The influence of depth-to-groundwater on the ecology of woodland vegetation

Matthew Craig Hingee

Thesis submitted for the Degree of Doctor of Philosophy
University of Technology Sydney

November 2017

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This research is supported by an Australian Government Research Training Program Scholarship.

Signature of student:	
Date:	

Acknowledgements

This project would not have been possible without the many people who have supported and encouraged me throughout the past five years. In particular, I would like to express my most sincere gratitude to my principal supervisor, Dr Brad Murray. I feel exceptionally privileged to have been mentored by him throughout my PhD journey. Thank you for your patience, guidance, encouragement and support. You have been extremely flexible and understanding, even when I told you two and a half years into my PhD that I needed to start full-time work. Your enthusiasm and compassion has made this PhD a truly enjoyable experience from start to end.

I would like to thank my co-supervisor Prof. Derek Eamus not only for his encouragement and insightful comments on draft chapters of my thesis, but also for providing me with the financial support which enabled this research to happen. I also wish to thank the School of Life Sciences and the Faculty of Science for providing me with a stipend and support funds for my research.

I am grateful to Sydney Catchment Authority, particularly Tony Paull for providing additional key access to the Kangaloon field sites and for also making all groundwater data available for the Kangaloon region. I also wish to thank Noel Gibbons from the Northern Territory Government and Cameron Wood from Flinders University for providing access to groundwater data for the Ti Tree Basin.

I'd like to thank Assoc. Prof. Andy Leigh for her many helpful discussions and for being an inspiring role model. Her assistance with field survey design, field data collection and species identification in the Ti Tree Basin, and help with the design of my seedling growth project, was invaluable.

I am grateful to everyone in the Murray Ecology Lab, and I'd like to thank Dr Leigh Martin and Dr Megan Phillips for helpful advice during the start of my project and Dan Krix for providing assistance with the production of graphs in R. I would also like to thank my research volunteers, Mick Elgey for assistance in the field and Nathan and Gabrielle Hingee for assistance with seed based measurements in the lab. Many thanks also go to my good friend Dr Randol Villalobos-Vega for insightful discussions and assistance during the many long hours of fieldwork.

I'd like to thank the UTS Technical Staff Jane Easton, Rod Hungerford, Peter Jones, Sue Fenech, Dr Nicole Grant and especially Gemma Armstrong for all the project support and technical assistance they've given me over the years. I'd especially like to thank Rolph Faux for helping set up my seedling growth project, providing technical and logistic support in the field and for his endless enthusiasm during long days of fieldwork.

Finally, I owe an enormous thank you to my wife Sylvie Barrette, your encouragement and support has been unconditional, not to mention your tolerance of the sacrifice, poverty and the many long hours spent undertaking this research. I dedicate this thesis to you.

Table of Contents

Certificate of Original Authorship	II
Acknowledgements	III
Table of Contents	V
List of Figures	IX
List of Tables.	XIV
AbstractX	(VII
Chapter 1 : General Introduction	1
1.1 Groundwater as a global resource	1
1.2 Groundwater-dependent ecosystems in Australia	2
1.3 Threats to terrestrial groundwater-dependent ecosystems in Australia from	
groundwater extraction	6
1.4 The Influence of depth-to-groundwater on groundwater-dependent vegetation.	7
1.5 Research novelty and significance	9
1.6 Research approach and study regions	10
1.7 Thesis aims	12
1.8 Chapter structure and descriptions	12
Chapter 2 : Does depth-to-groundwater influence the ecological properties of	
mesic woodlands?	14
2.1 Introduction	14
2.2 Methods	16
2.2.1 Study region and sites	16
2.2.2 Vegetation of the region and plant surveys	19

	2.2.3 Site environmental attributes	21
	2.2.4 Statistical analyses	25
	2.3 Results	26
	2.4 Discussion	31
C.	hapter 3: Relating interspecific variation in plant traits to depth-to-	
gr	roundwater: A desktop study	37
	3.1 Introduction	37
	3.2 Predictions	38
	3.3 Methods	42
	3.3.1 Study sites and species	42
	3.3.2 Trait data collection	42
	3.3.3 Analytical approach	43
	3.3.4 Statistical analyses	44
	3.4 Results	48
	3.4.1 Plant traits and environmental attributes: RLQ and fourth corner analyses	48
	3.4.2 Plant traits and groundwater depth: univariate analyses	49
	3.4.3 Logistic regression and minimum adequate models	49
	3.5 Discussion	52
C.	hapter 4: Variation in functional traits among perennial woody plant species	
al	ong a depth-to-groundwater gradient in Eucalyptus woodlands	55
	4.1 Introduction	55
	4.2 Mathods	57

4.2.1 Study sites	57
4.2.2 Study species and their functional traits	57
4.2.3 Statistical analyses	66
4.3 Results	68
4.3.1 ALM values of traits in relation to DGW and the environmental	attributes68
4.3.2 CWM trait values in relation to environmental attributes	76
4.3.3 Relating CV values to environmental attributes	83
4.4 Discussion	85
Chapter 5: Patterns of local adaptation and phenotypic plasticity in se	edling traits
of Hakea dactyloides along a depth-to-groundwater gradient	91
5.1 Introduction	91
5.2 Study predictions	95
5.3 Methods	99
5.3.1 Study region	99
5.3.2 Study species selection	99
5.3.3 Experimental design	100
5.3.4 Measurements	103
5.3.5 Statistical analysis	105
5.4 Results	106
5.4.1 Physiological traits	106
5.4.2 Leaf traits	111
5.4.3 Belowground growth traits	113

5.4.4 Aboveground growth traits	115
5.5 Discussion	117
Chapter 6 : Ecological properties of arid-zone woodlands are related to a	depth-to-
groundwater gradient in central Australia	125
6.1 Introduction	125
6.2 Methods	127
6.2.1 Study region	127
6.2.2 Study sites, vegetation surveys and ecological properties of plant	
assemblages	128
6.2.3 Environmental attributes	131
6.2.4 Statistical analyses	137
6.3 Results	142
6.4 Discussion	151
Chapter 7 : General discussion	156
7.1 Were the aims of the thesis met?	156
7.2 Mesic and arid-zone woodland responses to depth-to-groundwater	160
7.3 Research significance and management implications	161
7.4 Future research directions	162
7.5 Conclusion	163
Thesis Appendices	165
Dafarancas	100

List of Figures

Figure 1.1. Current state of knowledge about the widespread distribution of terrestrial
GDEs in Australia (Source GDE Atlas of Australia, BOM 2017)5
Figure 2.1. The Kangaloon study region, 100 km south-west of Sydney (34° 50" 20' S,
150° 56" 74' E) in eastern Australia. Depth-to-groundwater 2–10 m at sites 1 to 6
(closed circles), 12-22 m at sites 7 to 11 (open squares), and 27-44 m at sites 12-16
(closed triangles). Dark grey areas = Hawkesbury Sandstone, mid grey areas =
Robertson Basalt and light grey areas = Wianamatta Shale. Data provided by the
Sydney Catchment Authority
Figure 2.2. Annual mean depth-to-groundwater (± SE) at each of the study sites in the
Kangaloon study region from 2006 to 2012
Figure 2.3. Ordination biplot from canonical correspondence analysis showing
relationships between plant species composition and the significant environmental
attributes depth-to-groundwater (DGW) and soil calcium content (Ca). Circles are
coloured by maximum DGW, shown in the box at top left
Figure 2.4. Mean abundances (± SE) of the nine understorey species identified by
SIMPER as contributing to 40-50% of variation in plant species composition along the
depth-to-groundwater gradient. Depth-to-groundwater < 10 m (light shading), 12–22 m
(mid shading), and 27–44 m (dark shading)
Figure 2.5. (a) Plant species richness (number of species) and (b) total plant abundance
(number of individuals) as a function of DGW across the study sites. Depth-to-
groundwater < 10 m (light shading), 12-22 m (mid shading), and 27-44 m (dark
shading)
Figure 3.1. Conceptual representation of the multivariate matrix approach. A species
composition matrix (L), species trait matrix (Q) and environmental data matrix are used

to summarise the multivariate joint structure (M) (RLQ analysis) or significance of
associations (M) (fourth-corner analysis)
Figure 3.2. The first two axes of RLQ analysis showing (a) coefficients for
environmental attributes and (b) coefficients for plant traits. The values of d represent
the grid size, equivalent to x and y-axis values. Length and direction of the arrows
represents the strength of the relationship along each axis
Figure 4.1. Boxplots describing variation in (a) leaf mass area (LMA), (b) height and
(c) seed mass trait values among species at each of the 16 study sites. Thick horizontal
line represents the median, upper and lower horizontal line represents upper and lower
quartile respectively, the length of upper and lower vertical lines represents the
maximum and minimum values, and points represent outliers
Figure 4.2. Significant relationships between ALM values of (a) LMA and sand, (b)
height and shade index, and (c) height and Ca for whole plant assemblages73
Figure 4.3. Significant relationships between ALM values of (a) LMA and FC, (b)
LMA and shade index, (c) height values and altitude, and (d) height values and Ca for
overstorey species. FC represents field capacity
Figure 4.4. Significant relationships between mean (a) LMA and shade index, (b) LMA
and sand, and (c) height and shade index for understorey species
Figure 4.5. Significant relationships between CWM (a) LMA and sand, (b) height and
DGW, (c) height and altitude, (d) height and pH, (e) height and EC, and (f) seed mass
and Ca for whole assemblages80
Figure 4.6. Significant relationships between CWM (a) LMA and sand, (b) height and
altitude, and (c) height and Ca for overstorey species81
Figure 4.7. Significant bivariate relationship between CWM LMA and sand for
understorey species.

Figure 4.8. Significant relationships between CV values for (a) height and altitude, (b)
seed mass and DGW, (c) seed mass and altitude, and (d) seed mass and Ca85
Figure 5.1. Mean (\pm SE) soil infiltration rates for deep (water table 43.65 m below the
ground surface) and shallow (water table 2.32 m below the ground surface) sites
measured using an infiltrometer (Handreck and Black 2002) and four replicate
measurements placed randomly at each site. The deep and shallow sites differed
significantly in their water infiltration rates (ANOVA, $F_{1,6} = 292.5$, $P < 0.001$), with
$3.5x$ faster infiltration rates at the deep (1597.5 \pm 65.4 mm/hour) compared with shallow
sites (445.6 ± 16.3 mm/hour)
Figure 5.2. Prediction plots for seedling trait responses between the fast and slow
infiltration treatments separated into shallow (closed circles) and deep (open circles)
populations: a) phenotypic plasticity in both populations for WUE, LMA and
belowground biomass; b) local adaptation in the deep population and phenotypic
plasticity in the shallow population for WUE, LMA and belowground biomass; c) local
adaptation in the shallow population and phenotypic plasticity in the deep population
for WUE, LMA and belowground biomass; d) phenotypic plasticity in both populations
for aboveground biomass; e) local adaptation in the deep population and phenotypic
plasticity in the shallow population for aboveground biomass; f) local adaptation in the
shallow population and phenotypic plasticity in the deep population for aboveground
biomass98
Figure 5.3. Hakea dactyloides bearing woody seed pods. Leaves of the species as in this
photo reach up to 10 cm in length
Figure 5.4. The mean $(\pm SE)$ abundance of Hakea dactyloides increases from
moderately abundant at deep sites to highly abundant at shallow sites101

Figure 5.5. Water treatment set up in a randomised block design in the glasshouse,
showing seedlings during week 7 of the experimental period
Figure 5.6. Comparison of mean (±SE) physiological trait responses: (a) g _s , (b) E, and
(c) WUE between fast and slow-draining treatments separated into shallow (closed
circles, dashed lines) and deep (open circles, solid lines) populations110
Figure 5.7. Comparison of mean (±SE) leaf trait responses for: (a) final leaf width, (b)
final leaf length, and (c) final leaf number between fast and slow-draining treatments
separated into shallow (closed circles, dashed lines) and deep (open circles, solid lines)
populations112
Figure 5.8. Comparison of mean (±SE) belowground trait responses for: (a)
aboveground biomass, and (b) final root length between fast and slow draining
treatments separated into shallow (closed circles, dashed lines) and deep (open circles,
solid lines) populations
Figure 5.9. Comparison of mean (±SE) growth trait responses for: (a) aboveground
biomass, (b) leaf biomass, and (c) root:shoot ratio between fast and slow draining
treatments separated into shallow (closed circles, dashed lines) and deep (open circles,
solid lines) populations
Figure 6.1. Map of the study region and sites (1 to 10), located in the Ti Tree basin 200
km north of Alice Springs
Figure 6.2. Mean (\pm SE) depth-to-groundwater at the study sites (1982–2012 data,
Northern Territory Government)
Figure 6.3. Bivariate relationships between (a) total plant abundance and DGW, (b)
total plant abundance and PC1, (c) species richness and PC2, (d) species diversity and
PC2 and (e) species diversity and PC3. Points represent sites

Figure 6.4. CCA ordination biplot showing relationships between significant
environmental attributes (arrows) and the species composition of sites numbered 1
(shallow groundwater) to 10 (deep groundwater)146
Figure 6.5. Spine plot showing the relative distributions of annual (black) and perennia
(grey) species among sites
Figure 6.6. CCA ordination biplot showing relationships between significant
environmental attributes (arrows) and plant growth form

List of Tables

Table 2.1. Variation in environmental attributes across the 16 study sites. Soil
properties include EC = electrical conductivity, FC = field capacity, OM = organic
matter, $N = nitrogen$, $Mg = magnesium$, $P = phosphorus$, $K = potassium$. There were no
mean measurements for slope or altitude as these were based on single measurements
taken at the middle of each site23
Table 3.1. Minimum adequate model comparing plant traits between (a) shallow and
intermediate, (b) shallow and deep and (c) intermediate and deep sections of the
gradient to plant traits. Bonferroni correction critical P value = 0.0083351
Table 4.1. Mean trait data for the 26 perennial plant species that occurred at multiple
sites along the DGW gradient. Sites describes the number and identity of the study sites
at which each species occurred (see Chapter 2); LMA represents leaf mass per area, CV
represents coefficient of variation
Table 4.2. Assemblage-level trait data for the 16 study sites across the DGW gradient.
DGW = depth-to-groundwater, ALM = assemblage level mean, CWM = community
weighted mean (see section 4.2.3).
Table 4.3. Minimum adequate models relating ALM values of (a) LMA, (b) height and
(c) seed mass to DGW and environmental attributes for all species. Significant P-values
shown in bold70
Table 4.4. Minimum adequate models relating ALM values of (a) LMA, (b) height and
(c) seed mass to DGW and environmental attributes for overstorey species. Significant
P-values shown in bold
Table 4.5. Minimum adequate models relating ALM values of (a) LMA, (b) height and
(c) seed mass to DGW and environmental attributes for understorey species. Significant
P-values shown in bold

Table 4.6. Minimum adequate models relating CWM values of (a) LMA, (b) height and
(c) seed mass to DGW and environmental attributes for all species. Significant P-values
shown in bold
Table 4.7. Minimum adequate models relating CWM values of (a) LMA, (b) height and
(c) seed mass to DGW and environmental attributes for overstorey species. Significant
P-values shown in bold
Table 4.8. Minimum adequate models relating CWM values of (a) LMA, (b) height and
(c) seed mass to DGW and environmental attributes for understorey species. Significant
P-values shown in bold
Table 4.9. Minimum adequate models relating CV values of (a) LMA, (b) height and
(c) seed mass to DGW and environmental attributes for whole assemblages. Significant
P-values shown in bold. 84
Table 5.1. Two-way ANCOVA results for (a) physiological, (b) leaf, (c) belowground
growth and (d) aboveground growth traits of H. dactyloides seedlings grown from seeds
sourced from shallow and deep populations, subjected to fast and slow water infiltration
treatments. Significant values shown in bold (d.f. = 1, 15)
Table 5.2. Summary of plant trait responses demonstrating local adaptation and/or
phenotypic plasticity among shallow and deep populations. Prediction represents
responses for each trait to corresponding prediction plots in Fig. 5.2
Table 6.1. Plant species recorded across the 10 study sites in the Ti Tree basin with
information on status (native, exotic), growth form (tree, shrub, graminoid, forb),
longevity (annual, perennial), distribution (number of sites) and mean abundance across
the groundwater gradient

Table 6.2. Environmental attributes at each of the 10 study sites in the Ti Tree basin.
DGW = depth-to-groundwater, FC = field capacity, EC = electrical conductivity, OM =
organic matter content
Table 6.3. Pairwise correlation matrix among environmental attributes and depth-to-
groundwater (DGW). FC = field capacity, EC = electrical conductivity, OM = organic
matter content. * P < 0.05, ** P < 0.01, *** P < 0.001
Table 6.4. Principal component analysis on the environmental attributes with loadings
on the first three components (PC1, PC2 and PC3)141
Table 6.5. Minimum adequate models (MAM) relating (a) total abundance, (b) species
richness, (c) Simpsons diversity index and (d) Pielou's evenness to depth-to-
groundwater (DGW), PC1, PC2 and PC3. Significant P-values shown in bold 144
Table 6.6. Heat map showing abundances of all plant species as a function of depth-to-
groundwater. The scale refers to number of individuals (abundance) of each species at
each site147
Table 6.7. Minimum adequate models relating plant longevity to depth-to-groundwater
(DGW), PC1, PC2 and PC3, Significant P-values shown in bold

Abstract

Groundwater-dependent ecosystems (GDEs) must have access to groundwater to maintain their ecological integrity. Groundwater extraction for human needs, however, is threatening GDEs globally. Consequently, an understanding of relationships between naturally occurring spatial gradients in depth-to-groundwater (DGW) and the ecological properties of vegetation assemblages is urgently needed. Currently, little is known about relationships between DGW and the ecology of mesic woodlands within GDEs. I used field work, desktop analyses and a novel experimental system to further our understanding of ecological relationships between DGW and woodland vegetation assemblages.

Plant species composition varied significantly with DGW across mesic woodland vegetation within the Kangaloon study region of south-eastern Australia, with spatial shifts in abundance of nine understorey species driving most of this variation. The compositional differences among assemblages were not underpinned by interspecific variation in several important plant traits (e.g. LMA, plant height, seed mass) in desktop analyses of literature-based trait data and in separate analyses using fresh field collections from the study region.

In a glasshouse experiment, I grew seedlings from seeds of *Hakea dactyloides* collected from both the shallow and deep ends of the DGW gradient at Kangaloon. Both shallow and deep seedlings were exposed to two treatments that simulated differences in soil-water infiltration rates between shallow (slow-draining) and deep (fast-draining) ends of the gradient. Seedlings demonstrated varying degrees of phenotypic plasticity in a range of traits to track changes in water availability of the local environment. For instance, seedlings derived from both populations reduced stomatal conductance and transpiration rates in the fast-draining treatment to increase water use efficiency. There

was little evidence for local adaptation to differentiate the seedlings of populations from the two ends of the DGW gradient.

In a complementary study of arid-zone woodlands of the Ti Tree Basin in central Australia, I found that woodland assemblages with high total plant abundance were correlated with shallow DGW. In addition, the proportion of perennial species increased and the proportion of annual species decreased as DGW increased, and the number of shrub species increased with increasing DGW. These findings, so different from mesic woodlands, indicate that relationships between DGW and the ecology of woodland plant assemblages are not broadly generalizable between ecogeographic regions.

My research provides compelling evidence that DGW influences the ecological properties of vegetation assemblages in idiosyncratic ways between different regions.

This research contributes important baseline information vital for the sustainable management of woodland vegetation of GDEs.