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Abstract

Data mining and knowledge discovery involves efficient search and discovery

of patterns in data that are able to describe the underlying complex structure

and properties of the corresponding system. To be of practical use, the dis-

covered patterns need to be novel, informative and interpretable. Large-scale

unstructured biomedical databases such as electronic health records (EHRs)

tend to exacerbate the problem of discovering interesting and useful patterns.

Typically, patients in intensive care units (ICUs) require constant monitoring

of vital signs. To this purpose, signicant quantities of patient data, coupled

with waveform signals are gathered from biosensors and clinical information

systems. Subsequently, clinicians face an enormous challenge in the assimila-

tion and interpretation of large volumes of unstructured, multidimensional,

noisy and dynamically fluctuating patient data.

The availability of de-identified ICU datasets like the MIMIC-II (Mul-

tiparameter Intelligent Monitoring in Intensive Care) databases provide an

opportunity to advance medical care, by benchmarking algorithms that cap-

ture subtle patterns associated with specific medical conditions. Such pat-

terns are able to provide fresh insights into disease dynamics over long time

scales.

In this research, we focus on the extraction of computational physio-

logical markers, in the form of relevant medical episodes, event sequences

and distinguishing sequential patterns. These interesting patterns known as

sequential contrast patterns are combined with patient clinical features to

develop powerful clinical prediction models. Later, the clinical models are

xv



ABSTRACT

used to predict critical ICU events, pertaining to numerous forms of hemo-

dynamic instabilities causing acute hypotension, multiple organ failures, and

septic shock events. In the process, we employ novel sequential pattern min-

ing methodologies for the structured analysis of large-scale ICU datasets.

The reported algorithms use a discretised representation such as symbolic

aggregate approximation for the analysis of physiological time series data.

Thus, symbolic sequences are used to abstract physiological signals, facili-

tating the development of efficient sequential contrast mining algorithms to

extract high risk patterns and then risk stratify patient populations, based

on specic clinical inclusion criteria.

Chapter 2 thoroughly reviews the pattern mining research literature re-

lating to frequent sequential patterns, emerging and contrast patterns, and

temporal patterns along with their applications in clinical informatics.

In Chapter 3, we incorporate a contrast pattern mining algorithm to

extract informative sequential contrast patterns from hemodynamic data,

for the prediction of critical care events like Acute Hypotension Episodes

(AHEs). The proposed technique extracts a set of distinguishing sequen-

tial patterns to predict the occurrence of an AHE in a future time window,

following the passage of a user-defined gap interval. The method demon-

strates that sequential contrast patterns are useful as potential physiological

biomarkers for building optimal patient risk stratification systems and for

further clinical investigation of interesting patterns in critical care patients.

Chapter 4 reports a generic two stage sequential patterns based classifi-

cation framework, which is used to classify critical patient events including

hypotension and patient mortality, using contrast patterns. Here, extracted

sequential patterns undergo transformation to construct binary valued and

frequency based feature vectors for developing critical care classification mod-

els.

Chapter 5 proposes a novel machine learning approach using sequential

contrast patterns for the early prediction of septic shock. The approach com-

bines highly informative sequential patterns extracted from multiple phys-

xvi



ABSTRACT

iological variables and captures the interactions among these patterns via

Coupled Hidden Markov Models (CHMM). Our results demonstrate a strong

competitive accuracy in the predictions, especially when the interactions be-

tween the multiple physiological variables are accounted for using multivari-

ate coupled sequential models. The novelty of the approach stems from the

integration of sequence-based physiological pattern markers with the sequen-

tial CHMM to learn dynamic physiological behavior as well as from the cou-

pling of such patterns to build powerful risk stratification models for septic

shock patients.

All of the described methods have been tested and bench-marked using

numerous real world critical care datasets from the MIMIC-II database. The

results from these experiments show that multivariate sequential contrast

patterns based coupled models are highly effective and are able to improve

the state-of-the-art in the design of patient risk prediction systems in critical

care settings.

xvii





Chapter 1

Introduction

1.1 Background

Sequences exist everywhere in our daily life. In their simplest logical struc-

ture, a sequence can be described as an enumerated collection of objects,

where repetitions are allowed. Similar to a set, it consists of members (also

called elements, or terms). The cardinality of ordered elements in the corre-

sponding set is called the length of the sequence. However, unlike a normal

set, an ordered collection of objects consists of a set of objects where the

sequential order of the objects or members hold importance. This means

that the same elements can also appear multiple times at different positions

in the sequence.

There exist numerous real world applications that use sequential data.

Typical examples include clickstream logs, consumer shopping sequences,

DNA sequences, share price sequences of a company, sequence of medica-

tions taken by a patient and so on. An essential aspect of discovering inter-

esting sequences is related to determining domain specific events that occur

in an order, which may correspond to uncovering interesting behaviour of

the underlying system or agents in concern. We illustrate the importance of

sequences using two specific examples in detail, as given below.

The first case is the customer shopping sequence, as shown in Table 1.1.

1



CHAPTER 1. INTRODUCTION

Table 1.1: Transaction Data Table

Tid Transaction Time Customer ID Items Quantities Profit

T1 11-11-2014 10:00:00 C1 45 1 $10.50

T2 11-11-2014 10:01:05 C2 30,31,32 2,3,1 $5.20, $2.00, $3.00

T3 11-11-2014 10:02:12 C3 29,16 1,2 $7.00, $5.00

T4 11-11-2014 10:03:16 C1 28 6 $2.80

T5 12-11-2014 10:04:35 C5 45 2 $10.50

.. .. .. .. .. ..

T3465 11-11-2014 18:00:00 C3 22,32 2 $1.00,$3.00

As a toy example, the table is from a retail stores database which con-

tains customers transactions records. The first column contains IDs that

are assigned to the corresponding transactions. The second column contains

the time stamps for transactions. Users who purchased by store member-

ship card or credit card are recorded in the third column. The last three

columns record the items which were purchased, the quantity of items and

their respective unit profits.

Thus, each row in the table can be viewed as a customer-purchased basket

of objects. Moreover, a customer will not just shop only once (one transac-

tion is one row in Table 1.1 in the retail store. Rather, he or she may shop

multiple times a day. For example, the transactions of customer C1 and C3

can be viewed as two sequences, i.e. < T1, T4 > and < T3, T3465 > respec-

tively. It is also understandable that when transactions are analyzed over

a longer period of time such as “all transactions in the month of January”,

the sequence of transactions for each customer ( for example, C1 and C2) in

“the month of January” would be longer versus “all transactions in a day”.

To improve profits and productivity, the job of a manager in a retail store

is to improve the turnover and revenue of the retail business. In this context,

a use case may involve mining of customer buying behaviour. For example,

users would generally buy CD-ROMS, digital cameras following the purchase

of a computer. However, a retail store would require knowledge of all such

frequently occurring sequence of transactions to advertise a specific prod-

2



CHAPTER 1. INTRODUCTION

uct to a given customer for maximizing the probability of purchase. Thus,

the retail store management is required to discover customers frequent shop-

ping habit sequences, and activate the most appropriate sales and promotion

strategies at the right time. Accordingly, the retail manager will probably

look into the shopping histories of customers, and be presented with spe-

cific sequential patterns in a customer’s buying habits that influences their

shopping behaviors on a regular basis. Such sequential patterns occurring

among a population of customers help design marketing strategies to match

the customers needs, seasonal sales planning, and thus improve productivity

as well as company profits. Consequently, revenue is improved.

The second case is that of an online shopping website. Nowadays, e-

commence websites such as Amazon.com and Groupon.com are increasing

becoming very popular. People tend to buy things online rather than go to a

physical store because of the convenience, variety, low price and many other

advantages. These websites, however, have to deal with a great number of

accesses every day.

Table 1.2: Web Access logs
user id session id timestamp referring url page url action

100 1 23-10-2014 12:05:00 www.twitter.com?user id=ABC www.groupon.com/view skydiving View

100 1 23-10-2014 12:05:15 ..... www.groupon.com/purchase skydiving Checkout

100 1 23-10-2014 12:06:45 ..... www.groupon.com/purchase complete Purchase

200 1 23-10-2014 11:35:00 www.facebook.com?user id=XYZ www.groupon.com/view skydiving View

200 1 23-10-2014 11:35:30 . . . www.groupon.com/purchase skydiving View

200 2 23-10-2014 12:10:05 www.facebook.com?user id=XYZ www.groupon.com/view yoga View

One of the backend jobs is to record the customer behaviors such as clicks

and scrolls to a backend web log database, as shown in Table 1.2. Each row

in Table 1.2 represents an action of a user: when, where, what and how.

Thus, a single users behaviors are elements of a sequence. For example,

user id = 100 probably noticed the skydiving promotion advertisements on

Twitter and wanted to use the opportunity to experience skydiving. The

user directly clicked the link and purchased this promotional offer. All these

actions are captured by Groupons servers behind the web pages, and then

stored in their web log databases. There are millions of such users online

3



CHAPTER 1. INTRODUCTION

every day, which means the same number of sequences in the databases are

recorded. As time passes, not only do the sequences get longer, but new

sequences are also added.

Website data analysts are keen to know which items are most related

to others. With this knowledge, they can accurately recommend items to

online users. As an example, “people who buy this item also buy A, B

and C” is often seen in Amazon, and many users eventually purchase those

recommended things which they did not originally plan to buy. It is definitely

important for analysts to review and discover patterns in user behaviors to

ensure the precision of their recommendations.

1.2 Mining of Sequential Patterns

In the 1990s, mathematicians, statisticians, and computer scientists proposed

Knowledge Discovery and Data mining (KDD), which involves using a range

of models, algorithms and tools to analyze various types of data. In the

academia, groups of researchers are interested in finding patterns in the trans-

actions, sequences and graphs, etc.

The specific areas of frequent patterns and sequential pattern mining are

highly relevant to the topic in this thesis. In frequent pattern mining, the

frequently repeated sub-itemsets in a transaction database are discovered as

patterns. It was first proposed in the work by Rakesh Agrawal et al (1993),

in which the renowned downward closure property (also named the Apri-

ori Property) was introduced. With the foundation of the frequency based

mining algorithms (namely, downward closure property), many followup pa-

pers were subsequently published. For example, Park et al. propose an

effective hash-based algorithm for the candidate set generation (Park, Chen

& Yu 1995) . Savasere et al. presented an algorithm reducing both CPU

and I/O overheads by applying partition techniques (Savasere, Omiecinski &

Navathe 1995). Several works (Agrawal & Shafer 1996, Cheung, Han, Ng, Fu

& Fu 1996) use parallel and distributed techniques in the area of association
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rule mining. An incremental approach is discussed in (Cheung et al. 1996),

and sampling methods are proposed in (Toivonen et al. 1996).

Later, sequential pattern mining has been popular since its introduction

by Agrawal and Srikant (1995). In this work, the sequential pattern mining

was defined as follows:

“Given a database of sequences, where each sequence consists of a list

of transactions ordered by transaction time and each transaction is a set of

items, sequential pattern mining is to discover all sequential patterns with a

user-specified minimum support, where the support of a pattern is the number

of data sequences that contain the pattern.”

For simplicity, it can be said that sequential pattern mining seeks to

discover frequent subsequences as patterns in a sequence database (Han, Pei,

Mortazavi-Asl, Pinto, Chen, Dayal & Hsu 2001).

In the first case in Section 1.1, item 45 and item 32 both appear twice in

different customers transactions (C1 and C5 have 45, C2 and C3 have 32),

which makes support for these items higher than for any other items. If the

minimum support (a threshold to filter infrequent sequential patterns, and

retain frequent ones) is set to 2, then < 45 > and < 32 > are two frequent

sequential patterns. Sequential pattern mining has proven to be essential for

handling order based critical business problems. For retail data, sequential

patterns are useful for shelf placement and promotions, as the first case in

1.1. In the industry, sequential patterns are used for targeted marketing,

customer retention, and many other tasks. Other areas in which sequential

patterns can be applied include web access pattern analysis, weather predic-

tion, production processes, and network intrusion detection. Note that most

studies of sequential pattern mining concentrate on categorical (or symbolic)

patterns,whereas studies on numerical curve analysis usually belong to the

scope of trend analysis and forecasting in statistical time-series analysis.

In the last two decades, data mining researchers have proposed many

techniques and algorithms for mining sequential patterns. For instance, GSP

(Srikant & Agrawal 1996) uses a Generating-Pruning method and makes mul-
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tiple passes over the data to target the patterns; SPADE (Zaki 2001) builds

an ID-list for each candidate, and joins two k-candidates to generate a new

(k + 1)-candidate; PrefixSpan (Han et al. 2001) extends the pattern growth

approach in the FP-Growth algorithm (Han, Pei & Yin 2000) for frequent

sequential pattern mining; CloSpan (Yan, Han & Afshar 2003) proposes an

efficient algorithm for mining closed sequential patterns; SPAM (Ayres, Flan-

nick, Gehrke & Yiu 2002) presents a bitmap representation of the original

sequence database, and proposes pruning methods for the I-Step/S-Step ex-

tensions; PAID (Yang, Kitsuregawa & Wang 2006)and LAPIN (Yang, Wang

& Kitsuregawa 2007) use an item-last-position list and prefix border position

set instead of the tree projection or candidate generate-and-test techniques

introduced so far; DISC-all (Chiu, Wu & Chen 2004) prunes infrequent se-

quences according to other sequences of the same length, and employs lexico-

graphical ordering and temporal ordering. FreeSpan (Han, Pei, Mortazavi-

Asl, Chen, Dayal & Hsu 2000) starts by creating a list of frequent 1-sequences

from the sequence database called the frequent item list (f-list), and then con-

structs a lower triangular matrix of the items in this list. Moreover, there

have been two thorough surveys of the sequential pattern mining algorithms

(Mabroukeh & Ezeife 2010, ?).

1.3 Mining Useful Patterns for Critical Care

Decision-support

As described in Section 1.2, abundant literature has been dedicated to re-

search in frequent sequential patterns and tremendous progress has been

made, which include efficient and scalable algorithms in various domains.

Yet the mining of interesting patterns of various underlying complex struc-

tures demanded by domains in medicine, open up multiple challenges for

medical data mining that still remain unsolved. In particular, with the ad-

vent of large-scale biomedical databases, exciting opportunities have opened

up in the areas of sequential pattern mining.
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Biomedical databases can be categorized into multiple types, which may

store microarray gene expression data, protein sequences or electronic health

records. Even though a huge amount of pattern mining research has gained

ground in bioinformatics, the area of healthcare analytics has comparatively

been slow in the adoption of pattern mining techniques. The slow pace of

healthcare analytics also suggests the availability of problems that have been

difficult to solve traditionally and hence not been tackled much.

1.3.1 Problem Statement

Today, most clinicians across the world, continue to practice the traditional

process of trial-and-error medicine. Accordingly, when a patient presents

with symptoms, the doctor makes a most likely diagnosis, then prescribes a

drug and, then a treatment recommendation. To help a clinician in these

activities, the most popular diagnostic tool-kits frequently make use of pop-

ulation based scoring techniques. However, such scoring systems seldom take

into account dynamically changing symptoms or events in a patient’s med-

ical history. As a result, a significant percentage of diagnoses carried out

across the world, lead to slower discovery of a patient’s true ailment leading

to delayed treatment, which has consistently been adding to health-care costs

across numerous countries. Given the premise that a patient’s ailment can

be caused by numerous static and dynamic clinical factors, current scoring

tool-kits used by clinicians require sophisticated improvements for consum-

ing large-scale patient data and make dynamic predictions about the patient

state.

The current thesis is motivated by a need to develop predictive systems

that account for fast changing fluctuations in a patient’s physiological con-

dition for personalized medicine. Hence, the long term aim of such methods

are to assist doctors who use the personalized medicine approach to take into

account the patients unique physiology.
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1.3.2 Research Motivations

Raw EHR (electronic health records) data, in particular, when critically anal-

ysed, can help extract important patient information and help develop a map

of the patients history, which can aid the diagnostic process used by the hos-

pital and the physician for improving patient care. Core analysis of medical

data is essential in multiple departments of a hospital or health care centres.

With the advent of complex healthcare systems generating massive data,

there is a specific dearth of tools and techniques that can quantitatively

support the fast analysis of complex, high-frequency data streams emanat-

ing out of such environments. Yet, accessibility of such medical databases

for widespread research has been comparatively restricted owing to multiple

procedural reasons. In recent years, there have been many efforts worldwide

to provide access to such databases as part of collaborative research. These

include:

• the Stanford Translational Research Integrated Database Environment

- STRIDE (Lowe, Ferris, Hernandez, Weber et al. 2009)

• the Australian and New Zealand Intensive Care Society Adult Patient

Database (Stow, Hart, Higlett, George, Herkes, McWilliam, Bellomo,

Committee et al. 2006)

• the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-

II) database (Saeed, Villarroel, Reisner, Clifford, Lehman, Moody,

Heldt, Kyaw, Moody & Mark 2011)

Among these the MIMIC-II is available free of charge for public use, on

completion of an online training course and signing of a data use agreement.

MIMIC-II is available via PhysioNet, which is an online resource for the

study of physiological data and shares numerous problems for computational

physiology.

Critical care databases like the MIMIC-II provide an excellent avenue

for carrying out data mining research. It can thus be pointed out that the
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big data generated in intensive care units (ICUs) have a massive potential

to usher in novel clinical discoveries, leading to the development of early

warning, detection and prevention systems in a wide range of serious patient

conditions.

Patients who are critically ill require intensive care for their survival.

Typically, an intensive care unit (ICU) is a department where a patient’s vital

functions are regularly monitored, with mechanical support or medication,

until the patient regains his or her normal functional abilities again. The

majority of critical care patients require such ICU care for only a few days,

which may consequently result in a high chance of survival. Some patients

may continue in the ICU for longer periods, with their likelihood of mortality

increasing as the stay period increases. Present risk prediction models in

critical care (Rosenberg 2002) may be used to compare the risk of mortality

or severity of disease in patient populations, but are considered sub-optimal

in predicting the probability of survival of individual patients. As such,

there exist no tools which can reliably predict an individual patient’s chance

of developing a complication in the future, such as organ failure.

Thus, it is crucial to be able to detect clinical problems early enough, so

that preventive or curative treatments can be applied on time. In practice,

an intensivist analyses all the patient related data in order to foresee a change

in the patient’s condition and administer the appropriate treatment. Since

humans are not able to simultaneously deal with more than 5 to 7 different

parameters and an average ICU patient is estimated to be described by more

than 250 different parameters, it is likely that there is more information in the

data than what is currently being extracted from it by humans. Accordingly,

data mining could assist clinicians by analysing the ICU data and detecting

problems earlier than an experienced intensivist would, and could also be

used to generate models that would assist the intensivist in deciding for the

best treatment for a specific clinical problem.

Hence, with an abundance of rich ICU data, clinical data mining systems

can add significant benefits by extracting useful information from these rich
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databases, in comparison and by complementing traditionally used scoring

systems. Based on outcomes of such knowledge discoveries, the benefits could

be wide and large-scale impacting both hospital administrative and patient

financial decisions. Hence, the proposed research is motivated by a need for

discovering dynamic interaction of physiological events and the role these

events play in informing patient morbidity and mortality.

1.4 Limitations and Challenges

Although sequential pattern mining algorithms successfully extract patterns

from the sequence databases, their primary interestingness measurement is

the frequency of a pattern. This means, any frequent sequential pattern is

treated as a significant one. However, in clinical practice, most frequent se-

quential patterns are not useful and informative for clinical decision-making,

since they do not have clinical value, and can be spurious in nature. Par-

ticularly, clinicians are interested in patterns that are prominent in an inter-

vention population given a specific treatment and are strong indicators of a

disease risk. In most clinical scenarios, truly interesting sequences may be

filtered out because of their low frequency.

Methods in emerging pattern mining tend to address this problem by

considering the growth rate of a pattern as an interestingness measure (Dong

& Li 1999). In this framework, emerging patterns were defined as itemsets

whose support increases significantly from one data set to another. Emerging

patterns are said to capture emerging trends in time-stamped databases, or

to capture differentiating characteristics between classes of data. When first

defined by Dong and Li (1999), the purpose of emerging patterns was to

capture emerging trends in time-stamped data, or useful contrasts between

data classes. Subsequent emerging pattern research has largely focused on

the use of the discovered patterns for classification purposes, for example,

classification by emerging patterns (Dong & Li 1999, Li, Ramamohanarao &

Dong 2000) and classification by jumping emerging patterns. An advanced
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Bayesian approach (Fan & Ramamohanarao 2003) and bagging (Fan, Fan,

Ramamohanarao & Liu 2006) were also proposed.

The quality measure of emerging patterns is the growth rate (the ratio

of the two supports). It determines, for example, that a pattern with a

10% support in one data set and 1% in the other is better than a pattern

with support 70% in one data set and 10% in the other (as 10/1 > 70/10).

Further, Fan and Ramamohanarao (2003) had worked on selecting the inter-

esting emerging patterns, while Soulet et al. (2004) had proposed condensed

representations of emerging patterns. Later a CART-based approach was

used to discover emerging patterns in microarray data (Boulesteix, Tutz &

Strimmer 2003). The method is based on growing decision trees from which

the emerging patterns are extracted.

Specially in the field of healthcare, there have been studies in the last

few years, demonstrating the usefulness of sequence based predictive models.

Previously, Toma et al. (2007) showed a data driven technique to discover

temporal episodes of organ failure scores to predict patient mortality. Noren

et al. (2010) proposed a statistical model which summarized the temporal as-

sociations, medical events and drug prescriptions. Temporal abstractions for

time interval mining were employed as a set of features inspired by the Bag-

of-Words approach (Moskovitch & Shahar 2009). More recently, frequent

sequential patterns were identified using a patient populations among using

interactive and visual discovery (Gotz, Wang & Perer 2014). EEG and EMG

time series recordings were employed by pattern mining algorithms using a

binning step for facilitating the discovery of high quality patterns (Skapura

& Dong 2015). Patient clinical factors like fluid balance evolution during

the first days was used by temporal data mining for a patient’s survivability

(Casanova, Campos, Juarez, Fernandez-Fernandez-Arroyo & Lorente 2015).

Further, electronic healthcare reimbursement claims have been used to ex-

tract frequent sequential patterns to analyze healthcare delivery and practice

patterns across the United States (US) (Malhotra, Hobson, Valkova, Pullum

& Ramanathan 2015). As evident, a significant proportion of these recent
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studies focus on extracting frequent sequential patterns from patient popu-

lations for building prediction models.

However, in real-time clinical data mining problems, simplified applica-

tions of frequent patterns do not tend to be discriminative and predictive all

the time. Instead, advanced methodologies are required which are able to

integrate highly discriminative patterns, using smart pattern transformation

techniques to build models that are both interpretive and highly predictive.

In addition, an interesting aspect of medical patterns is their tendency

to co-occur while in a progressive state. This means meta-information about

patterns that can integrate them using sequence ordering are required to

improve the state-of-the-art in clinical informatics.

The applicability of contrast pattern mining is intuitive from a medical

data mining perspective due to its quality measure being relatively synony-

mous with the concept of odds ratio (a popular measure used by clinicians for

carrying out clinical trials). By their virtue of using a constrained pattern

mining approach while comparing an intervention and control population,

contrast pattern mining tends to be more suitable for finding patterns that

are able to distinguish between two patient populations. However, there

have been comparatively limited applications and extensions of methods in

contrast mining to develop novel systems for critical care.

1.5 Research Issues

The objectives of this research are therefore related to mining interesting

sequences of events (episodes) that are predictive of future critical conditions

in patients admitted to intensive care units (ICUs). A sequential pattern

mining approach is important and useful for various reasons such as :

• to identify dynamic variations in patient physiological patterns

• in clustering of treatment plans based on similar sequential patterns in

ICU patients
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• to help in mining of abnormal events or specific episodes for various

diseases towards personalized patient care.

• Informative and discriminative features from sequential patterns are

useful for classification and forecasting of important clinical outcomes

in ICUs

Thus, an evolving set of interesting events would have the ability to pro-

vide an excellent form of interpretive and descriptive knowledge to physicians.

1.6 Research Contributions

The main contributions of this thesis are related to it’s advancement of the

state-of-the-art in critical care data mining models as described below. In

this context, our works provide evidence that short term critical care event

prediction systems can greatly be improved by the use of sequential contrast

patterns that are able to capture dynamic fluctuations within a patient’s

physiological variables.

For prediction of acute hypotension in the ICU, we incorporate a sequen-

tial contrast mining methodology on discretised representations of patient

mean arterial pressure to extract distinguishing sequential patterns. These

discriminative hemodynamic sequential patterns are used to classify and risk

stratify ICU patients. In the process, we demonstrate that using sequen-

tial patterns that are able to contrast between two population sub-groups to

predict patient risk of critical events provide high performances.

This thesis also builds on a generalized pattern based classification frame-

work, which automatically generates sequential contrast patterns as features

from multivariate physiological time series to predict short term ICU events.

To this purpose, informative contrast sequential patterns from clinical vari-

ables like mean arterial pressure and respiratory rate time series are trans-

formed to a feature space using two mapping methods. Each pattern map-

ping method creates a new feature space involving binary valued attributes

13



CHAPTER 1. INTRODUCTION

and frequency based information, to predict ICU events like the onset of a

future acute hypotensive episode (AHE) and patient mortality. Thus, the

integration of these mapping methods involve employing sequential contrast

patterns to define features for building generalized clinical classification mod-

els.

Finally, we propose the integration of multivariate sequential contrast pat-

terns (SCPs) using Coupled Hidden Markov Models for septic shock event

predictions in an ICU. To integrate SCPs with CHMMs, a novel transforma-

tion approach is proposed where the original patient sequence is transformed

to a sequence of SCPs for each patient. Our experiments show that our

framework is able to learn accurate event detection classifiers for real-world

clinical tasks, which is a key step for developing intelligent clinical monitoring

systems. In the process, we extend the idea of contrast patterns based clas-

sification methods to important problems in the clinical temporal domains.

1.7 Thesis Structure

The thesis is structured as follow:

Chapter 2 outlines the related research in the fields of frequent and se-

quential pattern mining. This includes providing a broad coverage of frequent

sequential and emerging pattern mining, which is related to the topic of this

thesis. Relevant works in temporal pattern mining are also described. Fol-

lowing this, we report about specific applications of pattern mining in critical

care that aligns with the current research.

Chapter 3 presents our sequential contrast pattern mining methodology

for mining discriminative sequential predictive patterns in the field of critical

care informatics. A controlled methodology is described to extract patient

populations which are treated as intervention and control sets. Discrimi-

native patterns are then used by a majority voting technique to generate

predictive alerts for acute hypotensive episodes in an ICU. It also presents

our experimental evaluations on real-world EHR datasets while comparing
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against other popular machine learning approaches.

Chapter 4 describes generalised pattern based classification approaches

by transforming sequential contrast patterns into a feature space and using

standard machine learning algorithms like SVM and Naive Bayes to build

patient risk prediction models for critical events involving patient mortal-

ity. Our results on multiple critical care datasets demonstrate competitive

performances.

Finally, Chapter 5 proposes a novel machine learning framework where

multivariate sequential contrast patterns are combined using coupled hid-

den markov models (CHMM) to predict septic shock events. The approach

transforms the original patient sequences to form a time series of sequential

contrast patterns. These multivariate pattern sequences are then used for

learning univariate and multivariate hidden markov models. Our experimen-

tal results indicate that ordering patterns to form a sequence can have strong

predictive value while learning multivariate and coupled machine learning

models.

Chapter 6 concludes the thesis and outlines the scope for future work.
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Chapter 2

Literature Review

In this chapter, we first introduce the traditional frequent pattern mining

framework, which contains sequential pattern mining. Later, we introduce

the emerging and contrast pattern mining framework, which contains an

overview of the research so far. Following this, we introduce prior research

and the relevant frameworks used for mining temporal patterns. Finally, we

discuss previous implementations and applications of pattern mining algo-

rithms for problems in critical care clinical informatics.

2.1 Frequent Pattern Mining Framework

Frequent patterns are patterns that appear a considerable number of times

in a dataset. These patterns can exist in a variety of formats such as:

• Itemset patterns: Representing a set of items (Agrawal & Swami 1993,

Cheng, Yan, Han & Hsu 2007).

• Sequential patterns: Representing sequence based and temporal order

among items (Srikant & Agrawal 1996, Zaki 2001, Han et al. 2001,

Wang & Han 2004).

• Time interval patterns: Represent temporal relations among states

with time durations (Höppner 2003, Papapetrou, Kollios, Sclaroff &
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Gunopulos 2005, Winarko & Roddick 2007, Moerchen 2006, Batal, Sac-

chi, Bellazzi & Hauskrecht 2009, Mörchen & Fradkin 2010, Batal, Val-

izadegan, Cooper & Hauskrecht 2011).

Frequent pattern mining plays an essential role in the discovery and ex-

traction of interesting regularities that appear in data. It was first proposed

by (Agrawal, Imieliński & Swami 1993) to mine association rules for market

basket datasets. Since then, abundant literature has been dedicated to this

field and tremendous progress has been made. To this purpose, the objective

was to analyze customer buying habits by discovering associations between

items that customers frequently buy together. As an example, if a customer

buys cereal, he is also likely to buy milk on the same trip to the supermar-

ket. Here, cereal and milk are called items and the customers trip to the

supermarket can be termed as a transaction.

Formally, let Σ = I1, I2, ..., In denotes the set of all items, also known as

the alphabet. An itemset pattern is a conjunction of items: P = Iq1∧ ...∧Iqk
where IqjεΣ. If a pattern contains k items, we call it a k-pattern (an item is

a 1-pattern). We say that pattern P is a sub-pattern of pattern P0 (P0 is a

super-pattern of P), denoted as P ⊂ P0, if every item in P is contained in P0.

The support of pattern P in database D, denoted as sup(P,D), is the number

of instances in D that contain P. Accordingly, given a user specified minimum

support threshold σ, we say that P is frequent pattern if sup(P,D) ≥ σ.

Example 1. Given below is the transaction data in Table 2.1. Here,

the alphabet of items is Σ = {A,B,C,D,E} and there exist 5 transactions

T1toT5 (each representing a customer visit). Note that pattern P = A ∧ C
appears in transactions T1, T2 and T4, hence the support of P is 3. If we

set the minimum support σ = 3, then the frequent patterns for this example

are: {A,C,E,A ∧ C}.
The original pattern mining framework was used to mine transaction

data. However, similar concepts can be applied to relational attribute-value

data, such that each instance is described by a fixed number of attributes

such as the data in Table 2.2.
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Table 2.1: Transaction Data Example

Transaction List of items

T1 A,C,D, E

T2 A,B,C

T3 A,D,E

T4 A,C,E

T5 E

Table 2.2: Relational Attribute Data Example

Age Education Marital status Income

Young (≤ 30) Bachelor Single Low (≤ 50k)

Middle Age (30− 60) Masters Married Low (≤ 50k)

Middle Age (30− 60) Bachelor Married Medium (50k − 100k)

Senior (≥ 60) PhD Married High (≥ 100k)

Attribute-value data is converted to an equivalent transaction data so that

the data is discrete. This means the data should contain only categorical

attributes. Here, each attribute-value pair is mapped to a distinct item.

When the data contain numerical (continuous) attributes, these attributes

should be discretized (Yang et al. 2006). For example, the age attribute in

Table 2.2 has been converted into three discrete values: Young, Middle age

and Senior.

Table 2.3 shows the data in Table 2.2 in transaction format. Here, con-

verting an attribute-value data to a transaction data format ensures that

transactions are having the same number of objects (unless the original data

contained missing values). Following this transformation, pattern mining

algorithms are applied on the equivalent transaction data.

Typically, pattern mining is challenging since the search space of patterns

tends to be very large. For instance, the search space of all possible itemset

patterns for transaction data is exponential in the number of items. So if Σ
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Table 2.3: Table 2.2 as a set of Transactions
Transaction List of items

T1 Age=Young, Education=Bachelor, Marital Status=Single, Income=Low

T2 Age=Middle age, Education=Masters, Marital Status=Married, Income=Low

T3 Age=Middle age, Education=Bachelor, Marital Status=Married, Income=Medium

T4 Age=Senior, Education=PhD, Marital Status=Married, Income=High

is the alphabet of items, there are 2|Σ| possible itemsets (all possible subsets

of items). The search space of itemset patterns for attribute-value data is

exponential in the number of attributes. So if there are d attributes and

each attribute takes V possible values, there are (V + 1)d valid itemsets.

Note that the search space for more complex patterns, such as sequential

patterns, graph patterns, or time interval patterns , is even larger than the

search space for itemsets. Thus, the naive method to generate and count

all possible patterns is not feasible. Frequent pattern mining algorithms

make use of the minimum support threshold to restrict the search space to

a reasonable subspace that can be explored more efficiently.

2.1.1 Sequential pattern mining

Frequent sequential pattern mining refers to the discovery of frequent subse-

quences as patterns in a sequence database. A sequence database consists of

sequences which are ordered list of elements, and each element can be either

an itemset or a single item. Such databases are quite common and widely

used; for example, in customer shopping sequences, web clickstreams and

bio-logical sequences. The formal definition of frequent sequential pattern

mining is defined below.

Let I = {i1, i2, ..., in} be a set of items. A sequence is defined as s =<

e1, e2, ..., em > where ek ⊂ I, ek = φ, 1 ≤ k ≤ m. Without loss of

generality, we assume that the items in each itemset are sorted in a cer-

tain order (such as alphabetical order). A sequence database is defined as

D = [sid1, s1], [sid2, s2], ..., [sidl, sl]. The sid is the unique identification of

19



CHAPTER 2. LITERATURE REVIEW

the corresponding sequence. A sequence α =< a1, a2, ..., ap > is called a

subsequence of another sequence β =< b1, b2, ..., bq >, denoted by α ⊂ β,

if and only if 3 j1, j2, ..., jp, such that 1 < j1 < j2 < ... < jp ≤ n and

a1 ⊂ bj1, a2 ⊂ bj2, ..., ap ⊂ bjp. We also call β the supersequence of α, or β

contains α. Given a sequence database D, the support of α is the number

of sequences in D which contain α. If the support α satisfies a minimum

support threshold, α is a frequent sequential pattern.

For example, we assume the itemset I sold in some retail stores is as

follows.

I = {bread,milk, cheese, butter, cereal, oatmeal}

Table 2.4: Sequence Database

sid tid transactions

1 1 bread, buter, cereal

1 2 milk, cheese, oatmeal

1 3 bread, butter

2 1 cheese, butter

2 2 bread, milk, cheese, oatmeal

2 3 milk

3 1 bread, cheese, butter

3 1 bread, milk, oatmeal

A toy sequence database D with I would be as shown in Table 2.4. The

database consists of three sequences, which represent the shopping histories

of three customers. Both sequence sid = 1 and sid = 2 contain 3 itemsets

(transactions), and sid = 3 contains 3 itemsets. Equally, D in Table 2.4 can

be written as:

s1 =< (bread, butter, cereal)(milk, cheese, oatmeal)(bread, butter) >

s2 =< (cheese, butter)(bread,milk, cheese, oatmeal)milk >

s3 =< (bread, cheese, butter)(bread,milk, oatmeal)
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Speaking of the containment relationship, < butter(bread,milk) > can

be a subsequence of s2 and s3 but not s1. Similarly, < buttercheese >

can be a subsequence of s1 and s2 but not s3. Containment relationships

for subsequences turn out to be extremely important in fields like bioinfor-

matics, where sequences may contain a lot of garbage characters, and the

informative part may be hidden within them. Being able to discover fre-

quent subsequences would allow to get rid of the uninformative symbols in

DNA sequences for example.

Quite a few algorithms have been proposed since it was first introduced in

(Agrawal & Srikant 1995). For instance, GSP (Srikant & Agrawal 1996) uses

a “Generating-Pruning” method and makes multiple passes over the data to

extract the patterns. SPADE (Zaki 2001) builds an ID-list for each candidate,

and joins two k-candidates to generate a new (k + 1)-candidate. PrefixS-

pan (Han et al. 2001) extends the pattern-growth approach in FPGrowth

algorithm (Han, Pei, Mortazavi-Asl, Chen, Dayal & Hsu 2000) for frequent

sequential pattern mining. CloSpan (Yan et al. 2003) proposes an efficient

algorithm for mining closed sequential patterns. SPAM (Ayres et al. 2002)

presents a bitmap representation of the original sequence database, and

proposes pruning methods for the I-StepS-Step extensions. PAID (Yang

et al. 2006) and LAPIN (Yang et al. 2007) use an item-last-position list

and prefix border position set instead of the tree projection or candidate

generate-and-test techniques introduced so far. DISC-all (Chiu et al. 2004)

prunes infrequent sequences according to other sequences of the same length,

and employs lexicographical ordering and temporal ordering. FreeSpan (Han,

Pei, Mortazavi-Asl, Chen, Dayal & Hsu 2000) starts by creating a list of fre-

quent 1-sequences from the sequence database called the frequent item list

(f-list), and then constructs a lower triangular matrix of the items in this list.

All of the above algorithms rely on the downward closure property. Next, we

briefly introduce the most popularly used algorithms as reported above.

AprioriAll
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AprioriAll (Agrawal & Srikant 1995) is believed to be the first algorithm

solve sequential pattern mining. First, it finds all frequent 1-patterns whose

support values satisfy a user-defined minimum support. Then, it initializes

and maintains two types of list containers, namely the candidate lists and the

frequent pattern lists. For every (k + 1)-candidate constructed by joining

two frequent k-patterns (the patterns with k items in the frequent pattern

list), the support needs to be scanned from the original database. The pro-

cess repeats until no further patterns can be found.

GSP

GSP (Generalized Sequential Patterns) (Srikant & Agrawal 1996) is a se-

quential pattern mining method that was developed by Srikant and Agrawal

in 1996 and has been very popular since then. It is an extension of the Apriori

algorithm (Agrawal & Srikant 1995) for sequence mining. The main struc-

ture is similar to AprioriAll (Agrawal & Srikant 1995) , and the details are as

follows. First, it scans the database to obtain the frequent 1-sequences. Then

it generates the next level candidates by joining the previous level frequent

sequences, the same as AprioriAll. The differences are in the candidate gen-

eration and candidate support counting. In the candidate generation stage,

they use a mechanism to prune the unpromising candidates. Thus in the

same level (candidates of the same length), the number of candidates is no

more than that of AprioriAll. In the support counting stage, a hash-tree

data structure is used to reduce the number of candidates to be checked.

The representation of the database is transformed to efficiently determine

whether a specific candidate is contained in the database.

SPADE

SPADE (Sequential PAttern Discovery using Equivalent classes) (Zaki

2001) is also a level-wise sequential pattern mining algorithm that uses a

vertical data format. The key difference between SPADE and AprioriAll

(Agrawal & Srikant 1995) builds an ID-list(a list of the IDs of sequences and
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elements) for each candidate. The support count of the candidate can be

easily calculated from its ID-list, which greatly reduces the cost of scanning.

Because of this, SPADE outperforms GSP to a large extent according to au-

thors experimental results.

FreeSpan

FreeSpan (Frequent pattern-projected Sequential pattern mining) (Han,

Pei, Mortazavi-Asl, Chen, Dayal & Hsu 2000) is the first projection-based

depth-first algorithm proposed by Han et al. in 2000. Similar to the pre-

vious algorithms, FreeSpan scans the database once to obtain the frequent

1-sequences and put them in the f-list(frequent item list). Then it constructs

a matrix called S-Matrix which contains the 2-sequences and their supports

generated from the f-list, and the infrequent ones are filtered. Each sequen-

tial pattern in the S-Matrix corresponds to a projected database that all the

sequences contain the sequential pattern itself. The next step is to construct

level-2-sequences from the S-Matrix and find annotations for repeating items

and projected databases in order to discard the matrix and generate level-3

projected databases. The process repeats until no candidates can be gener-

ated.

SPAM

SPAM (Sequential PAttern Mining) (Ayres et al. 2002) is a depth-first al-

gorithm that integrates the ideas of GSP (Srikant & Agrawal 1996), SPADE

(Zaki 2001) and FreeSpan (Han, Pei, Mortazavi-Asl, Chen, Dayal & Hsu

2000). A group of novel concepts such as the sequence-extension step (S-

Step), itemset-extension step (I-Step) and the lexicographical tree are firstly

introduced. Similar to FreeSpan, SPAM uses a depth-first strategy to tra-

verse the lexicographical tree to extract the complete set of frequent sequen-

tial patterns. More importantly, SPAM encodes the ID-list from SPADE to

a vertical bitmap data structure and puts them in the memory so that the

‘joining’ operation between two ID-lists is extremely fast. That is the key
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reason why SPAM outperforms any of the previous algorithms.

PrefixSpan

PrefixSpan (Prefix-projected Sequential pattern mining) (Han et al. 2001)

is an algorithm that extends the pattern-growth approach for frequent pat-

tern mining and the first algorithm that does not generate a candidate. As

an enhanced algorithm of FreeSpan (Han, Pei, Mortazavi-Asl, Chen, Dayal

& Hsu 2000), PrefixSpan uses the “prefix” of the sequence to project the

database. Then it scans the projected database for the items to be concate-

nated to the prefix, and counts the support for each item. The infrequent

concatenation items will be discarded, and frequent items will be retained.

Lastly, for each frequent concatenation item, a new prefix and its correspond-

ing smaller projected database can be constructed. The process continues

until no more frequent concatenation items can be scanned. In experimental

results, PrefixSpan performs much better than both GSP and FreeSpan. The

major cost of PrefixSpan is the construction of projected databases.

PAID and LAPIN

PAID (PAssed Item Deduced sequential pattern mining) (Yang et al.

2006) and LAPIN (LAst Position INduction sequential pattern mining) (Yang

et al. 2007) essentially follow pattern-growth algorithms such as FreeSpan

(Han, Pei, Mortazavi-Asl, Chen, Dayal & Hsu 2000) and PrefixSpan (Han

et al. 2001). The main contribution of PAID is that it adopts a novel strat-

egy to reduce the scanning cost. The technical detail is as follows. In a

prefix-sequence projection, the last position (the itemset number) of an item

can be used to judge whether or not the item can be extended to the current

prefix. For instance, s0 =< (ab) > is contained in s1 =< (ab)a(cd)ea >,

s2 =< (ab)(ae) > and s3 =< (abc)aea >. Since the last position of a in s1

is 5 (the fifth itemset contains a, similarly 2 in s2 and s3), there is no need

to scan the sequences to obtain a. Instead, PAID only needs to compare the

projection positions with the last positions of a in the three sequences. That
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is a simple example to explain the basic idea of PAID, and more complex

designs in the implementation of algorithm.

DISC-all

DISC-all (DIrect Sequence Comparison) algorithm (Chiu et al. 2004) was

proposed by Chiu et al. in 2004. The key element of DISC-all algorithm

is the DISC strategy. It discovers the frequent k-sequences without having

to compute the support counts of the non-frequent sequences. In detail, the

authors define the order of two sequences having the same length. Given two

sequences, they examine the items of both from left to right and compare

the leftmost distinct items by alphabetical order. For example, < abh > is

smaller than < acf > because b, in the second place, is smaller than c. The

DISC strategy then finds the minimum subsequences of each sequence, and

sorts the sequences according to the ascending order of these subsequences

with the same length. Therefore, the DISC-all algorithm can skip many non-

frequent candidate subsequences and save costs. The updating process in

the DISCall algorithm involves searching the (k-1)-prefix projected database,

which is similar to the mining process of PrefixSpan (Han et al. 2001).

Generally, it can be said that specific events in time, such as website

traversals, nucleotides in an amino acid, computer networks and characters

in a text string are examples of where the existence of sequences may be

significant and where the detection of sequential patterns might be use-

ful. Typically, sequential pattern mining algorithms are categorized into

one of three broad classes that perform the task Apriori-based, either hor-

izontal or vertical database format, and projection-based pattern growth

algorithms. Improvements in algorithms and algorithmic development in

general, are motivated by the need to process more data at an increased

speed with lower overheads. Additionally, much research in sequential pat-

tern mining has been focused on the development of algorithms for specific

domains such as biotechnology, telecommunications, spatial/geographic do-

mains, retailing/market-basket, and event failure detections. This has led
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to algorithmic developments that directly target real problems and explains,

in part, the diversity of approaches, particularly in constraint development,

taken in algorithmic development.

Some common challenges that remain in the field of sequential pattern

mining can described as folows:

• Pattern expressiveness: While the patterns and rules produced from the

majority of approaches are simple and by growing candidate patterns,

in the sense they do not take into account the use of temporal logic

algebras and their derivatives. Hence, this is an area that will likely

need to develop further in the future for strong usage of sequential

patterns in analytics or industrial practice.

• Annotating sequential patterns with time: Some sequential patterns are

examples of relative ordering in time. However, with few exceptions,

pinning some of the events to absolute time points and the implication

this has for pattern mining has not been investigated. For example,

there are few algorithms that could state that a given sequence occurs

on Mondays but not on other days.More generally, accommodating in-

terval semantics as well as point based tokens in the event stream would

provide richer rulesets. Using interval semantics as tokens in the se-

quence, can allow the development of powerful and efficient algorithms.

• Not many solutions in sequential pattern mining consider the conflu-

ence of ontologies/taxonomies and has to date only received minor at-

tention. Fields like healthcare can greatly benefit when pattern min-

ing approaches are combined with ontology and semantic information

about entities occurring inside patterns.

2.2 Emerging Patterns

In numerous fields, the lack of comprehensibility can be an important draw-

back causing reluctance to use certain data mining algorithms. For example,
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when credit has been denied to a customer, in some countries a financial

institution is required to provide the reasons behind the rejection of the

application. Thus, vague and indefinite reasons for denial are considered il-

legal. And then there are fields, such as medical sciences where clarity and

interpretability are key user requirements.

An important family of interpretable classifiers are based on the use of

emerging patterns (Ramamohanarao & Fan 2007). Simply put, an emerging

pattern tends to appear frequently on the items or objects in one class, but

it is harder to find in items belonging to other classes. As a result, emerging

patterns are used to predict the class of unknown items or instances, and

they report the frequency support of the discovered patterns that allows the

result to be interpreted in the correct context.

Emerging pattern classifiers have been used for essential knowledge dis-

coveries to solve real world problems in fields such as streaming data analysis

(Alhammady 2007), bioinformatics (Pasquier, Pasquier, Brisson & Collard

2008), human activity recognition (Gu, Wu, Tao, Pung & Lu 2009), intruder

detection(Chen 2007), anomaly detection in network connection data (Ceci,

Appice, Caruso & Malerba 2008), forecasting of rare events (Gavrishchaka

& Bykov 2007), and privacy preserving data mining (Andruszkiewicz 2011).

Extracting emerging patterns from a training sample is challenging, due

to the following reasons:

1. The downward closure property (Zaki & Hsiao 2005), used for frequent

itemset discovery, does not hold for Emerging Patterns (EPs).

2. For high-dimensional datasets, there are many potential emerging pat-

tern candidates. Mining for all emerging patterns turns out be an

NP-hard problem (Wang, Fan & Ramamohanarao 2004).

3. Continuous features having marginal values such as 3, 2.999 and 3.001

are not equal, but they can probably be found in the same pattern. In

contrast, global discretization of numerical features may lead to serious
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degradation of the classification accuracy, since similar values could be

assigned to different discrete values.

4. Emerging pattern mining algorithms are sensitive to minimal support

threshold values, and so it could be very hard for the user to define a

good threshold value. The minimum support threshold is the minimal

amount of instances that should support a pattern to be considered as

a potential candidate.

5. Handling missing data: Missing data raises many difficulties in scien-

tific research since data analysis procedures were not always designed

for to handle them (Schafer & Graham 2002). Common approaches

like data editing provides an appearance of completeness. However,

sometimes estimating a missing value can lead to producing answers

that are inefficient, biased, and un-reliable (Schafer & Graham 2002).

6. Emerging pattern classifiers may suffer the risk of high levels of absten-

tion in those instances when an unknown instance cannot be assigned

a class. In most classifiers abstention can be due to tie of evidences,

whereas pattern based classifiers may find abstention due to lack of

evidences for classifying the instances. The lack of evidence appears

when no pattern matches the query object.

For a supervised classification problem, a pattern is considered discrimina-

tive if it involves properties which seek to differentiate between classes. There

are numerous ways of representing discriminative patterns within classifiers,

though these are implicit in some classifiers. For example, with a decision

tree (Quinlan 1986) or forest (Ho 1998), the decision paths from the root to

the leaves can be implicit discriminative patterns expressed in a conjunctive

form. For a rule-based system (Hämäläinen 2010), the rule antecedents imply

turn out to be discriminative patterns for a given class.

In this context, the emerging pattern is an important type of discrimina-

tive pattern. The ability to discriminate between two classes for an emerging
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pattern is due to its support being significantly larger in one class than

in the opposite class (Dong & Li 1999). Moreover, the support of a dis-

criminative pattern in the positive class needs to be higher than a certain

minimal support threshold µ. The intuition behind using a minimal support

is that an emerging pattern with low support can be spurious or uninter-

esting, which could lead to incorrect and unreliable classifications (Fan &

Ramamohanarao 2006).

There are many algorithms to search for patterns within a database. Most

of them are based on restrictions that reduce the computational complexity of

using exhaustive techniques. The most important and prominent restriction

is the downward closure property (Zaki & Hsiao 2005). Thus, a property

X satisfies the downward closure if 3 pattern P, if P satisfies X, then any

pattern P̄ more specific than P also satifies X.

Searching for discriminative patterns within a training sample is the key

procedure in many comprehensible and interpretable classifiers, even though

these are implicit patterns. A discriminative pattern for a single class covers

at most a limited amount of objects in other classes. A more specific pattern

covers more objects in the positive class, but it also tends to cover objects

in other classes and this limit could increase. Hence, discriminative patterns

do not satisfy the downward closure and one cannot mine them using algo-

rithms such as Apriori (Hämäläinen 2010). Additionally, there are too many

candidate patterns in high dimensional datasets and exhaustive algorithms

are too costly due of the size of the search space (Dong & Li 1999). Most

papers about emerging patterns use a transactional representation of the ob-

jects and patterns. Thus, an instance is represented as a collection of items,

or an itemset. Here, an item is an ordered pair (Feature, value), such that

the “value” belongs to the domain of the “Feature”. If the original database

contains numeric features, they can be discretized using methods like the

Entropy algorithm (Fayyad & Irani 1993). There have a number of papers

extending EPs to propose extended representations such as the disjunctive

emerging patterns (Loekito & Bailey 2009), the extended crisp emerging
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patterns (Garćıa-Borroto, Mart́ınez-Trinidad & Carrasco-Ochoa 2010), and

the fuzzy emerging patterns (Garćıa-Borroto, Mart́ınez-Trinidad & Carrasco-

Ochoa 2011).

Dong and Li (1999) introduced the ρ-emerging pattern for two class

problems, which is an emerging pattern having GrowthRate ≥ ρ. The

GrowthRate 2.1 measures how frequent a pattern is in its own class CP

with respect to its frequency in the opposite class C.

GrowthRate(P ) = 0 if support(P,C) = 0 ∧ support(P,CP ) = 0

=∞ if support(P,C) = 0 ∧ support(P,CP ) > 0

=
support(P,Cp)

support(P,C)
otherwise

(2.1)

Among these, an important category of emerging patterns (EPs) are those

which cover objects in the positive class, and are named as Jumping Emerg-

ing Patterns (Definition 1). The jumping emerging patterns are widely used

in emerging pattern classifiers, since they have a strong predictive capabil-

ity. Thus, jumping emerging patterns describe properties that are strongly

reflective in a single class, so they should be distinctive.

Definition 1. A Jumping Emerging Pattern (JEP) is an emerging pat-

tern with infinite growth rate (Li et al. 2000).

Later, Fan and Ramamohanarao (2006) proposed the Strong Jumping

Emerging Pattern (Definition 2). These patterns have an infinite growth

rate, but they are also minimal with respect to the subset inclusion.

Definition 2. P is a Strong Jumping Emerging Pattern (SJEP) if it

fulfills the following conditions:

1. P has infinite growth rate.

2. No proper subset of P satisfies condition 1.

Thus for a pattern not having a proper subset that satisfies condition 1,

means that the corresponding pattern is a strong jumping emerging pattern
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and is the minimal JEP which satisfies the frequency support constraint. Fan

et al. (2006) reports that non-minimal JEPs are not useful for classification,

and can be unreliable from an accuracy viewpoint, specially while aggregating

many of them to make decisions. SJEPs are also known as essential JEPs

(eJEPs) (Fan & Kotagiri 2002).

Wang et al (2004) suggested that aggregating many minimal EPs can

cause duplicate counting of the EPs contribution, leading to lower accuracy.

For example, if the properties are denoted by A, B, C, D, E, and F and the

patterns ABCD, ABCE, ABCF are all minimal, then counting their contri-

bution as an individual pattern can make the pattern ABC to be counted

three times.

To solve the duplicate counting the authors proposed the Maximal Emerg-

ing Pattern (Definition 3).

Definition 3. A Maximal Emerging Pattern (MaxEPs) is an emerging

pattern whose supersets are not emerging patterns.

Hence, the merits and demerits of using minimal and maximal patterns

for classification, are as follows:

Using only minimal, more general patterns:

• If a smaller set of features can distinguish between two classes, then

using more features do not help and can add noise (Fan & Kotagiri

2002).

• They speed up the search process, saving computing costs (Fan &

Kotagiri 2002).

• Large growth rate ensures EPs strong discriminative power; large sup-

ports, i.e enough coverage on the training dataset ensures that EPs are

more resistant to noise (Fan & Ramamohanarao 2003).

• Minimal EPs have higher support, thus unknown instances are easier

to match (Wang et al. 2004).
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• Aggregation of many minimal EPs cause duplicate counting of individ-

ual EP’s contribution leading to lower accuracies (Bailey, Manoukian

& Ramamohanarao 2002).

Using only maximal, more specific patterns:

• These patterns expose more information about the higher order inter-

actions between features and are comprehensive (Zhang, Dong et al.

2000).

• They reduce the duplicated EP contribution problem (Wang et al.

2004).

• Maximal patterns are harder to find in the query object, so the classifier

may have fewer patterns to decide about the classification (Wang et al.

2004).

No matter what the advantages of using jumping emerging patterns are,

it can be said that they cannot capture useful properties if the dataset is

noisy. Real world datasets have significant noise due to machine or user

errors. To make emerging patterns tolerant to noise, a small but not strictly

zero support in other classes need to be allowed (Definition 4).

Definition 4. A Noise-tolerant emerging pattern (NEP) is a minimal

pattern P that satisfies:

1. support(P,CP ) ≥δ1

2. support(P,C) ≤δ2

where CP is the class of the pattern, C ≤ CP is any other problem class, and

δ2 < δ1 are two positive integer thresholds (Fan & Ramamohanarao 2006).

Other types of emerging patterns have been defined which incorporate ap-

propriate constraints, such as chi emerging patterns (Ramamohanarao & Fan

2007), constrained emerging patterns (Bailey, Manoukian & Ramamohanarao

2003), emerging patterns having counts of occurrences (Kobyliński & Walczak

2008), and high-level emerging patterns (Muyeba, Khan, Warnars & Keane
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2011). Nevertheless, they are very specific to certain applications, and their

usage differs across multiple domains.

2.2.1 Estimating the quality of emerging patterns

After training, the quality of a pattern based classifier tends to be directly

proportional to the quality of the internal structure it involves to represent

the relationships between patterns found in the training sample. to this

purpose, we can say that the classifier quality depends tightly on the mined

emerging pattern quality.

Generally there does not exist a standard methodology to measure the

quality of an emerging pattern set. Hence, the quality of an emerging pattern

subset is frequently inferred based on the accuracy of a classifier constructed

using this subset. Nevertheless, it is to be noted that the accuracy of the

classifier can be affected by many other parameters, such as the support

aggregation mechanism and the pattern organization.

Typically, there are some desired properties a pattern collection should

satisfy -

• Discriminative power: Every pattern should cover a significant amount

of instances in a positive class, and fewer instances in the opposite

classes.

• Simplicity: There should be a limited number of patterns. Violating

this property could seriously lead to degrading the classifier’s compre-

hensibility.

• Non-redundancy: Each pattern should consist of some new knowledge,

with respect to the other patterns. Redundant patterns could present

redundant evidence on a query instance, thus biasing the classification

towards a single class.

• Generality: Patterns covering a large amount of instances tend to be

less noisy. On the other hand, very specific patterns could exist due to

33



CHAPTER 2. LITERATURE REVIEW

chance.

Algorithms for mining emerging patterns follow the following strategies

for obtaining a high quality pattern collection:

• Extract patterns belonging to a particular family, like the following

examples:

– Patterns that cover instances in a single class, such as jumping

emerging patterns, used in the DEEPs classifier (Li, Dong, Ra-

mamohanarao & Wong 2004).

– Minimal patterns with respect to the subset inclusion of their re-

spective properties, used in the SJEPC classifier (Fan & Ramamohanarao

2006).

• Filtering of a large set of patterns, and obtaining a subset with the

desired properties, used in BCEP (Fan & Ramamohanarao 2003) and

LCMineC (Garćıa-Borroto, Mart́ınez-Trinidad, Carrasco-Ochoa, Medina-

Pérez & Ruiz-Shulcloper 2010) classifiers.

2.2.2 Mining paradigms

There exist three major paradigms for mining emerging patterns. These

employ particular data structures and algorithms. For each of these, we

present the general algorithm, the main papers, and their strengths and

weaknesses.

Border-based

Dong and Li (1999) introduced the concept of emerging patterns (EPs). They

found that the number of EPs in a problem could be extremely huge, and

proposed a simplified representation, using the subset-closedness: they con-

sidered all the EPs as a collection of minimal and maximal patterns over the
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subset inclusion relation, called borders. In their work, they reported that

borders can be efficiently extracted for numerous commonly used repository

databases.

ConstEPMiner (Zhang et al. 2000) introduced a set of constraints to prune

the search space of EPs and reduce computations. The authors proposed an

algorithm to apply these constraints to extract a subset having strong predic-

tive power and no redundancies. Only patterns that are more general (those

with top growth rate) remain and the algorithm filters patterns with the

same support, considering them as redundant. Although these constraints

are the basis of many post-processing and filtering methods, the algorithm

also removed some important patterns impacting the classifier performance.

Borders are used in the border-based approach to represent candidates

and subsets of patterns. Border differential operations are used to dis-

cover patterns, using the following general algorithm (Ramamohanarao &

Fan 2007):

1. Select the minimal support threshold for each class.

2. Find the borders for each class, using an algorithm like Max-Miner

(Bayardo Jr 1998).

3. Compute the emerging patterns within the border using border differ-

ence operators

Representation tree-based

Bailey et al (2002) proposed the first tree based approach to a fast JEPs min-

ing method. The authors adapted the frequent pattern tree FP-tree (Han,

Pei, Yin & Mao 2004) algorithm to deal with datasets structured as classes.

Moreover, the authors reported a study on the influence of the selection of

the minimal support threshold towards the classification accuracy. They

discovered that, in numerous real world databases, it can be worthwhile to

use higher threshold values because of the substantial decrement in compu-

tational time, at the expense of little accuracy degradations. The authors
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also demonstrated the impact of mining only patterns with length below

a given threshold, arguing that smaller (more general) patterns tend to be

most suitable for classification. Although they found a significant increase in

extraction efficiency, they also found a reduction in classification accuracies

in some databases.

Later, Li et al (2007) introduced the following important modifications

to the adapted FP-tree, in order to speed up the process:

• Grouping mined patterns in equivalence classes, according to the de-

scribed instances. This allowed to reduce redundant patterns, and to

simplify the process of computing sophisticated statistics, which are

used to select the most useful patterns.

• Suppressing highly frequent and rare items, given their limited tenden-

cies to appear in emerging patterns.

• In multi-class problems, the algorithm simultaneously mines patterns

from all classes. Prior methods handled multiple classes one by one,

using a single class and the complement on each iteration.

A different tree, namely contrast pattern tree (CP-tree), was proposed

by Fan and Ramamohanarao (2002). A CP-tree is an ordered multiway tree

structure, wherein all the instances in the training sample are covered. The

mining algorithm searches depth-first the CP-tree to discover the patterns.

For computational efficiency, only the strong JEPs were considered.

An adaptive version of CP-tree based mining (Terlecki & Walczak 2008b,

Terlecki & Walczak 2008a) reportedly raises the minimum support threshold

during the mining process. The algorithm tries to extract the top-k patterns,

so the threshold is increased based on the number of patterns mined so far

with the current threshold value. This optimization boosts the mining speed,

since more tree branches are pruned earlier.

Bailey et al. (2003) proposed a fast algorithm for computing hypergraph

transversals and applied it to mining emerging patterns. This algorithm is
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based on a guided partitioning heuristic, which seems to work fine in some

databases with thousands of instances.

Fan et al. (2003) created the first post-processing emerging pattern filter-

ing process. They extracted SJEPs from the training sample, ranked them,

and iteratively selected those that covered at least a new instance. The rank-

ing considered the pattern support and the length of the pattern, discarding

the growth rate information. As per the authors, EPs have implicitly large

growth rate, and it does not make sense to compare between their values.

Loekito and Bailey (2006) employed Zero-Suppressed Binary Decision

Diagrams (ZBDDs) (Minato 1993) as the core data structure for mining

emerging patterns. Itemsets were represented as a n-bit binary vector, where

each Boolean value represents the presence/absence of the particular item.

Then, binary operators such as set-union, set-difference, and set intersection

are performed for mining the emerging patterns. ZBDDs work like CP-trees

and FP-trees, while drastically improving performances.

In cases where data are scattered in multiple tables of a relational database,

it is not necessary to do costly joins to mine the emerging patterns. Appice et

al (2007) proposed Mr-EP, a method to capture the differences between the

instances of two classes. Mr-EP can extract emerging patterns whose proper-

ties are spanned in separated data tables. A recent technique for this purpose

also uses local projections of the databases (Terlecki & Walczak 2008b).

Algorithms for mining emerging patterns in the representation tree-based

approach employ the following steps:

1. Selection of the minimal support threshold µ.

2. Global discretization of numeric features.

3. Representation of the transformed instances using a particular data

structure.

4. Traversing the structure to find efficiently mine emerging patterns.

5. Post-processing and filtering of patterns.
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Decision tree-based

Garca-Borroto et a. (2010) introduced LCMine. This method extracts a

representative collection of emerging patterns from a family of decision trees,

induced from data. The tree induction procedure is similar to traditional

methods for building decision trees, but they explore more candidate splits

in order to look for properties that better describe the training sample in

terms of accuracy and simplicity.

Crisp Emerging Pattern Miner (CEPM) (Garćıa-Borroto, Mart́ınez-Trinidad

& Carrasco-Ochoa 2010) is an enhanced version of LCMine. CEPM is faster

and more accurate than LCMine, because it includes the following improve-

ments:

• CEPM uses a novel weighting scheme for mining diverse patterns and

it uses a stop criterion based on pattern coverage. This way, it does

not have to generate a fixed amount of trees like LCMine does.

• CEPM does not need a pattern filtering post-processing. Nevertheless,

it obtains fewer and more accurate patterns than LCMine does.

• CEPM assigns weights to the objects according to the support they

have with the current mined patterns. This information is used in the

generation of the subsequent decision trees. This way, CEPM priori-

tizes new patterns covering unsupported objects or objects supported

in a wrong class.

• CEPM uses a novel algorithm for estimating the minimal support

threshold.

For mining fuzzy emerging patterns, Garca-Borroto et al. introduced the

Fuzzy Emerging Pattern Miner (FEPM) (Garćıa-Borroto et al. 2011). The

mining algorithm is similar to LCMine, but it uses a fuzzy decision tree to

allow extracting fuzzy patterns.

The algorithms in the decision tree-based have the following general steps:
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1. Induce a diverse decision tree.

2. Extract patterns from the induced decision tree. Each pattern corre-

sponds to the conjunction of the properties from the root node to a leaf

node.

3. If stop condition is not met, return to Step 1.

4. Merge the patterns extracted from all induced decision trees.

5. Filter patterns.

It is important to note that the algorithms in this paradigm do not in-

clude a global discretization step, because they discretize only feature values

appearing in the objects that belong to each tree node. The mining method

has the following aspects:

• Type of decision tree to be built: fuzzy or crisp.

• Induction algorithm to build the decision trees.

• Method to obtain diverse decision trees. Classical methods to induce

decision trees obtain a single tree, which is not enough to find a repre-

sentative collection of patterns.

• Stop condition. This condition evaluates if the patterns mined so far

are representative enough for the database.

Mining methods belonging to other paradigms are able to find all the

emerging patterns in a database. Nevertheless, decision tree-based miners

do not usually find all the emerging patterns, but commonly obtain a good

collection of high-quality patterns. This is supported by the following rea-

sons:

• In databases containing numerical features, there is a finite number

of traditional emerging patterns, but an infinite number of extended

emerging patterns. Then, it is impossible to mine all the patterns.
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• Decision trees split the database using first the most discriminative

properties. If the method for obtaining diversity follows this rule, the

patterns mined are the most discriminant among all the patterns. So,

they are the best patterns for classification.

• The experimental results presented in their respective papers show that

decision tree-based miners are more accurate than traditional miners

over significant database collections.

A useful characteristic of a supervised classifier is that the user can com-

prehend the classification results in terms of knowledge domain, particularly

in those cases where the classification is contradictory with the user expec-

tations. Unfortunately, top accurate classifiers are usually non comprehen-

sible, while most comprehensible classifiers attain lower accuracy in most

databases. On the contrary, emerging patterns classifiers build accurate and

easy to understand models. Further, the commonalities (and differences) be-

tween the above described approaches in addition to algorithms in subgroup

discovery (Gamberger & Lavrac 2002, Klösgen & May 2002) have been high-

lighted extensively Nada and Lavrac (2009).

2.3 Temporal Patterns

In previous sections, we mainly described the related research on pattern

mining for attribute-value data (i.e atemporal data). Now, we focus our

attention to using temporal datasets, which require various tools and tech-

niques than those used for atemporal data.

Temporal data generally refers to any type of data which explicitly or

implicitly captures the notion of time and defines a specific order. As an

example, even if time is not provided explicitly and only a sequential ordering

is given, we may still consider the data to be temporal (e.g., DNA sequences).

Temporal data is univariate, when the data instances consist of measure-

ments of a single variable over time. Temporal data is multivariate when the

data instances consist of measurements of multiple variables over time.
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If time between consecutive events is uniform, we can say that the tem-

poral data is regularly sampled in time (the same for all pairs of consecutive

events). Else, the data is considered to be irregularly sampled in time. The

latter is often the case for electronic health records, which is the focus of this

thesis.

Temporal data may also be classified based on values of its observations.

If the values are numeric, we have a numeric time series. If the values are

discrete (belonging to a finite alphabet Σ), we have symbolic sequences. For

example, a DNA sequence is a symbolic sequence, where the alphabet rep-

resents the 4 possible nucleotides Σ = {A,G,C, T}. A real world example

of multivariate symbolic sequences involves log messages which are emit-

ted from multiple machines or alarms that are emitted in a telecommuni-

cation network (Mannila, Toivonen & Verkamo 1997). Note that symbolic

sequences can also be obtained from numeric time series using discretization

(Lin, Keogh, Lonardi & Chiu 2003).

In many cases, the data do not consist of time points, but of time intervals.

Time intervals have durations and are associated with specific start and end

times. As an example, the data may express temporal concepts like “the

patient underwent cancer chemotherapy from day 11 until day 15 of his

hospitalization”. Here, we consider some state sequences, where each state

holds during a specific time interval.

Finally, for a temporal data model, the database may consist of a single

long sequence or multiple (short) sequences. Examples of the former can

be weather data (Höppner 2003) or stock market data (may be collected

over many years). Examples of the latter may be web-click data, customer

shopping profiles (Agrawal & Swami 1993), telephone calls, electronic health

records (Hauskrecht, Valko, Batal, Clermont, Visweswaran & Cooper 2010),

and so on. Long sequences are usually mined using a sliding window ap-

proach, where a window of a specific width is slid along the sequence and

only patterns that are observed within this window may be considered valid

(Mannila et al. 1997, Höppner 2003, Moerchen 2006).
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Classifying temporal data

Next, we review some commonly used techniques for classification of tem-

poral data. It should be noted that temporal classification and time series

forecasting have differences in their methods. The task of temporal classifi-

cation can be defined as follows: “Given an unlabeled sequence or time series

T, assign it to one of predefined classes”. In contrast, the task of time series

forecasting can be defined as follows: “Given a time series T that contains

n data points, predict its future values at future time points - n+1,n+2,...”.

Here, we discuss temporal classification methods, which are more related to

the topic of the thesis.

In temporal classification problems, each sequence (time series) belongs

to one of finitely many predefined classes and the objective is to be able

to learn a model which can classify future sequences. There exist many

practical applications of temporal classifications, involving classifying Elec-

troencephalography signals (Xu, Guan, Siong, Ranganatha, Thulasidas &

Wu 2004), speech recognition (Rabiner 1989), gesture recognition (Li, Mc-

Cann, Pollard & Faloutsos 2009), and more.

A number of methods (Tseng & Lee 2005, Exarchos, Tsipouras, Pa-

paloukas & Fotiadis 2009) classify symbolic sequences by employing a two-

staged approach, which mines all frequent sequences (i.e sequential patterns)

in the first stage and selects the classification sequences in the following stage.

As opposed to the two-stage approach, Ifrim et al. (2011) employed interleav-

ing techniques for pattern selection and frequent pattern mining. The author

employs gradient-bounded coordinate descent to efficiently select discrimina-

tive sequences without having to explore the whole space of subsequences.

Their evaluations demonstrated that this method could achieve compara-

ble performance to the state of the art kernel-based support vector machine

methods for classification of symbolic sequences.

Next we discuss the algorithms for mining time point data and time

interval data.
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2.3.1 Substring patterns

The simplest type of temporal patterns that can be extracted from time point

symbolic sequences are sub-string patterns (Fischer, Mäkinen & Välimäki

2008). These are subsequences of symbols that appear consecutively in a

sequence (without gaps). Discovering such patterns is mostly used in bioin-

formatics and computational biology for matching sequences of amino acids

and nucleotides.

2.3.2 Sequential patterns

Sequential patterns tend to be more general than substring patterns since

they do not need to be consecutive in the sequence (allowing gaps). The

standard sequential pattern mining framework only cares about the order of

events rather than their exact timestamps. Thus, sequential pattern mining

need not require the original sequences to be regularly sampled in time.

Note that the application of sequential pattern mining extends to univariate

or multivariate symbolic sequences.

In the space of temporal pattern mining, the number of sequential pat-

terns can be reduced using temporal constraints.

Temporal constraints

Mining the complete set or even the closed set of frequent sequential patterns

usually leads to results that are extremely large for analysis by humans. One

way to limit the number of sequential patterns can be to impose temporal

constraints on the patterns. A temporal constraint is to restrict the total

duration of the pattern. For example, one may specify that the total pat-

tern duration must not exceed a given time period (e.g., 3 months). This

constraint translates to defining a sliding window of width w and mining

only sequential patterns that can be observed within this window. Another

common temporal constraint is to define the maximum gap that is allowed

between consecutive events in a pattern. Thus, we may specify that the
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difference between consecutive events should not be more than g time units

(e.g., 2 weeks).

Incorporating temporal constraints in the Apriori approach is described

in (Srikant & Agrawal 1996) and the pattern growth approach is described

in (Pei, Han & Wang 2007).

2.3.3 Time-interval patterns

Villafane et al (2000) is the earliest work in the area of mining time interval

patterns. Their temporal patterns are restricted to having only containment

relations, which corresponds to Allens contains relation. An example of such

patterns is “during a FLU infection, a certain strain of bacteria is often found

on the patient”.

Kam and Fu (2000) were the first to propose using Allenś relations to

define temporal patterns. Their temporal patterns, called the A1 patterns,

were based on a nested representation which only allowed the concatenation

of temporal relations on the right hand side of the pattern. For example, P1

ε ((A1 before D2) overlaps B3) is interpreted as: “state A1 is before state

D2 and the interval that contains both A1 and D2 overlaps with state B3”.

Hoppner (2003) proposed the first non-ambiguous representation for defin-

ing time interval patterns. The idea is to first define the normalized form

of temporal patterns, where the states of a pattern are always sorted in in-

creasing index according to their start times, end times and value. Now in

order to define a temporal pattern with k states (a k-pattern), we should

specify the relations for all pairs of states. For mining these types of tem-

poral patterns, (Höppner 2003) used a sliding window approach to extract

the local temporal patterns (i.e., patterns with limited total durations). He

defined the support of a pattern to be the total time in which the pattern

can be observed within the sliding window. Note that this definition is differ-

ent from the popularly employed frequency support definition, which is the

number of times a pattern appears in the data. His algorithm extends Apri-

ori for sequential patterns to handle the more complex case of time interval
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patterns.

2.4 Pattern mining in Critical Care Applica-

tions

Historically, data that is generated as a process of medical care is not just

underused but is rather wasted. Traditionally, the reason behind this was

related to difficulty in access, organization and usage of data stored in pa-

per charts. Moreover, there was major variability in clinical documentation

procedures which added on to the problem. In this context, medicine has

remained a highly empirical process without the existence of smart ways to

systematically tackle, capture, analyse and integrate information contained

in the massive data generated during patient care. As a result, existing sys-

tems are typically disconnected from individual experiences and preferences,

thus completely missing out on opportunities for effective personalized health

and critical care delivery services.

As previously noted by Fialho et al (2013), the ICU has risen to be a

compelling case for clinical data analysis. Typically, the value and impact of

multiple interventions and treatments for a specific patient is just unproven,

without the existence of any high quality data and well supported theories

of hospital protocols and treatments. Specifically for the ICU, discovered

knowledge of best practices is extremely thin in comparison to the data

generated from such a complex environment. In medical circles, it is also

widely believed that in a complex environment like the ICU, there is a need

for variations in timely responses for patient subsets and contexts. It is

thus pertinent that modern predictive methodologies can be used to take

advantage of critical care databases and can thus create knowledge-bases

that can be used for efficient delivery of patient care. In this context, several

commercial and non-commercial critical care databases have been developed

that capture patient illnesses, demographic information and physiological

signals.
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Sophisticated pattern mining methodologies can be used to analyse patient-

specific physiological data and provide fast real-time alerts regarding severity

outcomes of patient conditions. It is thus necessary to develop closed-loop

predictive technologies that can act on real-time continuous physiological

data and incorporate fast feedback towards an extremely efficient patient

care system.

2.4.1 Short-term predictive modelling

Such modelling techniques are concerned with predicting the evolution of

the individual patient and are associated with early identification of changes

in the health state of the patient at the level of minutes, hours or days.

Predictions can be obtained from the analysis of raw signal data generated

from the different ICU information sources, whether numeric or textual. The

vast majority of short term predictive modelling activities are based on data

mining techniques that were developed for classification and regression tasks

in general, where the inputs are assumed to be independent of time, and have

then been applied to be used as features in the time-series domain. Some

examples of interesting short term predictive studies involving a wide array

of machine learning algorithms are reported as below.

• Bayesian networks (BN) have been employed for the prediction of fluid

requirement on day two of ICU stay, as a study of inflammatory re-

sponse in 3,000 patients, which resulted in a predictive accuracy of 78

% (Celi, Christian, Alterovitz & Szolovits 2008).

• A rule-learning algorithm was employed to predict impending physi-

ologic instability across 12,000 ICU patients, resulting in 90 % sensi-

tivity and 60 % specificity (Eshelman, Lee, Frassica, Zong, Nielsen &

Saeed 2008).

• Prediction based on historic data collected, 15 and 30 minutes in ad-

vance of events of hypotension in a multi-centre database of over 260
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traumatic brain injured patients via a Bayesian artificial neural network

(ANN) resulted in a 41 % sensitivity and a 86 % specificity (Van Looy,

Verplancke, Benoit, Hoste, Van Maele, De Turck & Decruyenaere 2007).

• Prediction of hypotension episodes, 1 or 2 hours in advance via ANN

resulting in an area under the receiver operating characteristic curve

(AUC) of 0.92, a 83 % sensitivity and 86 % specificity (Donald, Howells,

Piper, Chambers, Citerio, Enblad, Gregson, Kiening, Mattern, Nilsson

et al. 2012).

• Prediction of second day ICU discharges after non-emergency cardiac

surgery via Gaussian processes (GP) conducted on a cohort of 500

patients. This resulted in an AUC of 0.76, and demonstrated a signifi-

cantly better discriminative power than the EuroSCORE and the ICU

nurses, and equal performance compared to ICU physicians (Meyfroidt,

Güiza, Cottem, De Becker, Van Loon, Aerts, Berckmans, Ramon,

Bruynooghe & Van den Berghe 2011).

Although, these studies are not meant to be an exhaustive exploration

of all the available techniques in the ICU literature, they rather serve to

briefly inform of the diverse spectrum and maturity of the field of predictive

modelling in ICU.

2.4.2 Long-term predictive modelling

Historically, models based on demographic and administrative static data

have been considered to be golden standards for long term or outcome pre-

diction. The main reason being that they have been developed and validated

in very large databases that can go back several decades. Likewise, these

types of variables predate the electronic era, which eased the collection costs

and feasibility when compared to monitored clinical data. Examples of long

term survival prediction studies are described next.
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• In a large study of over 47,000 patients, prediction of survival at 180

days after hospital discharge of patient resulted in an AUC of 0.73 for

an administrative only model in comparison to the use of clinical vari-

ables which improved performance to 0.83 (Bohensky, Jolley, Pilcher,

Sundararajan, Evans & Brand 2012).

• In a very large mortality prediction study on 55 Dutch ICUs and across

66,000 patients , improved performance and robustness were demon-

strated by a model based on clinical data , against a model based

on administrative data, having AUCs of 0.85 and 0.77 respectively

(Brinkman, Abu-Hanna, van der Veen, de Jonge & de Keizer 2012).

• In a study of over 38,000 patients data from several information sources

during the first 24 hours of ICU stay were used to develop ANN, SVM,

decision trees (DT) and conventionally used logistic regression (LR)

models, all of which resulted in similar discriminatory performance with

AUCs above 0.87. Additonally, these models had similar performance

as the routinely used scoring system APACHE III, albeit requiring less

predictive variables (Kim, Kim & Park 2011).

The majority of long term ICU prognosis deals with mortality predic-

tion for different risk sub-populations. In such scenarios, as discussed, there

exist well established golden-standards with which to compare model per-

formance. Long term prediction outcomes, such as mortality are commonly

used for benchmarking purposes, for evaluating the financial and patient care

performance of an ICU or hospital as a whole. However, unless models are

sufficiently well-calibrated and discriminative to provide accurate predictions

for the individual patient they are of little use to daily clinical practice. For

highly performing models, a difference in prognosis between the predictions

of models and the clinician’s opinion could lead to more in-depth tests that

can evaluate the health-state of a patient. Such models can also be employed

to provide value for counselling of relatives and patients, and can be deployed

in hospitals where there is a general lack of expert clinicians.
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2.4.3 State-of-the art in ICU informatics

There have been certain organized research groups internationally, which

have been focusing on the area of predictive analytics in critical and health

care systems. A major amount of thrust on this area has been initiated after

the development of the t he MIIMICII research database (Saeed et al. 2011).

Fialho et al (2013) reported using a disease based modeling strategy in com-

parison to a general method, towards performance improvements, to predict

the progress of fluid resuscitation to vasopresuure use in ICUs thus treat-

ing fluid response as an outcome variable. Mandelbaum et al (2013) em-

ployed multivariate logistic regression models for in-hospital mortality and

RRT (renal replacement therapy) predictions, based on serum creatinine and

urine output measurements. Customized mortality prediction models, using

bayesian and neural networks, have reported better accuracy in compari-

son to traditional methods like SAPs (Simplified Physiology Score) for ICU

patients (Celi, Galvin, Davidzon, Lee, Scott & Mark 2012, Celi, Tang, Vil-

larroel, Davidzon, Lester & Chueh 2011). Automated intelligent methods

have been reported to record more reliable blood pressure measurements

associated with hypotension (Hug, Clifford & Reisner 2011). Sayadi et al

(2010) developed dynamic bayesian framework models to classify ventricu-

lar complexes from ECG signnals. Clifford et al (2009) described several

key problems and methods related to data collection and storage errors,

noise reduction, addressing missing data, quality analysis of acquired sig-

nals, robust data fusion, false alarms in ICU etc. Typically, certain ef-

forts have been also directed to the development and improvement of real

time alarm algorithms in the ICU and relevant comparisons were reported

against previous and present generation bedside monitor alarm algorithms

(Zhang, Silvers & Randolph 2007, Zhang & Szolovits 2008, Wong, Clifton

& Tarassenko 2012). A review of patient monitoring systems, methods and

their requirements in the ICU has also been reported by Schmid et al (2013).

From the machine learning viewpoint, semi-supervised learning algorithms

have be reportedly been used to improve detection of intracranial pressure
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alarm systems in ICU, as compared to supervised learning methods that re-

quire extensive training phases (Scalzo & Hu 2013). Additionally, static rule

based induction methods have also been employed for predicting hemody-

namic instability in ICU patients (Eshelman et al. 2008). Evolutionary opti-

mization algorithms have also been used to select dynamic physiological fea-

tures which were used to build prediction models among patients with sepsis

and hypotension (Mayaud, Lai, Clifford, Tarassenko, Celi & Annane 2013).

Lehmann et al (2012) recently employed Bayesian non-parametric methods

to determine clusters of patients having similar physiological signal dynam-

ics of blood pressure and examined it’s utility in predicting mortality. Their

study stressed the importance of analyzing the dynamics of physiological

time series and emphasized the importance of methods that could effectively

analyze such complex time series data (Li-wei, Nemati, Adams, Moody, Mal-

hotra & Mark 2013, Nemati, Li-wei & Adams 2013). Moreover, the Physionet

platform described by the authors has typically harnessed on the crowdsourc-

ing policy of allowing participants to evaluate their learning algorithms for

several challenges that they host, every year. The belief that temporal pat-

terns in physiological time series data could be of immense use has also been

covered by a recent review by Stacey and McGregor (2007). An important

application area where analytical efforts have been emphasized upon, is also

the neonatal ICU (NICU). Thommandram et al (2013) used static rules en-

coded in to the real time Artemis framework (McGregor, Catley, Padbury &

James 2013) to classify neonatal spells from physiological data streams.

2.4.4 Research issues

In general, from the sequential pattern mining point of view, important case

studies in critical care informatics may need to be taken up for ICU datasets

for further investigations. There are numerous areas where retrospective

electronic health records driven data investigations using sequential pattern

mining can generate hidden clinical patterns and rules that are useful to

understand progression of symptoms while leading to a specific critical event.
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Some important examples of such investigations can involve:

• Mining of interesting blood pressure (BP) patterns causing hemody-

namic instabilities like hypotension

• Mining of significant clinical patterns in relation to Septic Shock Pre-

diction

• Investigating causal patterns in relation to Acute Renal Failures

• Mining of interesting sequential patterns in Cardiac Outputs (CO)

Our research is thus motivated by a need to explore and demonstrate

the importance of mining interesting sequential patterns like contrastive se-

quences for early prediction of critical patient outcomes that can facilitate

timely medical interventions.
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Hypotension Risk Prediction

via Sequential Contrast

Patterns of ICU Blood

Pressure

Acute hypotension is a significant risk factor for in-hospital mortality at

intensive care units. Prompt medical interventions are thus extremely im-

portant for dealing with acute hypotensive episodes (AHE). In this chapter,

we describe the design of an efficient risk prediction system that can signif-

icantly help in the identification of critical care patients, who are at risk of

developing an AHE within a future time span. To this objective, we first

introduce the scope of prediction problems in the field of hypotension. Next,

we formulate the problem of predicting events in a future time window, where

related works in the area are also highlighted. Following this, we progress to

describing the methodology for the experiment involving algorithm descrip-

tions and dataset constructions. Finally, extensive discussions of prediction

results and their clinical significance are reported.
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3.1 Introduction

In the past few years, there has been a significant rise in patient monitoring

devices aggregating large-scale patient data in intensive care units. Typi-

cally, most of this huge volume of data has remained underutilized, leading

to slower progress in medical research. However, with increasing demand

on healthcare organizations, there is now an urgent necessity to provide im-

proved access and quality of care at lesser costs. As evidence obtained from

modern data-driven techniques have contributed to significant advances in

critical care patient diagnosis, such efforts have resulted in an improved un-

derstanding of diseases and guided appropriate medical interventions.

Appropriate clinical diagnosis of impending critical events is extremely

important in an ICU, since rapid physiological changes cause critical pa-

tient instabilities that require immediate medical interventions. Conventional

early warning monitoring systems turn out to be suboptimal in such cases.

Existing systems embed a set of predefined clinical rules, which act on vital

signs data, to raise an alarm reactively. Moreover, they are also known to

generate a significant number of false alarms in ICUs (Pinsky 2007). In addi-

tion, the current systems do not account for the dynamic nature of complex

physiological processes in a given time period. Hence, there exists a need

for predictive technologies, which can act proactively for advanced medical

decision-making in critical care units.

Hemodynamic monitoring is an essential mechanism in ICUs generating

a significant amount of streaming blood pressure (BP) data. Acute hypoten-

sive episodes (AHE) are defined as a sudden drop of patient blood pressure

spanning over an extended time period. An AHE can lead to decreased tissue

perfusion, which in turn can be a cause of multiple organ damages. Hemody-

namic instabilities can be life-threatening to the concerned patients. On the

other hand, if such instabilities are detected ahead of time to limit the effects

of a life threatening event, then there are significant benefits associated with

the outcomes.

The effectiveness of medical outcomes is generally assessed by the risk of
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mortality and also involves the costs of treatment. For critical care patients,

these factors tend to rise with time. Thus, the effectiveness of individual med-

ical outcomes is strongly dependent on well-informed patient interventions.

Proactive interventions are staged on the basis of clinical evidence of impend-

ing events. Such evidence needs to have two significant characteristics viz.

predictive capability and clinical interpretability. The importance of clinical

interpretability stems from the requirement of a clinician’s enhanced degree

of understanding of the patient’s physiological condition. Such knowledge is

fundamental for the selection of an optimal treatment plan.

A knowledge discovery based predictive system can meet this demand.

Usually, such a predictive system takes into account time-based micro physi-

ological events during a patient’s ICU stay. It is able to make significant asso-

ciations of interpretable clinical evidence to future hemodynamic behaviour.

Accordingly, it has a strong potential for a reduction in operational costs,

increase in efficiency, the development of novel goal directed treatments and

scheduling of additional ICU services.

3.1.1 Aims of the study

The aim of this study is to identify discriminative hemodynamic sequential

patterns via a novel data mining method for the risk stratification of ICU

patients. These patterns are later utilized to distinguish hypotensive episodes

from normotensive cases.

The informative sequential patterns are extracted from a large-scale pa-

tient population in the MIMIC-II critical care research database (Saeed

et al. 2011). The MIMIC-II (Multiparameter Intelligent Monitoring in In-

tensive Care) database is a publicly available critical care data resource,

encompassing a diverse and large population of ICU patients over the last

10 years. It comprises of high resolution temporal data including lab re-

sults, discharge notes, physiological trends and waveforms. The database

has been widely used to support numerous research studies in the fields of

epidemiology, clinical decision-rule improvement, and ICU alarm systems.
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One important novelty of the current study is the application of a sequen-

tial contrast pattern mining strategy in the extraction of clinical episodes of

arbitrary length, which are a characteristic of specific critical conditions like

an AHE. The present study can thus meet the need to generate novel medical

insights from the data of intensive care units and discover clinically relevant

episodes separated by time windows.

3.1.2 Research contributions

Overall, our contributions made by this study include:

• the application of a contrast pattern mining technique in the field of

critical care informatics

• a new method for generating predictive alerts for hypotensive episodes

in an ICU, and

• validation of the method on data extracted from a large-scale deiden-

tified critical care research database like the MIMIC-II.

3.2 Problem Definition

Acute hypotension is a clinical symptom showing a significant drop in mean

arterial pressure (MAP) values for extended periods of time. The mean

arterial pressure is often used in medicine as a popular measure of blood

pressure, which can be derived from the systolic (SP) and diastolic pressure

(DP) as given by equation 3.1.

MAP =
2(DP ) + SP

3
(3.1)

Although hypotension is not categorized as a disease state, it is considered

to be a frequent ailment among the general population and especially among

females. Owens et al (?) reported a prevalence of 49% hypotensive patients

in a prevalence study of a general population cohort. Existing studies have
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Figure 3.1: Acute Hypotensive Episode over a time period exceeding 30

minutes, when MAP 6 60 mmHg

indicated that hypotension is associated with morbidities stemming from

dizziness and fatigue. Hypotensive subjects have previously demonstrated

lower blood pressure, along with lower weights and had lesser likelihood of

a family history of vascular disease or hypertension. However, in a diag-

nostic setting, actual prevalence can be dependent upon associated stress,

anti-hypertensive medications and diuretics (Low 2008). Neurological dis-

eases are also associated with an increasing likelihood of AHEs in an ICU.

Depending on various definitions of hypotension, MAP values falling below

the threshold range of 60-80mmHg for 30 minutes, could trigger an acute

hypotensive episode. Figure 1 illustrates such a scenario, where MAP values

sustain below 60 mmHg for a time period ≥ 30 minutes.

3.2.1 Formulation of the AHE prediction problem

Numerous studies report that hypotension could lead to critical events like

acute kidney injury, severe sepsis, acute coronary syndrome and shock (Anderson

2011, Angus & Van der Poll 2013, Awad, Anderson, Gore, Goodman &

Goldberg 2012, Mayaud et al. 2013). To enable prompt interventions, it

is therefore important to predict an AHE ahead of time. Predicting an AHE

can be formulated as a problem of classification of an admitted patient’s
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mean arterial pressure into a hypotensive or normotensive regime. The pre-

diction of the mean arterial pressure in a future time window is central to

the current study. An illustration of the AHE prediction problem is provided

in Figure 2.

OBSERVATION WINDOW
TARGET WINDOW

(Y)

GAP INTERVAL (X)

PREDICTION TIME

T  +X T   +X+Y

T
0

0
0

Figure 3.2: Observation and Target Windows with a Time Gap Interval

According to Figure 2, an user-defined MAP time series observation win-

dow of length 30 or 60 minutes, is provided as historical data. The time se-

ries observation window is subsequently utilized to predict the given MAP’s

class (hypotensive or normotensive) in a future target window of 30 minutes.

Moreover, the observation and the target windows are separated by an user-

defined gap interval of 60 and 120 minutes. The problem can be interpreted

as that of performing an AHE prediction in a future time window, given the

MAP observation data and a gap interval of one or two hours between the

observation and the forecasting time windows.

3.2.2 Related works for prediction of hypotension

There have been a number of studies using pattern recognition techniques

for the analysis of hypotensive behaviour. Wavelet-based similarity measures

from blood pressure time series had been proposed to predict vasopressor on-

sets (Saeed & Mark 2006). Ghaffari et al (2010) have demonstrated the use of

Hilbert-transform based techniques for predicting AHEs. In 2009, the Phy-

sionet AHE prediction challenge was instituted to advance the development
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of state-of-the-art techniques (Moody & Lehman 2009), including neural net-

works, support vector machines and numerous statistical indices as features,

for the prediction of AHE (Chen, Xu, Zhang & Mukkamala 2009, Henriques

& Rocha 2009, Langley, King, Zheng, Bowers, Wang, Allen & Murray 2009).

In some of these cases, historical time windows used for observations were

considered as five minutes prior to the onset of an AHE. Accordingly, Wang

et al (2013) have reported that medical pattern extraction was particularly

challenging, owing to their longitudinal and sparse nature.

For longitudinal medical pattern extractions, Syed et al (2010) reported

the development of motif mining methods, which were tested on long-range

cardiovascular time series datasets. Moreover, Lee and Mark (2010) reported

the extraction of hemodynamic patterns for hypotension through artificial

neural networks.

For the area of predictive data mining for monitoring applications, pre-

vious research has reported the development of numerous pattern mining

techniques. Typically, existing research tends to identify problems in either

of two directions viz. short-term predictive modelling with the objective of

generating daily alerts for physicians or long-term predictive modelling aimed

at population level prognosis (Güiza, Van Eyck & Meyfroidt 2013). Mon-

itoring systems help in capturing signals that can be used to identify time

varying phenomenon, instead of traditional generation of alerts, which are

known to generate a lot of false reports (Schmid, Goepfert & Reuter 2013).

To overcome this weakness, intelligent noise removal methods are used as low

pass filters which can aggregate high resolution signal frames and a number

of good measurements (Nizami, Green & McGregor 2013). The processed

input is then used for classification and regression problems, although the

concerned method may or may not consider temporal aspects of the data.

A wide range of ICU prediction tasks focus on the extraction of statistical

features from medical time series and making them time-independent. For

example, impending ICU physiological instability has been predicted by de-

cision rules from time series data (Eshelman et al. 2008). Bayesian artificial
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neural networks were employed for observation windows 15 and 30 minutes

before hypotension for traumatic brain injury subjects resulting in 86% speci-

ficity and 41% sensitivity (Donald et al. 2012). Second day ICU discharges

were predicted by gaussian processes (Meyfroidt et al. 2011). Celi et al (2008)

also employed Bayesian networks to predict day-two fluid requirements for

the study of patient inflammatory responses.

Apart from final prediction outcomes, medical decision makers also ex-

pect to discover insights relating to the processes employed on longitudinal

patient records. Research on such data, begins with complex data transfor-

mation procedures by developing temporal abstractions to represent temporal

relations between time intervals. Previous studies have reported the extrac-

tion of meaningful temporal patterns from a diabetes dataset (Moskovitch,

Walsh, Hripcsak & Tatonetti 2014, Batal, Fradkin, Harrison, Moerchen &

Hauskrecht 2012, Moskovitch & Shahar 2009). Prior to this, Tseng and Lee

et al (2009) had reported temporal pattern-based classifiers for effective clas-

sification by sequences for atrial fibrillation datasets. Additionally temporal

patterns were also used to predict the hospitalization of hemodialysis patients

(Sacchi, Bellazzi, Larizza, Porreca & Magni 2005, Bellazzi, Larizza, Magni &

Bellazzi 2005). A time-series knowledge mining method was used to discover

frequent temporal patterns for patients who required mechanical ventilation

for greater than 24 hours (Bellazzi, Ferrazzi & Sacchi 2011). Toma et al.

(2007) utilized frequent temporal patterns to capture the evolution of organ

failures status in a set of patients. Temporal history of patient event codes

have also been reportedly used for mining frequent sequences of events to

understand various illnesses (Patnaik, Butler, Ramakrishnan, Parida, Keller

& Hanauer 2011). In this context, Perer et al. (2014) demonstrated the

clinical usefulness of frequent temporal sequences by an interactive and vi-

sual analytics platform for mining sequences of ICD-9 codes to understand

disease progression. Similar visual analytics platforms have been shown to

have a greater clinical importance in the mining of medical event sequences

having strong associations with specific disease outcomes (Gotz et al. 2014).
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3.3 Methodology

The identification of sequential patterns is related to detecting subsequences

contained within training sequences. According to the problem constraints,

well-defined representative patterns may be grown, which display strong sup-

port in the concerned training sequences. Sequential pattern mining strate-

gies can provide a useful alternative to mining interesting patterns of physio-

logical time series data in an ICU in comparison to traditional scoring models,

which may help discover significant insights in the form of important clinical

episodes. In the following sections, we describe the various stages viz. data

extraction, pre-processing and mining of sequential contrast patterns that are

over-represented in the hypotensive training samples and under-represented

in the normotensive samples.

3.3.1 Data extraction

The data of the study is a relevant subset of the MIMIC-II database, using

a suitable data inclusion/exclusion criteria (Lee & Mark 2010). The MIMIC

II is a large-scale intensive care unit database consisting of more than 30,000

patients with numerous patient variables, aggregated from patient health care

records and physiological waveforms over a period of more than 10 years. The

physiological time series waveforms data are organized into records, identified

using unique patient identifiers. A specific patient identifier may correspond

to multiple ICU stays. Thus, time series data for each ICU stay maintains a

unique ICU stay identifier. The extracted subset of records also satisfied the

following conditions, before extraction.

• The record had to be of an adult patient.

• Each patient time series constituted of minute-by-minute numeric sam-

ples, for at least the mean arterial blood pressure.

• Corresponding clinical records existed for the waveform records in MIMIC

II.
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As recommended by Lee and Mark (2010), we considered the following

inclusion criteria, while compiling the data examples. As described in Figure

1, each data sample comprised of three time intervals as follows.

• a 30 or 60 minutes MAP observation window

• a 30 minutes target window

• a time interval gap of 60 or 120 minutes, which separates the observa-

tion and target windows.

• There exist seven categories for the ICD-9 code for hypotension (458.0

- 458.9) as shown in Table 3.1. Hypotensive records were selected by

pattern matching over the higher level numerical classification of 458

in MIMIC-II.

Table 3.1: ICD-9 Classification of Hypotension

ICD-9 Code Disease

458.0 Orthostatic hypotension

458.1 Chronic hypotension

458.2 Iatrogenic hypotension

458.21 Hypotension of hemodialysis

458.29 Other iatrogenic hypotension

458.8 Other specified hypotension

458.9 Hypotension unspecified

A target window was labelled either as normotensive (control) or hy-

potensive. The labelling of a target window as hypotensive (HE) was subject

to satisfying a 30 minute period of time for which MAP was less than 60

mmHg and greater than 10 mmhg, for 90% of the time period. In contrast,

a 30 minute window which did not satisfy the given HE definition as above

was labelled as a normotensive (control) sample. Moreover, corresponding
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to each target window, the extracted MAP observation windows were also

verified to be within the 10-200 mmHg range.

Two data extraction mechanisms were considered viz. single and multiple

modes. For single mode compilation, a single hypotensive or normotensive

example was constructed from each separate patient waveform record. On

the other hand, the multiple compilation mode considered a sliding window

of 30 minutes, and all those examples were constructed, whenever satisfying

the conditions for the observation and target windows.

In addition to the datasets extracted using the given inclusion criteria,

hypotensive and normotensive datasets were also employed from the Phys-

ionet 2009 challenge (Moody & Lehman 2009). For the challenge datasets,

their MIMIC II waveform signals were divided into two groups viz. H (hy-

potensive) and C (control) respectively. The groups H and C were further

subdivided into H1, H2 and C1, C2. Each sub-group were defined to have

the following properties.

• H1: Patients receiving pressor medication.

• H2: Patients not receiving pressor medication.

• C1: Patients with no acute hypotensive episodes during entire hospital

stay.

• C2: Patients having AHE before or after the forecast window.

Accordingly, two challenge prediction tasks were constituted as follows.

• Event I: Patient risk classification between H1 and C1

• Event II: Patient risk classification between H and C

Moody and Lehman (2009) reported that the groups H1 and C1 indicated

the extremes of AHE-associated risks. The described groups in Event I and

II can also be termed as the target class definitions.
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3.3.2 Data discretization

Physiological data often comprise of repetitive elements. To identify interest-

ing patterns, a natural extension is to transform the real-valued physiological

time series into string representations for mining symbolic discrete patterns

(Pinsky 2007). Subsequently, we employed the symbolic aggregate approx-

imation method (Lin et al. 2003) to segment the original MAP signal into

discrete intervals and assigned an alphabetic label to each discrete region.

This process transforms the continuous MAP data into a symbolic sequence,

and enables the use of numerous pattern mining algorithms. The symbolic

aggregate approximation (SAX) technique has emerged as a popular and ef-

ficient technique, producing an informative symbolization of large-scale time

series data. Typically, SAX converts the continuous time series into a piece-

wise aggregate approximation (PAA) form (Lin et al. 2003). Later, the PAA

series is converted to a symbolic sequence. Each MAP time series, before

being discretized, undergoes a normalization process having a mean of 0 and

variance 1. The SAX strategy selects breakpoints using a gaussian distri-

bution, such that the discrete symbols are equiprobable in the time series.

For example, to transform a normalized time series using five symbols, the

discrete regions are specified by [-∞, -0.84, -0.25, +0.25, +0.84, +∞]. The

symbolic representation adopted by SAX characterizes the inherent proper-

ties of the time series data. Consequently, an equiprobable distribution of

symbols is maintained in the given time series (Lin et al. 2003).

In the process, SAX provides an effective discretization platform, which

can be utilized to create efficient pattern mining and indexing algorithms for

medical purposes. Figure 3 illustrates a visual representation of a real-valued

time series being converted to a symbolic form, using five symbolic regions.
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Figure 3.3: Discretization by Symbolic Aggregate Approximation using 4

symbols

3.3.3 Mining gap-constrained sequential contrast pat-

terns

In studies related to binary or multi-class classification, the central objec-

tive is to develop a prediction model, which is capable of distinguishing an

incoming signal using its inherent properties and assign a target label as

the predicted outcome. Typically, in data mining problems, there exists a

strong motivation to discover differentiable patterns’ characteristic of dis-

parate groups of data, that are used for prediction of records. Mining emerg-

ing patterns from distinctively labelled groups of relational data was initially

introduced by Dong and Li (1999). However, the immediate application of

emerging patterns to sequence databases was not possible owing to order-

ing of a sequence, and due to multiple occurrences of items in a sequence.

Accordingly, the concept of emerging substrings was suggested (Chan, Kao,

Yip & Tang 2003). Substrings are a special case of subsequences, where each

consecutive symbol is separated by a gap interval of 0. Yet, an important

aspect to note is that significant sequential episodes may not manifest as con-

secutive symbols existing in time-series symbolic sequences of interest. Thus,

the identification of episodes having significant events ordered sequentially,

while having arbitrary gap intervals between events, can be extremely useful.

Towards this purpose, a number of algorithms have been reported (Xing, Pei

& Keogh 2010). In the present study, we intend to discover gap-constrained
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contrast subsequences from disparate groups of sequence data, using the prin-

ciples of frequency support. In the following sections, the various definitions

and processes associated with the extraction of gap-constrained sequential

contrast patterns are described.

Sequential patterns

Let there be a set of distinct items denoted as I. I can also be called the

alphabet set and |I| is the size of the alphabet set. A sequence S defined over

I may be denoted as e1−e2− ....−en, such that ei belongs to I for 1 ≤ i ≤ n.

Accordingly, we consider univariate sequences where ei represents a single

item from I. A sequence S ′ = ei1 − ei2 − ...− eim is said to be contained in

a sequence S = e1 − e2 − e3 − ... − en, such that 1 ≤ i1 ≤ i2 ≤ ≤ im ≤ n.

For example, a subseqeunce CD is contained in CAAD, but not DC. Hence,

the order of the sequence S′ is maintained in S, although items in S′ are not

consecutive in S. This indicates the existence of gap intervals between the

items of S′.

Definition 3.3.1.1: (Max-Prefix ) The max-prefix of the sequence S =

e1 − e2 − ... − ek is given by e1 − e2 − ... − ek−1. It constitutes the leading

sequence of elements in S, without the final item of S.

Definition 3.3.1.2: (Occurrence of a Subsequence) Given the sequences,

S = e1−e2−....−en and S ′ = ei1−ei2−....−eim , S ′ occurs in S if 1 ≤ ik ≤ n

and ek = eik for all 1 ≤ k ≤ m, and ik ≤ ik+1 for 1 ≤ k ≤ m. For example,

given sequences S = XZXZY ZY and subsequence S ′ = XY , there are four

occurrences of S ′ in S at the positions - {1, 5}, {1, 7}, {3, 5} and {3, 7}.

Definition 3.3.1.3: (Satisfaction of Gap Constraints) Consider a se-

quence S = e1−e2...−en and an occurrence O = i1, i2, ..., im of a subsequence

S ′, if (ik+1− ik) ≤ g+ 1, such that |k| ∈ {1, ...,m− 1}, then S ′ for the occur-

rence O, fulfills the gap constraint of g. Moreover, fulfilling the gap constraint

once, in a given sequence serves the condition of gap-constraint satisfaction.

For example, if g = 2, then XY is a subsequence of XZY , but not XZZZY .

Now, let us consider D = {D1, D2, . . . , Dn} as a set of sequences in a
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database, a sequential pattern P , and a gap-constraint of g, then the fre-

quency of occurrences of P in D is given by countP (D, g), also known as the

absolute frequency support of P in D. If there exists a frequency support

threshold α and P satisfies a condition such as countP (D, g) ≥ α, then P is

is said to be frequent in D, with a gap constraint of g.

Definition 3.3.1.4: (Gap constrained sequential contrast patterns)

Given two sets of sequence datasets D+ (positive sequences) and D−(negative

sequences), two thresholds α and δ, and a maximum gap of g, a gap-constrained

sequential contrast pattern P is required to satisfy the following conditions.

(1) Positive Support: countP (D+, g) ≥ α

(2) Negative Support: countP (D−, g) ≤ δ

Thus given D+, D−, α, δ and g, mining the gap-constrained sequential

patterns involves finding the set of all such subsequences that fulfill the given

conditions from (1) to (2).

Generation of candidate sequences

Towards finding the set of all gap-constrained contrast sequential patterns, we

employ the ConSGapMiner algorithm (Ji, Bailey & Dong 2007), which was

earlier used to extract minimal distinguishing subsequences (MDS) with user-

defined gap constraints. The method utilizes the depth first search (DFS)

technique for the generation of candidate sequences. This is done by growing

a lexicographic sequence tree (LST) as shown in the example in Figure 3.4.

Each node in the LST embeds a subsequence, along with its positive and

negative frequency supports. In addition, each node is a max-prefix of its

children.

Pruning non-minimal subsequences : After a sequence node is generated, if it

satisfies the conditions (1) and (2), then the sequence node is not extended

further. A supersequence of a potential contrast sequence is not minimal

(Ji et al. 2007). Thus, restricting the growth of sequences by a minimality

condition, helps in the reduction of redundant patterns.
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Figure 3.4: A Lexicographic Sequence Tree (LST) growing candidate se-

quences using 3 symbols as A, B, C

Pruning of infrequent subsequences : If a sequence node’s positive frequency

support is less than α (as specified in condition (1) ) , then the concerned

node need not be extended. This is because, supersequences of an infrequent

max-prefix are also infrequent.

Gap constraint verification

For the verification of gap-constraint satisfaction, we employed a bitmap rep-

resentation reported earlier for checking gap-constraints (Ayres et al. 2002).

The bitmap process is explained by an example, as shown in Table 3.2. Let

us consider verifying the gap constraint of XY in XZXZY , given maximum

gap g is set to 2. In the first step, all the occurrences of X in the concerned

sequence are set to 1 (as shown in Xindex). These are position indices given

by 1 and 3. Later, (g + 1) index positions are set to 1 for each occurrences

following X, separately as illustrated in rows 3 (given as 1X) and 4 (given

as 2X). Following this, the bit vectors in rows 3 and 4 go through a logical

OR operation, as given in row 5. Subsequently, a logical AND operation is
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performed on the bit vectors in row 5 and for the occurrences of Y in row

6, to obtain a final bit vector, in row 7. An occurrence of 1 in the final bit

vector (at row 7) indicates that the gap constraint of g = 2 was satisfied.

Table 3.2: Checking gap constraint satisfaction of XY in XZXZY

X Z X Z Y

Index 1 2 3 4 5

Xindex 1 0 1 0 0

1X 0 1 1 1 0

2X 0 0 0 1 1

1X(OR)2X 0 1 1 1 1

Y 0 0 0 0 1

AND 0 0 0 0 1

Finally, a post-processing step is applied such that any super-sequence of

at least another shorter sub-sequence, is removed from the resulting set of

contrast sequences. The algorithm for the generation of candidate sequences

is provided by Algorithm 3.3.3.

3.4 Prediction Results

The sequential contrast pattern mining methodology was applied to both

single-mode and multi-mode datasets, based on a clinical inclusion crite-

ria, similar to principles used in (Lee & Mark 2010). From the MIMIC-II

database, we extracted 254 segments (single mode) and 759 segments (multi-

mode), which satisfied the criteria of hypotension. For the normotensive

group, 275 segments were compiled for single mode whereas for multi-mode

the exact number of segments varied from 13,3712 to 14,0006.

In addition, we also applied our techniques to the datasets provided by

the Physionet 2009 AHE prediction challenge (Moody & Lehman 2009). In

particular, the AHE challenge datasets had also been extracted from the

MIMIC-II database in 2009. Our single-mode and multi-mode datasets tend
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Algorithm 3.1 Generation of candidate sequences

candGen(c, g, I, δ, α)

1: Require : c − sequence, g − maximum gap, I − alphabet, α −
maximum positive support, δ −minimum negative support

2: ds← φ {ds holds the distinguishing children of c}
3: for i ∈ I do

4: if c+ i is not a supersequence of any sequence in ds then

5: nc← c+ i

6: supppos = SupportCount(nc, g, pos)

7: suppneg = SupportCount(nc, g, neg)

8: supppos > αANDsuppneg 6 δ

9: ds← ds ∪ nc
10: else

11: if supppos ≥ α then

12: candGen(c, g, I, δ, α)

13: end if

14: end if

15: end for

16: DS ← DS ∪ ds
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to extend these datasets, since MIMIC-II has undergone multiple version

updates, in the past 10 years. For the Physionet challenge, each of H1,

H2, C1 and C2 groups consisted of 15 samples for training purposes. For

test sets, Event I included 10 samples (H1=5, C1=5), while Event II had

40 (H=14, C=26). For the challenge data, an example training record like

a40439 contains a T0 time-annotation, indicated as 18.30 on 04/09/2008 (T0

was provided with each record). The time series data prior to T0 is used for

training purposes (treated as the observation window).

For the prediction of a record, a majority vote of contrast sequences is

considered for the record to be treated as hypotensive. Single and multimode

datasets extracted for the present study are available via https://github.com/s-

ghosh/hypotension

3.4.1 Prediction performance on the two data sets

On the first data set, our 5-fold cross-validation classification results for both

the single mode and multi-mode cases are summarized in Table 3.3 and 3.3.

As can be noted, the classification results for the single mode executions are

much better than multi-mode executions. This is because the single mode

cross-validation accuracies are higher than multi-mode accuracies. A lower

specificity in single mode executions can be attributed to the balanced nature

of the single mode datasets. In contrast, the multi-mode datasets consist of

a significantly higher percentage of instances, which are normotensive (for.

e.g, 759 H to 140006 N). A sensitivity of 100% in our experiments, indicates

that the sequential contrast method was able to predict all AHE instances

correctly. Typically, the number of AHE instances are much fewer in compar-

ison to non-AHE instances. As a result, the contrast pattern set generated

due to the imbalance, can also consist of patterns which fulfill support con-

ditions among non-AHE instances. Owing to this reason, contrast sets are

highly capable of identifying positive instances. However, lower specificities

reflect that a high percentage of false positives are also generated. Thus, our

method demonstrates good performance when employed in the prediction of
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an AHE. This means sequential contrast patterns are effective in detecting

hypotensive behaviour. However, since similar blood pressure patterns also

exist across both population groups, a lot of negative instances are incorrectly

classified as hypotensive. Similar experiments on MIMIC-II by Rocha et al

(Rocha, Paredes, De Carvalho & Henriques 2011) demonstrated a sensitivity

of 82.8% and a specificity of 78.4%. In another study, Lee and Mark (Lee &

Mark 2010) also demonstrated highest accuracies of 76% for single-mode and

86% for multi-mode datasets extracted from MIMIC-II. Moreover, increasing

the size of the observation window does not result in significant improvements

in performance. Also, increasing gap intervals from 60 to 120 minutes lead

to a drop in performance. Specifically, the hypotensive (positive) segments

were always predicted correctly in both the modes.

Generally, retrospective EHR based population comparison studies tend

to have imbalanced datasets, where the count of positive instances is very

small as compared to the negative instances. As a possible enhancement,

contrast pattern sets can be post-processed using multi-objective optimiza-

tion methods to obtain the most optimal combinations of contrast sequences

for building models, which demonstrate better specificity, while reporting a

higher classification performance.

Table 3.3: Single Mode Classification Performance with 10 symbols

Gap Interval = 60 minutes Gap Interval = 120 minutes

ObWin = 0.5 h ObWin = 1 h ObWin = 0.5 h ObWin = 1 h

Sensitivity 100% 100% 100% 100%

Specificity 65.85% 68.29% 61.44% 62.19%

Accuracy 82.27% 83.54% 79.87% 80.37%

For the Physionet 2009 challenge dataset, the test prediction results are

presented in Table 3.5. In Table 3.6, we provide a comparison of our results

with the reported results from the Physionet 2009 challenge. As seen, models

employing neural networks (GRNN, RPS-NN) and kernel methods like SVM
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Table 3.4: Multi Mode Classification Performance with 15 symbols

Gap Interval = 60 minutes Gap Interval = 120 minutes

ObWin = 0.5 h ObWin = 1 h ObWin = 0.5 h ObWin = 1 h

Sensitivity 100% 100% 100% 100%

Specificity 81.19% 80.76% 79.36% 74.79%

Accuracy 81.30% 80.88% 79.48% 74.94%

are heavily dependent on several parameters, and can have performances

over wide ranges (Henriques & Rocha 2009, Mneimneh & Povinelli 2009,

Jousset, Lemay & Vesin 2009). Most of the other methods employed rules

based on simple averaging measures and still performed fairly (Chen et al.

2009, Fournier & Roy 2009). Moreover, hidden markov models (HMM) for

hypotension had reported a cross-validation accuracy close to 97% (Singh,

Tamminedi, Yosiphon, Ganguli & Yadegar 2010), which compares well with

our cross-validation results too.

Table 3.5: Physionet 2009 AHE Test Prediction Classification Accuracies for

events I and II given G=3

Event I Event II

S=3 S=4 S=5 S=3 S=4 S=5

L=8 5/10 7/10 7/10 23/40 23/40 32/40

L=9 5/10 7/10 9/10 23/40 25/40 33/40

L=10 5/10 7/10 10/10 25/40 32/40 36/40

L=11 5/10 7/10 10/10 25/40 32/40 36/40

3.4.2 Discussion

A comparison of our results with the reported results from the Physionet 2009

challenge demonstrates our competitive classification performances against
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Table 3.6: A Comparison of classification methods employed for the AHE pre-

diction problem. Sequential patterns report comparable accuracies against

existing methods

Method Event I Event II

GRNN 10/10 37/40

5-min average of diastolic ABP 10/10 37/40

MAP averaging Rule 10/10 36/40

5-min average of ABP 10/10 36/40

Linear Regression 10/10 36/40

Median of MAP 10/10 34/40

NN with feature selection 9/10 32/40

SVM 10/10 30/40

RPS-NN 2/10 25/40

Sequential Contrast Patterns 10/10 36/40

those models employing neural networks (GRNN, RPS-NN), kernel meth-

ods like SVM, hidden markov models and various other statistical measures

(Chen et al. 2009, ?, ?). Additionally, the effect of parameters like subse-

quence length (L), alphabet size (S) and maximum gap (G) are shown in

Figure 5. As seen, the best performances were achieved using a maximum

gap of 3, subsequence length of 10 and an alphabet of cardinality 5. A general

trend is observed, where informative sequences could be extracted if the max-

imum gap constraint is iteratively increased. This has been demonstrated by

Figure 5. A number of values were used incrementally for tuning and to

reach the optimal value of 3. Increasing the gap threshold further does not

improve the predictive performance of the algorithm. On the other hand,

increasing gap threshold to higher values over 5 affected the computational

run time of generating patterns.

As seen, classification performances tend to improve with an increase

in gap sizes. At the same time, a very large gap size G, also means that
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A B

Figure 3.5: Effect of parameters L and G on the performance (A) For Event

I, (B) For Event II

two consecutive symbols for a sequential pattern have occurred over a wide

range, where the size was G. Extremely large gap sizes can impede a proper

interpretation of contiguous events in a sequence. Typically, patient events

occur over a time span, covering multiple days. Thus, sequences may be

clinically useful and unique, when considered for shorter time windows in

the original patient timeline, with multiple days. For larger cohorts, finding

out an optimal gap is dependent on the resolution of the time series (i.e.

the sampling frequency). Typically, for detecting differential blood pressure

patterns, effective gap sizes can be decided based on their ability to capture

clinically meaningful and informative episodes, spanning over shorter win-

dows. In addition, increasing S provides more number of discrete cut points

for MAP, and enables the algorithm to capture patterns which character-

ize more fluctuations in the blood pressure. Thus, for cases with S=5, the

algorithm is able to find a more expressive pattern, than for S=3. Hence,

selecting an alphabet size of 5 turned out to be an optimal choice, both in

terms of the discretization of blood pressure range as well as keeping the

algorithmic running costs within limits. This also contributes to making im-

proved predictions. Thus, finding interesting sequences is highly dependent

on the use of various parameters like the number of symbols, length of sub-

sequence and gap sizes. Generally, the selection of appropriate parameter

values like L (pattern length), G (gap size) and S (alphabet) tends to affect
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the cardinality of the set of discovered patterns and the algorithmic running

time. Thus, extracting minimally expressive shorter sequences allows the

algorithm to restrict the running time as well as identify patterns, which are

clinically important and appear in longer sequences.

In contrast to our method, the 5 minute averaging measures are statistical

features obtained from a 5 minutes window prior to the immediate occurrence

of an AHE. Thus, a major difference lies in the fact that our method considers

a wider window of 30 and 60 minutes, prior to the onset of AHE (Chen et al.

2009). This also indicates that a method, which is effective in performing

predictions using wider time windows may be more suitable in a real time

scenario, in comparison to statistical measures obtained from a 5 minutes

window (prior to AHE). In this context, better results from the 5 minutes

timespan prior to an AHE, may be due to temporal proximity to the onset

of an AHE. For methods employing neural networks, both GRNN and RPS-

NN report 10/10, 2/10 (for Event 1) and 37/40, 25/40 (for Event II). These

methods tend to be strongly dependent on the tuning of parameter, as was

also discussed by the authors (Henriques & Rocha 2009). Additionally, recent

experiments by Yapps et al (2017) reinforce that the use of feature selection

algorithms on features constructed using blood pressure trends can be highly

predictive.

The contrast mining method, on the other hand, helps to extract dis-

cretized sequential representations of the MAP time series, which provide

the maximum support towards the occurrence of an AHE. These patterns

are later useful, to not only predict an AHE for an unknown record, but for

further clinical interpretation by domain experts. Our results indicate that

sequential contrast patterns are capable of extracting informative symbolic

episodes, which may be employed for both AHE risk prediction and under-

standing of hemodynamic behaviour towards effective analyses of sequential

episodes, that may be indicative of medical symptoms.
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3.5 Examples and Clinical Significance of Se-

quential Contrast Patterns

Acute hypotension is one of the most dangerous clinical conditions that fre-

quently occurs in an ICU and can cause serious renal, cerebral and myocar-

dial hypoxic damage. Existing medical interventions are reactive (i.e after an

AHE has been triggered), for recommending treatment of underlying causes.

In contrast, early bedside detection of AHEs can enable the development

of life-saving interventions. Clinical interventions to treat AHE attempt to

restore the physiological status of the body by targeting recommended BP

values, increasing fluid and salt intakes, administration of vasoactive agents

and so on (Shibao, Lipsitz & Biaggioni 2013, Takala 2010). The AHE defini-

tion considered in the current study, utilizes hypotension thresholds reported

in previous studies (Lee & Mark 2010, Moody & Lehman 2009). Although

ranges between 65-75 mmHg have also been reportedly used for defining

hypotension, definitions for AHE time periods may also vary from 1 to 60

minutes, depending on the objective of the study. However, drops in blood

pressure within smaller time spans (as indicated by monitoring systems), may

not always indicate an AHE. Such changes may be due to monitoring errors

or physiological changes caused by normal human activity. Hence, a larger

time window of 30 minutes is a suitable definition for capturing AHE related

information. Taking forward the suggested inclusion criteria for an AHE, we

additionally employed the widely used ICD-9 code of hypotension to extract

clinical records from MIMIC-II. The ICD-9 coding system describes a dis-

ease classification scheme used to monitor population group health situations

for general epidemiological, health management purposes and clinical usage.

The extracted datasets were sourced from the MIMIC-II repository, which

tends to provide further credence to the study.
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3.5.1 Sequential pattern examples

Our sequential pattern mining algorithm can discover simple-to-understand

clinical symbolic subsequences. These subsequences can be treated as evi-

dence while diagnosing for diseases. Even though methods such as neural

networks and SVM demonstrate competitive prediction performances, they

heavily dependent on non-linear kernel functions and parameters. But, our

sequential pattern mining methods extract signatures of clinical episodes in

the form of symbolic patterns.

Table 3.7: Representative Examples of Extracted AHE Sequential Patterns

..D..E..D..E..D..A..B..C..D..C..

..D..C..E..D..C..B..C..D..C..D..

..B..C..D..C..A..C..D..E..D..C..

..D..C..E..C..A..C..D..E..D..E..

..C..A..B..A..E..E..C..B..C..D..

..A..B..A..E..D..B..B..B..C..A..

..E..C..B..A..B..A..B..C..D..

..A..B..B..D..E..C..B..C..D..

In this study, we were able to mine a set of discretized sequential pat-

terns like ABAEDBBBCA, which were prominent in acute hypotensive pa-

tients. Examples of representative sequential blood pressure patterns for

hypotension are as reported in Table 3.7. For example, in the case of

ABAEDBBBCA, the sequence indicates that the mean arterial pressure fol-

lows the given pattern trajectory among a majority of AHE patients. The

given symbols indicate that the mean arterial pressure time series region

was divided into 5 equiprobable regions (given by A, B, C, D, E) from

0 to 200 mmHg. The example pattern illustrates that the blood pressure

time series followed a situation where majority of the AHE patients record
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an episode of events represented by the MAP value in a particular sequen-

tial order of blood pressure regimes demonstrated symbolically as follows -

A ≤ B ≤ A ≤ E ≤ D ≤ B ≤ B ≤ B ≤ B ≤ C ≤ A. Thus, each sequential

pattern describes a train of clinical events, represented by the specific blood

pressure regimes, categorised by discrete symbols.

3.5.2 Pattern visualization and clinical interpretation

Interpretive sequential representations can be extremely useful to clinicians

for understanding the sequence of physiological states that a patient passes

through, before developing a critical condition. Such interpretations can help

establish potential combinations of observable physiological sequences, that

precede AHE. Generally, the objective of clinical studies involves the esti-

mation of causal relationships between selected clinical variables and disease

specific laboratory test outcomes. Given temporal data for clinical variables,

sequential patterns of specific clinical variables can aid in the interpretation

of complex relationships between variables and patient specific outcomes.

Towards this objective, general visual trends may be inferred from gap con-

strained sequences as shown in Figure 6. Thus, sequential patterns can

have immense potential in the exploration of underlying clinical relation-

ships to facilitate personalized treatments. Accordingly, similar studies have

also claimed that the visual exploration of sequential and temporal patterns

in clinical patient data can significantly aid in clinical decision making (Gotz

et al. 2014).

Moreover, mining of complex contrast sequences in hypotensive patient

groups can aid in the development of interesting clinical hypotheses such as

the detection of a succession of clinical events prior to the onset of AHEs.

Thus, extracting sequential contrast patterns can guide clinical decision-

making towards the effective investigation of hypotensive events. In addition,

the proposed methodology is flexible enough to also accommodate clinician-

defined constraints.
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BCDCACDEDC DCECACDEDE

DCEDCBCDCD DEDEDCABCDC

Figure 3.6: Inferring Visual Trends from Sequential Contrast Patterns Ex-

amples for AHE (A=1, B=2, C=3, D=4, E=5)

3.6 Conclusion

The current study investigated the application of a novel sequential contrast

pattern mining methodology for predicting acute hypotensive episodes in an

ICU. Our study demonstrates that research on the mining of informative

sequential patterns can be of significant clinical value to concerned stake-

holder in a clinical setting. In addition to demonstrating the classification

performance, we also established the existence of gap-constrained symbolic

subsequences, which have strong clinical interest to practitioners. Since the

data encoded of a patient’s journey is inherently temporal in nature, se-

quences have the capability to uncover numerous hidden patterns, which are

otherwise not visible. As part of a knowledge discovery process, the con-
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trast pattern mining method extracts patterns, which collectively help in the

prediction of an AHE. A real-time application of the reported strategy can

help derive significant sequential patterns of interest, which could be trans-

lated into a complex sequence of clinical events. A higher frequency of the

occurrence of complex contrast sequences while comparing hypotensive and

normotensive patient groups may be beneficial to a clinician to develop a

clinical hypothesis relating to a succession of clinical events leading to an

AHE. Extracting sequential patterns from hypotensive patient groups can

inform medical decision-making towards the diagnosis and investigation of

AHEs. Thus, significant patterns are a potential source for launching fur-

ther data driven investigations validated by randomized clinical trials. Such

patterns can also be employed in conjunction with multiple types of clinical

features for the construction of accurate AHE prediction systems. In sum-

mary, the sequential contrast pattern mining approach described in this work

well relates to the expectations of evidence-based medicine.
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Chapter 4

Using Sequential Patterns as

Classification Features for

Accurate Prediction of ICU

Events

Previously, pattern mining algorithms have been employed for extracting

interesting rules in various clinical domains. However, the extracted rules

are directly investigated by clinicians for diagnosing a disease. Towards this

purpose, there is a need to develop advanced prediction models which inte-

grate dynamic patterns to learn a patient’s physiological condition. In this

study, a sequential contrast patterns-based classification framework is pre-

sented for detecting critical patient events, like hypotension and septic shock.

We build on top of work done in the previous chapter to use sequential con-

trast patterns, for conversion to two novel representations-(1) binary and

frequency-based feature space and (2) ordered sequences of patterns, which

conserve positional information of a pattern in a time series sequence.
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4.1 Introduction

Patients in an intensive care unit (ICU) demonstrate numerous dynamic fluc-

tuations in physiological responses, owing to underlying biological conditions.

A cascade of multiple physiological episodes may be relevant determinants

for identifying impending critical events. Typically, clinical determinants of

medical events can range from disease severities, age, various comorbidities,

drugs used and fluids taken, to physiological changes due to diagnostic treat-

ment interventions (Latronico 2015). Conventional systems typically employ

clinical scores like the Glasgow Coma Scale (GCS), Full Outline of Unrespon-

siveness (FOUR) and simple statistical models based on easily obtainable

clinical covariates such as sex, age, artificial ventilation, hospital readmis-

sions to assess patient risk of a disease (Vincent & Moreno 2010). However,

scoring models based on simple indices have failed to capture dynamic symp-

toms in a fast evolving patient state. Therefore, it is important to consider

large-scale sophisticated prognostic models which capture dynamic trends

in patient behaviour, using informative clinical features (Jensen, Jensen &

Brunak 2012). To design a system capable of making short term event pre-

dictions, advanced feature representations, which are episodic, sequential and

temporal in nature, need to be considered. Learning complex feature repre-

sentations in clinical scenarios can thus aid in the development of extremely

powerful prediction models (Li, Li, Jia, Ramanathan & Zhang 2015). In this

context, the electronic health record (EHR) of a patient is a valuable source

of longitudinal data for exploratory mining of complex or latent features to

assist with clinical decision-making. However, it is an extremely challenging

task to find an optimal set of informative features from heterogeneous clini-

cal records. Thus, advanced learning models that capture complex variations

as feature representations in patient hemodynamic conditions are extremely

important for staging early and effective life-saving medical interventions.

Conventional methodologies have been proposed to determine the rela-

tionships between a risk factor and a clinical outcome using statistically sig-

nificant regression models such as logistic regression, linear regression, and
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Cox regression (Bender 2009). Alternative sophisticated clinical machine

learning models have focused on decision trees, association rules and arti-

ficial neural networks (Ha 2011, Ordonez & Zhao 2011). Feature selection

algorithms are also employed to select optimal clinical feature sets, prior

to being fed as input data to classifier. Informative feature sets have been

employed in the construction of Bayesian networks, and features were consid-

ered to be conditionally independent to each other (Li, Shi & Satz 2008). It

can be noted that the above described methods tend to employ handcrafted

feature sets due to their easy identifiability and visibility for human users.

However, such approaches are relatively time-consuming, and incomplete.

Yet from a data mining viewpoint, there have been limited recent stud-

ies exploring the integration of pattern mining and machine learning for

ICU prediction problems (Batal, Valizadegan, Cooper & Hauskrecht 2013,

Moskovitch et al. 2014). Enabling such integrations in clinical contexts is a

difficult problem owing to the unstructured and longitudinal nature of med-

ical records (Wang, Lee, Hu, Sun, Ebadollahi & Laine 2013).

The current study builds on foundations from Chapter 3, and proposes

a pattern based classification framework, where sequential contrast patterns

are employed as features using different feature space transformations from

multivariate physiological time series to predict short term ICU events. Each

pattern mapping method creates a new feature space involving binary val-

ued attributes and frequency based information, to predict ICU events like

the onset of a future acute hypotensive episode (AHE) and patient mortality.

Generally, the integration of these methods involve employing patterns to de-

fine features for building classification models, which are easily interpretable

by clinicians.

The detailed contributions of the current study are:

• The use of sequential contrast patterns to transform the original patient

sequence data to a feature set, using two pattern mapping approaches,

• A comprehensive modeling approach is adopted by comparing two types

of pattern-based models for predicting a test instance, and
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• Two applications on critical ICU event prediction are reported using

the integrated sequential patterns based modeling framework.

Our study demonstrates that the integration of contrast sequences using

learning models like support vector machine (SVM) and Naive Bayes can

achieve improved performances, in comparison to traditional models operat-

ing on simple clinical and statistical features. Thus, we systematically in-

vestigate the use of sequential contrast patterns to construct a feature space

of patterns, which is used to build better classification models in clinical

settings.

4.2 Related Work

Mining various kinds of patterns such as itemsets, sequences and graphs have

remained a focus area of data mining research for a long time. Depending on

the significance and value such patterns can add in their respective domains,

they have been extensively studied for constructing high performance rules in

decision-making systems (Cheng et al. 2007). Typically, extracted patterns

have strong associations with class sensitive datasets, since they capture the

underlying dynamic behaviour of a specific sub population, in the given class.

This makes the use of patterns very suitable as potential variables or features,

while building a robust classifier.

Methods described above are limited to the application of statistical mod-

els to determine associations between a risk factor and a disease outcome.

However, real-world healthcare data is intrinsically too complex and massive

to be limited to finding pair-wise associations. Thus, the identification of

novel sequential and temporal patterns turns out to be a crucial advance-

ment towards the development of state-of-the-art clinical informatics tools

and techniques. Typically, such methods aim to determine statistically rel-

evant patterns from discrete sequences of items. In this context, Klema et

al (2008) identified frequent sequential patterns from a longitudinal dataset

to map atherosclerisis risk factors to health outcomes. The mined patterns
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were later used to create classification rules for predicting cardiovascular risk.

Baralis et al (2010) employed the patient examination histories to derive sig-

nificant closed sequential patterns to derive standard clinical workflows as

well as workflow deviations, that were not compliant. Moreover, Berlinge-

rio et al (2007) demonstrated further expressiveness in medical sequential

patterns by mining event sequences along with the most frequently elapsed

time intervals, between these events. Patnaik et al (2011) reported the ex-

traction of sequential coding patterns from EHR data and followed up with

the derivation of partial orders from the extracted sequences for generaliz-

ing patterns. Moreover, the LEGO approach of using automatically induced

patterns as features in model construction was previously reported (Knobbe,

Crémilleux, Fürnkranz & Scholz 2008).

Due to the longitudinal EHR’s intrinsic temporal nature, Sachi et al

(2007) proposed a method for mining temporal association rules from time se-

ries variables monitored during hemodialysis sessions. These temporal rules

were mined based on prior definitions of temporal abstractions of interest.

Later, researchers (Moskovitch et al. 2014) studied the problem of mining fre-

quently occurring temporal patterns in abstracted EHR data and used Hopp-

ner’s representation (Höppner & Peter 2014) to define complex time-interval

patterns for diabetic patients. A method for mining minimal time-interval

patterns (Batal et al. 2013, Batal, Cooper, Fradkin, Harrison Jr, Moerchen

& Hauskrecht 2016) that are most useful for predicting patients who are at

risk of developing heparin induced thrombocytopenia (HIT), a life threaten-

ing condition that may develop in patients treated with heparin was later

proposed. Among other, temporal methods, Wang et al (2013) proposed a

non-negative matrix factorization framework using a convolutional approach

for temporal pattern discovery in EHR data. This approach models each pa-

tient’s record as an image matrix, where the x-axis corresponds to the time

stamps and the y-axis corresponds to the event types.

Recent research by Dafe et al (2013) strongly reflected on the impor-

tance of capturing sequential relationships among discrete events for build-
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ing robust sequential classifiers. The application of sequential patterns to

create a feature space for learning models has also been reported (Fradkin &

Mörchen 2015). However, the direct use of simple learning models on signal

data makes them vulnerable to noise and tends to use statistical features

that aggregate information based on windowing methods. Accordingly, such

a process fails to capture interesting sequence based features. Moreover, the

auto-integration of informative sequential patterns while creating learning

models for ICU event prediction, largely remains an open area of research.

4.3 Methodology

In this section, we describe the detailed steps of the proposed ICU event pre-

diction framework. We recapitulate from the previous chapter, with a brief

description of the symbolic discretisation approach adopted for the given time

series datasets. Next, the concepts related to the automatic construction of

learning models using sequential contrast patterns are provided. Finally, we

describe the integration of sequential contrast patterns with support vector

machines and naive Bayes methods for predicting the class label of an un-

known patient sequence (the test data instance) for classification purposes.

The novelty of our integrated approach lies in the exploitation of contrast

sequential patterns, within the given patient sequences, as features to build

robust models. Towards this purpose, we demonstrate two feature construc-

tion approaches viz. existence of a given pattern in a sequence and pattern

frequency. Later, the construction of two predictive models using differential

sets of patterns (or features) is reported while predicting a given unknown

instance.

Thus, we systematically investigate the use of sequential contrast pat-

terns to construct a feature space of patterns, which is used to build better

classification models in clinical settings. In addition, there is an inherent in-

terpretable value in identifying discriminative sequential patterns for disease

specific sub-populations.
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4.3.1 Data discretisation

To facilitate the processing of pattern mining algorithms on temporal patient

data comprising real-valued continuous representations, we employ the sym-

bolic aggregate approximation (SAX) (described in Chapter 3) (Lin, Keogh,

Wei & Lonardi 2007, ?). SAX transforms a real-valued time series into a

piecewise aggregate approximation (PAA) representation, which is converted

to a symbolic string. As claimed by the authors, the advantages of SAX in-

volve that of dimensionality reduction and lower bounding. As a result,

due to the nature of physiological time series generated over a number of

days, and their importance in determining critical conditions, SAX provides

a proper platform to create efficient indexing and pattern mining algorithms

for medical purposes.

4.3.2 Mining sequential contrast patterns

The discovery of sequential patterns is associated with the mining of trans-

actional data to identify significant ordered sequences of items. Existing re-

search demonstrates numerous applications of sequential pattern extraction

in various domains (Mooney & Roddick 2013, Shen, Wang & Han 2014).

Among many such applications, elegant sequential pattern discovery solu-

tions are required in the context of timestamped sequences. Thus, given a

set of well-defined training sequences, representative sequential patterns can

be derived indicating high frequency supports in the corresponding training

dataset. Among these studies, contrast pattern mining in supervised classifi-

cation problems was initially addressed in the context of Emerging patterns

(Dong & Li 1999). Earlier studies have reported the extraction of distinguish-

ing sequential patterns (Ji et al. 2007). Typically, a distinguishing sequential

pattern is defined as a subsequence, which satisfies the multiple algorithmic

preconditions of user-defined maximum and minimum frequency supports

for two differently labelled groups in a given dataset. Relevant definitions to

sequential contrast patterns have been reported in Chapter 3.
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For discovering the set of all contrast sequential patterns, we make use

of the ConSGapMiner technique (Ji et al. 2007), proposed earlier for the

extraction of minimal distinguishing subsequences (MDS), where gap con-

straints are defined by the user. The method employs the depth first search

(DFS) technique for generating the set of candidate contrast sequences.

Towards this purpose, a lexicographic sequence tree (LST) is grown (Ji

et al. 2007). Further details on the technique have been described by Ji

et al (Ji et al. 2007).

Thus, a sequential contrast pattern is accepted if it satisfies the user-

defined support constraints. The ConsGapMiner approach allows us to re-

strict the generation of redundant patterns, making it computationally effi-

cient.

4.3.3 Integrating sequential patterns for model con-

struction

The use of frequent patterns for classification purposes have earlier been

adopted for various applications (Li, Han & Pei 2001). In these cases, clas-

sifiers were mainly based on mining association rules in a supervised setting,

also known as classification rule mining. This was followed by a selection of

important rules by ranking them. Later, construction of a feature space us-

ing frequent patterns was utilized for discriminative pattern mining (Cheng,

Yan, Han & Philip 2008). In the current context, we utilize sequential con-

trast patterns as features to build classification models in two distinct ways,

as described next.

In conventional methods, if a test data instance satisfies one of the dis-

covered patterns, then that instance is interpreted as satisfying a rule based

on the corresponding pattern. In the context of sequence based training

data, order information between contiguous elements can be exploited for

robust classification or prediction of sequences for supervised learning appli-

cations. These patterns are known as sequential patterns, where informative

sequences are derived using frequency measures like absolute or relative fre-
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quency support, within the training data (Li et al. 2001). Later, the extracted

set of sequential patterns are used to correlate a given test sequence with an

outcome. Towards this purpose, the existence of individual sequential pat-

terns is tested to make an outcome prediction or test instance classification.

Consider the set of sequential patterns as P = {Ptk}, where k = 1, 2, ...,m,

for a binary class labelled dataset D = {Xi} such that i = 1, 2, ..., n , Xi rep-

resents a specific sample or data point. Now, if a sequential pattern Ptk is

present in a given sample Xi, then the binary valued feature corresponding

to the given pattern is set as 1. The absence of Ptk in a sample is encoded

as a 0 for the corresponding feature. Hence, the set of sequential patterns

and the input dataset is utilized to generate a transformed dataset having

|P | binary features and |D| samples.

An alternative approach is also used to create a feature space by em-

ploying the relative support of patterns in differently labelled groups in the

dataset. Here, we consider the relative support of a sequential pattern Ptk

for populating a feature value, provided the corresponding pattern is present

in the given instance. Thus, if the corresponding pattern is absent from the

given instance, the feature value is set to a 0. So if a sequential pattern Ptk

is present in a given instance Xi, then the corresponding feature is set to the

frequency support sup(Ptk).

A simple example is used in Figure 4.1 to demonstrate the two ideas of

feature space construction.

After obtaining a set of sequential patterns given by P = {AB,AC,AD},
each of these patterns is converted to a feature in the transformed dataset.

In the first case, for example, the feature vector corresponding to the sample

ABCB is given by < 1, 1, 0 > due to the presence of the patterns AB and

AC in the given instance. The binary valued vector indicates the presence

or absence of patterns at the corresponding feature positions. In the second

case, ABCB is transformed to < 2, 1, 0 >. This is because AB and AC are

both present in the given instance and have a frequency support of 2 and 1 for

the positive class. Finally, the transformed binary valued dataset is provided
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Figure 4.1: Transforming sequential patterns to binary or frequency based

features.

as input to a classification algorithm such as SVM (support vector machines)

(Cristianini & Shawe-Taylor 2000), Random Forests (Breiman 2001), and

Naive Bayes (NB) (Friedman, Geiger & Goldszmidt 1997) for constructing a

robust prediction model.

For the construction of a robust model, we further employ two types of

models to predict a given test instance. Generally, sequential contrast pat-

terns are extracted, while constraining frequency supports in the positive and

negative groups. This means the extracted set of contrast patterns is mostly

favourable or predictive of the positive class. In other words, the discovered

patterns have a greater propensity to identify a positive test instance than

a negative instance. In contrast, if the support constraints are reversed for

a training set, then the generated set of patterns are more predictive of the

negative class.

In our approach, for a single iteration, we thus obtain two groups of con-

trast patterns for feature transformations viz. contrast patterns favoring the

positive group and patterns favoring the negative class. As described earlier,
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this can be achieved by reversing the support constraints during the mining

operation. Consequently, for each iteration, two sets of contrast patterns are

obtained, i.e positive and negative. Subsequently, two pattern sets allow us

to build two different prediction models to predict a given test instance.

Finally, the prediction of a given test instance is achieved by a compar-

ison of probability estimates from the positive and negative model. In this

case, the model reporting a higher likelihood estimate is used to assign the

corresponding class label, to the unknown test instance.

4.4 Results and Discussions

The MIMIC-II database is a publicly accessible resource, subject to an ap-

propriate NIH certification, which consists of >30,000 ICU patient records

and has been traditionally employed for demonstrating the performance of

novel algorithms for critical care applications. The patient records include

numerous clinical variables such as laboratory test values, physiological mea-

sures, textual notes, medication records and physiological waveform signals,

mapped to each patient identifier with a unique value.

For our current experiments, we employed two case studies in clinical

events prediction. These are related to the prediction of an acute hypotension

event (AHE) and hospital mortality of a patient in ICUs.

4.4.1 Dataset description

An acute hypotensive episode (AHE) is defined as a period of 30 minutes

or greater, when 90% of the mean arterial pressure (MAP) readings are less

than 60 mmHg. AHE datasets were used from the Physionet 2009 challenge

directory and the study was approved by appropriate institutional review

boards. They consisted of 2 major groups of patients viz. H and C, where

H indicates the occurrence of an AHE in the forecast window and C indi-

cates no occurrences of AHE in the forecast window. The groups H and C

were further subdivided into H1, H2 and C1, C2. H1 describes patients who
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received pressor medication (15 samples). H2 reported patients not receiv-

ing pressor medication (15 samples). C1 indicated patients having no AHE

during complete hospital stay (15 samples) and C2 provided patients having

AHE before or after the forecast window (15 samples).

In our experiments, we only consider the MAP (mean arterial pressure)

time series for each patient record. The prediction tasks consisted of the

following two events -

• Event I: AHE Risk classification of test patients between H1 and C1

(10 samples)

• Event II: AHE Risk classification between H and C (40 samples)

Event 1 thus helps in the prognosis of pressor medication resistant AHE.

On the other hand, event 2 is aimed towards developing AHE predictors for

patients at risk.

Additionally, we also extracted extended AHE datasets using the follow-

ing clinical inclusion/exclusion criteria from the MIMIC-II database.

• a 30 to 60 minutes observation window

• a 30 minutes forecast interval where the ICU event occurs

• a time interval gap of 60 to 120 minutes separating the observation and

forecast windows.

• ICD-9 code for hypotension (458.0 - 458.9).

The present problem is formulated as described by Figure 4.2. IO in-

dicates the observation window for a record and the class label is decided

by the predicted occurrence of an ICU event in IF . Generally, a time lag

called TX is considered since we make an event prediction for the future time

window 1 or 2 hours ahead.

Using the MIMIC-II database, we originally compiled 254 records for

AHE and 274 segments for normotensive records for the extended datasets.
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Figure 4.2: The ICU Event Prediction Problem

Among these the training data consisted of 370 records (178 H and 192 C)

and the test dataset comprised 158 records (76 H and 82 C).

For the second case study, we focus on mortality, prior to hospital dis-

charge, as a patient outcome for developing sequential patterns based predic-

tive models. Traditionally, mortality prediction modelling has been carried

out using simplified models such as the Simplified Acute Physiology Score

(SAPS), which do not deliver sufficient precision for event predictions at

the individual patient level. The dataset employed was obtained from the

Physionet 2012 challenge, which focused on the problem of patient-specific

mortality prediction (Silva, Moody, Scott, Celi & Mark 2012).

Towards this purpose, we used a dataset extracted from MIMIC II, com-

prising of 4,000 patient stays in the ICU lasting at least 48 hours. The

datasets were formatted as time-stamped measurements for 37 distinct vari-

ables like urine output, white blood cell count, temperature, blood pressure

etc. Among these, we employed the mean arterial blood pressure (MAP)

of the patient and the respiration rate of a patient, for mining sequential

contrast patterns. Moreover, the in-hospital death of a patient was adopted

as the prime hospital mortality outcome variable for classification. Thus,

a positive outcome indicated that the patient died in the hospital before

discharge.

4.4.2 Classification results

A number of simulations were performed using various parameters like sub-

sequence length, alphabet size and maximum gap. A 2-fold cross validation
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(CV) was performed using the larger training dataset consisting of 60 sam-

ples (30 Hs and 30 Cs), thus reporting a CV accuracy of 94.9%. Optimal

performances were obtained using a maximum gap of 3, subsequence length

of 10 and alphabet of cardinality 5.

Table 4.1: Physionet AHE 2009 Test Prediction Results

5 minute GRNN SVM Patterns Patterns

MAP averages SVMB SVMF

AHE- Event I 100% 100% 100% 100% 100%

AHE-Event II 83% 92.5% 75% 92.50% 92.50%

As shown in Table 4.1, statistically computed averages of 5 minute MAP

windows did not perform very well (Chen et al. 2009). However, good results

were obtained when statistical averages of 5 minute diastolic arterial blood

pressure windows were considered. Henriques and Rocha et al (Henriques

& Rocha 2009) discussed the high performances of generalized regression

neural networks (GRNN) and acknowledged the final model’s dependency

on parameter tuning. In comparison, we demonstrate the use of a pattern-

based SVM model on the given test sets, which performed equivalently as

the GRNN results. As noted, feature sets using binary values as well pattern

frequency demonstrate similar performances.

To augment the Physionet 2009 results with further large scale studies,

we also performed similar experiments with the AHE extended datasets.

Our results for the extended datasets are shown in Table 4.2. Here, we

include 4 datasets for each combination of observation interval (I0) with a

time lag (Tx). Our comparisons show that considering a model based on

sequential patterns, which are transformed to features, have the ability to

provide significant performance improvements. Thus, test predictions using

pattern-based models demonstrate highest accuracies in the range of 83-

85.8%, while predicting ICU events like acute hypotension.

In addition to using sequential patterns for predicting AHE events, we
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Table 4.2: MIMIC-II Hypotension Test Prediction Results

SVM Pattern-based Pattern-based

SVM (Binary) SVM (Frequency)

AHE-Extended-I 71.30% 83.54% 83.54%

(I0 = 30mins, Tx = 60mins)

AHE-Extended-II 71.30% 85.80% 85.80%

(I0 = 60mins, Tx = 60mins)

AHE-Extended-III 72.70% 82.20% 82.20%

(I0 = 30mins, Tx = 120mins)

AHE-Extended-IV 70.10% 81.00% 81.00%

(I0 = 60mins, Tx = 120mins)

also employed a similar approach to predict patient mortality. In order to

estimate the mortality prediction performance of our models, a 5 fold cross

validation process was employed. Each iteration involved redeveloping the

model for each of the randomly sampled folds of training data, followed by

evaluating the predictive performance on the out of sample subset. Finally,

the performance of the method was tested using the sensitivity measure.

In this context, sensitivity was the standard metric employed to compare

model performances for the Physionet 2012 mortality prediction challenge

(Silva et al. 2012). Our results using MAP and respiration rate, are as given

in Table 4.3.

For the baseline SVM, Random Forests and Naive Bayes models, the fea-

ture set was constructed using mean and median measures for sliding windows

of size 10, over the given time series for each patient. Our experiments using

sequential contrast patterns as features with the same baseline classifiers like

SVM, Random Forests, and Naive Bayes, demonstrated improved sensitivity

performance. Particularly, the use of a Random Forests classifier using 100

trees showed the best performance when used with frequency based features.

As demonstrated by the described studies, sequential contrast patterns
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Table 4.3: 5-fold cross validated performances for Mortality Prediction

Mean Arterial Pressure Respiratory Rate

SVM 0.41 0.34

NB 0.45 0.39

Patterns(SVM)Binary 0.47 0.44

Patterns(SVM)Frequency 0.47 0.44

Patterns(NB)Binary 0.51 0.44

Patterns(NB)Frequency 0.51 0.44

Patterns(RF )Binary 0.51 0.44

Patterns(RF )Frequency 0.51 0.53

based learning models report better accuracies in comparison to using simple

statistical features or just simple learning models. Moreover, winner results

in Physionet 2009 challenge demonstrate similar performances with neural

network based multimodels (Henriques & Rocha 2009). A similar large scale

study carried out by Lee and Mark(Lee & Mark 2010), employed neural net-

works (NN) on hypotensive datasets extracted from MIMIC-II. Our results

indicate performances similar to the NN results.

For the mortality prediction challenge, our results tend to demonstrate

better performances in comparison to previous methods based on logistic re-

gression (Bera & Nayak 2012), two-layer neural networks (Xia, Daley, Petrie

& Zhao 2012) and a clinical scoring system like the SAPS-I (Silva et al. 2012).

Despite, the use of complex NN based methods in the models reported for

both case studies, these are considered to be very complex for interpretation

in the context of clinical scenarios. In contrast, our models are based on

features, which are symbolic clinical sequences and easily interpretable.

The important aspect of our study is its reliance of constructing features

from patterns for model development. Our approach clearly demonstrates

the importance of learning good features that capture dynamic behaviour.

We demonstrate that useful and robust clinical models can be constructed
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when feature learning methods are integrated with learning models.

The experimental results for two ICU event prediction problems, indicate

that automatic integration of sequential contrast patterns as features with

learning models provide improved patient risk predictions. We note that

for the same physiological variables, baseline models like SVM and Naive

Bayes report lower performances. However, the CVA performance tends to

be higher when models are built using sequential patterns as features.

Feature construction approaches based on sequential contrast patterns

tend to inherently capture a patient’s signal trajectory towards a critical ICU

event. Thus, discrete sequences encoding significant physiological episodes

after ICU admission, are able to capture a dynamically evolving patient state.

In this context, using discrete episodes to learn interesting features and then

using them in conjunction with learning models to predict ICU events, hold

significant value both in terms of clinical interpretation of episodes as well

as for the construction of robust prediction models. In addition, sequential

contrast patterns are also easily interpretable , since the most significant

features also correspond to investigating a set of episodic sequences, which

may have significance from a clinical perspective.

An important consideration of the approach also involves employing the

propensity of patterns to favour a positive or a negative class. Pattern min-

ing techniques tend to extract sequences based on guidance by user defined

support constraints. Hence, a better prediction is achieved, if models based

on oppositional pattern sets are compared. Thus, the pattern-based model

having greater propensity towards a given instance has a higher likelihood

estimate.

Hence, our current results show that integrating sequential contrast pat-

terns using classification models, allows us to capture interactions among

discrete patterns of physiological variables, which are useful for predicting

labels for patient sequences.
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4.5 Conclusion

The present study investigated the effectiveness of an integrated pattern

mining framework, where sequential patterns were used to build a pattern

or feature space. Thus, each pattern was encoded as a binary valued and

frequency based attribute in the transformed dataset. Subsequently, the

dataset was provided as input to learning models like SVM, Random Forests

and Naive Bayes for building robust sequential patterns-based classifiers. To

demonstrate the effectiveness of pattern sequences as features, we compared

our method with the traditional SVM, Random Forests, and Naive Bayes

counterparts using generalised statistical features. Our results demonstrate

that the learning models, which account for additional information in the

form of sequence contrast patterns, tend to perform well in comparison to

models not exploiting such information. This is because sequential patterns

are able to capture dynamic behavior of a physiological signal as compared

to statistical features which provide a static snapshot. Specially, our ap-

proach demonstrates the importance of training ICU classifier models using

informative sequential patterns, in addition to conventional clinical measures.

Hence, the recommended framework employing sequential contrast patterns

and their feature transformations, can provide proactive ICU care systems

a novel clinical pattern discovery platform for the improvement of patient

outcomes. Finally, finding relevant sequences of symbolic events that pre-

dict ICU conditions can contribute to the investigation and development of

cause-effect hypotheses, which are good candidates for investigations in clin-

ical settings.

98



Chapter 5

Septic Shock Prediction for

ICU Patients via Coupled

HMM Walking on Sequential

Contrast Patterns

In this chapter, we build on top of sequential contrast pattern mining foun-

dations described in the previous chapters, and introduce the novel transfor-

mation of patient time series to multivariate “time series of sequential con-

trast patterns”. These multivariate pattern sequences are integrated with

sequential model like coupled HMMs to report predictive performances on

an important problem of septic shock prediction.

5.1 Introduction

Septic shock is a critical complication arising from an infection, such that a

systematic inflammatory response syndrome (SIRs) is triggered in the human

body. Due to SIRs, tiny blood clots are formed. These clots block the oxygen

and nutrients from reaching vital organs, leading to acute organs dysfunction

and death.
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Generally, sepsis treatment accounts for 10% of all ICU admissions (Angus

& Van der Poll 2013). Over 19 million cases have been extrapolated to re-

port worldwide incidence of SIRs (Rivers, Nguyen, Havstad, Ressler, Muzzin,

Knoblich, Peterson & Tomlanovich 2001). Hospitalization due to SIRs, has

overtaken those for myocardial infarction (commonly known as heart attack)

(Yeh, Sidney, Chandra, Sorel, Selby & Go 2010). Currently, sepsis is the

most expensive medical condition to be treated in hospitals and cost more

than $20 billion in 2011, in US hospitals. Reportedly, these costs have been

increasing by 11.9% annually (Torio & Andrews 2006).

It should be noted that the survival outcomes of sepsis treatments greatly

depend on the early recognition of sepsis stages. Thus, discovering potential

biomarkers for sepsis and septic shock, is an active area of research and a

substantial literature of methods have been reported. Traditionally, SIRs

is diagnosed using laboratory tests to determine the presence of factors like

bacteria, low platelet counts, electrolyte imbalance etc. Complex patient

health scoring systems like the Acute Physiology and Chronic Health Evalu-

ation (APACHE II), and the recently developed targeted scoring systems, are

employed to direct early interventions for sepsis (Rivers et al. 2001, Henry,

Hager, Pronovost & Saria 2015). Past studies have employed features like

patient demographics, heart rate variability, hypotension levels, and patient

medical history, at the time of ICU admission to develop machine learning

models using multivariate logistic regression, multilayered perceptrons, deci-

sion trees, principal component analysis and support vector machines (Capp

& et al 2015, Lukaszewski & et al 2008, Gwadry-Sridhar, Lewden, Mequanint

& Bauer 2009, Tang, Middleton, Savkin, Chan, Bishop & Lovell 2010).

A septic shock is identified by the occurrence of a hypotensive event (an

extended drop in blood pressure), despite of a prior fluid resuscitation treat-

ment. The mortality risk can increase dramatically, when patients progress

from a sepsis situation to a septic shock. Therefore, the accurate identifi-

cation of patients at risk of septic shock during the critical “golden hours”

(Rivers et al. 2001) is crucial for the improvement of the traditional treat-
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ment protocols in the current clinical care implementations. To this purpose,

the direct use of machine learning models using static variables (commonly

applied in current severity scoring systems), are not suitable for short-term

predictions (for e.g., within 2 hours) of fast-evolving critical events in ICU set-

tings. This is because, accurate forecasting of critical events, require dynamic

temporal patient data. Subsequently, recent studies of temporal pattern min-

ing methods for outcome prediction using Electronic Health Records have

generated significant interest in the field of medical informatics and event

predictions (Moskovitch & Shahar 2015, Batal et al. 2012, Yang, McAuley,

Leskovec, LePendu & Shah 2014, Sacchi, Dagliati & Bellazzi 2015). However,

the previous methods involved the use of highly curated datasets, involving

invasively collected clinical variables and comparatively smaller population

samples, in comparison to the requirements of large-scale clinical studies.

Typically, simple machine learning models do not scale well in performance

for large-scale databases of ICU patients.

For clinical research, randomised controlled trials (RCTs), are costly un-

dertakings, requiring immense time and resources. In comparison, large-scale

retrospective data driven studies can complement the mainstream clinical

research, by providing effective testbeds for the development of interesting

computational algorithms involving time-to-event prediction models using

dynamic physiological data.

In the current study, we exploit the potential of commonly observed phys-

iological measurement data for the early prediction of septic shock. The

data was obtained from the measurements of the Mean Arterial Pressure

(MAP), the Heart Rate (HR) and the Respiratory Rate (RR) in the MIMIC-

II database (Saeed et al. 2011). Our approach discovers sequential contrast

patterns from these physiological measurements, and then transforms the

original training data into a time series of patterns. Later, we apply a cou-

pled Hidden Markov Model (CHMM) to these time series of patterns for

constructing the septic shock classifier. Later, for a given test sample (new

patient), the classifier can estimate the probability of septic shock, happen-
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ing in a future time window, after a half or one hour. Additionally, these

sequential contrast patterns contained in a patient sample, can help to pro-

vide valuable insights about the physiological fluctuations that lead to septic

shock events.

5.1.1 Contributions

The detailed contributions of this study are:

• A multi-variate contrast patterns mining based sequential modeling

approach, in the form of a wrapper, is employed for ICU time series,

• The extracted contrast patterns are used to encode the dicretized train-

ing data, by creating a novel ordered sequence of contrast patterns for

each patient, i.e as a time series of contrast patterns,

• A Coupled HMM is used to couple multiple channels of pattern se-

quences, for the prediction of high-risk septic shock patients, in a future

time window

This study indicates that the integration of multi-channel contrast se-

quential patterns using CHMMs, can achieve accuracies competitive to ear-

lier models. More importantly, our integrated approach makes it possible

to simultaneously extract patterns that record dynamic patient information,

and use these contrast patterns as inputs to sequential learning models for

large-scale physiological data sets, from major healthcare database providers.

5.2 Related Work

In the past, numerous studies have been reported in the field of biomedical

event prediction. An overview of recent research advances related to the use

of pattern-based classification approaches for medical events prediction are

reported, along with previous statistical modeling studies for septic shock

prediction.
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5.2.1 Previous studies in septic shock prediction

For the early prediction of septic shock, a number of previous studies have em-

ployed multivariate logistic regression models (Shavdia 2007, Hug 2009, Car-

rara, Baselli & Ferrario 2015). Thiel et al. (2010) performed regression tree

analysis for multiple populations of greater than 13000 patients, for early

prediction of septic shock risk among non-ICU patients. Decision trees were

also employed by Gwadry-Sridhar et al. (2009) for 20 clinical variables,

achieving nearly 100% predictive accuracy. Among the soft computing tech-

niques, numerous wrapper-based feature selection and preprocessing meth-

ods, namely Zero-Order-Hold,and missing-value imputation techniques have

been employed along with particle swarm optimization, fuzzy models, and

neural networks, to improve septic shock classification performance (Vieira,

Mendonça, Farinha & Sousa 2013, Ho, Lee & Ghosh 2012, Fialho, Celi, Cis-

mondi, Vieira, Reti, Sousa, Finkelstein et al. 2013). Selecting appropriate

clinical features turns out to an important concern for predicting cases of sep-

tic shock. Accordingly, Lukaszewski et al. (2008) demonstrated the efficacy

of using blood sample measures and the expression levels of miRNAs, for

learning a multilayered perceptron model to forecast septic risk and achieved

83% predictive accuracy. Additionally, Tang et al. (2010) employed principal

component analysis (PCA) in combination with a non-linear support vector

machine (SVM) on high resolution temporal physiological waveform datasets

to achieve an 84% accuracy for predicting sepsis onset among 28 patients.

5.2.2 Pattern-based classification models for predict-

ing biomedical events

Mining various kinds of patterns such as itemsets, and sequences have re-

mained a focus area of data mining research, for a long time. In classification

problems, discriminative patterns have strong associations with class sensi-

tive datasets, making them suitable for use as potential variables or features,

while building a robust classifier (Cheng et al. 2007).
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Methods described in section 2.1, are limited to the application of sta-

tistical models to determine associations between a risk factor and a disease

outcome. However, real-world healthcare data is intrinsically too complex

and massive to be limited to finding pair-wise associations. Thus, the iden-

tification of novel sequential and temporal patterns turns out to be a crucial

advancement towards the development of state-of-the-art clinical informatics

tools and techniques.

In this context, Klema et al. (2008) identified frequent sequential pat-

terns from a longitudinal dataset to map atherosclerisis risk factors to health

outcomes. The mined patterns were later used to create classification rules

for predicting cardiovascular risk. Baralis et al. (2010) employed the patient

examination histories to derive significant closed sequential patterns to de-

rive standard clinical workflows as well as workflow deviations, that were not

compliant. Moreover, Berlingerio et al. (2007) demonstrated further expres-

siveness in medical sequential patterns by mining event sequences along with

the most frequently elapsed time intervals, between these events. Patnaik et

al. (2011) reported the extraction of sequential coding patterns from EHR

data and followed up with the derivation of partial orders from the extracted

sequences for generalizing patterns.

Due to the longitudinal EHR’s intrinsic temporal nature, Sachi et al.

(2007) proposed a method for mining temporal association rules from time

series variables monitored during hemodialysis sessions. These temporal rules

were mined based on prior definitions of temporal abstractions of interest.

Toma et al. (2010) proposed logistic regression models for mortality pre-

diction which integrated frequent temporal episodes constructed from pa-

tient time series of organ failure scores. Later, Moskovitch and Shahar

(2014) studied the problem of mining frequently occurring temporal pat-

terns in abstracted EHR data and used Allen’s interval algebra representa-

tions (Höppner & Peter 2014) to define complex time-interval patterns for

diabetic patients. Batal et al (2013) proposed a method for mining minimal

time-interval patterns that are useful for predicting patients who are at risk
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of developing heparin induced thrombocytopenia (HIT), a life threatening

condition that may develop in patients treated with heparin. Among other

temporal methods, Wang et al (2013) proposed a non-negative matrix fac-

torization framework using a convolutional approach for temporal pattern

discovery in EHR data. This approach models each patient’s record as an

image matrix, where the x-axis corresponds to the time stamps and the y-

axis corresponds to the event types. Recently, Peek and Abu Hanna (2012)

reported about past uses of time-to-event prediction methods for obtaining

more fine-grained prognostic information in comparison to static data. In

particular, the authors highlighted temporal modeling studies using hierar-

chical bayesian networks to predict organ failure (Peelen, de Keizer, de Jonge,

Bosman, Abu-Hanna & Peek 2010), frequent temporal sequences to predict

mortality(Toma, Bosman, Siebes, Peek & Abu-Hanna 2010), and temporal

bootstraps to explore disease progression (Li, Swift & Tucker 2013). Here,

time-to-event prediction models are associated with the estimation of the

amount of time that passes prior to the occurrence of a clinical event.

Recent research by Dafe et al (2015) strongly reflected on the importance

of capturing sequential relationships among discrete events for building ro-

bust sequential classifiers. The application of sequential patterns to create

a feature space for learning models has also been reported by Fradkin et al

(2015).

As described in section 2.1, the direct use of learning models on raw phys-

iological data make them vulnerable to noise and tends to use statistical fea-

tures that aggregate information based on windowing methods. Accordingly,

such processes fail to capture interesting sequence based features. More-

over, the auto-integration of informative sequential patterns while creating

learning models for ICU event prediction, remains an open area of research.
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5.3 Materials and Methods

In this section, the detailed steps of the proposed septic shock prediction ap-

proach are presented. Initially, a brief description of the data discretization

technique for the continuous time series data is provided. This is followed

by the relevant definitions and concepts related to the extraction of sequen-

tial contrast patterns from the waveform datasets of two differently labelled

groups of patients is discussed. Finally, we describe the integration of se-

quential contrast patterns using coupled hidden markov models (CHMMs)

for predicting the class label of an unknown patient sequence (the test data

instance) for classification purposes.

The novelty of our integrated approach lies in the exploitation of position

information of sequential patterns (also described as the offset of a pattern),

within a given patient sequence.

5.3.1 Discretisation of continuous time series

For discovering informative sequential patterns, an initial step requires the

transformation of real-valued timestamped data to discretized representa-

tions (Syed, Stultz, Kellis, Indyk & Guttag 2010). This is a necessary step

for the effective application of pattern discovery methods, since they operate

on symbolic data types. Subsequently, the symbolic aggregate approximation

(SAX) method (Lin et al. 2003) can be used to transform a time series sig-

nal into a discrete sequence, where a symbol is assigned to discrete intervals

within the signal amplitude range.The SAX technique has emerged as a lead-

ing discretisation method, which has demonstrated its efficiency in numerous

data mining applications by producing informative symbolic representations

of large-scale time series data. SAX converts the given time series to a piece-

wise aggregate approximation (PAA) representation (Lin et al. 2003), which

is later converted to a symbolic sequence. As described by Lin et al (2003),

SAX characterizes the inherent properties of a time series data. Thus, an

equiprobable distribution of symbols is obtained for the corresponding time
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series (Lin et al. 2003). Algorithmic details on SAX discretization can be

obtained in (Lin et al. 2003).

Following the discretization of time stamped data, data mining algorithms

can be employed for discovering sequential patterns from disparate popula-

tions of sequence datasets. Previously, the discovery of emerging patterns

from differently labelled groups of data was described by Dong and Li (1999).

Emerging patterns are described as itemsets, which are constrained by user-

defined frequency supports in differently labelled populations (or classes).

Thus, given a dataset consisting of two classes, emerging patterns can be

discovered, which frequently appear in the positive class compared to less

frequency support in the negative class. Emerging patterns was later ex-

tended to identify emerging substrings in (Chan et al. 2003). Substrings are

categorised as a special case of subsequences, where symbols in a substring

have a gap interval of 0. However, sequential patterns of interest may not al-

ways be composed of consecutive symbols, within a given symbolic sequence.

Accordingly, numerous algorithms have been reported for realizing gap inter-

vals between symbols in a sequential pattern (Xing et al. 2010, Ghosh, Feng,

Nguyen & Li 2014, Ghosh, Feng, Nguyen & Li 2016).

In following sections, we initially describe the extraction of gap-constrained

subsequences from differently labelled groups of training sequence data, based

on our prior work related to the mining of sequential contrast patterns for

the acute hypotension problem (Ghosh et al. 2016).

Sequential patterns

The discovery of sequential patterns is associated with the mining of trans-

actional data to extract frequently occurring ordered sequences of items.

Let us consider a set of distinct items represented by I. A sequence S

defined over I, may be written as e1 − e2 − · · · − en, given that ep ∈ I, such

that 1 ≤ p ≤ n. A sequence S ′ = ep1 − ep2 − · · · − epm exists within another

sequence S = e1− e2− e3− ...− en, such that 1 ≤ p1 ≤ p2 ≤ ≤ pm ≤ n. For

example, a subsequence XY is contained in XAAY, but not YX. Hence, the
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sequence order of items in S′ is maintained within S, however the individual

items in S′ are not necessarily consecutive in S.

Moreover, given the sequences, S = e1− e2−· · ·− en and S ′ = ep1− ep2−
· · · − em , S ′ occurs in S if 1 ≤ pk ≤ n and ek = epk for all 1 ≤ k ≤ m, and

pk ≤ pk+1 for 1 ≤ k ≤ m. For example, given sequences S = ACACBCB

and subsequence S ′ = AB, S ′ occurs four times in S, at the positions given

by {1, 5}, {1, 7}, {3, 5} and {3, 7}.
For satisfying the condition of gap constraints between symbols, let there

exist a sequence S = e1 − e2 − · · · − en and the occurrence information as

O = p1, p2, . . . , pm of a subsequence S ′. If (pk+1− pk) ≤ g+ 1, then it is said

that S ′ satisfies the gap constraint of g. Typically, a singular occurrence of a

sequence with gaps, within a training data instance, is a necessary condition

for satisfying the gap-constraint requirement, for that sequence within the

instance. For example, if g = 3, then AB is a subsequence of ACCB, but

not ACCCCB.

Mining sequential contrast patterns

Emerging patterns (EP) are described as itemsets, which are constrained

by user-defined frequency support conditions in different classes (Dong &

Li 1999). This means that for a dataset consisting of two classes, patterns

satisfying the condition of high frequency support in the positive class and

low frequency support in the negative class are known as emerging patterns.

Thus, an EP having high support in one class and low support in the con-

trasting class is considered to be a discriminative pattern that is able to

contrast between the two opposite classes. Accordingly, the strength of such

a pattern is expressed by the ratio of frequency supports in both classes (also

known as the growth rate of EP). Here, we begin with the identification

of gap-constrained subsequences from differently labelled groups of training

sequence data, based on the principles of frequency support.

Let there be D = {D1, D2, . . . , Dn} representing a set of training in-

stances, SP - a sequential pattern, and g is the gap-constraint. The cardinal-
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ity of occurrences of SP in D is given by countSP
(D, g), also known as the

absolute frequency support of SP within D. Suppose, there exists a user-

defined cardinality threshold of α and SP satisfies countSP
(D, g) ≥ α, then

SP is a frequent sequential pattern in D, having a gap constraint of g.

Extending the above description, given two differently labelled sequence

datasets D+ (positive sequences) and D−(negative sequences), we can main-

tain two cardinality thresholds α and β, and a maximum gap of g, where a

sequential contrast pattern SP needs to satisfy the conditions, as below.

(1) Positive Support: countSP
(D+, g) ≥ α

(2) Negative Support: countSP
(D−, g) ≤ β

Thus, given D+, D−, α, β and g, mining of sequential contrast patterns

consists of discovering all gap-constrained sub-sequences as sequential pat-

terns, which satisfy (1) and (2).

The rationale behind the extraction of contrast patterns is associated with

the growth rate of a pattern, which can be described as the ratio of a given

pattern’s support in D+ over D− (Dong & Li 1999). The growth rate of a

pattern is intuitive from a clinical applications perspective. This is because

the traditional objective in clinical trials, is oriented towards finding differ-

ences between the intervention and control population of patients. Thus,

discovering patterns based on differences in their supports in the interven-

tion and control populations, allow us to find sequential patterns that can

explain the difference between two populations of data. Specifically, the use

of α and β to compute a growth rate of a pattern, is similar to the odds ratio,

which is an intuitive measure to clinicians for finding association between an

exposure and an outcome. In this context, given that a particular clinical

event has occurred, we find the odds of a patient having a specific sequential

pattern.
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Generating candidate contrast sequences

For discovering the set of all contrast sequential patterns, we make use of the

ConSGapMiner technique (Ji et al. 2007), proposed earlier for the extrac-

tion of minimal distinguishing subsequences (MDS), where gap constraints

are defined by the user. The method employs the depth first search (DFS)

technique to generate the set of candidate contrast sequences. To this pur-

pose, a lexicographic sequence tree (LST) is grown. In our case, an LST

is a tree where each node contains a subsequence (refer Figure 1), with its

positive and negative frequency supports. Typically, a child node is grown

by extending the parent node’s sequence, using a new item (or symbol) (Ji

et al. 2007, Ghosh et al. 2016).

After a sequence node is generated, if it satisfies the conditions (1) and

(2), then the sequence node is not extended further. This is because a super-

sequence of a potential sequential pattern that satisfies conditions (1) and

(2), is not minimal (Ji et al. 2007). Hence, in order to reduce the generation

of redundant patterns as well as minimize tree depth, the growth of sequences

is restricted by a minimality condition.

Moreover, if a sequence node’s positive frequency support is lesser than α

(as specified in condition (1)) , then the concerned node is not extended fur-

ther. This is because a supersequence of the current node is also infrequent

(Ji et al. 2007). Later, gap-constraint satisfaction is verified by the applica-

tion of a bitmap representation reported earlier for checking gap-constraints

(Ayres et al. 2002, Ghosh et al. 2016). Finally, a post-processing step is also

applied so that any supersequence of at least another shorter subsequence,

is removed from the resulting set of contrast sequences.

An example of a LST is shown in Figure 1. Here, node XXZ(2,1) rep-

resents the sequence XXZ with 2 as positive and 1 as negative supports.

A child sequence may be grown by extending the parent sequence with a

unique symbol from the alphabet, based on a certain lexicographic order.

Thus, given the present LST, whose alphabet is defined as I = X, Y, Z, XXZ

has three children nodes as XXZX, XXZY and XXZZ. Subsequently each
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nodes supports are computed from the positive (D+) and negative (D−)

classes.

null

X(3,2) Y(3,2) Z(3,2)

XX(2,1) .. ... .... .....

XXX(0,0) XXY(0,1) XXZ(2,1)

XXZX(0,0) ....... XXZZ(1,0)

Figure 5.1: A Lexicographic Sequence Tree (LST) growing candidate se-

quences using 3 symbols as X, Y, Z

5.3.2 Discretised timestamped instance to sequential

contrast patterns

In conventional methods, if a test data instance satisfies one of the discovered

patterns, then that instance is interpreted as satisfying a rule based on the

corresponding pattern. In the context of sequence based training data, order

information between contiguous elements can be exploited for robust classifi-

cation or prediction of sequences for supervised learning applications. These

patterns are known as sequential patterns, where informative sequences are

derived using frequency measures like absolute or relative frequency support,

within the training data (Li et al. 2001). Later, the extracted set of sequen-

tial patterns are used to correlate a given test sequence with an outcome.

To this purpose, the existence of individual sequential patterns is tested to

make an outcome prediction or test instance classification.

However, a sequential pattern can also have a strong interpretive value
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associated with its position information (described by the offset of a pattern)

within a given discretised data instance. This means that an ordered set of

patterns, occurring at different offset positions within an instance, is rele-

vant for predicting an outcome for the given instance. Using offset values

of the extracted sequential patterns in a discretised timestamped instance,

allows us to transform the data instance to a meaningful episode consisting

of consecutive sequential contrast patterns. As described in section 5.3.1,

the set of contrast patterns is obtained from a simple and flexible sequential

contrast mining technique. Following the extraction, the training dataset

is transformed to a dataset of meaningful episodes, constructed by ordering

sequential patterns based on their position, within an original training se-

quence. Sequences of patterns are then provided as input to a hidden markov

model, which is an appropriate sequential learning method for exploiting a

set of observations ordered in time.

Let us consider, P = {P1, P2, . . . , Pn} as a set of contrast sequences ob-

tained from the D+ and D− training sequences, as described previously.

Subsequently, a discretised instance of a training dataset, is transformed to

a sequence of items or patterns from P . This is carried out by using a slid-

ing window to incrementally move through the original discrete sequence.

A sliding window of length equivalent to the longest item (pattern) in P is

selected for our purpose. For each iteration of the sliding window through

the sequence, the existence of item Pi (a sequential pattern) is tested in

the corresponding segment of the sequence. This can be illustrated using

Figure 5.2.

Let us consider P = {P1, P2, P3} as the set of sequential contrast patterns.

In the first iteration of the sliding window, P1 and P2 are identified. This

is followed by the detection of P2, P3 and P1, in the second iteration. To

determine the order information between two patterns, we employ the rule

pos[Pj]1<pos[Pk]1, where pos[Px]1 gives the position of the first symbol of a

pattern Px within a given sequence. Here x, j, k ∈ N and ≤ 3.

The above encoding procedure is repeated for each of the training se-
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P1

P2

P2

P3

P1

P1 P2

P2 P3 P1P1 P2

ITERATION 1

ITERATION 2

Figure 5.2: Encoding and transformation of a data instance to an ordered

sequence of patterns

quences to obtain a transformed dataset, where each original sequence is

thus encoded using an ordered series of patterns Pi. The transformed set of

sequences is subsequently provided to an HMM (and CHMM) for learning

its model parameters. Later, in the prediction phase, an unlabelled discrete

test sequence is transformed to a pattern sequence using P (the contrast pat-

tern set), which is provided as an input to the learned HMM for obtaining a

probability likelihood estimate for the corresponding test sequence. Finally,

the class label of the sequence is predicted to be positive, if the likelihood

estimate is higher than a user-defined threshold.

The above process of transforming a single discrete sequence to an infor-

mative episode of patterns can be readily extended for multiple time series

variables. For a multivariate sequence, a data instance is composed of mul-

tiple sequences, each representing a specific time series variable. For each of

the given variables, we extract a set of sequential contrast patterns. Subse-

quently, the transformation of the multivariate training dataset is performed

by encoding each variable sequence (of a data instance) using its correspond-

ing contrast pattern set.
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Coupled hidden markov models

CHMM extends the conventional form of HMM to multiple observation se-

quences or channels. Existing studies have employed CHMM in applica-

tions such as speech recognition, activity recognition, anomalous trading

activities, medical events, disease interactions and fault diagnosis (Zhou,

Chen, Dong, Wang & Yuan 2016, Audhkhasi, Osoba & Kosko 2013, Cao,

Ou & Philip 2012, Masoudi, Montazeri, Shamsollahi, Ge, Beuchee, Pladys

& Hernández 2013). In the current study, CHMM is used to integrate and

model interactions between multiple physiological variables, each represented

by a sequence of discrete observations. Accordingly, multiple HMMs are ag-

gregated by enabling transitions between the discrete hidden states for each

HMM. The topological structure of a CHMM is shown in Figure 5.3, where

for example, two variables with corresponding channels are integrated.

Figure 5.3: Topology of a two-channel CHMM.

Let us consider a generalised CHMM model with C parallel channels

from {1, . . . , C}. The set of states is given by Sc = {sc1, sc2, . . . , scIK}, where

IK is the number of states and c ∈ {1, . . . , C}. The set of observations is

represented by V c = {vc1, vc2, vc3, . . . , vcJc}, where Jc is the number of discrete

observations. The state transition distribution Ac = {aci1i2...iCkc
}, based on

the generalised markov property, where each hidden node has C parent nodes

(corresponding to C channels) from the previous time point, is given by

P (qct+1 = sckc |q
1
t = s1

i1
, . . . , qct = sCiC ) = aci1i2...iCkc (5.1)
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where
∑IK

kc=1 a
c
i1i2...iCkc

= 1.

The emission probability distribution in state sci is given by Bc = {bci(k)},
such that

bci(k) = P (Oc
t = vck|qct = sci) (5.2)

where
∑Jc

k=1 b
c
i(k) = 1.

In equation (2), the identifiers c, i and k indicate a channel, a state and

an observation, respectively.

The initial state distribution πc = {πc
i} is represented as

πc
i = P (qc1 = sci) (5.3)

where
∑IK

i=1 π
c
i = 1.

Accordingly, each channel is described by the following HMM notation of

parameters

λc = (Ac, Bc, πc) (5.4)

The final CHMM model can thus be denoted by

λ = (λ1, λ2, . . . , λC) (5.5)

Similarly as conventional HMM, the three specific research areas for a

CHMM include, (1) the classification of observation sequences, (2) inferring

the sequence of hidden states which maximizes the sequence likelihood esti-

mate, and (3) learning the parameters of the CHMM.

For classification, if we have C channels corresponding to C observation

sequences, such that oc = oc1, o
c
2, o

c
3, . . . , o

c
T , we need to compute the prob-

ability of the given C sequences denoted by P (o1, o2, . . . , oC |λ1, λ2, . . . , λC).

For inferring the hidden state sequence, given C channels, the final CHMM

needs to determine the sequence of hidden states: qc = qc1, q
c
2, . . . , q

c
T for

each channel c = 1, 2, . . . , C, such that the likelihood estimate is maximized

for the given observation sequences. Finally, for model estimation, given C

observation sequences oc = oc1, o
c
2, o

c
3, . . . , o

c
T for each of the C channels, we

need to optimize optimize the parameters of the CHMM model to maximize

P (ol, o2, . . . , oC |λ1, λ2, . . . , λC).
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Previously, various algorithms have been employed to solve the CHMM

problem (Zhong & Ghosh 2002, Kristjansson, Frey & Huang 2000). For

our implementations, we adopted the procedure described by Rezek et al

(Rezek & Roberts 2000). Here, the CHMM with C channels was modified to

construct a single channel large HMM. In this large single channel CHMM,

each state is viewed as a cartesian product of states from the C channels and

is given by s = (s1
i1
, s2

i2
, s3

i3
, . . . , sCiC ). Note that sCiC represents a discrete state

from the Cth channel and iC ∈ sC1 , . . . , sCIk . Thus, sCiC a member of the set Sc

for c ∈ {1, 2, . . . , C}.

The above formulation leads to a total of N = πC
k=1Ik possible states for

the HMM at every time instance. Accordingly, an A = NXN matrix is

formed, where each element denotes the probability of state transition from

one state s to another state in the given HMM. Note that each state consists

of C ordered components. According to this procedure, an observation for a

given time step is a CX1 vector give by v. Here, v = {v1
k1
, v2

k2
, v3

k3
, . . . , vCkC},

where vCkC ∈ V c, such that c ∈ {1, . . . , C}. Thus, we have M = πC
c=1Jc

possible observations, at a given time instance. Subsequently, an NXM

matrix B can be defined to represent the observation probabilities of the

final CHMM. This large HMM can now adopt the general structure given by

λ = {π,A,B}.

Based on the above transformations, the aforementioned CHMM prob-

lems for model estimation and classification become the same as a single-

channel HMM. To this purpose, we employ the generalised forward-backward

algorithm for solving the classification problem (Rabiner 1989). For model

estimation, we use the expectation-maximization algorithm (also known as

the Baum-Welch method) to maximize P (O|λ) to adjust model parameters

for HMM (Rezek & Roberts 2000, Rabiner 1989).
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5.3.3 Illustrative examples of CHMM walking on se-

quential patterns

To demonstrate the sequential patterns based CHMM technique, we consider

two simple examples: (1) a single channel patterns based HMM (SCP-HMM)

and (2) multi-channel patterns based CHMM (MCP-CHMM).

Single channel patterns based HMM (SCP-HMM)

In the following example, let us consider a set consisting of the patient mean

arterial pressures (MAPs) for positive (D+) class labels. Let the set of se-

quential patterns extracted after the contrast mining process be denoted by

P = {P i
j |j = 1 . . . n, i = 1 . . .m}, where i encodes the channel and j encodes

the pattern, as shown in Figure 4. Due to the nature of contrast mining,

the patterns listed in P have stronger support in D+ than D−. Thus, each

pattern is encoded using a symbol P i
j , where i indicates the number index of

variables and j indicates the number index of patterns.

Figure 5.4: Encoding patient sequences using extracted patterns. P i
j denotes

a sequential pattern. Here, i=1 indicates a single channel or variable. A

patient MAP sequence such as AACAABCBBC is converted to P1−P1−P3.

Finally, a new training set of pattern sequences is obtained.
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Table 5.1: A indicates the state transition function for discrete states S1 and

S2

State Transition Function (A) S1 S2

S1 0.5 0.5

S2 0.7 0.3

Table 5.2: B denotes the emission probability distribution for 2 states and 4

pattern observations

Emission Distribution (B) P1 P2 P3 P4

S1 0.5 0.2 0.2 0.1

S2 0.7 0.1 0.05 0.15

For an HMM with two discrete states S1 and S2, let us have the state

transition and pattern emission probabilities are shown in Table 5.1 and

Table 5.2. In Figure 5.5, the state transition diagram is illustrated with

output emissions and their probabilities.

Figure 5.5: State transition diagram with output emissions and their proba-

bilities

Based on the described HMM model, a pattern sequence P1 − P1 − P3

(as shown in Figure 5.4) is computed to have a likelihood estimate of 0.72.

Accordingly, we classify this instance to be a positive pattern sequence, since

its probability likelihood is greater than the threshold of 0.5. Maximum
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likelihood measures for each of the other pattern sequences are also estimated

in a similar manner.

Coupled HMM for multichannel pattern sequences (MCP-CHMM)

For the example shown in Figure 5.4, we consider a single channel MAP

sequence denoted by i in P i
j . Thus, in the context of parallel channels, each

variable like HR and RR can have their corresponding set of patterns denoted

by P 2
j and P 3

j , for the example in Figure 5.4.

Therefore, for a given patient instance having three sets of sequential

patterns given by P i
j , each variable (i.e MAP, HR or RR) sequence for a pa-

tient is converted to an ordered sequence of patterns P i
j , where the channel

i = 1 . . . 3. Given the CHMM formulation, each discrete state for a partic-

ular channel now becomes a function of three states, based on the markov

property. Thus, the state transition and emission probability functions can

be realized, by mapping a permutation of three unique states (corresponding

to each channel). This can be illustrated by the directed graph (DAG) shown

as per Figure 5.6, where a single edge from the previous state in each channel

enters the next state of another channel.

Here, Si
j is a discrete hidden state for the channel i and j is the index of

a state. Thus, figure 5.6 illustrates that the emission of a contrast pattern

is probabilistically estimated by a a discrete state for that channel, which

depends on three states at time tm−1. Here, tm indicates the current iteration

at m for time t.

5.4 Evaluation

Our experimental plan begins with a description of the septic shock event

prediction problem, followed by a brief description of the MIMIC-II database

(our primary source for data collection). Next, we describe the clinical in-

clusion and exclusion criteria for the selection of patients. For baseline es-

timations, we employed SVM and HMM models on the continuous time se-
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Figure 5.6: A coupled HMM topology for 3 channels. Here, P i
j denotes

a sequential pattern. Here, i indicates a channel and j corresponds to a

specific pattern-id for a variable.

ries data for the given patients, using MAP (mean arterial pressure), HR

(heart rate), and RR (respiratory rate). The baseline methods are denoted

by SVM-MAP, HMM-MAP, HMM-HR, HMM-RR. Single channel patterns

based HMM, for the three physiological variables are denoted by SCP-HMM-

MAP, SCP-HMM-HR, SCP-HMM-RR. Finally, coupled HMM is employed,

for both the multivariate continuous times series (CHMM) and multi-channel

patterns (MCP-CHMM).

5.4.1 The septic shock prediction problem

Sepsis can be defined as a life-threatening condition occurring, due to a sys-

temic inflammatory response syndrome (SIRs) triggered to fight an infection.

Under such circumstances, SIRs is diagnosed, if two or more of the follow-

ing critera are satisfied, namely abnormal body temperature (i.e >38 C or

<36 C), higher heart rate (>90 beats per minute), respiratory rate >20 per

minute, and abnormal white blood cell counts. In later stages, septic shock

can be characterised by a systolic blood pressure (SBP) <90 mmHg, despite
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of a fluid resuscitation treatment of >600 mL, one hour before (Bone, Balk,

Cerra, Dellinger, Fein, Knaus, Schein & Sibbald 1992, Shavdia 2007, Ho, Lee

& Ghosh 2014).

The problem of septic shock prediction can be simply illustrated by Figure

1.

Observation Window Target Window

Gap Interval

Time (T)

T 

(X) 

T 

0 

0 
+ X ( Onset of Shock) 

Figure 5.7: Observation and Target Windows with a Time Gap Interval

For this problem, we are given a test sample (e.g., a new patient) whose

waveform data of a user-defined window of length 60 or 90 minutes have been

observed and recorded till the time point T0, the goal is to predict whether

a septic shock will happen to this patient or not at a future target window

of 30 minutes (namely, at the time window from T0 + X to T0 + X + 30)

through an HMM classifier. Usually, the observation and the target windows

are separated by a user-defined gap interval X of 30 and 60 minutes. The

classifier is constructed using a set of training data. In this work, the classifier

(prediction model) is constructed on three non-invasive channels of waveform

signals of the patients in the training set. The three channels of waveform

data are the commonly measured MAP, HR, and RR for every patient. This

research problem is important because it is an early prediction of septic shock

at a future time window with a gap interval of a half or one hour between

the observation and the forecasting time window.
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5.4.2 The MIMIC II database

The MAP, HR, and RR waveform data used by this study were down-

loaded from the Multiparameter Intelligent Monitoring in Intensive Care

II (MIMIC II) database which is a publicly available resource developed

to support research in clinical decision support and critical care medicine

(Saeed et al. 2011). MIMIC-II version 2.6 consists of clinical and waveform

records for more than 30,000 ICU patients collected between 2001 and 2007.

The electronic health database along with the waveform records, include nu-

merous patient variables such as high resolution time-stamped physiological

waveforms (e.g. blood pressure, heart rate etc.) and clinical variables (e.g.

fluid input and output, laboratory tests, patient discharge notes etc.).

5.4.3 Selection of patients

As the clinical inclusion criteria, our current study considered adults (i.e >18

years of age) from the MIMIC II database. Each patient consisted of at least

one hour of observations for mean aerterial pressure (MAP), heart rate (HR),

and respiration rate (RR).

ICD-9 codings were employed to identify septic patients (995.91 or 995.92).

Patients with septic shock were identified by examining their clinical chart

records. The time of shock onset was determined using criteria used in

(Shavdia 2007). Following from Shavdia et al (Shavdia 2007), we define

a hypotension observation as any time point where systolic blood pressure

(SBP) was <90 mmHg. Consecutive hypotension observations were then ag-

gregated to define a hypotension region. Total fluid intake for one hour prior

to the first hypotension observation was then calculated. Any hypotension

region that registered a total fluid intake >600 mL was classified as septic

shock, with onset defined as the start time of the hypotensive region. Such a

definition for shock onset follows the standard definition from (Shavdia 2007).

For our experiments, we only considered the first detection of a septic shock

onset to construct our observation periods. Towards this purpose, a total
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of 1,310 patients were diagnosed with sepsis or severe sepsis in MIMIC-II.

Among these, 209 patients were diagnosed with a septic shock condition,

given our inclusion criteria.

5.5 Prediction Results

The MIMIC-II database is a publicly accessible resource, subject to an ap-

propriate NIH certification, which consists of >30000 ICU patient records

and has been traditionally employed for demonstrating the performance of

novel algorithms on benchmarked datasets for critical care applications. The

patient records include numerous clinical variables such as laboratory test

values, physiological measures, textual notes, medication records and phys-

iological waveform signals, mapped to each patient identifier by a unique

value.

5.5.1 Four data sets extracted from MIMIC-II

The sequential contrast patterns CHMM framework was applied to multiple

septic shock datasets, based on the data descriptions provided in section

5.4.3. Accordingly, the total number of samples with sepsis (ICD9 code

- 995.91 or 995.92) were found to be 1310. Among these, the number of

patients which moved over to a septic shock condition (identified by ICD9

code 785.52) were found to be 209. Thus, our main patient dataset consisted

of 209 positive instances and 1101 negative instances. Further, the MIMIC

variables extracted for use were mean arterial pressure (MAP), heart rate

(HR) and respiratory Rate (RR) for each of the extracted records.

Later, 4 datasets were constructed based on a combination of two factors

as given below

• where the gap interval is 30 or 60 minutes, and

• where the observation window is 60 or 90 minutes. See 5.4.1.
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Thus, we have 4 datasets, where each record is defined by a 30 or 60

minutes gap interval, following a 60 or 90 minutes observation window. The

allotted time windows are standard references associated with short term

ICU prediction problems and is similar to (Ho et al. 2012, Ho et al. 2014).

For our experiments, we only considered the first detection of a septic shock

onset to construct our observation periods. Generally, gap-time intervals and

observation windows sizes used for the problem are standard and motivated

from prior research (Ho et al. 2014, Lee & Mark 2010) for similar studies.

5.5.2 Cross-validation classification results on the four

data sets

A number of previous studies have been carried out for predicting the risk

of sepsis and septic shock. These studies largely focus on pre-selected sets

of clinical patient features. As these features significantly differ from one

study to another, there does not exist any accepted gold standard which we

could adapt for evaluating the performances of the models. For this work,

we employed multiple rounds of 5-fold cross validation to assess our models’

performance.

For each of these four datasets, the 5-fold cross validation was performed

for three rounds. At each round, the 5 different folds were randomly selected

as a test set to obtain the corresponding 5-fold cross validation classification

accuracy (CVA). In each round, we also used the records’ observation window

to train the model of support vector machines (SVMs), single-variable hidden

markov models and coupled hidden markov models. Our three rounds of 5-

fold cross validation results for each model are presented at Table 5.3 to 5.6

for the four datasets.

In detail, each Table (5.3 to 5.6) records the 5 fold cross validation classifi-

cation accuracy performance among 9 different types of variable and learning

model combinations. These include a machine learning SVM for the MAP

variable for estimating baseline performance followed by single channel HMM

models for each of HR, RR and MAP respectively. These models are then
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Table 5.3: A comparison of different models using 5-fold cross validation

classification accuracy at tgap = 60 mins and tobs = 60 mins

Round 1 Round 2 Round 3

SVM-MAP 77.2 82.1 78.3

HMM-MAP 84.3 83.7 84.2

HMM-HR 75.1 82 81.1

HMM-RR 74.4 80.1 77.9

SCP-HMM-MAP 85.1 82.2 85

SCP-HMM-HR 80.2 79 81.1

SCP-HMM-RR 79.1 80.1 77.9

CHMM 84.3 83.7 85

MCP-CHMM 85.1 87.1 85.4

compared to the HMMs of sequential contrast patterns for single variables

(HR, BP and RR). Finally, we consider CHMM models using both the con-

tinuous multivariate and discretised sequential contrast patterns. Also, each

of the four tables progressively reports the CVA performances with different

combinations of observation window length and gap interval (for each of the

four dataset, respectively).

Finally, 5 fold cross-validation accuracy results using repeated resampling

of each of the 4 different datasets for CHMM and MCP-CHMM are reported

in Table 5.7, for 5 separate rounds. Variances across multiple rounds for each

dataset is also shown.

5.5.3 Predicting coupled discrete sequences using HMMs:

An illustrative case study

A case study is used to demonstrate the prediction of a specific multivariate

test sequence using our proposed CHMM framework. The given multivariate

instance is composed of three variables, namely the mean arterial pressure,

heart rate and respiratory rate. Initially the sequences of continuous time
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Table 5.4: A comparison of different models using 5-fold cross validation

classification accuracy at tgap = 30 mins and tobs = 60 mins

Round 1 Round 2 Round 3

SVM-MAP 77.2 82.4 77.1

HMM-MAP 84.7 83.7 84.2

HMM-HR 75.5 82.0 81.1

HMM-RR 74.4 81.0 77.9

SCP-HMM-MAP 85.5 82.7 83

SCP-HMM-HR 80.2 79.1 81.1

SCP-HMM-RR 79.1 80.1 76.9

CHMM 85.0 84.7 85.3

MCP-CHMM 86 87.1 84.8

Table 5.5: A comparison of different models using 5-fold cross validation

classification accuracy at tgap = 30 mins and tobs = 90 mins

Round 1 Round 2 Round 3

SVM-MAPP 77.2 82.1 78.3

HMM-MAP 84.3 83.7 84.2

HMM-HR 75.1 82 81.1

HMM-RR 74.4 80.1 77.9

SCP-HMM-MAP 85.1 82.2 85

SCP-HMM-HR 80.2 79 81.1

SCP-HMM-RR 79.1 80.1 77.9

CHMM 84.3 83.7 85

MCP-CHMM 85.7 85.2 85
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Table 5.6: A comparison of different models using 5-fold cross validation

classification accuracy at tgap = 60 mins and tobs = 90 mins

Round 1 Round 2 Round 3

SVM-MAPP 77.2 82.1 78.3

HMM-MAP 84.3 83.7 84.2

HMM-HR 75.1 82 81.1

HMM-RR 74.4 80.1 77.9

SCP-HMM-MAP 85.1 82.2 85

SCP-HMM-HR 80.2 79 81.1

SCP-HMM-RR 79.1 80.1 77.9

CHMM 84.3 83.7 85

MCP-CHMM 85.1 85.5 85

Table 5.7: 5-fold cross validation classification accuracy on CHMM and

MCP-CHMM for 5 rounds of repeated re-sampling. g - gap interval size,

o - observation window size

Method Gap, Obs. R1 R2 R3 R4 R5 σ2

CHMM g=30,o=60 84.3 83.7 85.0 84.7 85.1 0.26

g=30,o=90 85.0 84.7 85.3 85.3 85.0 0.05

g=60,o=60 84.3 83.7 85.0 83.7 79.3 4.03

g=60,o=90 84.3 83.7 85.0 85.0 85.7 0.46

MCP-CHMM g=30,o=60 85.1 87.1 85.4 84.7 85.0 0.72

g=30,o=90 86.0 87.1 84.8 85.1 85.1 0.70

g=60,o=60 85.1 85.2 85.0 84.8 85.1 0.01

g=60,o=90 85.7 85.5 85.0 85.1 85.0 0.08
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series data were converted to their discretised representations. Thus, each

observation test sequence consists of 60 time points for each variable, where

the time-stamped value is converted to a discrete symbol belonging to a set

of pre-defined symbols. Each of these discretised sequences was then trun-

cated internally, by reducing a consecutive sequence of 3 similar symbols to

1 symbol. This is because long runs of similar symbols lead to significantly

more computational time and have less interpretative value in a clinical con-

text. Some of the sequential contrast patterns that appeared in the given

discretized training signals are as shown in Table 5.9. For each of the dis-

cretised signals, we employed a sliding window to move through the given

sequence. Subsequently, the existence of patterns in the consecutive passes

of the window was used to build a pattern sequence, as shown in Table 5.8.

Each pattern is uniquely encoded for each variableś contrast pattern set.

For example, the M1 pattern uniquely identifies the sequence 6<7<6 only

for instances of the mean arterial pressure. In Table 5.9, we list some of

the prominent contrast sequences, which can be found within the variable

sequences of Table 5.8. Note that Table 5.9 is a subset of the larger set of

contrast patterns. In addition to the contrast patterns, we also consider a

“dont-care” pattern denoted by X. Multiples of “dont-care” patterns are

inserted at the end of a pattern sequence, so that every variableś pattern

sequence has the same length.

Table 5.8: A multivariate (MAP, HR, RR) discrete patient sequence com-

posed of an ordered series of contrast patterns

max width=
Discretised Sequence Variable Name Sequence of Patterns

6-6-6-6-7-6-6-6-6-6-6-6-6-6-6-7-6-6-6-6-6-6-6-6-6-6- MAP M 1 - M 14 - M 1 - M 14 - M 5 - M 9 - X - X

6-6-6-6-6-6-6-6-6-6-6-6-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-

5-5-5-5-5-5-5

4-5-5-5-5-5-4-6-6-6-6-6-5-6-6-6-6-6-6-6-6-5-6-6-6- HR H 7 - H 2 - H 9 - H 9 - H 8 - H 2 - H 9 - H 9

6-6-6-4-6-6-6-6-5-6-6-6-6-6-6-5-6-5-5-5-5-6-6-6-6-6

-6-6-6-6-6-6-6-6-6

6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-8-8-8-6-6-6-6 RR R 7 - R 7 - R 8 - R 13 - X - X - X - X

-8-8-8-8-6-6-6-6-6-6-6-6-6-6-6-6-5-5-5-5-5-

5-5-5-5-5-5-5-5-5-5-5-5-5-5-5
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Table 5.9: Visualizing contrast sequence patterns matching the three vari-

ables MAP, HR and RR

MAP patterns Pattern-id HR patterns Pattern-id RR patterns Pattern-id

6 <7 <6 M 1 4 <6 <6 H 2 6 <6 <8 <6 R 6

6 <5 <5 <5 M 5 5 <4 <6 H 7 6 <6 <8 <8 R 7

6 <6 <5 <5 M 9 6 <4 <6 H 8 6 <6 <6 <8 R 8

7 <6 <6 <6 M 14 6 <5 <6 H 9 8 <8 <6 <6 R 13

The likelihood for this discrete multivariate test sequence was estimated

at the level of 0.71 by CHMM. As we assumed the likelihood threshold for

differentiating between a positive and negative classification as 0.5, the given

multivariate test sequence was predicted to be a positive case, i.e the given

patient multivariate sequence was classified as ‘having a higher risk for the

occurrence of a septic shock’. It is also worth noting that converting multi-

variate discrete sequences to a multivariate time series of contrast patterns,

allows an HMM to exploit the order (or offset) information among the pat-

terns, which are crucial for making a robust HMM based prediction.

5.5.4 Discussion

The experimental results have evidenced that integrating sequential contrast

patterns with CHMM models can help provide an assessment of septic shock

risk. The current study mainly explores the use of a novel data transforma-

tion technique by chaining discrete sequential contrast patterns to represent

a data instance, before input to any sequence modelling algorithm (for e.g.

HMM). To this purpose, for evaluation, the cross validation accuracy results

after chaining of discrete patterns (MCP-HMM) were compared to baseline

models of HMM and SVM on the selected variables like MAP, HR and RR.

Thus, the single variable MAP HMM and SVM models were used as baseline

models for evaluation.

We note that for the same physiological variables, baseline models like

SVM and single channel HMMs using continuous variables, report standard
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performances within the range of 77-84% CVA. However, for the single vari-

able HMMs, the CVA performance tends to be higher for MAP. This is due

to MAP being the primary physiological signal used to decide the onset of

a septic shock. The discrete sequence single channel HMMs generally post

similar CVA performances, with minor variations across the training groups.

Here, it is noted that the coupled model using continuous MAP posts a higher

5-fold CVA performance than the single variable HMM MAP. In addition, a

paired-t test is carried out to compare the classification performance between

the single variable MAP HMM and the MCP-CHMM. To this purpose, the

classification accuracies for each of the three rounds given in Table 5.3 to

5.6 corresponding to the respective gap-intervals and observation windows

were compared for the single variable MAP HMM and the MCP-CHMM.

A p-value of 0.0014 ≤ 0.05 for the t-statistic was obtained. Accordingly,

the null hypothesis stating that the single variable MAP HMM and MCP-

CHMM perform equivalently is rejected, since the difference in performance

is statistically significant.

A one-way ANOVA test was also carried out between the 4 different

datasets (corresponding to the 4 different combinations of gap-interval size

and the observation window sizes). Here, the null hypothesis states that there

is no significant difference across the 4 different groups (or executions). Ac-

cordingly, the F-test statistic was obtained as 3.34 ≤ 5.14 (F-critical value).

As a result, the null hypothesis is not rejected. The ANOVA results are

shown in Table 5.10.

Symbolic pattern driven analysis of arterial blood pressure data is use-

ful for understanding of physiological functions such as in the prediction

of events like septic shock. However, there does not exist enough clarity

on the non-stationarity characteristics of blood pressure datasets. For our

study, it is assumed that transforms like the symbolic aggregate approxi-

mation (SAX), followed by transformation using SCPs in smaller windows,

generates a locally stationary sequence. The SAX transform uses a sliding

window on time-series data to generate symbolic patterns which are used to
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Table 5.10: One way ANOVA Test on the 4 datasets (groups) corresponding

to gap interval and observation window

Source of Variation SS df MS F P-value F-crit

Between Groups 2.83 2 1.41 3.34 0.10 5.14

Within Groups 1.36 3 0.45 1.07 0.428 4.75

Error 2.54 6 0.42

Total 6.73 11

decompose a non-stationary data.

Additionally, the continuous CHMM does not necessarily improve upon

the discrete single channel HMM using MAP. Moreover, it can be seen that a

coupled HMM, which considers contrast sequences from multiple physiolog-

ical variables, tends to have marginally better CVAs than both continuous

coupled models as well as single channel discrete HMM models. Our simu-

lations also demonstrate that varying the gap interval size (within the range

of 3 to 5) can affect the prediction performance, and that increasing the size

of the observation window do not improve the performance of the training

models.

Interestingly, we note that HMM models that were trained using se-

quences of contrast patterns generally outperformed models which used raw

continuous signals only. This suggests that a patient’s signal trajectory to-

wards sepsis-related complications and significant episodes after ICU admis-

sion, can help determine a dynamically evolving patient state. Being able to

use a set of discrete episodes to construct a meaningful observation sequence

and then using sequential learning models to predict ICU events like septic

shock, hold greater value both in terms of clinical interpretation of episodes

as well as in the construction of robust prediction models.

This has been demonstrated in earlier studies for temporal data mining

on medical datasets, where temporal abstractions (TA) and Allens temporal

relations like “before”, “equals” etc., between various TA states are used.

Previous studies on temporal data mining including Sacchi et al (2007, 2015)
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employed Allens temporal relations on TAs (for e.g. trend abstractions em-

ploying piecewise linear approximations). Thus, temporal relations were de-

fined between abstracted temporal states or events. Complex temporal rela-

tions were also used to reconstruct a single multivariate abstracted sequence

corresponding to a data instance. Later, frequent patterns and association

rule mining algorithms were employed to extract interesting temporal rules.

On the other hand, the current study was applied on a homogeneous

dataset of MAP, HR and RR time series. Generally, for the application of

temporal relations, defining a temporal abstraction is necessary. In this re-

gard, if a sequential contrast pattern is regarded as a temporal abstraction,

then temporal relations can be applied. Our study differs from previous

studies, in exploring the use of a gapped sequential contrast pattern (SCP)

as a temporal abstraction (in comparison to trend abstractions). Accord-

ingly, the chaining technique applies Allens temporal relations of before and

overlap to reconstruct and transform the original data instance into an or-

dered set of SCPs. Finally, our study explores the use of a coupled HMM

to integrate multivariate SCP sequences to construct a supervised prediction

model. Thus, the current study employs temporal relations to construct a

sequence of multivariate SCPs before employing a CHMM for better per-

formance. Typically, the primary goal of previous temporal pattern mining

studies had been the extraction of interesting temporal rules using frequent

mining techniques. In contrast, our study focuses on the integration of se-

quential contrast patterns for use in multivariate sequential learning models

(such as CHMMs) for predicting septic shock.

As described, pattern based CHMM models outperform simple measures

like APACHE-III, SVM models, neighborhood-based imputation techniques

described in (Ho et al. 2014). Previously, Ho et al (2014) had demonstrated

the application of forward and backward selection strategies using EWS fea-

ture matrices to obtain accuracies in the range of 72-78% on a similar septic

shock dataset from MIMIC-II. The authors used the ICD 785.52 code to se-

lect septic shock patients (based on ICD9 coding) from the septic patients
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population, whereas the current study applied the conditions of systolic blood

pressure ≤ 90 mmHg and fluid input ≥ 600 mL to select septic shock patient

segments from the septic patients population. Our results at 60 minutes of

gap interval using discretized patterns and CHMM, also post comparatively

similar performances. The results also demonstrate that the integration of

coupled HMM with discrete sequential patterns provide better performance,

in comparison to using HMM models on continuous variables. Further, it

can be said that sequential contrast patterns have interpretive significance,

such that a sequence of patterns, when used to describe a variable sequence

encodes it into a set of episodes in a sequence. This sequence of episodes

clearly allows the CHMM model to perform well in comparison to the direct

use of models on continuous time series data.

Results show that our models can predict septic shock events using time

series of contrast patterns, which have comparative performances as earlier

models. However, one must note that the application of complex septic shock

models and the acceptable detection rates in actual practice have been lim-

ited to the use of traditional clinical measures like APACHE-III. Integrating

sequential patterns using a CHMM, allow us to capture interactions among

discrete patterns of physiological variables, which are useful for predicting

labels for patient sequences. For this study, our models were trained us-

ing a set of contrast patterns favouring positive instances i.e patients having

septic shock. However, there may be certain sequences where the CHMM

probabilities are marginally greater or lesser than the user-defined threshold,

to be labelled as a positive instance. Therefore, it is necessary to also ex-

plore models which can deal with predicting instances on the fringe regions

of a probability threshold. In the context of pattern-based classification

methods, different types of interestingness measures can be used to select

patterns which are more representative of a patient. Currently, the growth

rate (which includes the use of positive and negative support) of a pattern

is used to extract a candidate pattern. Complex interestingness measures

can be developed, using the support, cohesiveness (i.e. the closeness of items
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in a pattern), coverage of the pattern etc. The interestingness measure of

a pattern is important since setting the pattern growth rate threshold too

high results in not generating enough contrast patterns, while setting the

threshold too low leads to generating useless patterns. An additional step

can involve the use of variable selection algorithms to determine an optimal

discriminate pattern set to characterise a data instance. Additionally, en-

semble pattern-based classification models can be created for representative

samples from the given population for addressing learning bias. Accordingly,

these cases can be difficult to detect and require further studies.

To address issues related to clustering of patient data, random effect mod-

els can be used to account for correlation within a cluster. From a pattern

mining viewpoint, this means each unique patient cluster consists of a subset

of patterns (i.e a specific pattern subset is most frequent in this cluster). If

the cluster is represented as a tree, such that the root node (or a unique

patient) consists of the maximum number of patterns in the subset, then

other nodes (other patients) in the cluster having a smaller subset of these

patterns can be labelled as child nodes of the root or form sub-trees. To this

purpose, the maximality condition and the length of a pattern can be used as

a condition for mining patterns. However, mining of longer sequential con-

trast patterns also requires lowering the positive frequency support threshold.

This may limit the formation of large multilevel pattern trees (representing

patient clusters). Thus, future clinical data mining work can adopt multiob-

jective pattern selection techniques such that the size of a patient cluster is

reduced, while also maximizing the pattern coverage of the patient dataset.

Additionally, to account for effects within a cluster, multi-level models can

be explored to predict both the disease outcome of a patient (i.e the class

label) as well as the cluster label (or expectation value of a cluster).

Moreover, dimensionality reduction and variable selection strategies could

be explored on the discrete sequential patterns space to compare pattern clas-

sification models using methods like logistic regression. In the current study,

the extracted gapped SCPs imposed a gap in the range of 3 to 5 between two
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consecutive elements in an SCP. Future studies can address finding optimal

gap constraints between consecutive symbolic items for sequential patterns

in clinical domains. Specially, the use of optimal gaps for clinical patterns

can inform studies related to the correlation of clinical events separated over

a time scale.

5.6 Conclusion

In this study, we have presented a novel integrated framework, consisting of

sequential contrast patterns with coupled hidden markov models (CHMM)

to predict ICU events like the onset of a septic shock. The method involves

the determination of contrast sequences from differentially labelled multivari-

ate patient populations and the method then employs a generalised coupled

modelling process for multiple channels of time series of contrast patterns. In

turn, the CHMM model allows us to account for interactions among patterns

from different channels or variables. To verify the effectiveness of pattern se-

quences, we compared our method with the traditional SVM and continuous

single variable HMM counterparts. These methods were all tested using

datasets extracted from the MIMIC-II database. Our results demonstrate

that the learning models, which account for position or order information

among sequential patterns, tend to perform well in comparison to models

not exploiting such information. Hence, the current study describes the inte-

gration of meta-information about patterns and intermediate relationships,

such as sequence ordering, to improve the performance of sequential learning

models.

Thus, the current study demonstrates the importance of training ICU

classifier models using informative sequential patterns, in addition to con-

ventional clinical measures. Accordingly, the use of sequential patterns to

encode discretised sequences, allows easier handling of large scale noisy data

commonly encountered in modern clinical studies. Hence, the recommended

septic shock prediction framework employing discrete sequential patterns,
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can provide ICU care systems a novel clinical pattern discovery platform to

improve patient outcomes.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The mining and extraction of interpretable and highly predictive sequential

patterns is an essential task in data mining and machine learning. In the

context of critical care, sequence mining focuses on extracting patterns that

have strong clinical value and impact. Such patterns turn out to be extremely

useful for medical decision-making and deriving important clinical insights

into disease progressions.

In this dissertation, we studied about the mining of sequential contrastive

patterns in the supervised clinical setting. The objective of thse studies

were to find sequential patterns that were discriminative (i.e able to capture

differentiating physiological behaviour among patient subpopulations) and

then employ such patterns to derive univariate and multivariate contrast

prediction models for predicting important clinical events in critical care. To

this purpose, we have presented multiple methods for integrative mining of

contrast patterns, relevant data transformations to connect with generalised

pattern based classification models.

The inherent value of contrast mining in clinical knowledge discovery lies

in the application of the growth rate of a pattern. The growth rate of a pat-

tern is intuitive from a clinical applications perspective. This is because the
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traditional objective in clinical trials, is oriented towards finding differences

between the intervention and control population of patients. Thus, finding

patterns based on differences in their supports in the intervention and con-

trol populations, allow us to find sequential patterns that can explain the

difference between two populations of patient data. This is closely similar to

the concept of the odds ratio, which is a popular measure to clinicians for

finding association between an exposure and an outcome. Thus, given that

a particular clinical event has occurred, mining of contrast sequential pat-

terns prior to the event’s occurrence provides us with the odds of a patient

displaying a complication at a later point in time. To this purpose, there is

a need for exploring novel methods in contrast pattern mining that can be

associated with desirable treatment outcomes for patients in critical care.

Moreover, our experience shows that classification problems in clinical

care settings suffer from imbalanced datasets. This means for various types

of medical treatments and conditions the intervention population (i.e the

positive class) tends to be skewed in terms of the control population. The

challenge here turns out to be designing interestingness measures like pattern

growth rates to select relevant clinical patterns, while reducing redundant

patterns.

In Chapter 3, we applied a systematic methodology using a flexible se-

quential contrast mining algorithm on a discretised dataset, targeting the

prediction of acute hypotension. In numerous studies prior to our work,

simple and easily available patient indices and statistical measures had been

used to tackle this problem. Our work demonstrates that sequential con-

trast patterns when extracted from discretised physiological variables of a

patient, turn out to be highly predictive of a hypotensive state. In addition

to demonstrating the classification performance, we also established the ex-

istence of gap-constrained symbolic subsequences, which could be translated

into a complex sequence of clinical symptoms. Hence, these patterns are a

potential source for launching further data driven investigations validated by

randomized clinical trials and can enable clinicians to develop complex med-
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ical hypotheses by investigating association of patterns to patient response

for a specific treatment.

In Chapter 4, we recommend a number of large-scale short term critical

event prediction models using binary and frequency based feature transfor-

mations of sequential patterns for predicting events including patient mortal-

ity. From a clinical data mining viewpoint, the integration of pattern mining

and standard machine learning algorithms for ICU prediction problems is

relatively nascent. Our work systematically investigates the integration of

sequential contrast patterns with classification models by two mapping tech-

niques in clinical settings.

Chapter 5 extends the concepts described in earlier chapters to propose a

methodology for concatenating contrast patterns depending on their order of

occurrence within a patient sequence. Here, we presented a novel integrated

framework, consisting of sequential contrast patterns with coupled hidden

markov models (CHMM) to predict the onset of a septic shock event. The

method involves the determination of contrast sequences from differentially

labelled multivariate patient populations and then employing a generalized

coupled modelling process for multiple channels of time series of contrast

patterns. To verify the effectiveness of pattern sequences, we compared our

method with the traditional SVM and continuous single variable HMM coun-

terparts. Our results indicate that the learning models, which account for

position or order information among sequential patterns, tend to perform well

in comparison to models not exploiting such information. thus, this study

describes the integration of meta-information about patterns and interme-

diate relationships, such as sequence ordering, to improve the performance

of sequential learning models. Moreover, the use of sequential patterns to

encode discretised sequences, allows easier handling of large scale noisy data

commonly encountered in modern clinical studies. Hence, the recommended

septic shock prediction framework employing discrete sequential patterns,

can provide ICU care systems a novel clinical pattern discovery platform to

improve patient outcomes.
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6.2 Future Work

In future research, we would like to explore the potential directions as de-

scribed below, which can have tremendous value both from a clinical as well

as theoretical perspective.

(i). Patient phenotype discovery using emerging patterns: In the

applications described in this thesis, we have focused on using contrast

patterns to classify critical events. However, there has been relatively

less research carried out in mining discriminative approximate sequen-

tial patterns which can be used to query databases to identify patient

cohorts. To this purpose, the application of emerging patterns can be

significant in the process of clinical phenotype discovery.

(ii). Extracting relationships between emerging patterns: Emerging

physiological patterns can be extracted and the relationships between

these patterns can be learned using graphical models. Currently, the

use of temporal abstractions is a way to encode relationships between

clinical events. However, these abstractions tend to be predefined tem-

poral relations. There is a need for models that are able to extract

relationships between patient physiological patterns which can help to

explain the interactions between the variables.

(iii). Contrastive Temporal and Time-Interval Patterns: The mod-

els explored in this thesis focused on extracting contrast sequential

patterns. Contrast mining techniques could be further extended using

temporal abstractions between a sequence of events.

(iv). Mining medication pathways using sequential contrast pat-

terns: Sequential pattern mining is a useful data mining technique

for identifying temporal relationships between medications. Mining

temporal relationships are useful for making predictions about which

medication a prescriber is likely to choose next when treating a pro-

gressive disease such as diabetes.
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(v). Contrast patterns and Clinical Text Mining: The clinical dis-

charge notes of a patient record the long term progression of a patient

involving observed symptoms, treatments administered, allergic drug

reactions and so on. In the context of clinical text mining, contrast

patterns can be employed to determine changes in patient progression.

To this purpose, mining of clinical concepts and semantic relations

that contrast between patient populations holds significant value for

knowledge discovery in clinical domains.

(vi). Discretisation of Clinical Time Series and Mining of Emerging

Patterns: Generally, sequential pattern mining algorithms re-quire a

time series dicretisation process prior to mining of patterns. Depending

on how the discretisation of medical time series is carried out, the

quality of extracted sequential patterns can differ and vary in predictive

capability. There is significant opportunity to propose methods in this

area so that optimal predictive results are obtained while increasing

the explainability of extracted patterns.
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Hämäläinen, W. (2010), ‘Statapriori: an efficient algorithm for searching

statistically significant association rules’, Knowledge and information

systems 23(3), 373–399.

150



BIBLIOGRAPHY

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U. & Hsu, M.-C. (2000),

Freespan: frequent pattern-projected sequential pattern mining, in ‘Pro-

ceedings of the sixth ACM SIGKDD international conference on Knowl-

edge discovery and data mining’, ACM, pp. 355–359.

Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U. & Hsu,

M. (2001), Prefixspan: Mining sequential patterns efficiently by prefix-

projected pattern growth, in ‘proceedings of the 17th international con-

ference on data engineering’, pp. 215–224.

Han, J., Pei, J. & Yin, Y. (2000), Mining frequent patterns without candidate

generation, in ‘ACM Sigmod Record’, Vol. 29, ACM, pp. 1–12.

Han, J., Pei, J., Yin, Y. & Mao, R. (2004), ‘Mining frequent patterns without

candidate generation: A frequent-pattern tree approach’, Data mining

and knowledge discovery 8(1), 53–87.

Hauskrecht, M., Valko, M., Batal, I., Clermont, G., Visweswaran, S. &

Cooper, G. (2010), Conditional outlier detection for clinical alerting,

in ‘AMIA annual symposium proceedings’, Vol. 2010, pp. 286–90.

Henriques, J. & Rocha, T. (2009), Prediction of acute hypotensive episodes

using neural network multi-models, in ‘Computers in Cardiology, 2009’,

IEEE, pp. 549–552.

Henry, K. E., Hager, D. N., Pronovost, P. J. & Saria, S. (2015), ‘A tar-

geted real-time early warning score (trewscore) for septic shock’, Science

Translational Medicine 7(299), 299ra122–299ra122.

Ho, J. C., Lee, C. H. & Ghosh, J. (2012), Imputation-enhanced prediction

of septic shock in icu patients, in ‘Proceedings of the ACM SIGKDD

Workshop on Health Informatics’, pp. 21–27.

Ho, J. C., Lee, C. H. & Ghosh, J. (2014), ‘Septic shock prediction for pa-

tients with missing data’, ACM Transactions on Management Informa-

tion Systems (TMIS) 5(1), 1.

151



BIBLIOGRAPHY
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