Faculty of Engineering and Information Technology University of Technology Sydney

Multivariate Sequential Contrast Pattern Mining and Prediction Models for Critical Care Clinical Informatics

A thesis submitted in partial fulfillment of the requirements for the degree of **Doctor of Philosophy**

by

Shameek Ghosh

December 2017

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used have been reported in the thesis.

Signature of Candidate

Acknowledgments

Foremost, I would like to express my deepest gratitude to my supervisor Prof. Jinyan Li for his continuous support to my doctoral study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance has helped me in learning to carry out strong and effective research and in the preparation of this thesis. I could not have imagined having a better mentor and advisor for my doctoral research.

Also, I would like to thank my co-supervisor Prof. Hung Nyugen, Dr. Mengling Feng, Prof. Ramamohanarao Kotagiri, and Prof. Longbing Cao for their continuous support and scientific advice during my research. Without their professional guidance, this thesis would not have been possible.

Additionally, I would like to thank my colleagues, Dr. Qian Liu, Jing Ren, Renghua Song, Yi Zheng, Chaowang Lan, Hui Peng, and Yuangsheng Liu for their strong support and numerous stimulating discussions.

Besides, I offer my regards to all of my co-workers at the Advanced Analytics Institute and Faculty of Engineering and IT, and thank them for their support in the completion of this dissertation.

Shameek Ghosh December 2017, UTS

Contents

Certifie		i
Acknow	$\operatorname{wledgment}$	iii
List of	Figures	ix
List of	Tables	xi
List of	Publications	iii
Abstra	ct	xv
Chapte	er 1 Introduction	1
1.1	Background	1
1.2	Mining of Sequential Patterns	4
1.3	Mining Useful Patterns for Critical Care Decision-support	6
	1.3.1 Problem Statement	7
	1.3.2 Research Motivations	8
1.4	Limitations and Challenges	10
1.5	Research Issues	12
1.6	Research Contributions	13
1.7	Thesis Structure	14
Chapte	er 2 Literature Review	16
2.1	Frequent Pattern Mining Framework	16
	2.1.1 Sequential pattern mining	19
2.2	Emerging Patterns	26
	2.2.1 Estimating the quality of emerging patterns	33
	2.2.2 Mining paradigms	34

2.3	Temp	oral Patterns	40
	2.3.1	Substring patterns	43
	2.3.2	Sequential patterns	43
	2.3.3	Time-interval patterns	44
2.4	Patter	rn mining in Critical Care Applications	45
	2.4.1	Short-term predictive modelling	46
	2.4.2	Long-term predictive modelling	47
	2.4.3	State-of-the art in ICU informatics	49
	2.4.4	Research issues	50
Chapte	er 3 I	Aypotension Risk Prediction via Sequential Con-	
	t	rast Patterns of ICU Blood Pressure	52
3.1	Introd	luction	53
	3.1.1	Aims of the study	54
	3.1.2	Research contributions	55
3.2	Proble	em Definition	55
	3.2.1	Formulation of the AHE prediction problem \ldots .	56
	3.2.2	Related works for prediction of hypotension $\ldots \ldots$	57
3.3	Metho	odology	60
	3.3.1	Data extraction	60
	3.3.2	Data discretization	63
	3.3.3	Mining gap-constrained sequential contrast patterns	64
3.4	Predic	ction Results	68
	3.4.1	Prediction performance on the two data sets \hdots	70
	3.4.2	Discussion	72
3.5	Exam	ples and Clinical Significance of Sequential Contrast Pat-	
	terns		76
	3.5.1	Sequential pattern examples	77
	3.5.2	Pattern visualization and clinical interpretation $\ . \ . \ .$	78
3.6	Concl	usion	79

Chapte	er 4 U	Using Sequential Patterns as Classification Fea-
	t	ures for Accurate Prediction of ICU Events 81
4.1	Introd	luction $\ldots \ldots 82$
4.2	Relate	ed Work
4.3	Metho	odology
	4.3.1	Data discretisation
	4.3.2	Mining sequential contrast patterns
	4.3.3	Integrating sequential patterns for model construction . 88
4.4	Result	ts and Discussions
	4.4.1	Dataset description
	4.4.2	Classification results
4.5	Concl	usion
Chapte	er 5 S	Septic Shock Prediction for ICU Patients via Cou-
	I	oled HMM Walking on Sequential Contrast Pat-
	t	erns
5.1	Introd	luction
	5.1.1	Contributions $\ldots \ldots 102$
5.2	Relate	ed Work
	5.2.1	Previous studies in septic shock prediction $\ldots \ldots \ldots 103$
	5.2.2	Pattern-based classification models for predicting biomed-
		ical events $\ldots \ldots 103$
5.3	Mater	ials and Methods $\ldots \ldots 106$
	5.3.1	Discretisation of continuous time series $\ldots \ldots \ldots \ldots 106$
	5.3.2	Discretised timestamped instance to sequential con-
		trast patterns \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 111
	5.3.3	Illustrative examples of CHMM walking on sequential
		patterns
5.4	Evalu	ation
	5.4.1	The septic shock prediction problem $\ldots \ldots \ldots \ldots \ldots 120$
	5.4.2	The MIMIC II database $\ldots \ldots 122$
	5.4.3	Selection of patients

5.5	Predic	tion Results $\ldots \ldots 123$
	5.5.1	Four data sets extracted from MIMIC-II $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	5.5.2	Cross-validation classification results on the four data
		sets
	5.5.3	Predicting coupled discrete sequences using HMMs:
		An illustrative case study $\ldots \ldots 125$
	5.5.4	Discussion
5.6	Conclu	nsion
Chapte	er 6 C	Conclusions and Future Work
6.1	Conclu	usions
6.2	Future	e Work
Bibliog	raphy	

List of Figures

3.1	Acute Hypotensive Episode over a time period exceeding 30 minutes, when $MAP \leq 60 \text{ mmHg} \dots \dots \dots \dots \dots \dots$	56
3.2	Observation and Target Windows with a Time Gap Interval .	57
3.3	Discretization by Symbolic Aggregate Approximation using 4 symbols	64
3.4	A Lexicographic Sequence Tree (LST) growing candidate se- quences using 3 symbols as A, B, C	67
3.5	Effect of parameters L and G on the performance (A) For Event I, (B) For Event II	74
3.6	Inferring Visual Trends from Sequential Contrast Patterns Examples for AHE (A=1, B=2, C=3, D=4, E=5)	79
4.1	Transforming sequential patterns to binary or frequency based features.	90
4.2	The ICU Event Prediction Problem	93
5.1	A Lexicographic Sequence Tree (LST) growing candidate se- quences using 3 symbols as X, Y, Z	111
5.2	Encoding and transformation of a data instance to an ordered sequence of patterns	113
5.3	Topology of a two-channel CHMM.	114

5.4	Encoding patient sequences using extracted patterns. P_j^i de-
	notes a sequential pattern. Here, $i=1$ indicates a single chan-
	nel or variable. A patient MAP sequence such as $AACAABCBBC$
	is converted to $P_1 - P_1 - P_3$. Finally, a new training set of
	pattern sequences is obtained
5.5	State transition diagram with output emissions and their prob-
	abilities
5.6	A coupled HMM topology for 3 channels. Here, P_j^i denotes
	a sequential pattern. Here, i indicates a channel and j corre-
	sponds to a specific pattern-id for a variable
5.7	Observation and Target Windows with a Time Gap Interval . 121

List of Tables

1.1	Transaction Data Table	2
1.2	Web Access logs	3
2.1	Transaction Data Example	18
2.2	Relational Attribute Data Example	18
2.3	Table 2.2 as a set of Transactions	19
2.4	Sequence Database	20
3.1	ICD-9 Classification of Hypotension	61
3.2	Checking gap constraint satisfaction of XY in XZXZY	68
3.3	Single Mode Classification Performance with 10 symbols $\ . \ .$	71
3.4	Multi Mode Classification Performance with 15 symbols	72
3.5	Physionet 2009 AHE Test Prediction Classification Accuracies	
	for events I and II given $G=3$	72
3.6	A Comparison of classification methods employed for the AHE	
	prediction problem. Sequential patterns report comparable	
	accuracies against existing methods $\ldots \ldots \ldots \ldots \ldots \ldots$	73
3.7	Representative Examples of Extracted AHE Sequential Patterns	77
4.1	Physionet AHE 2009 Test Prediction Results	94
4.2	MIMIC-II Hypotension Test Prediction Results	95
4.3	5-fold cross validated performances for Mortality Prediction .	96
5.1	${\cal A}$ indicates the state transition function for discrete states S_1	
	and S_2	118

5.2	B denotes the emission probability distribution for 2 states
	and 4 pattern observations
5.3	A comparison of different models using 5-fold cross validation
	classification accuracy at $t_{gap}=60~{\rm mins}$ and $t_{obs}=60~{\rm mins}$ 125
5.4	A comparison of different models using 5-fold cross validation
	classification accuracy at $t_{gap}=30~{\rm mins}$ and $t_{obs}=60~{\rm mins}$ 126
5.5	A comparison of different models using 5-fold cross validation
	classification accuracy at $t_{gap}=30~{\rm mins}$ and $t_{obs}=90~{\rm mins}$ 126
5.6	A comparison of different models using 5-fold cross validation
	classification accuracy at $t_{gap}=60~{\rm mins}$ and $t_{obs}=90~{\rm mins}$ $~$. 127
5.7	5-fold cross validation classification accuracy on CHMM and
	MCP-CHMM for 5 rounds of repeated re-sampling. g - gap
	interval size, o - observation window size \hdots
5.8	A multivariate (MAP, HR, RR) discrete patient sequence com-
	posed of an ordered series of contrast patterns $\ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
5.9	Visualizing contrast sequence patterns matching the three vari-
	ables MAP, HR and RR $\ \ldots \ 129$
5.10	One way ANOVA Test on the 4 datasets (groups) correspond-
	ing to gap interval and observation window

List of Publications

Papers Published

Peer-reviewed Journals

- Shameek Ghosh, Jinyan Li, Longbing Cao, Kotagiri Ramamohanarao (2017). Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns. Journal of Biomedical Informatics, Elsevier, Volume 66, February 2017, Pages 19-31.
- Shameek Ghosh, Mengling Feng, Hung Nguyen, Jinyan Li (2016). Hypotension Risk Prediction via Sequential Contrast Patterns of ICU Blood Pressure. IEEE Journal of Biomedical and Health Informatics, Volume 20, Issue 5, 2016, pp. 1416-1426.

Peer-reviewed Conferences

- Shameek Ghosh, Hung Nguyen, Jinyan Li (2016). Predicting shortterm ICU outcomes using a sequential contrast motif based classification framework. *in* Proceedings of IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC-2016), pp. 5612-5615. IEEE.
- Shameek Ghosh, Jinyan Li (2015), Using sequential patterns as features for classification models to make accurate predictions on ICU events. *in* Proceedings of IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC-2015), IEEE.

- Shameek Ghosh, Mengling Feng, Hung Nguyen, Jinyan Li (2014). Risk Prediction for Acute Hypotensive Patients by Using Gap Constrained Sequential Contrast Patterns. *in* Proceedings of the American Medical Informatics Association Annual Symposium (AMIA-2014), pp. 1748-1757.
- Shameek Ghosh, Mengling Feng, Hung Nguyen, Jinyan Li (2014), Predicting heart beats using co-occurring constrained sequential patterns. *in* Proceedings of Computing in Cardiology Conference (CinC-2014) pp. 265-268. IEEE.

Abstract

Data mining and knowledge discovery involves efficient search and discovery of patterns in data that are able to describe the underlying complex structure and properties of the corresponding system. To be of practical use, the discovered patterns need to be novel, informative and interpretable. Large-scale unstructured biomedical databases such as electronic health records (EHRs) tend to exacerbate the problem of discovering interesting and useful patterns. Typically, patients in intensive care units (ICUs) require constant monitoring of vital signs. To this purpose, signicant quantities of patient data, coupled with waveform signals are gathered from biosensors and clinical information systems. Subsequently, clinicians face an enormous challenge in the assimilation and interpretation of large volumes of unstructured, multidimensional, noisy and dynamically fluctuating patient data.

The availability of de-identified ICU datasets like the MIMIC-II (Multiparameter Intelligent Monitoring in Intensive Care) databases provide an opportunity to advance medical care, by benchmarking algorithms that capture subtle patterns associated with specific medical conditions. Such patterns are able to provide fresh insights into disease dynamics over long time scales.

In this research, we focus on the extraction of computational physiological markers, in the form of relevant medical episodes, event sequences and distinguishing sequential patterns. These interesting patterns known as sequential contrast patterns are combined with patient clinical features to develop powerful clinical prediction models. Later, the clinical models are

ABSTRACT

used to predict critical ICU events, pertaining to numerous forms of hemodynamic instabilities causing acute hypotension, multiple organ failures, and septic shock events. In the process, we employ novel sequential pattern mining methodologies for the structured analysis of large-scale ICU datasets. The reported algorithms use a discretised representation such as symbolic aggregate approximation for the analysis of physiological time series data. Thus, symbolic sequences are used to abstract physiological signals, facilitating the development of efficient sequential contrast mining algorithms to extract high risk patterns and then risk stratify patient populations, based on specic clinical inclusion criteria.

Chapter 2 thoroughly reviews the pattern mining research literature relating to frequent sequential patterns, emerging and contrast patterns, and temporal patterns along with their applications in clinical informatics.

In Chapter 3, we incorporate a contrast pattern mining algorithm to extract informative sequential contrast patterns from hemodynamic data, for the prediction of critical care events like Acute Hypotension Episodes (AHEs). The proposed technique extracts a set of distinguishing sequential patterns to predict the occurrence of an AHE in a future time window, following the passage of a user-defined gap interval. The method demonstrates that sequential contrast patterns are useful as potential physiological biomarkers for building optimal patient risk stratification systems and for further clinical investigation of interesting patterns in critical care patients.

Chapter 4 reports a generic two stage sequential patterns based classification framework, which is used to classify critical patient events including hypotension and patient mortality, using contrast patterns. Here, extracted sequential patterns undergo transformation to construct binary valued and frequency based feature vectors for developing critical care classification models.

Chapter 5 proposes a novel machine learning approach using sequential contrast patterns for the early prediction of septic shock. The approach combines highly informative sequential patterns extracted from multiple physiological variables and captures the interactions among these patterns via Coupled Hidden Markov Models (CHMM). Our results demonstrate a strong competitive accuracy in the predictions, especially when the interactions between the multiple physiological variables are accounted for using multivariate coupled sequential models. The novelty of the approach stems from the integration of sequence-based physiological pattern markers with the sequential CHMM to learn dynamic physiological behavior as well as from the coupling of such patterns to build powerful risk stratification models for septic shock patients.

All of the described methods have been tested and bench-marked using numerous real world critical care datasets from the MIMIC-II database. The results from these experiments show that multivariate sequential contrast patterns based coupled models are highly effective and are able to improve the state-of-the-art in the design of patient risk prediction systems in critical care settings.