Enhancing Information Hiding and Segmentation for Medical Images using Novel Steganography and Clustering Fusion Techniques

by

Hayat Shahir Al-Dmour

A dissertation submitted in fulfillment of the requirements for the degree

Doctor of Philosophy

School of Biomedical Engineering Faculty of Engineering and Information Technology University of Technology Sydney

January 2018

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

> Hayat Shahir Al-Dmour Monday 14th August, 2017

Abstract

In recent years, there has been rapid development in digital medical imaging. The continuous development of medical imaging is expected to make further contributions to healthcare systems, where the increased use of medical imaging in a variety of clinical settings has played an important role in improving health services. The main objective of the research presented in this thesis is to investigate digital image steganography and segmentation in order to offer a systematic way for designing and developing them, with a particular concentration on medical imaging security and magnetic resonance (MR) brain image segmentation.

The first objective presents digital steganography, which refers to the science of concealing important information in digital media such as text, image, audio and video. The importance of this science comes from the fact that if the message is visible, then the attack is highly possible. So, the purpose of digital image steganography is to hide the existence of the secret message from a third party that is unauthorized to see it. The second objective presents digital segmentation, which aims to divide the image into meaningful and non-overlapping regions. The segmentation process is considered an essential process in many important biomedical applications, such as tumour detection, quantitative tissue analysis and computer-integrated surgery.

A major requirement for any steganography method is to minimize the changes that are introduced to the cover image by the data embedding process without compromising the embedding capacity. The main aim of this research is to propose techniques that achieve a high level of capacity, imperceptibility and security. In other words, the proposed methods attempt to reduce the degradation of the stego image to the level that makes the introduced changes not noticeable to the Human Visual System (HVS). Since the HVS is less sensitive to changes in sharp regions of images compared to uniform regions, many researchers have attempted to identify edge pixels and embed the secret message in them in order to enhance imperceptibility and increase the embedding capacity by varying the number of embedded bits per pixel based on edges' strength. However, the identification of edges in steganography systems is usually faced with some challenges that are mainly related to changes that are caused by the embedding process, which lead to having slight difference between the edges of the cover (original) image and the stego image (output of the embedding process). In addition to proposing a method that attempts to resolve this issue, we incorporate coding theory to help in reducing modifications caused by the embedding process.

In medical image security systems, information security schemes are used to conceal coded Electronic Patient Records (EPRs) into medical images. This will help to protect the EPRs' confidentiality without affecting the image quality and particularly the Region of Interest (ROI), which is essential for diagnosis. A method that converts EPR data into ciphertext using private symmetric encryption method is proposed. A simple edge detection method has been developed to embed the confidential information in edge pixels, which will lead to an improved stego image quality. To increase the efficiency, two message coding mechanisms have been utilized to enhance the ± 1 steganography. The first one, which is based on Hamming code, is simple and fast, while the other which is known as the Syndrome Trellis Code (STC), is more sophisticated as it attempts to find a stego image that is close to the cover image through minimizing the embedding impact. The proposed steganography algorithm embeds the secret data bits into the Region of Non Interest (RONI), where due to its importance; the ROI is preserved from modifications.

In order to enhance the performance of clustering-based medical image segmentation, an efficient fully-automatic brain tissue segmentation algorithm based on a clustering fusion technique is presented. In the training phase of this algorithm, the pixel intensity value is scaled to enhance the contrast of the image. The brain image pixels that have similar intensity values are then grouped into objects using a superpixel algorithm. Then, three clustering techniques are utilized to segment each object. For each clustering technique, a neural network (NN) model is fed with features extracted from the image objects and is trained using the labels produced by that clustering technique. In the testing phase, a pre-processing step that includes scaling and resizing of the brain image is applied before the superpixel algorithm partitions the image into multiple objects (similar to the training phase). The three trained neural network models are then used to predict the respective class of each object and the obtained classes are combined using majority voting.

The performance of all proposed methods have been tested and evaluated on different datasets using different criteria such embedding rate, mean square error (MSE), peak signal-to-noise ratio (PSNR), weighted peak signal-to-noise ratio (wPSNR), embedding efficiency, jaccard similarity (JS), dice similarity coefficient (DSC), root mean square error (RMSE), accuracy, sensitivity and specificity. Also, the effectiveness of the proposed steganography algorithm is proven using one of the efficient steganalysis techniques. The obtained results showed that our proposed methods outperform some of the well-established methods in the literature.

Acknowledgments

First and foremost, I would like to express my gratitude to Allah (Glorified and Exalted is He) for blessing me with endurance and fortitude to smoothly accomplish this dissertation.

During this research period of four years, there have been many people who have walked alongside me with their guidance, support and inspiration. I am much grateful to my principle supervisor **Dr. Ahmed Al-Ani** for incessant guidance and encouragement. Discussions with him helped me to understand my potential besides producing this high-quality dissertation. Without him, the road towards the completion of this research would have been difficult.

Thanks would be a simple word to applaud the sacrifice of my parents, especially my deceased father. He has been a pillar of support to shape my values, perseverance and in large as a good human. Extended thanks to my sisters and brothers who also supported me in each step of these four years.

I express my profound gratitude to all my colleagues and friends within and outside the premises of UTS, in particular **Obaid Aamir** and **Karthick Thiyagarajan**, for their friendship and support throughout my degree. Lastly but not the least, I endorse the Mutah University for their commitment to support my Ph.D. candidature with scholarships. This enabled me to realise my long lasting dream into reality.

Dedication

Every challenging work needs self-efforts as well as guidance and support of parents. This thesis is dedicated to the memory of my father, **Shaher Al-Dmour**, who passed away before I completed my degree. I wish that he could be with me to share the success of my graduation with a Doctor of Philosophy degree.

This thesis is also dedicated to my mother, **Khadija Al-Dmour**. This dissertation stands as a testimony for her endless support, prayers, love and beyond to overcome my hardships to complete my degree.

To my beloved sisters and brothers, for their support and patience throughout these stressful years.

Abbreviations

I SIVIL I Eak Signal-10-Noise Haut	PSNR	Peak	Signal-to-	Noise	Ratio
------------------------------------	------	------	------------	-------	-------

- BPNN Back Propagation Neural Network
- CSF Cerbuspinal Fluid
- DCT Discrete Cosine Transform
- DHHS Department of Health and Human Services
- DICOM Digital Imaging and Communication In Medicine
- DSC Dice Similarity Coefficient
- DWT Discrete Wavelet Transform
- ECC Error Correction Code
- EPR Electronic Patient Record
- FCM Fuzzy C-means
- GM Gray Matter
- HAS Human Auditory System
- HIPAA Health Insurance Portability and Accountability Act
- HVS Human Visual System
- ID Identity Card
- IDCT Inverse Discrete Cosine Transform
- ISP Internet Service Provider

IWT Intege	er Wavelet	Transform
------------	------------	-----------

- JPEG Joint photographic expert group
- JS Jaccard Similarity
- KLD Kullback–Leibler Divergence
- LSB Least Significant Bit
- LSBM Least Significant Bit Matching
- MIS Medical Information System
- MSB Most Significant Bit
- MSE Mean Square Error
- MRI Magnetic Resonance Image
- PACS Picture Archiving and Communication System
- PMM Pixel Mapping Method
- PoV Pair of Values
- PRNG Pseudo Random Number Generator
- PSNR Peak Signal-to-Noise Ratio
- PVD Pixel Value Difference
- RLC Run Length Coding
- RMSE Root Mean Square Error
- ROI Region of Interest
- RONI Region of Non-Interest
- SOM Self-organized Map
- SSIM Structural Similarity Index
- STC Syndrome Trellis Code
- TBPC Tree-based Parity Check
- TPVD Tri-pixel Value Differencing
- VoIP Voice over Internet Protocol
- WM White Matter
- wPSNR weighted Peak Signal-to-Noise Ratio

Contents

A	bstract						
A	bbre	viations	ix				
Li	st of	Figures	xvii				
Li	st of	Tables	xxii				
1	Intr	roduction	1				
	1.1	Introduction	1				
	1.2	Motivation and Research Problems	3				
	1.3	Existing Method Limitations	5				
	1.4	Research Question	6				
	1.5	Research Objectives	7				
	1.6	Organization of the Thesis	8				
	1.7	Publications	10				
2	Bac	kground and Concept	12				
	2.1	Introduction	12				
	2.2	Types of Information Security	13				

		001	Starsnormanby and Countaryanky	11
		2.2.1	Steganography and Cryptography	14
	2.2	2.2.2	Steganography and Watermarking	15
	2.3	Histor	y of Steganography	16
	2.4	Digital	l Steganography	17
	2.5	Stegan	ography Method Classifications	20
		2.5.1	According to the Cover Type	20
		2.5.2	According to the Embedding Domain	20
		2.5.3	According to the Embedding Process	21
		2.5.4	According to the Extraction Process	23
			2.5.4.1 Reversible and Irreversible Types	23
			2.5.4.2 Blind and Non-blind Types	24
	2.6	Digital	l Steganography Requirements	24
	2.7	Stegan	ography Evaluation Criteria	25
		2.7.1	Imperceptibility Evaluation	26
		2.7.2	Capacity Evaluation	27
		2.7.3	Security Evaluation	27
		2.7.4	Computational Cost Evaluation	28
	2.8	Stegan	ography Protocols	28
		2.8.1	Pure Steganography	28
		2.8.2	Secret Key Steganography	29
		2.8.3	Public Key Steganography	29
	2.9	Digital	l Steganography Applications	30
	2.10	Stegan	alysis	31
		2.10.1	Steganalysis Approaches	32
			2.10.1.1 Visual Steganalysis	33
			2.10.1.2 Statistical Steganalysis	34
	2.11	Summ	ary	35
3	Lite	rature	Review on Digital Steganography	36
	3.1	Introd	uction	36
	3.2	Basic S	Steganographic Methods	38
		3.2.1	Spatial Domain Steganography	38

xii

			3.2.1.1 Least Significant Bit (LSB)	38
			3.2.1.2 Pixel Value Differencing (PVD)	42
			3.2.1.3 Pixel Mapping Method	46
		3.2.2	Transform Domain Steganography	46
			3.2.2.1 Discrete Transform Domain	47
			3.2.2.2 JPEG Based Steganography	50
			3.2.2.3 Wavelet Transform Domain	52
	3.3	State-	of-the-art Steganographic Methods	54
		3.3.1	Steganography Method Based on Edge Detection	54
		3.3.2	Steganography Based on Coding Theory	57
		3.3.3	Steganography Based on Wavelet Transform	59
	3.4	Stegar	nography for Medical Image Security	61
		3.4.1	Digital Medical Image Steganography	62
			3.4.1.1 Steganography Advantages	62
			3.4.1.2 Limitations of Traditional Medical Security Techniques	63
		3.4.2	Region of Interest (ROI) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	66
		3.4.3	Information Hiding Methods for Medical Images	66
	3.5	Summ	ary	73
1	Tmo	ma Saa	montation Packground	75
4	1ma 4 1	ige beg	unction background	75
	4.1	Classi	faction of Componing Methods Decod on Human Interaction	70 77
	4.2		Manual Componitation Methods Based on Human Interaction .	((77
		4.2.1	Consideration Componentation	70
		4.2.2	Semi-automatic Segmentation Fully: Automatic Segmentation	(9 01
	4.9	4.2.3 Tashr	Fully Automatic Segmentation	01
	4.5	1 ecnn	Thresholding based Comparisation	82 00
		4.5.1	Edge based Segmentation	02 04
		4.3.2	Pagion based Segmentation	04 85
		4.J.J 121	Machina Learning based Segmentation	00 97
		4.0.4	4.3.4.1 Supervised Learning (Classification)	01
			4.2.4.2 Upgup arrived Learning (Clustering)	01
			$/1 \times /1 /2 = 1 + 1 \times 1 + 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times$	

			4.3.4.3 Semi-supervised Learning	. 88					
	4.4	4 Medical Image Processing							
	4.5	5 Magnetic Resonance Brain Image Processing							
	4.6	MR B	rain Image Segmentation Methods	. 91					
	4.7	Summ	nary	. 95					
5	Ima	ige Ste	ganography Based on Edge Detection and Coding	97					
	5.1	Introd	luction	. 98					
	5.2	The P	Proposed Methodology	. 99					
		5.2.1	Identification of Edges	. 99					
		5.2.2	The Spatial Domain Algorithm (0.75 bit per pixel) \ldots	. 105					
			5.2.2.1 The Embedding Process $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 105					
			5.2.2.2 The Extraction Process $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 108					
		5.2.3	The Spatial Domain Algorithm (n bits per pixel)	. 108					
			5.2.3.1 The Embedding Process $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 108					
			5.2.3.2 The Extraction Process	. 110					
		5.2.4	The Integer Wavelet Transform Domain Algorithm (n bits per						
			$pixel) \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 110					
			5.2.4.1 The Embedding Process $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 110					
			5.2.4.2 The Extraction Process	. 112					
	5.3	Summ	nary	. 112					
6	Cor	nbined	Cryptography and Coding based Steganography for	or					
	Me	dical I	mages	113					
	6.1	Introd	luction \ldots	. 114					
	6.2	Syndr	ome Trellis Code (STC)	. 115					
	6.3	Hamn	ning Code	. 118					
	6.4	The P	Proposed Methodology	. 119					
		6.4.1	The Encryption Process	. 119					
		6.4.2	Edge Detection	. 121					
		6.4.3	The Embedding Process	. 123					
		6.4.4	The Extraction Process	. 129					

		6.4.5	Decrypt	ion Process $\ldots \ldots 130$
	6.5	Summ	ary	
7	Mee	lical Iı	nage Seg	gmentation based on Clustering Fusion 133
	7.1	Introd	uction .	
	7.2	Cluste	ring Tech	niques $\dots \dots \dots$
		7.2.1	K-means	5
		7.2.2	Fuzzy c-	mean
		7.2.3	Self Org	anizing Map $\ldots \ldots 137$
	7.3	Artific	ial Neura	l Networks
	7.4	The P	roposed N	Methodology $\ldots \ldots 141$
		7.4.1	Training	Stage $\ldots \ldots 141$
			7.4.1.1	Pre-processing
			7.4.1.2	Pre-segmentation
			7.4.1.3	Feature Extraction
			7.4.1.4	Clustering Techniques
			7.4.1.5	Matching Classes
			7.4.1.6	Back Propagation Neural Network (BPNN) 147
		7.4.2	Testing	Stage \ldots \ldots \ldots \ldots 150
	7.5	Summ	ary	
8	Exp	erime	ntal Res	ults and Discussions 154
	8.1	Stegar	ography	Performance Evaluation
		8.1.1	Image D	$ataset \dots \dots$
		8.1.2	Evaluati	on
			8.1.2.1	Embedding Capacity Evaluation
			8.1.2.2	Embedding Distortion Evaluation
			8.1.2.3	Security Evaluation
		8.1.3	Image S	teganography Methodology Results
			8.1.3.1	Embedding Capacity and Distortion Evaluations 159
			8.1.3.2	Security Evaluation
		8.1.4	Medical	Image Steganography Methodology Results

			8.1.4.1	Embedding Capacity and Distortion Evaluation	172
			8.1.4.2	Security Evaluation	179
			8.1.4.3	Evaluation of the Proposed Method with Other Medical	
				Information Hiding	181
			8.1.4.4	Encryption Process Evaluation	183
	8.2	Segme	entation P	Performance Evaluation	184
		8.2.1	MRI Im	age Datasets	184
		8.2.2	Evaluati	on	185
			8.2.2.1	Spatial Overlaps	186
			8.2.2.2	Accuracy, Sensitivity and Specificity	192
			8.2.2.3	Impact of SLIC Parameters	194
			8.2.2.4	Computational Cost	196
	8.3	Summ	ary		197
9	Con	clusio	ns and F	uture Work	199
	9.1	Conclu	usions .		199
	9.2	Future	e Work .		202
Bi	ibliog	graphy			204

List of Figures

2.1	Information security system classifications	14
2.2	Steganography Structure	19
2.3	Performance evaluation criteria of steganography methods $\ldots \ldots \ldots$	26
2.4	(a) Cover image and (b) first LSB plane of the cover image	33
2.5	The stego images with 47.8% embedding rate using (a) sequential and	
	(b) random embedding locations	33
2.6	The first LSB plane of stego images with 47.8% embedding rate using	
	(a) sequential and (b) random embedding locations $\ldots \ldots \ldots \ldots$	34
91	An axample of the LCP embedding process	40
J.1	An example of the LSD embedding process	40
3.2	(a) Cover image, (b - i) Stego images using n^{th} bits (from 1-LSB to 8-LSB)	41
3.3	Binary representation of grey-scale pixel shows the relationship between	
	distortion and bit level \ldots	42
3.4	An example of the LSBM embedding process	42
3.5	Block diagram of PVD method	43
3.6	PVD embedding process example	45
3.7	JPEG encoding	48
3.8	JPEG decoding	49

3.9	DCT regions
3.10	Steganography method for JPEG encoding
3.11	DWT sub-bands $\ldots \ldots 52$
3.12	An example of the first level of DWT decomposition
3.13	An example of the first level of IWT decomposition
4.1	Image engineering layer
4.2	Manual segmentation by four different experts manual segmentation by
	four different experts $[1]$
4.3	Classification of image segmentation techniques
4.4	(a) Original image, (b) segmented image using single threshold value
	and (c) segmented image using multiple threshold values $\ldots \ldots \ldots 83$
4.5	(a) Original MR brain image and (b) segmented image with WM, GM
	and CSF labels
5.1	(a) Cover image, (b-d) Edge pixels in a cover image using Canny
	method, $(e-g)$ Edge pixels in a stego image using Canny method with
	3%, 10% and 19% embedding rates and (h–j) Difference between edge
	pixels in the cover and stego images
5.2	An example of 3×3 block edges for four directions (a) Horizontal, (b)
	Vertical, (c) First Diagonal and (d) Second Diagonal
5.3	(a) Selected pixels for embedding 3×3 block and (b) a 3×3 block of
	input image \ldots
5.4	(a) Input image, (b) edge image using $Th = 70$, (c) edge image using
	Th = 60, (d) edge image using $Th = 50$, (e) edge image using $Th = 40$,
	(f) edge image using $Th = 30$, (g) edge image using $Th = 20$, (h) edge
	image using $Th = 10$
5.5	Edge image using Sobel method (a) $Th=0.1$ and (b) $Th=0.01$ 105
5.6	Data embedding process in the spatial domain \hdots
5.7	Data extraction process in the spatial domain
5.8	Data embedding process in the Integer Wavelet Transform domain 111
6.1	Example of STC embedding

6.2	(a) Encoding of 4 bits using (7,4) Hamming code (b) The relationship	
	between the original and parity check bits	18
6.3	The block diagram of the proposed method	20
6.4	Permutation boxes (a) box-1 and (b) box-2	21
6.5	An example of a 3×3 block $\ldots \ldots \ldots$	23
6.6	The block diagram of embedding process	24
6.7	(a) and (c) ROI of MRI cover images. (b) and (d) corresponding Binary	
	Image of ROI	25
6.8	An illustration of embedding 3 secret bits into 4 cover bits using	
	Hamming code	29
7.1	Self-Organizing Map (Rectangular Topology)	39
7.2	Architecture of neural network	10
7.3	The training phase of the proposed method	12
7.4	Visual illustration of the effect of SLIC superpixel parameters (number	
	of superpixel (k) and compactness (m)) in brain tissue segmentation:	
	(a) $k = 2000$ and $m = 5$, (b) $k = 2000$ and $m = 10$, (c) $k = 2000$ and	
	m = 20, (d) $k = 2000$ and $m = 30$	14
7.5	Visual illustration of the effect of SLIC superpixel parameters (number	
	of superpixel (k) and compactness (m)) in brain tissue segmentation:	
	(a) $k = 500$ and $m = 10$, (b) $k = 1000$ and $m = 10$, (c) $k = 1500$ and	
	m = 10 and (d) $k = 2000$ and $m = 10$	45
7.6	(a) Zoomed area from the SLIC superpixels algorithm and (b) zoomed	
	area of the SLIC superpixel after merging the small objects 14	45
7.7	An example of object pixel intensities	16
7.8	The histogram of Figure 7.7	17
7.9	The training model of NN under supervised learning 14	19
7.10	The testing phase of the proposed method	50
7.11	Subject 111-2, slice 20: (a) without the post-processing step, (b) with	
	the post-processing step, Subject 205-3, slice 20: (c) without the post-	
	processing step, and (d) with the post-processing step	52

8.1	(a) Cover image 512 \times 512 and (b) Cover image histogram $\ . \ . \ . \ .$	159
8.2	(a), (c) and (e) Stego images using the 1bpp proposed algorithm (Section $% \mathcal{A}(\mathcal{A})$	
	5.2.2) in the spatial domain with 5%, 20% and 30% embedding rate,	
	and (b), (d) and (f) Histograms of the corresponding stego images	162
8.3	KLD for Figure 8.1 using 1bpp proposed method with various embedding	
	rates	163
8.4	(a) Cover image, (b-c) Stego Images using the 1bpp proposed algorithm	
	in the spatial domain with 10% and 30% embedding rate, (d) zoomed	
	area from the cover image, and (e-f) zoomed area from the stego image	
	with 10% and 30% embedding rate \ldots \ldots \ldots \ldots \ldots \ldots	164
8.5	(a), (c) and (e) Stego images using the Nbpp proposed $(5.2.3)$ algorithm	
	in the spatial domain with 5%, 20% and 40% embedding rate and (b),	
	(d) and (f) Histograms of the corresponding stego images $\ . \ . \ . \ .$	165
8.6	KLD for Figure 8.1 using Nbpp proposed method with various embedding $% \mathcal{L}^{(1)}$	
	rates	166
8.7	(a-c) Difference between the cover and stego images using the Nbpp	
	proposed algorithm in the spatial domain with 5%, 20% and 40%	
	embedding rate	168
8.8	(a), (c) and (e) Stego images using the Nbpp proposed $(5.2.4)$ algorithm	
	in the integer wavelet domain with 5%, 20% and 40% embedding rate	
	and (b), (d) and (f) Histograms of the corresponding stego images $\ . \ .$	169
8.9	(a) PSNR values and (b) wPSNR values of the proposed N-bpp in the	
	spatial and wavelet domains \ldots	170
8.10	(a) MRI cover images, (b) ROI of the cover image, and (c) histogram of	
	the cover image \ldots	172
8.11	Stego images produced by STC (a) 5%, (c) 20% and (e) 40% embedding	
	rate, (b), (d) and (f) Histogram of the corresponding stego images $\ . \ .$	174
8.12	(a) PSNR values and (b) wPSNR values for PVD, TPVD, edge adaptive	
	$\operatorname{PVD},$ edge adaptive $n\text{-}\mathrm{LSB}$ and the proposed method using Hamming	
	and trellis codes	176

8.13	The computational cost and PSNR values for the proposed method	
	using Syndrome-Trellis and Hamming codes $\ldots \ldots \ldots \ldots \ldots \ldots$	178
8.14	Cover Image with different ROI size	179
8.15	Subject 12-3, slice 20: (a) Ground truth, (b) k-means, (c) FCM, (d) SOM,	
	(e) proposed method after the majority voting step and (f) proposed	
	method after applying the post-processing step	187
8.16	JS results for IBSR20 dataset, slice 20: (a) CSF, (b) GM, (c) WM and	
	(d) average	189
8.17	Pixel intensity overlapping between the brain tissues $\ldots \ldots \ldots$	190
8.18	Venn diagram of true positive, true negative, false positive and false	
	negative \ldots	190
8.19	DSC results for IBSR20 dataset, slice 20: (a) CSF, (b) GM, (c) WM and $% \left({{\rm S}} \right) = \left({{\rm S}} \right) \left({{\rm S}}$	
	(d) average	192
8.20	(a) Sensitivity, (b) Specificity and (c) Accuracy results for IBSR20	
	dataset, slice 20 \ldots	195
8.21	The impact of SLIC superpixel parameters (number of superpixels and	
	compactness) on the DSC	196

List of Tables

2.1	Comparison between information security types	15
2.2	Differentiation between image steganography schemes in the spatial and	
	transform domains	21
3.1	PVD Range Table (R_k)	44
3.2	The default JPEG quantization table for Luminance	48
3.3	The default JPEG quantization table for chrominance	49
3.4	Literature review for various information-hiding methods $\ldots \ldots \ldots$	67
4.1	Literature review for various brain image segmentation methods	93
4.1	Literature review for various brain image segmentation methods $\ . \ . \ .$	94
4.1	Literature review for various brain image segmentation methods $\ . \ . \ .$	95
5.1 5.2	Embedding conditions	107
	group it belongs to	109
6.1	An illustration of data encryption process	122
6.2	Numbers of bits that can be embedded in each of pixels of an edge block	
	based on the group it belongs to	126

8.1	Image quality evaluation with various 1-bpp steganographics methods
	in the spatial domain and embedding rates over 10,000 stego images.
	The red values indicate the best result $\ldots \ldots \ldots$
8.2	The computational cost of various 1-bpp steganographic methods in the
	spatial domain to embed 12902 bits $\ldots \ldots 163$
8.3	Image quality evaluation with various N-bpp steganographics methods
	in the spatial domain and embedding rates over 10,000 stego images.
	The red values indicate the best result $\ldots \ldots \ldots$
8.4	Image quality evaluation of the N-bpp IWT proposed method with
	embedding rates over 10,000 stego images
8.5	The average accuracy value (for $10,000$ cover images and their
	corresponding stego images) against Li-110D with various 1-bpp $$
	methods. The red values indicate the best result
8.6	The average accuracy value (for $10,000$ cover images and their
	corresponding stego images) against Li-110D with various N-bpp $$
	methods. The red values indicate the best result
8.7	Comparison of the results of PVD, TPVD, Adaptive PVD, Adaptive
	N-LSB and the N-bpp proposed methods using XOR, Hamming and
	STC. The red values indicate the best result \ldots
8.8	Comparison of the results of EALSB-MR, LSB Canny, the 1-bpp
	proposed method using XOR and the 1-bpp proposed method using
	STC. The red values indicate the best result \ldots
8.9	Comparison of embedding efficiency for STC and Hamming code with
	different payloads
8.10	The image quality results of the proposed method using STC with
	different ROI and EPR sizes \ldots
8.11	The average accuracy value of the proposed method (for 100 medical
	cover images and their corresponding stego images) against Li-110D $$
	steganalysis method

8.12	The average accuracy value of PVD, TPVD, Adaptive PVD, Adaptive
	N-LSB and the proposed method (for 10,000 cover images and their
	corresponding stego images) against Li-110D steganalysis method \ldots 181
8.13	A comparison between the proposed method various information hiding
	techniques
8.14	The computational cost for the AES-128, DES and the proposed
	encryption algorithm
8.15	Average difference between each actual base clustering method and its
	corresponding trained BPNN model results
8.16	Average difference between two different clustering methods results 186
8.17	Average difference between each trained BPNN model results and ground
	truth
8.18	JS values of the proposed method and trained NN of k-means, FCM
	and SOM using random slice
8.19	DSC values of the proposed method and trained NN of k-means, FCM
	and SOM using random slice
8.20	RMSE of the proposed method and trained NN of k-means, FCM and
	SOM using slice number 20
8.21	A comparison between the proposed method versus a single neural
	network trained using the ground truth annotation $\ldots \ldots \ldots \ldots \ldots 193$
8.22	Mean of Accuracy, Sensitivity and Specificity values of k-means, FCM,
	SOM and the proposed method using slice number 20
8.23	The computational cost for the k-means, FCM and SOM clustering
	techniques and the trained NN of single clustering technique in the
	testing phase