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Abstract

Data mining and knowledge discovery involves efficient search and discovery

of patterns in data that are able to describe the underlying complex structure

and properties of the corresponding system. To be of practical use, the dis-

covered patterns need to be novel, informative and interpretable. Large-scale

unstructured biomedical databases such as electronic health records (EHRs)

tend to exacerbate the problem of discovering interesting and useful patterns.

Typically, patients in intensive care units (ICUs) require constant monitoring

of vital signs. To this purpose, signicant quantities of patient data, coupled

with waveform signals are gathered from biosensors and clinical information

systems. Subsequently, clinicians face an enormous challenge in the assimila-

tion and interpretation of large volumes of unstructured, multidimensional,

noisy and dynamically fluctuating patient data.

The availability of de-identified ICU datasets like the MIMIC-II (Mul-

tiparameter Intelligent Monitoring in Intensive Care) databases provide an

opportunity to advance medical care, by benchmarking algorithms that cap-

ture subtle patterns associated with specific medical conditions. Such pat-

terns are able to provide fresh insights into disease dynamics over long time

scales.

In this research, we focus on the extraction of computational physio-

logical markers, in the form of relevant medical episodes, event sequences

and distinguishing sequential patterns. These interesting patterns known as

sequential contrast patterns are combined with patient clinical features to

develop powerful clinical prediction models. Later, the clinical models are

xv



ABSTRACT

used to predict critical ICU events, pertaining to numerous forms of hemo-

dynamic instabilities causing acute hypotension, multiple organ failures, and

septic shock events. In the process, we employ novel sequential pattern min-

ing methodologies for the structured analysis of large-scale ICU datasets.

The reported algorithms use a discretised representation such as symbolic

aggregate approximation for the analysis of physiological time series data.

Thus, symbolic sequences are used to abstract physiological signals, facili-

tating the development of efficient sequential contrast mining algorithms to

extract high risk patterns and then risk stratify patient populations, based

on specic clinical inclusion criteria.

Chapter 2 thoroughly reviews the pattern mining research literature re-

lating to frequent sequential patterns, emerging and contrast patterns, and

temporal patterns along with their applications in clinical informatics.

In Chapter 3, we incorporate a contrast pattern mining algorithm to

extract informative sequential contrast patterns from hemodynamic data,

for the prediction of critical care events like Acute Hypotension Episodes

(AHEs). The proposed technique extracts a set of distinguishing sequen-

tial patterns to predict the occurrence of an AHE in a future time window,

following the passage of a user-defined gap interval. The method demon-

strates that sequential contrast patterns are useful as potential physiological

biomarkers for building optimal patient risk stratification systems and for

further clinical investigation of interesting patterns in critical care patients.

Chapter 4 reports a generic two stage sequential patterns based classifi-

cation framework, which is used to classify critical patient events including

hypotension and patient mortality, using contrast patterns. Here, extracted

sequential patterns undergo transformation to construct binary valued and

frequency based feature vectors for developing critical care classification mod-

els.

Chapter 5 proposes a novel machine learning approach using sequential

contrast patterns for the early prediction of septic shock. The approach com-

bines highly informative sequential patterns extracted from multiple phys-

xvi



ABSTRACT

iological variables and captures the interactions among these patterns via

Coupled Hidden Markov Models (CHMM). Our results demonstrate a strong

competitive accuracy in the predictions, especially when the interactions be-

tween the multiple physiological variables are accounted for using multivari-

ate coupled sequential models. The novelty of the approach stems from the

integration of sequence-based physiological pattern markers with the sequen-

tial CHMM to learn dynamic physiological behavior as well as from the cou-

pling of such patterns to build powerful risk stratification models for septic

shock patients.

All of the described methods have been tested and bench-marked using

numerous real world critical care datasets from the MIMIC-II database. The

results from these experiments show that multivariate sequential contrast

patterns based coupled models are highly effective and are able to improve

the state-of-the-art in the design of patient risk prediction systems in critical

care settings.
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