Investigation of the proteins SPARC and HMGB1 in chronic airways disease

A thesis submitted for the degree of Doctor of Philosophy

> Sharon Wong BPharm (Hons)

Graduate School of Health

March 2017

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Production Note: Signature removed prior to publication.

Date: 3rd March 2017

ACKNOWLEDGEMENTS

I would like to express my heartfelt thanks to my primary supervisor Dr Maria Sukkar who has been supportive from day 1 of my studies and has taught me many things, in research and in life. I am also thankful to my co-supervisor Dr Matthew Padula for his invaluable guidance and for introducing me to the fascinating world of proteomics.

A special thanks also to Dr Jerran Santos, A/Prof Sheila Donnelly and Professor Steven Djordjevic for their intellectual input and help with proteomic analysis in my studies; and to Dr Lyn Moir for her help in my thesis writing.

I would like to express my sincere gratitude to Aini and Michele who have shared the ups and downs of this journey with me; I appreciate all your encouragement and advice. Thanks also to Raj who has always been so thoughtful and helpful in the lab. I would like to thank Mona, Riana and Lucia for their support, motivation and company on the weekends and late nights.

I would like to especially thank Joyce To, Jess Tacchi, Ben Raymond and Michael Widjaja who have helped me around in the lab on countless occasions. A special thanks also to Dia Xenaki for her assistance with the primary cell cultures. I would like to express my gratitude to the University of Technology Sydney (UTS) for supporting me throughout my studies with the UTS President Scholarship and UTS International Research Scholarship.

Lastly, I would like to thank my parents and brothers who have always been there for me, and cannot be more reassuring when I lose sight of the important things in life. Special thanks also to Auntie Angela and Uncle Kai Lok for having me for the last 4 years of my life in Sydney and for treating me as your own.

PUBLICATIONS AND PRESENTATIONS DURING CANDIDATURE

Published journal manuscripts

The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease **Wong SL** and Sukkar MB British Journal of Pharmacology (2017) 174(1):3–14

Presentations

Potential role of SPARC, a downstream mediator of TGF-β in chronic airways disease **Wong SL**, Ibrahim ZA, Wark PA, Sukkar MB European Respiratory Journal 2015, Vol 46, Issue S59, PA904 DOI: 10.1183/13993003.congress-2015.PA904

SPARC: a downstream mediator of TGF-β, which may potentially play a role in chronic airways disease **Wong SL**, Ibrahim ZA, Wark PA, Sukkar MB Respirology 2015, Vol 20, Issue S2, p. 144

Potential role of SPARC in chronic airways disease 2nd Annual Respiratory Epithelium Workshop 2014

Potential role of SPARC in inflammatory airways disease Woolcock Institute of Medical Research Symposium 2014

University of Technology Sydney 3 Minute Thesis (3MT) 2014

Awards linked to abstracts

The Thoracic Society of Australia and New Zealand (TSANZ) Travel Award 2014

TABLE OF CONTENTS

Certificate of Original Authorship	ii
Acknowledgements	iii
Publications and Presentations During Candidature	v
Table of Contents	vi
List of Figures	xi
List of Tables	xiii
List of Abbreviations	xiv
Abstract	xvi

General Introduction1
Introduction2
Pathophysiology of asthma and COPD3
Airway inflammation4
Airway remodeling8
TGF- β is a master regulator of airway remodeling10
Matricellular proteins regulate ECM deposition and assembly13
SPARC as a potential player in chronic airways disease13
Endoplasmic reticulum stress is implicated in chronic airways disease15
HMGB1 is emerging as an important mediator of chronic airways disease 20
Hypotheses and Aims23
References

The SPARC protein: an overview of its role in lung cancer and pulmona	ı ry
fibrosis and its potential role in chronic airways disease	39
Abstract	40

Introduction41
SPARC and lung cancer45
SPARC expression in NSCLC tissues is associated with disease prognosis
SPARC promotes metastasis in NSCLC by promoting cell invasion and
development of the tumoral vasculature network47
SPARC and pulmonary fibrosis48
SPARC confers resistance to apoptosis in lung fibroblasts and is a
downstream effector of TGF-β-induced fibrosis in IPF48
Mouse models of bleomycin-induced IPF reveal a distinct role for SPARC in
inflammatory versus fibrotic components of the disease
SPARC and chronic airways disease52
SPARC activity overlaps with TGF- β , a key mediator in asthma and COPD
Potential role of SPARC in airway wall remodeling53
Evidence for SPARC in the immune and inflammatory response
Therapeutic implications60
Conclusion and future directions62
References

Expression and function of SPARC in human airway epithelial cells	79
Introduction	80
Materials and Methods	82
Human airway epithelial cells	82
Airway epithelial cell stimulation	83
ELISA	83
Immunoblotting	83
Statistical analysis	85

Results	85
Effect of TGF- β on SPARC protein expression and secretion in human AECs	85
Effect of type 1 and type 2 cytokines on SPARC protein expression and secretion in asthmatic and non-asthmatic AECs	88
Comparative effect of TGF- β and SPARC on cytokine and chemokine secretion in human AECs	94
Comparative effect of TGF- β and SPARC on epithelial and mesenchyma markers in human AECs.	al 98
Discussion	100
References	.107

SPARC expression in airway smooth muscle is regulated by the unfolded protein response and is diminished in chronic obstructive pulmonary

disease116
Introduction117
Materials and Methods119
Human ASM cell culture and stimulation119
ELISA123
Immunoblotting123
Statistical analysis124
Results125
TGF- β augments cell-associated SPARC expression and induces SPARC secretion in human ASM cells
TGF- β -induced expression of cell-associated and secreted SPARC in human ASM cells is reversed in the presence of chemical chaperones127
Chemical inducers of ER stress inhibit basal SPARC secretion, but do not modulate cell-associated SPARC expression in human ASM cells129

	TGF- β and thapsigargin induce different levels of ER stress in ASM cells	,
	but this does not explain their differential effect on SPARC secretion?	131
	Thapsigargin mediated inhibition of SPARC secretion is not due to	
	IRE1a/RIDD dependent signalling	135
	SPARC secretion is reduced in ASM cells from subjects with COPD	141
C	Discussion	142
F	References	149

Proteomic analysis of extracellular HMGB1 identifies binding partners and exposes its potential role in airway epithelial cell homeostasis157 Materials and Methods161 Separation of protein complexes using 1D hrCNE and 2D hrCNE/SDS-Detection of HMGB1 using immunoblotting......163 Identification of HMGB1-binding proteins using LC-MS/MS167 Protein-protein interaction network and Gene Ontology term enrichment Results......168 Extracellular HMGB1 exists in a multimeric state in unstimulated human Enrichment of extracellular HMGB1 and identification of its binding proteins

Combined profile of HMGB1-binding proteins identified using clear nation	ve
electrophoresis, immunoprecipitation and pull-down assays	176
Bioinformatic analysis reveals novel HMGB1-binding proteins and pred	icts
homeostatic functions of extracellular HMGB1	180
Discussion	185
References	194
General Discussion	206
References	216
Appendices	225
Appendix I. HMGB1-binding proteins identified using high resolution clear	r
native electrophoresis (hrCNE) coupled to LC-MS/MS	226
Appendix II. HMGB1-binding proteins identified using immunoprecipitatio	n
(IP) coupled to LC-MS/MS	229
Appendix III. HMGB1-binding proteins identified using pull-down assay	
coupled to LC-MS/MS	234
Appendix IV. Evidence of interaction and confidence score for identified	
primary interactors of HMGB1.	238
Appendix V. Gene ontology term analysis (cellular component) of the 37	
HMGB1-binding proteins identified using 2 or more techniques	240

Appendix VI. Gene ontology term analysis (molecular function) of the 37

Appendix VII. Gene ontology term analysis (biological process) of the 37

HMGB1-binding proteins identified using 2 or more techniques......246

HMGB1-binding proteins identified using 2 or more techniques......250

LIST OF FIGURES

Chapter 1

Figure 1.1: Overview of airway inflammation and remodeling in chronic airways
disease7
Figure 1.2: Distinct histopathologies in the asthmatic and chronic obstructive
pulmonary disease (COPD) airways10
Figure 1.3: The signaling arms of the unfolded protein response (UPR)17

Chapter 2

Figure	2.1:	Proposed	role	of	SPARC	in	airway	and	vascular	remodelling	in
asthma	a and	COPD									54

Chapter 3

Figure 3.1: Effect of TGF- β on secreted SPARC in human airway epithelial cells Figure 3.2: Effect of TGF- β on cell-associated and secreted SPARC in primary Figure 3.3: Expression of cell-associated and secreted SPARC in asthmatic and non-asthmatic airway epithelial cells under basal conditions and in response to ΤGF-β......90 Figure 3.4: Effect of type 1 cytokines on cell-associated and secreted SPARC in Figure 3.5: Effect of type 2 cytokines on cell-associated and secreted SPARC in Figure 3.6: Effect of SPARC on cytokine and chemokine secretion in primary Figure 3.7: Effect of TGF- β on cytokine and chemokine secretion in primary human airway epithelial cells.97 Figure 3.8: Comparative effect of SPARC and TGF-B on epithelialmesenchymal transition markers in primary human airway epithelial cells.99

Chapter 4

Figure 4.1: TGF- β induces cell-associated and secreted SPARC in human
airway smooth muscle cells126
Figure 4.2: Chemical chaperones reverse TGF- β -induced cell-associated and
secreted SPARC in human airway smooth muscle cells128
Figure 4.3: Effect of ER stress inducers and calcium chelator on cell-associated
and secreted SPARC in human airway smooth muscle cells130
Figure 4.4: Thapsigargin induces greater ER stress than TGF- β in human
airway smooth muscle cells
Figure 4.5: Loss of SPARC under conditions of severe ER stress could not be
reversed by chemical chaperones
Figure 4.6: Thapsigargin, but not TGF- β activates the IRE1 α /XBP-1 pathway in
human airway smooth muscle cells
Figure 4.7: Loss of SPARC under conditions of severe ER stress is not due to
IRE1a/RIDD dependent signalling138
Figure 4.8: Effect of IRE1 α kinase inhibitors on IRE1 α /XBP-1 signalling139
Figure 4.9: Effect of IRE1 α RNase inhibitors on IRE1 α /XBP-1 signalling140
Figure 4.10: TGF- β -induced SPARC expression is attenuated in COPD airway
smooth muscle cells141

Chapter 5

Figure 5.1: Experimental approach used to identify HMGB1-binding proteins in
airway epithelial cell culture supernatants162
Figure 5.2: Structure and protein sequence of His-tagged recombinant human
HMGB1166
Figure 5.3: Analysis of extracellular HMGB1 using high resolution clear native
electrophoresis171
Figure 5.4: Analysis of extracellular HMGB1 using immunoprecipitation173
Figure 5.5: Analysis of extracellular HMGB1 using pull-down assays176
Figure 5.6: HMGB1-binding proteins detected using different approaches177
Figure 5.7: Protein network analysis of HMGB1-binding proteins
Figure 5.8: KEGG pathway analysis of identified HMGB1-binding proteins185
Page xii

LIST OF TABLES

Chapter 1

Table 1.1: Roles of airway epithelial cells and airway smooth muscle cells inairway inflammation and remodeling in chronic airways disease.12

Chapter 2

Table 2.1: Classification of SPARC family proteins	41
Table 2.2: Role of SPARC in different cellular compartments	44

Chapter 4

Table 4.1: COPD and non-COPD ASM cell donors in which SPARC secretion
was assessed
Table 4.2: List of chemical inducers and inhibitors of ER stress used for ASM
cell treatment

Chapter 5

Table 5.1: HMGB1-binding proteins identified using at least 2 techniques of
either high resolution clear native electrophoresis, immunoprecipitation or pul
down assay, coupled to LC-MS/MS17
Table 5.2: Top 15 Gene Ontology terms enriched in HMGB1-binding protein
identified using 2 or more techniques18

LIST OF ABBREVIATIONS

4-PBA	4-phenylbutyric acid
AECs	Airway epithelial cells
AHR	Airway hyperresponsiveness
APP	Amyloid precursor protein
ASM	Airway smooth muscle
ATF6	Activating transcription factor 6
Ca ²⁺	Calcium
CAPZA1	F-actin-capping protein subunit alpha-1
COPD	Chronic obstructive pulmonary disease
CRT	Calreticulin
DAMP	Danger-associated molecular pattern
ECM	Extracellular matrix
EGTA	Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid
elF2α	Eukaryotic translation initiator factor 2α
EMT	Epithelial-mesenchymal transition
ER	Endoplasmic reticulum
ERAD	ER-associated protein degradation
GO	Gene Ontology
GRP78	Glucose-regulated protein 78
GSK-3β	Glycogen-synthase kinase-3 beta
HMGB1	High mobility group box 1
hrCNE	High resolution clear native electrophoresis
IFN-γ	Interferon gamma
ILC2s	Type 2 innate lymphoid cells
ILC3s	Type 3 innate lymphoid cells
IPF	Idiopathic pulmonary fibrosis
IRE1α	Inositol-requiring kinase 1 alpha
KEGG	Kyoto Encyclopedia of Genes and Genomes
LC-MS/MS	Liquid chromatography-tandem mass spectrometry
MEFs	Mouse embryonic fibroblasts
MMPs	Matrix metalloproteinases

MWCO	Molecular weight cut-off
NSCLC	Non-small cell lung cancer
ORMDL3	Orosomucoid like 3
PAI-1	Plasminogen activator inhibitor-1
PAMPs	Pathogen-associated molecular patterns
PBST	Phosphate Buffered Saline containing Tween
PDGF	Platelet-derived growth factor
PERK	Protein kinase RNA-like endoplasmic reticulum kinase
RAGE	Receptor for advanced glycation end products
RIDD	IRE1-dependent decay
ROS	Reactive oxygen species
SASP	Senescence-associated secretory phenotype
SERCA	Sarco/endoplasmic reticulum Ca ²⁺ -ATPase
Siglec	Sialic acid-binding immunoglobulin-like lectin
SPARC	Secreted protein acidic and rich in cysteine
TBST	Tris-buffered saline containing Tween
TGF-β	Transforming growth factor-beta
TGFβRII	TGF-β-receptor type II
TLRs	Toll-like receptors
TMAO	Trimethylamine N-oxide dehydrate
TNF-α	Tumor necrosis factor alpha
TSLP	Thymic stromal lymphopoietin
UPR	Unfolded protein response
VEGF	Vascular endothelial growth factor
XBP-1	X-box binding protein 1
XBP-1s	Spliced XBP-1

ZO-1 Zona occludin -1

ABSTRACT

The matricellular protein, secreted protein acidic and rich in cysteine (SPARC), mediates the interaction between cells and their surrounding extracellular matrix (ECM) but does not contribute structurally to the matrix. It regulates basic cellular functions such as cell adhesion and proliferation, as well as the processing and deposition of ECM proteins. SPARC is overexpressed in many fibrotic tissues including the lung. SPARC also serves as a down-stream mediator of transforming growth factor-beta (TGF- β), a key driver of airway remodeling in chronic airways disease, and demonstrates context-dependent immunoregulatory functions. Although airway inflammation and remodeling are prominent features of asthma and chronic obstructive pulmonary disease (COPD), the role of SPARC in these conditions has not been studied.

In this thesis, we investigated the expression of SPARC in airway structural cells including airway epithelial cells (AECs) and airway smooth muscle (ASM) cells, and also determined if its expression is altered in cells derived from subjects with asthma or COPD. We demonstrated that TGF- β increases SPARC expression and release in AECs and ASM cells, although to a lesser extent in the former. We observed that type 1 and type 2 cytokines tend to suppress basal and TGF- β -mediated SPARC expression in AECs, and showed that TGF- β -induced SPARC expression in ASM cells is regulated by the unfolded protein response (UPR). Notably, we observed distinct abnormalities in SPARC expression in asthma and COPD. Our preliminary studies suggest SPARC is overexpressed in AECs from subjects with asthma. In contrast, there

was a trend for reduced SPARC expression in ASM cells from COPD subjects, compared to those from non-COPD subjects. Functional studies indicate SPARC does not impart immunoregulatory functions or regulate changes in airway epithelial cell phenotype, although this requires further validation.

Our studies herein also explored the potential homeostatic role of extracellular high mobility group box 1 (HMGB1) in AECs. HMGB1 is a danger-associated molecular pattern (DAMP) that normally resides in the intracellular compartment, and is released into the extracellular space upon cellular injury, stress or death to orchestrate inflammatory responses. Although it is implicated as a mediator of the airway inflammatory response, its physiological role in lung homeostasis has received little attention. Interestingly, we detected HMGB1 in the culture supernatant of AECs under basal conditions, and found that it presents exclusively as a constituent of protein complexes. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic approaches, we generated an unbiased profile of HMGB1-binding proteins in the extracellular space of unstimulated AECs. Protein network analysis of identified binding proteins indicates a role for extracellular HMGB1 in epithelial cell homeostasis and airway mucosal immunity.

In summary, findings in this thesis suggest aberrant regulation of SPARC expression in airway structural cells may be a contributing factor to the pathogenesis of chronic airways disease. Our studies also provide a new understanding of the extracellular functions of HMGB1 in AECs and opens new research directions for its use as a therapeutic target.