if

command. It works like the else command, but with an additional condition. else if comes after the

if command. There can be multiple else if commands.

int number = 3;

if (number == 1) {
 System.out.println("The number is one.");
} else if (number == 2) {
 System.out.println("The number is two.");
} else if (number == 3) {
 System.out.println("The number is three!");
} else {
 System.out.println("Quite a lot!");
}

The number is three!

Let us read out loud the example above: If number is one, print out "The number is one.". Otherwise

if the number is two, print out "The number is two.". Otherwise if the number is three, print out "The

number is three!". Otherwise print out "Quite a lot!".

8.4 8.4 COMPARING STRINGS

Strings cannot be compared using the equality operator (==). For string comparison, we use the

equals. command, which is always associated with the string to compare.

String text = "course";

if (text.equals("marzipan")) {
 System.out.println("The variable text contains the text marzipan");
} else {
 System.out.println("The variable text does not contain the text marzipan");
}

The equals command is always attached to the string variable with a dot in between. A string variable

can also be compared to another string variable.

String text = "course";
String anotherText = "horse";

if (text.equals(anotherText)) {
 System.out.println("The texts are the same!");
} else {
 System.out.println("The texts are not the same!");
}

When comparing strings, it is crucial to make sure that both string variables have been assigned

some value. If a value has not been assigned, the program execution terminates with a

NullPointerException error, which means that variable has no value assigned to it (null).

Exercise 17: Greater numberExercise 17: Greater number

Exercise 17: Greater numberExercise 17: Greater number

Exercise 18: Grades and pointsExercise 18: Grades and points

Exercise 18: Grades and pointsExercise 18: Grades and points

8.5 8.5 LOGICAL OPERATIONS

The condition statements can be made more complicated using logical operations. The logical

operations are:

condition1 && condition2 is true if both conditions are true.

condition1 || condition2 is true if either of the conditions are true.

!condition is true if the condition is false.

Below we will use the AND operation && to combine two individual conditions in order to check if the

value of the variable is greater than 4 and less than 11 (i.e. in the range 5 - 10).

System.out.println("Is the number between 5-10?");
int number = 7;

if (number > 4 && number < 11) {
 System.out.println("Yes! :)");
} else {
 System.out.println("Nope :(")
}

Is the number between 5-10?
Yes! :)

Next up is the OR operation ||, which will be used to check if the value is less than 0 or greater than

100. The condition evaluates to true if the value fulfills either condition.

System.out.println("Is the number less than 0 or greater than 100?");
int number = 145;

if (number < 0 || number > 100) {
 System.out.println("Yes! :)");
} else {
 System.out.println("Nope :(")
}

Is the number less than 0 or greater than 100?
Yes! :)

Now we will use the negation operation ! to negate the condition:

System.out.println("Is the string equal to 'milk'?");
String text = "water";

if (!(text.equals("milk"))) { // true if the condition text.equals("milk") is false
 System.out.println("No!");
} else {
 System.out.println("Yes")
}

Is the text equal to 'milk'?
No!

For complicated conditions, we often need parentheses:

int number = 99;

if ((number > 0 && number < 10) || number > 100) {
 System.out.println("The number was in the range 1-9 or it was over 100");
} else {
 System.out.println("The number was equal to or less than 0 or it was in the range 10-99");
}

The number was equal to or less than 0 or it was in the range 10-99

Exercise 19: Age checkExercise 19: Age check

Exercise 19: Age checkExercise 19: Age check

Exercise 20: UsernamesExercise 20: Usernames

Exercise 20: UsernamesExercise 20: Usernames

Exercise 21: Leap yearExercise 21: Leap year

Exercise 21: Leap yearExercise 21: Leap year

9. 9. INTRODUCTION TO LOOPS
Conditional statements allow us to execute different commands based on the conditions. For

example, we can let the user login only if the username and password are correct.

In addition to conditions we also need repetitions. We may, for example, need to keep asking the

user to input a username and password until a valid pair is entered.

The most simple repetition is an infinite loop. The following code will print out the string I can

program! forever or "an infinite number of times":

while (true) {
 System.out.println("I can program!");
}

In the example above, the while (true) command causes the associated block (i.e. the code between

the curly braces {}) to be looped (or repeated) infinitely.

We generally do not want an infinite loop. The loop can be interrupted using e.g. the break

command.

while (true) {
 System.out.println("I can program!");

 System.out.print("Continue? ('no' to quit)? ");
 String command = reader.nextLine();
 if (command.equals("no")) {
 break;
 }
}

System.out.println("Thank you and see you later!");

Now the loop progresses like this: First, the program prints I can program!. Then, the program will

ask the user if it should continue. If the user types no, the break command is executed and the loop

is interrupted and Thank you and see you again! is printed.

I can program!
Continue? ('no' to quit)?yeah
I can program!
Continue? ('no' to quit)? jawohl
I can program!
Continue? ('no' to quit)? no
Thank you and see you again!

Many different things can be done inside a loop. Next we create a simple calculator, which performs

calculations based on commands that the user enters. If the command is quit, the break command

will be executed to end the loop. Otherwise two numbers are asked. Then, if the initial command was

sum, the program calculates and prints the sum of the two numbers. If the command was difference,

the program calculates and prints the difference of the two numbers. If the command was something

else, the program reports that the command was unknown.

System.out.println("welcome to the calculator");

while (true) {
 System.out.print("Enter a command (sum, difference, quit): ");
 String command = reader.nextLine();
 if (command.equals("quit")) {
 break;
 }

 System.out.print("enter the numbers");
 int first = Integer.parseInt(reader.nextLine());
 int second = Integer.parseInt(reader.nextLine());

 if (command.equals("sum")) {
 int sum = first + second;
 System.out.println("The sum of the numbers is " + sum);
 } else if (command.equals("difference")) {
 int difference = first - second;
 System.out.println("The difference of the numbers is " + difference);
 } else {
 System.out.println("Unknown command");
 }

}

System.out.println("Thanks, bye!");

Exercise 22: PasswordExercise 22: Password

Exercise 22: PasswordExercise 22: Password

Exercise 23: TemperaturesExercise 23: Temperatures

Exercise 23: TemperaturesExercise 23: Temperatures

Exercise 24: NHL statistics, part 2Exercise 24: NHL statistics, part 2

Exercise 24: NHL statistics, part 2Exercise 24: NHL statistics, part 2

Ohjaus: IRCnet #mooc.fi | Tiedotus: Twitter Facebook | Virheraportit: SourceForge

255

Bibliography

Abdullah, AL, Areej Malibari, and Mona Alkhozae (2014). “STUDENTS’PERFORMANCE
PREDICTION SYSTEM USING MULTI AGENT DATA MINING TECH-
NIQUE”. In: International Journal of Data Mining & Knowledge Manage-
ment Process 4.5, p. 1.

Ahadi, Alireza et al. (2015). “Exploring Machine Learning Methods to Au-
tomatically Identify Students in Need of Assistance”. In: Proceedings of
the Eleventh Annual International Conference on International Computing
Education Research. ICER ’15. Omaha, Nebraska, USA: ACM, pp. 121–
130. ISBN: 978-1-4503-3630-7. DOI: 10.1145/2787622.2787717. URL:
http://doi.acm.org/10.1145/2787622.2787717.

Ahmadzadeh, Marzieh, Dave Elliman, and Colin Higgins (2005). “An anal-
ysis of patterns of debugging among novice computer science students”.
In: ACM SIGCSE Bulletin 37.3, pp. 84–88.

Ahmed, Abeer Badr El Din and Ibrahim Sayed Elaraby (2014). “Data Min-
ing: A prediction for Student’s Performance Using Classification Method”.
In: World Journal of Computer Application and Technology 2.2, pp. 43–47.

Allevato, Anthony et al. (2008). “Mining data from an automated grading
and testing system by adding rich reporting capabilities”. In: Educational
Data Mining, pp. 167–176.

Anderson, John R and Robin Jeffries (1985). “Novice LISP errors: Unde-
tected losses of information from working memory”. In: Human–Computer
Interaction 1.2, pp. 107–131.

Arockiam, L et al. (2010). “Deriving Association between Urban and Ru-
ral Students Programming Skills”. In: International Journal on Computer
Science and Engineering 2.3.

Attar, Sadaf Fatima Salim and YC Kulkarni (2015). “Precognition of Stu-
dents Academic Failure Using Data Mining Techniques”. In: Interna-
tional Journal of Advanced Research in Computer and Communication En-
gineering.

Barker, Ricky J and EA Unger (1983). “A predictor for success in an in-
troductory programming class based upon abstract reasoning develop-
ment”. In: ACM SIGCSE Bulletin. Vol. 15. 1. ACM, pp. 154–158.

Basawapatna, Ashok et al. (2011). “Recognizing computational thinking
patterns”. In: Proceedings of the 42nd ACM technical symposium on Com-
puter science education. ACM, pp. 245–250.

256 BIBLIOGRAPHY

Becker, Brett A (2016). “A new metric to quantify repeated compiler errors
for novice programmers”. In: Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education. ACM, pp. 296–
301.

Becker, Brett A and Catherine Mooney (2016). “Categorizing compiler error
messages with principal component analysis”. In: 12th China-Europe In-
ternational Symposium on Software Engineering Education (CEISEE 2016),
Shenyang, China, 28-29 May 2016.

Bennedsen, Jens and Michael E Caspersen (2005). “An investigation of po-
tential success factors for an introductory model-driven programming
course”. In: Proceedings of the first international workshop on Computing ed-
ucation research. ACM, pp. 155–163.

— (2006). “Abstraction ability as an indicator of success for learning object-
oriented programming?” In: ACM SIGCSE Bulletin 38.2, pp. 39–43.

Bergin, Susan and Ronan Reilly (2005). “Programming: factors that influ-
ence success”. In: ACM SIGCSE Bulletin 37.1, pp. 411–415.

— (2006). “Predicting introductory programming performance: A multi-
institutional multivariate study”. In: Computer Science Education 16.4,
pp. 303–323.

Berland, M and T Martin (2011). “Clusters and patterns of novice program-
mers”. In: The meeting of the American Educational Research Association.
New Orleans, LA.

Berland, Matthew et al. (2013). “Using learning analytics to understand the
learning pathways of novice programmers”. In: Journal of the Learning
Sciences 22.4, pp. 564–599.

Biamonte, AJ (1964). “Predicting success in programmer training”. In: Pro-
ceedings of the second SIGCPR conference on Computer personnel research.
ACM, pp. 9–12.

Biggs, John B (1978). “Individual and group differences in study processes”.
In: British Journal of Educational Psychology 48.3, pp. 266–279.

Blikstein, Paulo (2011). “Using learning analytics to assess students’ behav-
ior in open-ended programming tasks”. In: Proceedings of the 1st interna-
tional conference on learning analytics and knowledge. ACM, pp. 110–116.

Blikstein, Paulo et al. (2014). “Programming Pluralism: Using Learning An-
alytics to Detect Patterns in the Learning of Computer Programming”.
In: Journal of the Learning Sciences 23.4, pp. 561–599. DOI: 10.1080/
10508406.2014.954750. URL: http://dx.doi.org/10.1080/
10508406.2014.954750.

Bonar, Jeffrey and Elliot Soloway (1985). “Preprogramming knowledge: A
major source of misconceptions in novice programmers”. In: Human–
Computer Interaction 1.2, pp. 133–161.

Booth, Shirley (1992). Learning to program: A phenomenographic perspective.

BIBLIOGRAPHY 257

Brooks, Ruven (1977). “Towards a theory of the cognitive processes in com-
puter programming”. In: International Journal of Man-Machine Studies 9.6,
pp. 737–751.

Brown, Neil C. C. and Amjad Altadmri (2014). “Investigating Novice Pro-
gramming Mistakes: Educator Beliefs vs. Student Data”. In: Proceedings
of the Tenth Annual Conference on International Computing Education Re-
search. ICER ’14. Glasgow, Scotland, United Kingdom: ACM, pp. 43–
50. ISBN: 978-1-4503-2755-8. DOI: 10.1145/2632320.2632343. URL:
http://dx.doi.org/10.1145/2632320.2632343.

Brown, Neil Christopher Charles et al. (2014). “Blackbox: a large scale repos-
itory of novice programmers’ activity”. In: Proceedings of the 45th ACM
technical symposium on Computer science education. ACM, pp. 223–228.

Bruce, Christine et al. (2006). “Ways of experiencing the act of learning
to program: A phenomenographic study of introductory programming
students at university”. In: Transforming IT education: Promoting a culture
of excellence, pp. 301–325.

Buffardi, Kevin and Stephen H Edwards. “Adaptive and social mechanisms
for automated improvement of eLearning materials”. In:

— (2014). “Introducing CodeWorkout: an adaptive and social learning en-
vironment”. In: Proceedings of the 45th ACM Technical Symposium on Com-
puter Science Education. ACM, pp. 724–724.

Byrne, Pat and Gerry Lyons (2001). “The effect of student attributes on
success in programming”. In: ACM SIGCSE Bulletin. Vol. 33. 3. ACM,
pp. 49–52.

Cantwell Wilson, Brenda and Sharon Shrock (2001). “Contributing to suc-
cess in an introductory computer science course: a study of twelve fac-
tors”. In: ACM SIGCSE Bulletin. Vol. 33. 1. ACM, pp. 184–188.

Carter, Adam S., Christopher D. Hundhausen, and Olusola Adesope (2015).
“The Normalized Programming State Model: Predicting Student Per-
formance in Computing Courses Based on Programming Behavior”. In:
Proceedings of the Eleventh Annual International Conference on International
Computing Education Research. ICER ’15. Omaha, Nebraska, USA: ACM,
pp. 141–150. ISBN: 978-1-4503-3630-7. DOI: 10.1145/2787622.2787710.
URL: http://doi.acm.org/10.1145/2787622.2787710.

Chandra, E and K Nandhini (2010). “Knowledge mining from student data”.
In: European journal of scientific research 47.1, pp. 156–163.

Cooper, Stephen et al. (2005). Outcomes-based computer science education. Vol. 37.
1. ACM.

Détienne, Françoise (1990). “Expert programming knowledge: a schema-
based approach”. In: Psychology of programming, pp. 205–222.

Du Boulay, Benedict (1986). “Some difficulties of learning to program”. In:
Journal of Educational Computing Research 2.1, pp. 57–73.

258 BIBLIOGRAPHY

Edwards, Stephen H (2003). “Improving student performance by evaluat-
ing how well students test their own programs”. In: Journal on Educa-
tional Resources in Computing (JERIC) 3.3, p. 1.

Edwards, Stephen H. and Manuel A. Perez-Quinones (2008). “Web-CAT:
Automatically Grading Programming Assignments”. In: SIGCSE Bull.
40.3, p. 328. DOI: 10.1145/1597849.1384371. URL: http://doi.
acm.org/10.1145/1597849.1384371.

Edwards, Stephen H. et al. (2009). “Comparing Effective and Ineffective
Behaviors of Student Programmers”. In: Proceedings of the Fifth Inter-
national Workshop on Computing Education Research Workshop. ICER ’09.
Berkeley, CA, USA: ACM, pp. 3–14. ISBN: 978-1-60558-615-1. DOI: 10.
1145/1584322.1584325. URL: http://dx.doi.org/10.1145/
1584322.1584325.

Evans, Gerald E and Mark G Simkin (1989). “What best predicts computer
proficiency?” In: Communications of the ACM 32.11, pp. 1322–1327.

Fenwick, James B. et al. (2009). “Another Look at the Behaviors of Novice
Programmers”. In: SIGCSE Bull. 41.1, pp. 296–300. ISSN: 0097-8418. DOI:
10.1145/1539024.1508973. URL: http://dx.doi.org/10.
1145/1539024.1508973.

Francisco, Rodrigo Elias and Ana Paula Ambrosio (2015). “Mining an On-
line Judge System to Support Introductory Computer Programming Teach-
ing.” In: EDM (Workshops).

Gilmore, David J (1990). “Expert programming knowledge: a strategic ap-
proach”. In: Psychology of programming, pp. 223–234.

Gomes, Anabela Jesus, Alvaro Nuno Santos, and António José Mendes (2012).
“A study on students’ behaviours and attitudes towards learning to pro-
gram”. In: Proceedings of the 17th ACM annual conference on Innovation and
technology in computer science education. ACM, pp. 132–137.

Hagan, Dianne and Selby Markham (2000). “Does it help to have some pro-
gramming experience before beginning a computing degree program?”
In: ACM SIGCSE Bulletin 32.3, pp. 25–28.

Hosseini, Roya, Arto Vihavainen, and Peter Brusilovsky (2014). “Exploring
Problem Solving Paths in a Java Programming Course”. In: Proceedings
of the 25th Workshop of the Psychology of Programming Interest Group.

Hovemeyer, David and Jaime Spacco (2013). “CloudCoder: A Web-based
Programming Exercise System”. In: J. Comput. Sci. Coll. 28.3, p. 30. ISSN:
1937-4771. URL: http://portal.acm.org/citation.cfm?id=
2400161.2400167.

Ihantola, Petri and Ville Karavirta (2011). “Two-dimensional parson’s puz-
zles: The concept, tools, and first observations”. In: Journal of Information
Technology Education 10, p. 2011.

BIBLIOGRAPHY 259

Ihantola, Petri et al. (2015). “Educational data mining and learning analytics
in programming: Literature review and case studies”. In: Proceedings of
the 2015 ITiCSE on Working Group Reports. ACM, pp. 41–63.

Jackson, James, MJ Cobb, and Curtis Carver (2005). “Identifying top Java
errors for novice programmers”. In: Frontiers in Education Conference.
Vol. 35. 1. STIPES, T4C.

Jadud, Matthew C (2006). “Methods and tools for exploring novice compi-
lation behaviour”. In: Proceedings of the second international workshop on
Computing education research. ACM, pp. 73–84.

Johnson, Philip M. et al. (2004). “Practical automated process and product
metric collection and analysis in a classroom setting: lessons learned
from Hackystat-UH”. In: Proceedings of the International Symposium on
Empirical Software Engineering. IEEE, pp. 136–144. ISBN: 0-7695-2165-7.
DOI: 10.1109/isese.2004.1334901. URL: http://dx.doi.org/
10.1109/isese.2004.1334901.

Johnson, W Lewis and Elliot Soloway (1985). “PROUST: Knowledge-based
program understanding”. In: IEEE Transactions on Software Engineering
3, pp. 267–275.

Joni, Saj-Nicole et al. (1983). “Just so stories: how the program got that bug”.
In: ACM SIGCUE Outlook 17.4, pp. 13–26.

Kalelioğlu, Filiz (2015). “A new way of teaching programming skills to K-12
students: Code. org”. In: Computers in Human Behavior 52, pp. 200–210.

Katz, Sandra et al. (2003). “A study to identify predictors of achievement
in an introductory computer science course”. In: Proceedings of the 2003
SIGMIS conference on Computer personnel research: Freedom in Philadelphia–
leveraging differences and diversity in the IT workforce. ACM, pp. 157–161.

Kölling, Michael et al. (2003). “The BlueJ system and its pedagogy”. In: Com-
puter Science Education 13.4, pp. 249–268.

Kovačić, Zlatko J and JS Green (2010). Predictive working tool for early identi-
fication of ‘at risk’ students.

Kumar, Amruth N (2003). “Learning programming by solving problems”.
In: Informatics curricula and teaching methods. Springer, pp. 29–39.

— (2016). “Providing the Option to Skip Feedback in a Worked Example
Tutor”. In: International Conference on Intelligent Tutoring Systems. Springer,
pp. 101–110.

Kumar, S Anupama and MN Vijayalakshmi (2011). “Implication of classifi-
cation techniques in predicting student’s recital”. In: Int. J. Data Mining
Knowl. Manage. Process (IJDKP) 1.5, pp. 41–51.

Kurland, D Midian et al. (1986). “A study of the development of program-
ming ability and thinking skills in high school students”. In: Journal of
Educational Computing Research 2.4, pp. 429–458.

260 BIBLIOGRAPHY

Lahtinen, Essi (2007). “A categorization of Novice Programmers: a cluster
analysis study”. In: Proceedings of the 19th annual workshop of the psychol-
ogy of programming interest group, Joensuu, Finnland. Citeseer, pp. 32–41.

Leeper, RR and JL Silver (1982). “Predicting success in a first programming
course”. In: ACM SIGCSE Bulletin. Vol. 14. 1. ACM, pp. 147–150.

Lewis, Tracy L et al. (2005). “The effects of individual differences on CS2
course performance across universities”. In: ACM SIGCSE Bulletin. Vol. 37.
1. ACM, pp. 426–430.

Linn, Marcia C and John Dalbey (1989). “Cognitive consequences of pro-
gramming instruction”. In: Studying the novice programmer, pp. 57–81.

Marceau, Guillaume, Kathi Fisler, and Shriram Krishnamurthi (2011). “Mind
your language: on novices’ interactions with error messages”. In: Pro-
ceedings of the 10th SIGPLAN symposium on New ideas, new paradigms, and
reflections on programming and software. ACM, pp. 3–18.

Marion, Bill et al. (2007). “Assessing computer science programs: what have
we learned”. In: ACM SIGCSE Bulletin. Vol. 39. 1. ACM, pp. 131–132.

Minaei-Bidgoli, Behrouz et al. (2003). “Predicting student performance: an
application of data mining methods with an educational web-based sys-
tem”. In: Frontiers in education, 2003. FIE 2003 33rd annual. Vol. 1. IEEE,
T2A–13.

Orr, Dominic, Christoph Gwosć, and Nicolai Netz (2011). Social and economic
conditions of student life in Europe: synopsis of indicators; final report; Eu-
rostudent IV 2008-2011. W. Bertelsmann Verlag.

Papancea, Andrei, Jaime Spacco, and David Hovemeyer (2013). “An open
platform for managing short programming exercises”. In: Proceedings of
the ninth annual international ACM conference on International computing
education research. ACM, pp. 47–52.

Parsons, Dale and Patricia Haden (2006). “Parson’s programming puzzles:
a fun and effective learning tool for first programming courses”. In: Pro-
ceedings of the 8th Australasian Conference on Computing Education-Volume
52. Australian Computer Society, Inc., pp. 157–163.

Pea, Roy D (1986). “Language-independent conceptual “bugs” in novice
programming”. In: Journal of Educational Computing Research 2.1, pp. 25–
36.

Perkins, David N et al. (1986). “Conditions of learning in novice program-
mers”. In: Journal of Educational Computing Research 2.1, pp. 37–55.

Petersen, Andrew, Jaime Spacco, and Arto Vihavainen (2015). “An explo-
ration of error quotient in multiple contexts”. In: Proceedings of the 15th
Koli Calling Conference on Computing Education Research. ACM, pp. 77–86.

Piech, Chris et al. (2012). “Modeling How Students Learn to Program”. In:
Proceedings of the 43rd ACM Technical Symposium on Computer Science
Education. SIGCSE ’12. Raleigh, North Carolina, USA: ACM, pp. 153–

BIBLIOGRAPHY 261

160. ISBN: 978-1-4503-1098-7. DOI: 10.1145/2157136.2157182. URL:
http://doi.acm.org/10.1145/2157136.2157182.

Pintrich, Paul R et al. (1993). “Reliability and predictive validity of the Mo-
tivated Strategies for Learning Questionnaire (MSLQ)”. In: Educational
and psychological measurement 53.3, pp. 801–813.

Porter, Leo, Daniel Zingaro, and Raymond Lister (2014). “Predicting stu-
dent success using fine grain clicker data”. In: Proceedings of the tenth an-
nual conference on International computing education research. ACM, pp. 51–
58.

Prior, Julia Coleman and Raymond Lister (2004). “The backwash effect on
SQL skills grading”. In: ACM SIGCSE Bulletin 36.3, pp. 32–36.

Prior, Julia R (2014). “AsseSQL: an online, browser-based SQL skills assess-
ment tool”. In: Proceedings of the 2014 conference on Innovation & technol-
ogy in computer science education. ACM, pp. 327–327.

Quadri, Mr MN and NV Kalyankar (2010). “Drop out feature of student
data for academic performance using decision tree techniques”. In: Global
Journal of Computer Science and Technology 10.2.

Raadt, Michael de et al. (2005). “Approaches to learning in computer pro-
gramming students and their effect on success”. In: Proceedings of the
28th HERDSA Annual Conference: Higher Eduation in a Changing World
(HERDSA 2005). Higher Education Research and Development Society
of Australasia (HERDSA), pp. 407–414.

Ramaswami, M and R Bhaskaran (2010). “A CHAID based performance
prediction model in educational data mining”. In: arXiv preprint arXiv:1002.1144.

Ramesh, V, P Parkavi, and K Ramar (2013). “Predicting student perfor-
mance: a statistical and data mining approach”. In: International journal
of computer applications 63.8.

Rist, Robert S (1995). “Program structure and design”. In: Cognitive Science
19.4, pp. 507–562.

Rodrigo, Ma Mercedes T et al. (2009a). “Affective and behavioral predic-
tors of novice programmer achievement”. In: ACM SIGCSE Bulletin 41.3,
pp. 156–160.

Rodrigo, Maria Mercedes T et al. (2009b). “Analyzing online protocols to
characterize novice Java programmers”. In: Philippine Journal of Science
138.2, pp. 177–190.

Rogalski, Janine and Renan Samurçay (1990). “Acquisition of programming
knowledge and skills”. In: Psychology of programming 18.1990, pp. 157–
174.

Rountree, Nathan, Janet Rountree, and Anthony Robins (2002). “Predictors
of success and failure in a CS1 course”. In: ACM SIGCSE Bulletin 34.4,
pp. 121–124.

262 BIBLIOGRAPHY

Rountree, Nathan et al. (2004). “Interacting factors that predict success and
failure in a CS1 course”. In: ACM SIGCSE Bulletin. Vol. 36. 4. ACM,
pp. 101–104.

Ruthmann, Alex et al. (2010). “Teaching computational thinking through
musical live coding in scratch”. In: Proceedings of the 41st ACM technical
symposium on Computer science education. ACM, pp. 351–355.

Shah, Anuj Ramesh (2003). “Web-cat: A web-based center for automated
testing”. PhD thesis. Virginia Tech.

Sheard, Judy et al. (2008). “Performance and progression of first year ICT
students”. In: Proceedings of the tenth conference on Australasian computing
education-Volume 78. Australian Computer Society, Inc., pp. 119–127.

Simon et al. (2006). “Predictors of success in a first programming course”.
In: Proceedings of the 8th Australasian Conference on Computing Education-
Volume 52. Australian Computer Society, Inc., pp. 189–196.

Simon, Beth et al. (2008). “Common sense computing (episode 4): Debug-
ging”. In: Computer Science Education 18.2, pp. 117–133.

Sleeman, D et al. (1984). “Pascal and High-School Students: A Study of Mis-
conceptions. Technology Panel Study of Stanford and the Schools. Oc-
casional Report# 009.” In:

Soloway, Elliot and Kate Ehrlich (1984). “Empirical studies of programming
knowledge”. In: IEEE Transactions on Software Engineering 5, pp. 595–609.

Sorva, Juha and Teemu Sirkiä (2011). “Context-sensitive guidance in the
UUhistle program visualization system”. In: Proceedings of the 6th Pro-
gram Visualization Workshop (PVW’11), pp. 77–85.

Spacco, Jaime et al. (2006). “Experiences with Marmoset: Designing and
Using an Advanced Submission and Testing System for Programming
Courses”. In: SIGCSE Bull. 38.3, pp. 13–17. ISSN: 0097-8418. DOI: 10.
1145/1140123.1140131. URL: http://dx.doi.org/10.1145/
1140123.1140131.

Spacco, Jaime et al. (2015). “Analyzing Student Work Patterns Using Pro-
gramming Exercise Data”. In: Proceedings of the 46th ACM Technical Sym-
posium on Computer Science Education. SIGCSE ’15. Kansas City, Mis-
souri, USA: ACM, pp. 18–23. ISBN: 978-1-4503-2966-8. DOI: 10.1145/
2676723.2677297. URL: http://dx.doi.org/10.1145/2676723.
2677297.

Spohrer, James C and Elliot Soloway (1986). “Novice mistakes: Are the folk
wisdoms correct?” In: Communications of the ACM 29.7, pp. 624–632.

Spohrer, James C, Elliot Soloway, and Edgar Pope (1985). “A goal/plan
analysis of buggy Pascal programs”. In: Human–Computer Interaction 1.2,
pp. 163–207.

Stein, Michael V (2002). “Mathematical preparation as a basis for success in
CS-II”. In: Journal of Computing Sciences in Colleges 17.4, pp. 28–38.

BIBLIOGRAPHY 263

Thai-Nghe, Nguyen, Andre Busche, and Lars Schmidt-Thieme (2009). “Im-
proving academic performance prediction by dealing with class imbal-
ance”. In: 2009 Ninth International Conference on Intelligent Systems Design
and Applications. IEEE, pp. 878–883.

Tillmann, Nikolai et al. (2014). “Code hunt: Searching for secret code for
fun”. In: Proceedings of the 7th International Workshop on Search-Based Soft-
ware Testing. ACM, pp. 23–26.

Tonin, Neilor A, Fabio A Zanin, and Jean Luca Bez (2012). “Enhancing tra-
ditional algorithms classes using URI online judge”. In: e-Learning and e-
Technologies in Education (ICEEE), 2012 International Conference on. IEEE,
pp. 110–113.

Tonin, Neilor Avelino and Jean Luca Bez (2013). “Uri online judge: A new
interactive learning approach”. In: Computer Technology and Application
4.1.

Tukiainen, Markku and Eero Mönkkönen (2002). “Programming aptitude
testing as a prediction of learning to program”. In: Proc. 14th Workshop
of the Psychology of Programming Interest Group, pp. 45–57.

Turkle, Sherry and Seymour Papert (1992). “Epistemological pluralism and
the revaluation of the concrete”. In: Journal of Mathematical Behavior 11.1,
pp. 3–33.

Ventura Jr, Philip R (2005). “Identifying predictors of success for an objects-
first CS1”. In:

Vihavainen, Arto (2013). “Predicting students’ performance in an introduc-
tory programming course using data from students’ own programming
process”. In: Advanced Learning Technologies (ICALT), 2013 IEEE 13th In-
ternational Conference on. IEEE.

Vihavainen, Arto, Jonne Airaksinen, and Christopher Watson (2014a). “A
Systematic Review of Approaches for Teaching Introductory Program-
ming and Their Influence on Success”. In: Proceedings of the Tenth An-
nual Conference on International Computing Education Research. ICER ’14.
Glasgow, Scotland, United Kingdom: ACM, pp. 19–26. ISBN: 978-1-4503-
2755-8. DOI: 10.1145/2632320.2632349. URL: http://doi.acm.
org/10.1145/2632320.2632349.

— (2014b). “A Systematic Review of Approaches for Teaching Introduc-
tory Programming and Their Influence on Success”. In: Proceedings of the
Tenth Annual Conference on International Computing Education Research.
ICER ’14. Glasgow, Scotland, United Kingdom: ACM, pp. 19–26. ISBN:
978-1-4503-2755-8. DOI: 10.1145/2632320.2632349. URL: http:
//doi.acm.org/10.1145/2632320.2632349.

Vihavainen, Arto et al. (2013). “Scaffolding students’ learning using Test
My Code”. In: Proceedings of the 18th ACM conference on Innovation and
technology in computer science education. ACM, pp. 117–122.

264 BIBLIOGRAPHY

Watson, Christopher, Frederick WB Li, and Jamie L Godwin (2013). “Pre-
dicting Performance in an Introductory Programming Course by Log-
ging and Analyzing Student Programming Behavior”. In: Advanced Learn-
ing Technologies (ICALT), 2013 IEEE 13th International Conference on. IEEE,
pp. 319–323.

— (2014). “No tests required: comparing traditional and dynamic predic-
tors of programming success”. In: Proceedings of the 45th ACM technical
symposium on Computer science education. ACM, pp. 469–474.

Werth, Laurie Honour (1986). Predicting student performance in a beginning
computer science class. Vol. 18. 1. ACM.

Wiedenbeck, Susan, Deborah Labelle, and Vennila NR Kain (2004). “Fac-
tors affecting course outcomes in introductory programming”. In: 16th
Annual Workshop of the Psychology of Programming Interest Group, pp. 97–
109.

Winslow, Leon E (1996). “Programming pedagogy—a psychological overview”.
In: ACM SIGCSE Bulletin 28.3, pp. 17–22.

Worsley, Marcelo and Paulo Blikstein (2013). “Programming Pathways: A
Technique for Analyzing Novice Programmers’ Learning Trajectories”.
In: International Conference on Artificial Intelligence in Education. Springer,
pp. 844–847.

Yudelson, Michael et al. (2014). “Investigating Automated Student Model-
ing in a Java MOOC”. In: Proceedings of The Seventh International Confer-
ence on Educational Data Mining 2014.

Zingaro, Daniel et al. (2013). “Facilitating Code-writing in PI Classes”. In:
Proceedings of the 44th ACM Technical Symposium on Computer Science Ed-
ucation. SIGCSE ’13. Denver, Colorado, USA: ACM, pp. 585–590. ISBN:
978-1-4503-1868-6. DOI: 10.1145/2445196.2445369. URL: http:
//dx.doi.org/10.1145/2445196.2445369.

	Title Page
	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Publications by Candidate
	Introduction
	Motivation
	Motivation
	Research Questions
	Research Design
	Thesis Structure
	Chapter 2: Background
	Chapter 3: Results Overview
	Chapter 4: Method
	Chapter 5 to Chapter 12
	Chapter 13: Discussion and Conclusion

	Significance and Contribution
	Conclusion

	Background
	Introduction
	Who is a novice programmer?
	Data analysis
	Static success factors
	Success factors and contradictory reports
	Dynamically accumulating data

	Dynamic Programming Source Code Snapshot Data Collection Tools
	Blackbox
	CloudCoder
	CodeWorkout
	JS-Parsons
	PCRS [118]
	2.4.6 Problets
	2.4.7 TestMyCode
	URI Online Judge
	UUhistle
	Web-CAT

	PubliclyAvailable Programming Source Code Snapshot Datasets
	Blackbox
	Code Hunt
	Code.Org

	Approaches for Data Analysis
	Educational data mining and learning analytics
	Machine learning and data mining approaches

	Machine Learning in CSed
	Assessment
	Studies of the Novice Programming Process
	The analysis of the novice programmer errors

	Results Overview
	Results Overview
	The Thesis About The Thesis
	Research Questions 1
	Paper 1. Chapter 5: Geek genes, prior knowledge, stumbling points and learning edge momentum: parts of the one elephant?
	Paper 2. Chapter 6: Exploring machine learning methods to automatically identify students in need of assistance
	Paper 3. Chapter 7: A Quantitative Study of the Relative Difficulty for Novices ofWriting Seven Different Types of SQL Queries
	Paper 4. Chapter 8: Students’ Semantic Mistakes in Writing Seven Different Types of SQL Queries
	Paper 5. Chapter 9: Students’ Syntactic Mistakes in Writing Seven Different Types of SQL Queries and its Application to Predicting Students’ Success

	Research Question 2
	Paper 6. Chapter 10: Performance and Consistency in Learning to Program
	Paper 7. Chapter 11: On the Number of Attempts Students Made on Some Online Programming Exercises During Semester and their Subsequent Performance on Final Exam Questions
	Paper 8. Chapter 12: A Contingency Table Derived Methodology for Analyzing Course Data

	Method
	Introduction
	Background
	Programming source code snapshots, collected at the University of Helsinki
	4.2.2 Database source code snapshots, collected at the University of Technology Sydney

	Geek genes, prior knowledge, stumbling points and learning edge momentum: parts of the one elephant?
	Introduction
	Statement of Contribution of Co-Authors

	PDF of the Published Paper
	Discussion

	Exploring machine learning methods to automatically identify students in need of assistance
	Introduction
	Statement of Contribution of Co-Authors

	PDF of the Published Paper
	Discussion

	A Quantitative Study of the Relative Difficulty for Novices of Writing Seven Different Types of SQL Queries
	Introduction
	Statement of Contribution of Co-Authors

	PDF of the Published Paper
	Discussion

	Students’ Semantic Mistakes in Writing Seven Different Types of SQL Queries
	Introduction
	Statement of Contribution of Co-Authors

	PDF of the Published Paper
	Discussion

	Students’ Syntactic Mistakes in Writing Seven Different Types of SQL Queries and its Application to Predicting Students’ Success
	Introduction
	Statement of Contribution of Co-Authors

	PDF of the Published Paper
	Discussion

	Performance and Consistency in Learning to Program
	Introduction
	Statement of Contribution of Co-Authors

	PDF of the Published Paper
	Discussion

	On the Number of Attempts Students Made on Some Online Programming Exercises During Semester and their Subsequent Performance on Final Exam Questions
	Introduction
	Statement of Contribution of Co-Authors

	PDF of the Published Paper
	Discussion

	A Contingency Table Derived Method for Analyzing Course Data
	Introduction
	Statement of Contribution of Co-Authors

	PDF of the Submitted Paper

	Discussion and Conclusion
	Introduction
	Overview of Research
	Research Questions
	Research Outcome
	Research highlights
	Research Significance
	Research Findings
	Data
	Method
	Context

	Discussion
	Data
	Method
	Context

	Limitations
	Data
	Context

	Recommendations
	Data
	Static data
	Dynamic data

	Method
	Features of a strong algorithm to capture students learning from the source code snapshot data
	General Attributes
	Language Independence
	Distribution Independence
	Cross-Context Parameter Variation in the Construction of a Metric
	Validity of the Operationalization

	Context

	Conclusion

	Appendices
	Definition of Authorship and Contribution to Publication
	Specific Contributions of Co-Authors for Thesis by Published Papers
	Complete list of Publications by Candidate
	UTS Human Ethics Approval Certificate - UTS HREC - ETH16-0340
	Extract from UTS Subject Outline – 31271 "Database Fundamentals" Sem. 2 2016
	Extract from Helsinki Subject Outline – 581325 "Introduction to Programming" Sem. 2 2016
	Extract from UTS Database Fundamentals – 31271, Practice Questions and Answers
	Introduction
	Pizza Database
	Questions Used in The Practice Online SQL Test
	Proposed Answers for The Questions Used in The Practice Online SQL Test

	The Final Exam Questions Used at Helsinki University
	Extract from Helsinki Subject Content – 581325 "Introduction to Programming" Sem. 2 2016, Week 1

	Bibliography

