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Abstract

With the increase in wireless sensor networks’ (WSN) applications as the result of en-
hancements in sensors’ size, battery-life and mobility, sensor nodes have become one
of the most ubiquitous and relied-upon electrical appliances in recent years. In harsh
and hostile environments, in the absence of centralised supervision, the effects of faults,
damages and unbalanced node deployments should be taken into account as they may
disturb the operation and quality of service of networks. Coverage holes (CHs) due to the
correlated failures and unbalanced deployment of nodes should be considered seriously in
a timely manner; otherwise, cascaded failures on the rest of the proximate sensor nodes
can jeopardise networks’ integrity. Although different distributed topology control (TC)
schemes have been devised to address the challenges of node failures and their dynamic
behaviours, little work has been directed towards recovering CHs and/or alleviating their
undesirable effects especially in Large Scale CHs (LSCH). Thus, devising CH recovery
strategies for the swift detection, notification, repair and avoidance of damage events are
important to increase the lifetime and resiliency of WSNs and to improve the efficacy
and reliability of error-prone and energy-restricted nodes for many applications. In this
research, the concepts of resiliency, fault management, network holes, CHs, TC schemes
and stages of CH recovery are reviewed. By devising new TC techniques, CHs recovery
strategies that partially or wholly repair LSCHs and increase the coverage of WSNs are
presented such that a global pattern emerges as a result of nodes’ local interactions.

In this study, we propose (1) CH detection and boundary node (B-node) selection al-
gorithms, which B-nodes around the damaged area self-select solely based on available
1-hop information extracted from their simple geometrical and statistical features. (2)
A constraint node movement algorithm based on the idea of virtual chord (v-chords)
formed by B-nodes and their neighbours to partially repair CHs. By changing each B-
node’s v-chord, its movement and connectivity to the rest of network can be controlled
in a distributed manner. (3) Fuzzy node relocation models based on force-based move-
ment algorithms are suitable to consider the uncertainty governed by nodes’ distributed
and local interactions and the indefinite choices of movements. (4) A model of cooper-
ative CHs recovery in which nodes move towards damaged areas in the form of disjoint
spanned trees, which is inspired by nature. Based on nodes’ local interactions with their
neighbours and their distances to CHs, a set of disjoint trees around the CH spans.
(5) A hybrid CH recovery strategy that combines sensing power control and physical
node relocation using a game theoretic approach for mobile WSNs. (6) A sink-based
CH recovery via node relocation where moving nodes consider the status of sink nodes.
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The proposed node relocation algorithm aims to reduce the distances of moving nodes
to the deployed sink nodes while repairing the CHs. The results show that proposed
distributed algorithms (1)-(6) either outperform or match their counterparts within ac-
ceptable ranges.

The significances of proposed algorithms are as follow: Although they are mainly de-
signed base on the available 1-hop knowledge and local interactions of (autonomous)
nodes, they result in global behaviours. They can be implemented in harsh and hostile
environments in the absence of centralised operators. They are suitable for time-sensitive
applications and scenarios with the security concerns that limit the amount of informa-
tion exchange between nodes. The burden of decision making is spread among nodes.
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