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Abstract

In recent years, there has been rapid development in digital medical imaging. The
continuous development of medical imaging is expected to make further contributions
to healthcare systems, where the increased use of medical imaging in a variety of clinical
settings has played an important role in improving health services. The main objective
of the research presented in this thesis is to investigate digital image steganography
and segmentation in order to offer a systematic way for designing and developing them,
with a particular concentration on medical imaging security and magnetic resonance
(MR) brain image segmentation.

The first objective presents digital steganography, which refers to the science of
concealing important information in digital media such as text, image, audio and video.
The importance of this science comes from the fact that if the message is visible, then
the attack is highly possible. So, the purpose of digital image steganography is to hide
the existence of the secret message from a third party that is unauthorized to see it.
The second objective presents digital segmentation, which aims to divide the image into
meaningful and non-overlapping regions. The segmentation process is considered an
essential process in many important biomedical applications, such as tumour detection,
quantitative tissue analysis and computer-integrated surgery.
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A major requirement for any steganography method is to minimize the changes that are
introduced to the cover image by the data embedding process without compromising
the embedding capacity. The main aim of this research is to propose techniques that
achieve a high level of capacity, imperceptibility and security. In other words, the
proposed methods attempt to reduce the degradation of the stego image to the level
that makes the introduced changes not noticeable to the Human Visual System (HVS).
Since the HVS is less sensitive to changes in sharp regions of images compared to
uniform regions, many researchers have attempted to identify edge pixels and embed
the secret message in them in order to enhance imperceptibility and increase the
embedding capacity by varying the number of embedded bits per pixel based on edges’
strength. However, the identification of edges in steganography systems is usually
faced with some challenges that are mainly related to changes that are caused by the
embedding process, which lead to having slight difference between the edges of the
cover (original) image and the stego image (output of the embedding process). In
addition to proposing a method that attempts to resolve this issue, we incorporate
coding theory to help in reducing modifications caused by the embedding process.

In medical image security systems, information security schemes are used to conceal
coded Electronic Patient Records (EPRs) into medical images. This will help to protect
the EPRs’ confidentiality without affecting the image quality and particularly the
Region of Interest (ROI), which is essential for diagnosis. A method that converts EPR
data into ciphertext using private symmetric encryption method is proposed. A simple
edge detection method has been developed to embed the confidential information in edge
pixels, which will lead to an improved stego image quality. To increase the efficiency,
two message coding mechanisms have been utilized to enhance the ±1 steganography.
The first one, which is based on Hamming code, is simple and fast, while the other which
is known as the Syndrome Trellis Code (STC), is more sophisticated as it attempts to
find a stego image that is close to the cover image through minimizing the embedding
impact. The proposed steganography algorithm embeds the secret data bits into the
Region of Non Interest (RONI), where due to its importance; the ROI is preserved
from modifications.
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In order to enhance the performance of clustering-based medical image segmentation,
an efficient fully-automatic brain tissue segmentation algorithm based on a clustering
fusion technique is presented. In the training phase of this algorithm, the pixel
intensity value is scaled to enhance the contrast of the image. The brain image pixels
that have similar intensity values are then grouped into objects using a superpixel
algorithm. Then, three clustering techniques are utilized to segment each object. For
each clustering technique, a neural network (NN) model is fed with features extracted
from the image objects and is trained using the labels produced by that clustering
technique. In the testing phase, a pre-processing step that includes scaling and resizing
of the brain image is applied before the superpixel algorithm partitions the image into
multiple objects (similar to the training phase). The three trained neural network
models are then used to predict the respective class of each object and the obtained
classes are combined using majority voting.

The performance of all proposed methods have been tested and evaluated on different
datasets using different criteria such embedding rate, mean square error (MSE), peak
signal-to-noise ratio (PSNR), weighted peak signal-to-noise ratio (wPSNR), embedding
efficiency, jaccard similarity (JS), dice similarity coefficient (DSC), root mean square
error (RMSE), accuracy, sensitivity and specificity. Also, the effectiveness of the
proposed steganography algorithm is proven using one of the efficient steganalysis
techniques. The obtained results showed that our proposed methods outperform some
of the well-established methods in the literature.
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CHAPTER 1

Introduction

1.1 Introduction

Digital medical imaging provides solutions in areas, such as radiography, orthopaedics,
and oncology among others in improving patient outcomes. These services prove
that imaging technology has gone through a complete revolution, allowing medical
professionals to be in a position to improve patient outcomes, which explains why
for most economies digital imaging is considered a fundamental medical development
based on its immense benefits. Digital medical imaging has provided the health sector
with the opportunity to access the latest imaging technologies and services deserved
by patients. It has been instrumental in empowering patients and physicians regarding
accessibility to important information on human health [2].

In recent years, there has been an explosion in the use and development of digital
medical images. Health care systems are making significant use of image processing
to improve their services. Image steganography and segmentation are some of the
basic concepts that have played a critical role in improving digital medical systems.
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Steganography aims to provide invisible communication by concealing the confidential
data into other forms of digital media so the information does not attract unauthorized
user attention [3]. Image segmentation is considered a critical process in medical
image analysis and clinical applications, where it aims at dividing the image into
non-overlapping regions [4].

Initially, the internet was used as a paramount academic and military resource.
However, Internet usage has grown to become a primary tool utilized by commercial
organizations, non-commercial organizations and individuals. Therefore, it is necessary
for organizations and individuals to preserve the security, confidentiality, and integrity
of data, especially during the transmission process [5]. Cryptography is one of the
earliest methods of protecting security and privacy, where it transforms original text
into an unreadable form [6].

Image steganography is considered an integral tool used in different applications, such
as military communications and medical systems to pass sensitive information over
public networks where anyone can access and connect to the Internet. In the digital
medical system, distribution and maintenance of medical records is a crucial process.
For example, during an orthopaedic surgery, it may be required to send the patient’s
details and medical images to a pathologist and/or radiologist. This information must
be preserved for protecting the privacy of the patient’s details. In fact, it is against the
law to disclose patient information without the patient’s authority as presented under
the US Department of Health and Human Services (DHHS) and the Health Insurance
Portability and Accountability Act (HIPAA) of 1996 [7].

There are some essential requirements of a successful steganography technique such as
imperceptibility, capacity, robustness, and security, which are conflicting. So, one of
the most significant challenges that face steganography techniques is embedding a large
amount of confidential data without distorting the original image, whereas the capacity
and imperceptibility are contradicting requirements of the steganography scheme.

Image segmentation is considered a critical process in medical image analysis and
clinical applications used for measuring and visualizing the anatomical structures of the
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brain, analyzing changes in the brain, surgical planning, image-guided interventions,
and delineating the pathological regions.

Brain image segmentation has been instrumental in improving the human understanding
of brain anatomy in clinical applications, mainly because of its ability to influence
the outcome of brain analysis [8]. The objective of segmentation is to simplify the
actual illustration of an image into another format, making it easier to understand and
analyze [9].

This chapter is organized as follows. Motivation and research problems are discussed in
Section 1.2. Section 1.3 presents the limitations of the existing methods. The research
questions and objectives are presented in Sections 1.4 and 1.5 respectively. Thesis
organization is summarized in Section 1.6.

1.2 Motivation and Research Problems

In recent years, information security has been proven to be an essential component in
the digital era, where the use of digital media such as text, image, audio, and video
has been rapidly increasing. Since digital data can be hacked, and any unauthorized
intruders can have access to this information during the transmission over the Internet,
the need of a secured network is demanding.

Cryptographic methods were introduced to provide integrity, privacy, and
confidentiality of the secret data. Cryptography aims to provide confidential
communication by encrypting the message using a key. Many real world applications
have accepted encryption methods to protect their data. While from a different point
of view, the transmission of encrypted text attracts intruders. In addition to the
growth of government restrictions and constraints on using encryption methods, this
unwanted attention stimulates the researcher to investigate an alternative approach
that enables secure communication. Therefore, steganography may be the most secure
mode of communication between members of different groups. Digital steganography,
particularly digital image steganography, has attracted the research community to
protect confidential data during the transmission of images or other media files.
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There has been an increased interest in the transmission and exchange of digital medical
images between hospitals and clinics over public networks. The Picture Archiving and
Communication System (PACS) has been designed to store and transmit digitized
medical images for e-health services; however, existing implementations of this system
do not pay much attention to the confidentiality and protection of patients’ information.
Digital steganography has attractive characteristics to offer secure communication for
medical system applications.

Despite a large number of publications in the area of steganography, it is still lacking in
finding a comprehensive steganography scheme that can achieve good balance between
the different requirements of digital steganography. To be more precise, the capacity
and imperceptibility are the most significant requirements of the image steganographic
system. While increasing the embedding capacity causes noticeable artefacts in the
resulting image of the embedding process.

There are a limited number of techniques for medical image steganography, however,
most of them use classical steganography techniques, such as Least Significant Bit
(LSB), without taking into consideration the appropriateness of the embedding process
for hiding the confidential data. These medical image steganography methods define
the diagnosis region, known as the Region of Interest (ROI), and protect it from any
alternation during the embedding process.

The human brain is one of the most sensitive body organs. Therefore, it is important
that the world invests in initiatives aimed at improving the study of brain anatomy
and function in a bid to make progress in providing quality care services and treating
brain diseases, such as tumours [4]. The brain tumour is considered one of the most
dangerous diseases affecting human beings [10].

Advanced imaging technologies, such as CT and MRI have played a paramount role
in improving different medical procedures. To be more precise, medical imaging
technologies offer powerful methods of examining the internal structures of the human
body. Therefore, physicians are able to get multi-dimensional images that facilitate
their ability to perform comprehensive analysis and make judgements for diagnosis and
treatments.
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Image segmentation is an essential process in medical image analysis. Medical image
segmentation is difficult because of the pixel intensity inhomogeneity or bias field.
Various brain image segmentation methods have been introduced by various researchers
to assist physicians and neurosurgeons in the identification and differentiation of normal
and diseased tissues. The human brain is comprised of three different tissues: Gray
Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). Other tissues,
such as a tumour, can be imaged using Magnetic Resonance Imaging (MRI). In reality,
the pixel intensities are inhomogeneous and overlap significantly. The absence of
distinctly defined edges between neighboring tissues degrades the accuracy of the
segmentation process. The reasons mentioned above have motivated the need for
developing automatic segmentation methods that are applicable to MR brain images.

1.3 Existing Method Limitations

There are a huge number of steganography and segmentation methods, but most of
them suffer from the following drawbacks:

1. Spatial domain steganography techniques provide a large embedding rate
compared to transform domain techniques. However, a large embedding capacity
affects the visual quality negatively.

2. Transform domain steganography methods provide robustness against attacks,
but compromises on both visual quality and embedding capacity.

3. A limited number of steganography publications address the combination of
steganography and cryptography, and the effect of embedded encrypted data.

4. Some of the existing segmentation methods require manual/user interaction to
initialize some input parameters.

5. The segmentation result depends on the parameters initialization, for example
output of the snake model depends on the initial estimation of the curve. Also,
the clustering algorithm is dependent upon the initial estimation of the centre
values and number of classes.
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6. The computational cost and memory are high for some existing methods, such
as the hybrid methods.

1.4 Research Question

The following research questions are addressed in this thesis.

• What is the appropriate steganography model to achieve the best

balance between imperceptibility, embedding capacity, and security

requirements?

This question involves an examination to determine the proper design of a
steganographic scheme that can achieve the best image quality without
compromising on the embedding capacity or security requirements. The
following sub-questions derive for designing the appropriate scheme:

(a) Can edge detection algorithms be utilized to achieve a high image quality
and embedding capacity?

(b) What is the appropriate coding theory algorithm of the embedding process to
improve imperceptibility?

• How can patients’ confidential information be protected and

transmitted securely between different clinics and hospitals?

Protecting the confidentiality of patient information during transmission is a
challenging problem. Most of the proposed techniques are based on the encryption
algorithms. However, the transmission of encrypted data encourages intruders to
decrypt it. This research will study the ability to develop a secure medical imaging
information system based on the integration of steganography and cryptography
techniques.

• What is the appropriate image segmentation model used for achieving

an accurate segmentation result in regards to medical imaging?



1.5 Research Objectives 7

This question addresses different segmentation techniques which can provide
accurate results with low computational costs. The following sub-questions derive
for designing the appropriate scheme:

(a) How do we optimally integrate different clustering techniques for brain image
segmentation?

(b) Can the developed segmentation method handle imbalanced data and
overlapping regions?

1.5 Research Objectives

The aim of this research is to design an image steganographic system, specifically for
medical images, in the spatial and transform domains with comprehensible embedding
capacity and minimum degradation in the quality of resultant image of the embedding
process, which is also known as stego image. To achieve this objective, we develop a
new and simple edge detection method that is capable of estimating the exact edge
intensities for both the cover and stego images (before and after embedding the secret
data). Furthermore, the computation cost of the developed method should be better
than other existing techniques. In regards to the security issue, the proposed method
obeys an important statistical constraint, where the embedding process does not leave
a significant statistical modification on the cover pixels.

The other objective of this research is to develop an efficient fully-automated
segmentation method for MR brain images that overcome the overlapping and
imbalance issues between brain tissues. To achieve this aim, we introduce a
fully-automatic segmentation method for MR images based on the concept of
clustering fusion and Neural Networks (NN).

To summarise, our main objectives cover the following:

(1) To develop a new edge detection method.

(2) To improve the embedding efficiency by introducing a new XOR coding operation
and modifying the embedding matrix.
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(3) To develop an image steganography for health care systems to enhance the
confidentiality of information during the exchange process between clinics.

(4) To reduce computational cost for embedding and extraction stages using coding
process and block-based edge detection algorithm.

(5) To introduce a complete automated method for the brain tissue segmentation
based on clustering techniques.

(6) To create a novel combination between clustering techniques and Neural Network.

(7) To reduce the computational cost of the segmentation process by training neural
networks that attempt to imitate the operation of a number of original clustering
methods.

1.6 Organization of the Thesis

The thesis is organized as follows:

Chapter 1: This chapter presents an introduction to the research problem. It provides
the main motivations and research aims for studying medical image steganography and
segmentation.

Chapter 2: This chapter introduces an overview of information security types, in
particular steganography. The main differences between steganography, cryptography
and watermarking are explained. Digital steganography and its main components
are also defined. Next, digital steganography’s classification and the requirements of
the steganographic system are described. The main evaluation measurements of the
steganography method performance are also explained. Several applications employing
digital steganography are presented. Finally, the main approaches of steganalysis are
explained.

Chapter 3: This chapter contains an extensive literature review of digital
steganography methods in the spatial and transform domains. It also discusses
state-of-the-art steganography methods and presents existing medical steganography
methods.
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Chapter 4: This chapter comprises a literature survey of the basic segmentation
techniques. It also reviews state-of-the-art segmentation methods for MR brain images.

Chapter 5: This chapter presents a novel image steganography algorithm that
combines the strengths of edge detection and XOR coding, to conceal a secret message
either in the spatial domain or an Integer Wavelet Transform (IWT) domain of the
cover image.

Chapter 6: This chapter introduces a secure medical imaging information system
based on steganography and cryptography techniques. This method embeds the
encrypted patient’s information into region of non interest in order to preserve the
diagnosis from any modification.

Chapter 7: This chapter presents a fully-automatic brain tissue segmentation
algorithm based on a clustering fusion technique. The proposed method combines the
simple linear iterative clustering (SLIC) superpixel, three clustering techniques, and
neural network to divide the MR brain image into three tissues of WM, GM and CSF.
The method comprises of training and testing stages then it evaluates the accuracy of
the proposed method.

Chapter 8: This chapter presents the results of the steganography and segmentation
methodologies mentioned in chapters 5, 6 and 7. Several experiments have been
carried out to evaluate the performance of the proposed method, and to compare
its performance with some of the existing algorithms. A complete description of the
employed datasets is given. Afterwards, the results of the steganography methodologies
using general and medical datasets for evaluation are presented. Finally, quantitative
assessment of the segmentation methodology is carried out different computing metrics.

Chapter 9: This chapter concludes the thesis with a summary of the original
contributions and future work.
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CHAPTER 2

Background and Concept

This chapter presents an overview of the different types of information security and, in
particular, steganography. Firstly, the main differences between steganography,
cryptography and watermarking are explained. Then, digital steganography and its
main components are defined. Next, digital steganography’s classification and the
requirements of the steganographic system are described. The main evaluation
measurements of the steganography method performance are also explained. Several
applications employing digital steganography are presented. Finally, the main
approaches of steganalysis are explained.

2.1 Introduction

Over the last few decades, the Internet has evolved from an academic and military
resource to a public world-wide computer network utilized by numerous commercial and
non-commercial organizations and individuals [5]. For example, many institutions such
as governments, hospitals and private businesses accumulate an incredible amount of
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confidential digital data about their employees, customers, patients and products. This
data is then often transmitted over insecure and public networks [11]. The evolution in
communication has been accompanied by easy-to-access data. For this reason, people
are trying to find different ways to maintain security, confidentiality and integrity
during data transmission [5]. Additionally, the protection of confidential information is
an ethical and legal requirement for many institutions or individuals [11].

Information security is the process of protecting data access, use, destruction, detection,
interruption or disruption by intruders [12]. The expressions ’information security’,
’computer security’, and ’information assurance’ are often used interchangeably. These
fields are interconnected and have the common objectives of protecting the privacy,
integrity and availability of information. However, there are some variances between
them in terms of the methodologies used and their areas of interest [13]. For instance,
data confidentiality, integrity and availability represent the areas related to information
security [13, 14]. On the other hand, computer security does not pay attention to the
data processed by the computers, instead concentrating on the correct operation of a
computer system and preventing denial-of-service [13].

This chapter is organized as follows. Types of information security are discussed
in Section 2.1. Section 2.3 presents history of the steganography. Introduction to
digital steganography, steganography method classifications and requirements are
introduced in Sections 2.4, 2.5 and 2.6 respectively. Section 2.7 discusses Steganography
evaluation Criteria. Sections 2.8, 2.9 and 2.10 present steganography protocols, digital
steganography applications and steganalysis respectively. Finally, the summary is given
in Section 2.11.

2.2 Types of Information Security

Information security systems can be classified into two main categories: cryptography
and information-hiding, as shown in Figure 2.1 [15]. Steganography and watermarking
are the two important sub-disciplines of information-hiding [6, 14, 16–18]. A comparison
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summary between cryptography, steganography and watermarking is presented in Table
2.1.

Figure 2.1 Information security system classifications

2.2.1 Steganography and Cryptography

Cryptography and steganography are both methods to protect data from unauthorized
users. In cryptography, the secret message is transformed from one form to another in
order to make the encrypted data meaningless to intruders. In other words, it encrypts
the message to hide its meaning but not its existence. Steganography, in contrast,
hides and conceals the secret message within another cover medium to hide all evidence



2.2 Types of Information Security 15

Table 2.1 Comparison between information security types

Criteria Cryptography Steganography Watermarking

Objective Data protection Secure communication Authentication
Copyright

Carrier
medium Text Any media (text, image,

audio and video)
Any media (text, image,
audio and video)

Input data Plaintext Cover carrier and
secret message

Cover carrier and
watermark

Output data Ciphertext Stego carrier Watermarked carrier
Key Required Optional optional

Visibility

Visible (hide the
meaning but not
existence of secret
data)

Invisible (hide the
existence of the
secret data)

Invisible or visible

Extraction
type Blind Blind Blind, non-blind

and semi-blind

Type of attack Cryptanalysis Steganalysis Image-processing
operation

Reversible Reversible Reversible or irreversible Reversible or irreversible
Method
requirements Robustness Imperceptibility and

capacity
Robustness

Broken If ciphertext is
de-ciphered

If secret message is detected If watermark is removed

of the existence of a secret message during communication. Steganography is utilized
to maintain private communication between two parties [6, 19, 20].

Although both cryptography and steganography aim to provide secure communication,
they have two different declarations regarding method breaking. If the intruder can
decrypt and read the secret message, then a cryptographic scheme is considered cracked.
On the other hand, if the intruder detects the existence of a secret message, then a
steganographic scheme is considered cracked [6, 21, 22].

2.2.2 Steganography and Watermarking

In steganography, information must never be apparent to a viewer unaware of its
presence and modern steganography should be detectable only if the secret key is
known. Watermarking, however, can be visible and not necessarily hidden because it
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is not intended to keep information hidden but rather authenticate the origin of the
object tagged. Even though both steganography and watermarking are information-
hiding techniques, they have different purposes. Steganography is concerned with
hiding the existence of communication by hiding the secret data into another cover
carrier, whereas watermarking is concerned with copyright protection and content
authentication [14, 23]. Watermarking is used to protect digital contents against
the removal of copyright data. Regardless of the fact that somebody realizes that a
watermark (i.e., noticeable watermarking) exists in a given article, it must be difficult to
remove the copyright information from the cover carrier without creating a degradation
in the watermarked carrier [21, 22, 24, 25].

2.3 History of Steganography

Steganography comes from Greek words "steganos" (covered or secret) and "graphy"
(writing or drawing). It describes the ancient art of covering messages in a secret way
such that only the receiver knows the existence of messages. Steganography can be
classified into linguistic steganography and technical steganography [21–23].

The Histories of Herodotus is one of the primary documents that describes the history of
steganography. The history of steganography can be traced to 400 BC when Herodotus
describes two examples in ancient Greece. In ancient Greece, when someone wanted
to transmit a private message they wrote text on a tablet and then it covered it with
beeswax. Herodotus tells how Demeratus sent a notification to Sparta about an attack
from Xerxes. He wrote the secret message on a wooden tablet and then concealed it
with wax. Upon inspection by Xerxes’ soldiers, the tablets appeared blank and were
allowed to pass [26].

Another example is Histiaeus. He shaved the head of his slave and wrote a message
on it. After that, he waited for the slave’s hair to grow back, therefore concealing the
message and allowing the messenger to transfer their message without impediment
[22, 23].
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During World War II, it was necessary to invent ways of sending secure messages.
The French Resistance sent secret messages written on the backs of messengers using
invisible ink. The Germans added letters to the transmitted messages where only
certain letters of a transmission formed the real message [27].

Steganography has been far less researched by industry and academics than
cryptography. This has changed over recent years. In 1996 the first academic
conference on the subject was organized. This was followed by several other
conferences focusing on information-hiding as well as watermarking [28, 29].

2.4 Digital Steganography

Digital steganography is the process of embedding data in another cover medium to
provide insensible communication. The cover medium may be text, image, audio or
video. The output obtained after hiding data in the cover is called stego and the
stego medium is transmitted to a receiver. To provide more security, steganography
algorithms use cryptography to encrypt the message then embed it inside the cover
[14, 18].

In [30], the principle of a steganography framework is explained. The sender (Alice)
sends a message (m) to the receiver (Bob) using a random cover medium (c). Alice
has an option to embed the message into the cover medium using a stego key (k). The
resultant medium, also known as the stego medium (S), should not be differentiated
from the original medium (cover) to inhibit the hackers (Wendy) from retrieving the
secret message. The stego medium is transmitted to the recipient (Bob) over an
insecure channel. The receiver then extracts the secret message since he is aware of
the embedding process used by the sender and has the stego key.

The aim of a stego key is to create a secure steganography system. To be more precise,
it is possible that Wendy can observe the embedded message in the stego medium and
identify the embedding process, but the attacker is unable to retrieve the embedded
message without having any knowledge about the stego key. Accordingly, the stego
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key must be as solid as possible to prevent attackers from breaking the steganography
system using all possible stego keys [30].

Steganography system security must fulfil Kerckhoff’s principle, which states that in all
systems it is assumed that the attacker knows the design of the system, the language
used and the algorithm in the system for protection. Therefore, the security of a
steganography system should depend on the stego key to ensure that unauthorized
users cannot retrieve the secret message without the stego key. When the stego key of
the embedding process is similar to the one used in the extraction process, it is referred
to as a symmetric key. If they are not similar, it is considered to be asymmetric [30].

Figure 2.2 shows a graphical representation of steganography. A typical steganography
system contains two main steps, one for embedding and one for extraction. The
embedding algorithm is concerned with inserting the message within a carrier medium
such as image, audio or video, where the extraction process retrieves the embedded
message from the cover. The extraction algorithm is easier than the embedding
algorithm. One of the ways to enhance steganography security is to use the stego key
which is required to start the embedding or extraction process. It is utilized to make
the extraction process computationally infeasible for unauthorized users [14, 18]. The
steganography terminology is listed below:

• Cover object (C): The cover object represents the carrier medium used to
hide the secret message (m). Various types of object with redundancy in their
representation can be utilized as a cover object, such as text, image, audio and
video. It should be undistinguishable from the cover object.

• Stego object (S): The stego object refers to the modified cover object after
concealing the secret message. The cover and stego images should have a high
degree of similarity to avoid a third party suspecting the existence of the secret
message.

• Message (M): This refers to the data that needs to be hidden within the cover
object without raising suspicion. Secret data can be any digital data represented
in a binary form.
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• Key (K): The stego key is an optional component used to control the embedding
process. The extraction process is hardly possible without using the stego key
[31]. It can be generated using a pseudo-random number generator (PRNG) [32].

• Embedding process (Em): The process of generating a stego object by hiding
secret data in the cover object.

• Extraction process (Ex): The process of retrieving secret data from the stego
object.

Mathematically, the embedding (or concealing) process can be represented as
S = Em(C, M, K), and the extraction process as M̄ = Ex(S, K). The extraction
process should be reversible to the embedding process. Hence, Ex(Em(C, M, K), K)
should be equal to M (or M̄ = M).

Key (K)

Communication
Channel 

Embedding 
Process

(Em)

Extraction
Process

(Ex)

Stego Image (S)

Insecure Transmission 
Channel

Secret Message (M)

Cover Image (C)

Sender (coding Phase) Receiver (Decoding Phase)

Stego Image (S)

Secret 
Message(M)

Key (K)

Se de ( odi Pha e)

Key (K)K

Embedding 
Process

(Em)

Stego Image (S))

SeS cret Message (M)

Cover Image (C)

R i (D di Ph )

Extraction
Process

(Ex)

StStego Image (S)

Secret 
Message(M)

Key (K)K

 
Figure 2.2 Steganography Structure

In recent years, there has been increased interest in developing digital steganography
methods [33]. This recent explosion of articles in the field of steganography is due to
the following reasons:

• The rapid growth of the Internet and the popular use of digital media by
individuals [21].

• There is an urgent demand for copyright marks and serial numbers in digital
products from the publishing and broadcasting industries.
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• Strict regulations from governments on using encoding methods have stimulated
individuals to find new techniques to provide privacy and confidentiality for data
transmission [34].

2.5 Steganography Method Classifications

Steganography methods can be classified into various categories as per their
application in securing cover files. Each method has different attributes and features
[35]. Steganography methods can be classified into four fundamental categories: cover
type, embedding domain, embedding and extraction approaches [30, 36]. Figure 2.1
shows a graphical representation of steganography method classifications.

2.5.1 According to the Cover Type

Since different types of digital media can be used as a carrier medium for a secret
message, steganography techniques can be classified into four types depending on the
cover file format: text, image, audio and video steganography methods. Each type
represents the carrier medium where data will be embedded. However, each cover
format has different features and these features decide how to embed the secret data
in this cover file [14, 24, 37].

The most popular cover type used for embedding secret data is images because of their
high degree of redundancy. Also, using images as a cover will not create any suspicion
due to their widespread use on the Internet [3].

2.5.2 According to the Embedding Domain

Steganography techniques can be classified into two categories depending on the domain
type: spatial and transform. Spatial domain algorithms directly embed the secret
data in the cover carrier, while in the transform domain, embedding is carried out
on the transform coefficients of the cover carrier. In transform domain methods,
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various transformations can be used to conceal the secret data, such as discrete cosine
transform (DCT) and discrete wavelet transform (DWT). Transform domain algorithms
usually have better robustness against attacks than the spatial ones; however, their
main limitations are the high computational cost and limited embedding capacity. In
comparison, spatial domain algorithms need a shorter execution time and provide a high
embedding rate [14, 38]. Table 2.2 presents the differences between image steganography
in spatial and transform domains in term of embedding capacity, imperceptibility and
robustness [39–41].

Table 2.2 Differentiation between image steganography schemes in the spatial and
transform domains

Spatial domain Transform domain

Advantage
High embedding capacity
Shorter computational time
High controllable imperceptibility

Robustness against attacks
such as geometric attacks
and compression

Disadvantage Vulnerable to geometric attacks

High computational time
Limited embedding capacity
Lower controllable
imperceptibility

2.5.3 According to the Embedding Process

Steganography methods can be divided into four different categories based on the
embedding process applied to hide the secret message. These methods are insertions,
substitution, generation and the cover lookup [36, 42, 43]. These are discussed below:

(1) Insertion based: The insertion-based method relies on inserting the secret message
into specific sections in the cover medium that are neglected by the processing
application that reads the cover medium. It does not modify the readable part
of the cover file during the embedding process. In this method, the embedding
capacity is high and there are no restrictions on the secret message length.
However, the cover medium size is smaller than the stego medium size because
the embedding process adds the secret data without eliminating or replacing any
bit of the original cover file [36].
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Embedding the secret data in a Word document between the end-text and begin-
text markers is an example of the insertion method. The secret message may
not be visible while displaying the file because the Microsoft Word application
is designed to disregard any text included between the end-text and begin-text
markers [36].

(2) Substitution based: One of the most popular and advanced steganography
methods is the substitution-based method [42]. The substitution-based method
depends on replacing some part of the cover medium with the secret message
[36].

Unlike the insertion-based method, the cover and stego mediums are the same
size because the embedding process modifies unimportant parts of the original
cover with the secret data without adding any extra data. The insertion-based
method, in contrast, adds the secret data into regions ignored by the processor
[44].

The two main drawbacks of the substitution method are limited embedding
capacity and the artefacts introduced to the stego carrier due to the embedding
process which degrade the quality of the stego medium [36].

There are three different ways to select the embedding locations:

• Sequential selection: To embed the secret data, the cover elements are
modified individually and in a consecutive manner. This method is simple
and easy to implement. However, it has a high probability of detection [45].

• Random selection: The embedding locations are selected in a random
manner. The sender and receiver need to utilize a secret key to generate the
same random number subset. A pseudo-random number generator (PRNG)
has a higher security level than the sequential selection [45].

• Adaptive selection: The adaptive selection rule chooses the cover elements for
embedding based on their characteristics. For example, the edge detection
method can be applied to the cover image to select the high contrast regions
for embedding, which are less detectable than the smooth regions. In terms
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of detectability, adaptive selection achieves a better security level than the
sequential and random selection methods [45].

(3) Generation based: The generation-based steganography method is different to
the insertion and substitution-based methods in terms of the existence of the
cover medium. In other words, the cover medium is a fundamental component in
all steganography methods except the generation-based method. This is because
the secret message is utilized to generate a suitable stego object, therefore the
generation-based method cannot be detected by the detection techniques that
depend on comparing the stego medium with the cover medium [42]. However,
there are a restricted number of stego mediums that can be created from the
secret data that also produce a stego medium without meaningful information,
such random shapes and colours, which can alert attackers to the existence of
the secret message [36].

(4) Cover lookup based: In the embedding process, the cover lookup-based method
searches for an existing cover medium and ensures that the cover medium is
not changed due to embedding the secret message. It makes an assumption
that it can find a convenient cover medium that already consists of the required
confidential data. However, this method is impractical when the length of the
secret message is increased [42].

2.5.4 According to the Extraction Process

The steganography methods can be classified into two main categories according to
the extraction process: blind and non-blind and reversible and irreversible.

2.5.4.1 Reversible and Irreversible Types

Reversible steganography techniques are employed to restore the original image in
addition to secret data from the stego image. This type is significant in medical
diagnosis, military and remote-sensing applications where retrieving the cover image
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has the same priority as retrieving the secret data. In contrast, irreversible methods
are only concerned with recovering the secret message [46, 47].

2.5.4.2 Blind and Non-blind Types

Steganography methods can be categorized into blind and non-blind based on the
requirements of the extraction process.

• Blind steganography: In the blind steganography method, the cover medium is
disregarded as it is not required by the receiver. Hence, as the cover medium
is not necessary in the extraction process to retrieve the secret data, the sender
can use any medium for embedding the secret data [42].

• Non-blind steganography: The non-blind steganography method cannot be
applied without the existence of the original cover. The original cover plays an
essential role in extracting the secret data in the non-blind method [42].

2.6 Digital Steganography Requirements

There are various characteristics that should be investigated to evaluate the strength
as well as the drawbacks of the steganography methods. In general, a reliable
steganography algorithm should satisfy some essential requirements which are in
conflict. The steganography methods must comply with the features of
imperceptibility and embedding capacity as crucial elements. The steganography
requirements are summarized as follows [48–50]:

• Imperceptibility (perceptual transparency): Imperceptibility or perceptual
transparency refers to the quality of the stego carrier. Even though, the content
of the stego carrier will have some difference to the original one, if this difference
is not noticeable by the human visual system (HVS) or the human auditory
system (HAS), then we can say that this steganography algorithm achieves the
imperceptibility requirement [51]. Imperceptibility is the major requirement of
any steganography technique [52].
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• Capacity (payload): The capacity denotes the number of bits that can be
embedded into the cover medium. The embedding capacity commonly suffers
against the imperceptibility and robustness requirements. The existing challenge
in developing steganography techniques is how to achieve a high embedding
capacity while maintaining a high quality and robust system [51, 53].

• Security: Security is an essential demand for steganography as the steganography
method should resist steganalytic attacks. A steganography scheme is considered
secure if the accuracy value of the classification tool is random guessing [53, 54].

• Robustness (resistance): Robustness refers to the capability of the stego medium
to resist various type of manipulations. In other words, the embedded secret data
is hard for attackers to remove or modify in an illegal way. Cropping, compression,
filtering and noise addition are examples of some attacks which may be used to
detect or change the secret data [50, 51].

The steganography method aims to improve its requirements such as imperceptibility,
capacity and security. However, improving one particular requirement might negatively
influence others; for instance, improving the quality of the stego requires a decrease in
the embedding capacity to minimize the artefacts produced by the embedding process
[44].

2.7 Steganography Evaluation Criteria

Each steganography method has strong and weak points. Therefore, it is important
to evaluate the performance based on some criteria to utilize the most appropriate
algorithm for each application. This evaluation process is vital when choosing which
method is better in comparison to other existing methods. Unfortunately, there are
no commonly accepted criteria to assess the effectiveness of steganographic methods.
However, there are general guidelines that should be considered when developing a
steganographic method. As shown in Figure 2.3, four essential requirements can be
used to assess the steganography performance: imperceptibility, payload, security and
computational cost [16, 42].
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The similarity between cover and stego mediums, the length of the secret data and the
detection of the secret data’s existence or contents are the fundamental parameters
that should be measured to assess the performance of the steganographic system [36].

Performance 
Evaluation

 

Figure 2.3 Performance evaluation criteria of steganography methods

2.7.1 Imperceptibility Evaluation

Imperceptibility, also known as perceptual transparency, is the main requirement of
the steganography method. Two types of imperceptibility can be evaluated: fidelity
and quality. Fidelity denotes the perceptual similarity between the cover and stego
objects, whereas the quality is an absolute measure of the object appeal. For instance,
secret data has been embedded into low resolution video and the stego video is almost
identical to the cover video. In this case, the object has high fidelity because it is
indistinguishable from the cover video. On the other hand, it is of low quality. It is
necessary to use a good quality cover to avoid grabbing the attention of an unauthorized
party [44].
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Typical metrics of steganography fidelity are peak signal-to-noise ratio (PSNR), mean
square error (MSE) and structural similarity (SSIM). PSNR and MSE measure the
amount of distortion added to the original object due to the embedding process, while
SSIM measures the similarity between the original and stego carriers [44].

2.7.2 Capacity Evaluation

Steganography methods are mainly used to provide secret communications by
embedding secret data into a cover object. Therefore, it is important to calculate the
data length that can be concealed into the cover. According to Cox et al. [32],
steganographic and embedding capacities are not equivalent. The embedding capacity
is the maximum number of bits that can be embedded in the cover object, while the
steganographic capacity is the maximum number of undetectable bits in the cover
object, where the detection probability is negligible. Generally, the steganographic
capacity is less than the embedding capacity. It is difficult to determine the maximum
number of undetectable embedded bits.

2.7.3 Security Evaluation

Steganographic security is divided into two categories: statistical steganalysis and
embedding efficiency. The steganographic security is computed by estimating the
detection probability of the existence of a secret message. The steganography method
is secure if the detection probability against the steganalysis method is random guessing.
The steganography method is considered weak when the existence of the secret message
is detected by a specific steganalysis technique. Therefore, the detection probability
of a secret message’s existence is computed to determine the resistance degree of the
steganography method against the steganalysis method. On the other hand, embedding
efficiency represents the number of embedded bits per embedding change (introduced
change). In other words, a high embedding efficiency value leads to minimizing the
embedding distortion [55].
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2.7.4 Computational Cost Evaluation

The computational cost of a steganography system mainly depends on several factors,
such as the domain of embedding and the embedding process. The secret data may either
be embedded by altering the original cover object (spatial domain) or by modifying
the transformed coefficient (transform domain). It is clear that the computational cost
of the transform domain is higher than the spatial domain [56].

2.8 Steganography Protocols

There are three protocol types of steganography: pure, secret key and public key
steganography.

2.8.1 Pure Steganography

The pure protocol refers to a steganography system where the sender and intended
recipient do not need to share any secret information such as the stego key before
starting the embedding and extraction processes. The security of pure steganography is
based on the privacy of the embedding and extraction procedures. The mathematical
representation of the pure steganography embedding and extraction functions are
described in Eq. 2.1 [30].

Em : C × M → S

Ex : S → M (2.1)

where M is the secret message and C and S are the cover and stego mediums
respectively.

To ensure the security of the pure steganography method, the embedding and
extraction procedures should not be available to any unauthorized users except the
two communication parties. However, pure steganography is relatively insecure
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according to Kerckhoff’s principle, which states clearly that the embedded algorithm
should be known by the third party [57].

2.8.2 Secret Key Steganography

If an attacker knows the embedding and extraction procedures (as per Kerckhoff’s
principle), then it is possible for them to extract the embedded message from the stego
medium. To prevent attackers and unauthorized users from having access to the secret
message, a stego key is required to provide the security of the exchanged information
between the two communication parties. The mathematical representation of the secret
key steganography embedding and extraction functions are described in Eq. 2.2 [30].

Em : C × M × K → S

Ex : S × K → M (2.2)

where M is the secret message, K is the stego key and C and S are the cover and
stego mediums respectively.

The sender and receiver need to exchange the stego key before starting the embedding
process. Consequently, the separate transmission of the stego key conflicts with the
fundamental objective behind steganography. This issue can be solved if the sender
and receiver agree to use a stego key before detainment [58].

2.8.3 Public Key Steganography

Public key steganography refers to the system that has two mathematically related keys:
the public and private. Public key steganography is similar to the public cryptography
system where it is introduced to avoid the addition transmission of the stego key
(private) between the sender and receiver. The public key is available to everyone via
a publicly accessible repository, while the private key must remain confidential to its
respective owner. The mathematical representation of the secret key steganography
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embedding and extraction functions are described in Eq. 2.3 [30].

Em : C × M × Kp → S

Ex : S × Kr → M (2.3)

where M is the secret message, Kp is the public key, Kr is the private key and C and
S are the cover and stego mediums respectively.

2.9 Digital Steganography Applications

Steganography is utilized in different fields as data privacy and confidentiality are
significant issues due to the growth in Internet communication technologies. In
recent years, many applications have employed steganography to conceal their data
during transmission, for example human rights defenders in situations where some
governments and Internet service providers (ISPs) have imposed strict regulations to
forbid individuals from employing data encryption [34], improving the robustness of
image search engines, analyzing the network traffic of specific clients to embed a unique
number into an image, and smart identity card (ID) applications, where personal
information is hidden in a photograph [59, 60].

Digital steganography also has attractive characteristics that fit within real-time
applications. Therefore, a massive number of steganography techniques have been
designed to adapt Voice over IP (VoIP) services. VoIP steganography has grown
because IP telephony is very popular [61]. Also, short VoIP connections do not give
eavesdroppers enough time to discover any irregularities because of the embedded
message [62]. VoIP steganography is different than using a traditional file format such
as text, image or audio. It is a real-time scheme, which uses VoIP signals to conceal
the existence of the secret data in the real-time communication [42, 61].

In [30], the author mentions some modern domains that integrate steganography
into their systems. The digital steganography method has played an essential role
inside medical information systems (MIS) in terms of protecting electronic patient
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records’ (EPRs’) confidentiality. The basic application of steganography in medical
imaging systems was proposed to provide a solution for the authentication problem,
where sometimes the relation between the patient’s information and their image is lost.
Therefore, steganography is employed to embed patients’ information and diagnosis
reports inside their medical images. A survey of the effect of information security and
confidentiality on designing telemedicine application is accessible [63].

In recent years, business security has become essential to the security of countries, as
they deal with large transactions that need to be confidential. Each organization must
preserve data from potential attackers with the aid of steganography methods.

2.10 Steganalysis

Nowadays, various image steganography systems are available for individuals.
Subsequently, there is increased interest regarding how we can differentiate whether an
image has secret embedded data to ensure the development of steganography is not
utilized for improper intent. This counter-activity is referred to as steganalysis [64].

Steganalysis is the science of discovering the presence of secret messages or extracting
data that is embedded within the stego medium without requiring prior information,
such as the secret key or the embedding process that has been utilized. In other
words, steganalysis refers to the study of breaking steganography methods. It starts by
determining the artefacts that exist in the file which was created due to the embedding
process. A steganography system is not only considered broken if the steganalysis
technique is able to retrieve the embedded message, but also if the steganalysis method
is able to detect the existence of the secret message within the stego file [65].

The rapid development in steganography techniques motivated a researcher to
implement reliable steganalysis algorithms [66]. However, it is a difficult and
challenging process to propose steganalysis techniques because Kersckhoff’s principle is
not applicable where the information about the embedding process is not available
[67]. In general, most steganography methods leave a distortion in the stego file, and
these distortions in the structure can facilitate the detection of the presence of secret
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data even though it is not distinguishable by humans. Changing any area in the cover
file will also modify the properties of the cover, which can be an indication of the
existence of secret data. Hence, a straightforward correlation between the stego file
and its relating cover file may uncover the presence of the embedded message inside
the stego file. The absence of the cover file exposes the weakness of the steganalysis.
Therefore, the cover file should not be declared publicly or destroyed after the
embedding process to avoid the comparison.

Steganalysis methods have been designed for different purposes. For example, some
algorithms are intended to identify the absence/presence of secret data while other
algorithms aim to extract the embedded data from the stego file. Depending on the
output of the method, steganalysis can be arranged into passive and active techniques
[58].

Passive steganalysis is the most popular technique for identifying the presence/absence
of secret data and/or determining the algorithm of the embedding process [68].
Depending on the steganography method that was used for embedding, passive
steganalysis extracts either first-order or second-order statistical features. Then, a
classifier technique needs to be trained on the features of the cover and stego images
to differentiate between them [58].

In contrast to passive steganalysis, active steganalysis is more complex and less
popular because it attempts to estimate the embedded message length, locations of
the embedded message, secret key and/or extract the embedded message [68].

2.10.1 Steganalysis Approaches

Steganalysis can be classified into two main types depending on the detection method
used to discover the distortion created by the embedding process [69]. The steganalysis
methods can be classified into visual and statistical approaches.
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2.10.1.1 Visual Steganalysis

The detection of confidential data is done using human senses such as hearing or seeing.
For this reason, it is considered to be the simplest method of steganalysis. Although
visual steganalysis cannot be used for the JPEG steganography method, it can be used
to identify the distortion of the simplest steganography method, which is called least
significant bit (LSB) [69]. Moreover, if the image contains uniform regions then it is
easy to break steganography methods using a visual attack.

(a) (b)

Figure 2.4 (a) Cover image and (b) first LSB plane of the cover image

(a) (b)

Figure 2.5 The stego images with 47.8% embedding rate using (a) sequential and (b)
random embedding locations

Figure 2.4a shows the original (cover) image and Figures 2.5a and 2.5b show the
corresponding stego images obtained by embedding 3.16 Kbyte using the LSB
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(a) The first LSB plane of stego images (b) The first LSB plane of stego images

Figure 2.6 The first LSB plane of stego images with 47.8% embedding rate using (a)
sequential and (b) random embedding locations

steganography method in sequential and random embedding locations respectively.
Figures 2.4b, 2.6a and 2.6b show the first LSB plane of the cover and the
corresponding stego images. It is easy for the human visual system (HVS) to observe
the variation between the original plane and the two stego planes where the flat region
in the cover image appears as a noise in the stego images, even after choosing random
pixel for embedding.

2.10.1.2 Statistical Steganalysis

Statistical steganalysis detects confidential data based on the mathematical statistic
properties of the carrier contents. Statistical steganalysis is more robust than visual
steganalysis due its property of detection even when a carrier content contains only a
small alteration [69]. However, it does not expose the steganography technique that
was used for alternation, which is the main limitation of this method [70]. For instance,
in order to consider the statistical properties of an image, the image histogram can be
utilized as a statistical tool to detect if there is any colour variation compared to the
original image histogram [44].

The chi-square (x2) test is the easiest statistical attack that has been applied by [71]
to determine the randomness in a sequence of data. It is used to assess the goodness
of fit of the observed data to the expected data to differentiate between the original
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and random sequences based on the assumption that the embedded data is random
while the original values are not.

2.11 Summary

In this chapter, the fundamental issues regarding the digital steganography process
were introduced. The main components and requirements of the steganographic model
were explained. Also, the trade-offs between the different steganographic requirements
were discussed.

Information security can be classified into cryptography and information-hiding
categories. Steganography is an alternative tool for cryptography to provide secure
communication without attracting unauthorized attention.

Imperceptibility, capacity, security and robustness are the requirements for
steganography. However, imperceptibility and secret data payload are considered the
main requirements for developing a steganography framework.

In addition to this, embedding efficiency and embedding payload are the two essential
factors that should be taken into consideration to produce a successful steganography
method. First, high embedding efficiency means the stego carrier will be good quality
with less distortion in the cover carrier due to the embedding process. Second, the
high embedding capacity provides the ability to hide large secret data inside the cover
carrier.

A steganography method is considered broken if the steganalysis retrieves the embedded
secret data or if the existence of the secret data is discovered by any unauthorized user.
Therefore, it is possible to utilize steganalysis to improve steganography security.

The evaluation process of steganography is an essential step for selecting a suitable
steganography technique for a specific application. There are general guidelines for
assessing the developed steganography techniques such as imperceptibility, capacity,
security and speed.



CHAPTER 3

Literature Review on Digital Steganography

This chapter is intended to provide an overview of the basic image steganography
methods in the spatial and transform domains. This is followed by a comparative
analysis of the most popular steganography techniques, then some of the existing
biomedical steganography methods are explained.

3.1 Introduction

A steganography scheme is generally applied to conceal the existence of secret data
while a cryptography scheme is utilized to protect the content of the secret data by
concealing the meaning of the secret data. Both schemes are complementary to each
other [24].

In recent years, many steganography methods have been proposed, most of which are
based on the substitution system. The substitution method replaces the redundant data
of the cover carrier with data from the secret message [72]. This type of steganography
technique has a high embedding capacity but is vulnerable to steganalysis attack.
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While various other methods have been developed to be more robust against attacks,
they cannot conceal a large amount of secret data [73].

There are several approaches for classifying steganography techniques. One classification
is according to the type of cover that is used in the embedding process. Another
classification is based on the embedding algorithm applied to the cover carrier to
conceal the secret data. However, the embedding domain is probably the most popular
criteria for group steganography algorithms [74].

All digital formats, such as text, image, audio and video, can be a potential cover
medium into which to embed secret data, but the most preferable format is one that has
a high degree of redundancy such as an image [74]. Hence, digital image steganography
in particular has drawn the attention of a large number of researchers. Moreover,
digital image is considered the perfect carrier among others document types due to
their high degree of redundancy as well as the characteristics of the human visual
system. Additionally, using images as a cover will not create any suspicion due to their
widespread use on the Internet [3].

Digital image steganography methods are categorized into spatial and transform
domains according to the embedding domain in which the secret data is embedded
[14].

This chapter is organized as follows. Section 3.2 presents basic steganographic methods.
State-of-the-art research on image steganography based on edge detection, coding
theory and wavelet transform methods are introduced in Sections 3.3.1, 3.3.2 and 3.3.3
respectively. Steganography for medical image security is discussed in Section 3.4.
Finally, the summary is given in Section 3.5.
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3.2 Basic Steganographic Methods

3.2.1 Spatial Domain Steganography

In the spatial domain steganography method, secret data is directly embedded in the
cover image. There are numerous methods based on spatial domain, such as least
significant bit (LSB), pixel value differencing (PVD) and pixel mapping methods.

3.2.1.1 Least Significant Bit (LSB)

The LSB substitution is the most common and the simplest technique to hide data
within the cover image. This method hides data bits in the last significant bit of an
image pixel. It is capable of embedding large secret data in a cover without introducing
noticeable distortion [24, 29]. LSB steganography works by converting the secret
message into a binary bit stream, then replacing the least significant bits of the cover
object with the message bits. When LSB replacement is applied, a pixel of odd value
will either keep its value or decrease it by one. Nevertheless, it will not be deceased.
For even-valued pixels, the inverse is true [75, 76]. Eq. 3.1 presents the embedding
process of LSB steganography.

Si =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ci + 1, if mi �= LSB(Ci) and Ci is even
Ci − 1, if mi �= LSB(Ci) and Ci is odd

Ci, if mi = LSB(Ci)

(3.1)

where Ci is the ith cover pixel value before the embedding, Si is the ith pixel value after
embedding process, and mi is the ith message bit.

The message can then be extracted from the image by retrieving the pixel LSB and
combining every 8 bits together to form single character. The embedding and extraction
procedures are illustrated in Algorithms 3.1 and 3.2. The message bits can be placed
sequentially by columns or rows of the image pixels [20, 77]. Figure 3.1 shows an
example of the LSB substitution scheme.
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Algorithm 3.1: LSB Embedding Process
Inputs : Cover Image (C), Secret Message (M).
Outputs : Stego Image (S).

1 i ← 1 ;
2 for i ≤ Length(M) do
3 if mi �= mod (Ci, 2) and mod (Ci, 2) = 0 then
4 Si ← Ci + 1;
5 else if mi �= mod (Ci, 2) and mod(Ci, 2) = 1 then
6 Si ← Ci − 1;
7 else if mi = mod (Ci, 2) then
8 Si ← Ci;

Algorithm 3.2: LSB Extraction Process
Inputs : Stego Image (S).
Outputs : Secret Message (M).

1 i ← 1 ;
2 for i ≤ Length(M) do
3 m′i ← LSB(Si) ;

The embedding rate of the LSB algorithm depends on the size of the original image.
For example, it can hide about 32 Kbyte in (512 × 512) grey images. The stego image
is also very similar to the original image because the modification occurs in the least
significant bit [78].

Figure 3.2 illustrates an example of embedding on the nth bit position from the 1st

LSB to the 8th most significant bit (MSB). It can be noticed that embedding in the
first, second and third bit position is undetectable visually, while embedding on bits
from 4th LSB to 8th MSB produce noticeable distortion. It is observed that embedding
in the first LSB changes the texture of the cover image. Therefore, this modification
leads to a statistical difference between the original and stego images (texture content).

Figure 3.3 explains the relationship between bit level and imperceptibility requirement.
As shown in Figure 3.2 and Figure 3.3, they are contradicting each other, where using
the MSB for embedding gives high degradation in the stego image. The converse is
also true for using LSB for embedding.
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Figure 3.1 An example of the LSB embedding process

On the other hand, the LSB techniques are vulnerable to statistical attacks, which
would allow unauthorized users to extract the secret data message. Moreover, LSB does
not resist any kind of image-processing operation such as compression and clipping.
Attackers could therefore expose a secret message easily if they discovered the stego
image [78, 79].

Several improvements have been introduced to the original method, such as the
incorporation of pseudo-random number generator (PSNG), which is also known as
randomised embedding technique. The secret message is randomly scattered over a
cover rather than sequentially embedded. To retrieve the embedded data, only the
selected pixels are required to extract the message [37]. A randomized scheme aims to
make it difficult for steganalysts to discover the secret message. However, when the
size of the secret message is increased, the possibility of selecting the same pixel is
increased [80].

LSB matching, also called the ±1 embedding scheme, is a refined version of the LSB
method. In this scheme, the pixel value is randomly incremented or decremented to
match the secret message bits as shown in Eq.3.2. If the LSB of the cover pixel matches
with the secret bit, then pixel value stays as it is. However, if the LSB of the pixel
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Figure 3.2 (a) Cover image, (b - i) Stego images using nth bits (from 1-LSB to 8-LSB)

does not match with the secret bit then, according to Eq. 3.2, ±1 is added to the pixel
value. Figure 3.4 shows an example of the LSB matching method.

Si =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ci + 1, if mi �= LSB(Ci) and (k > 0 or Ci = 0)
Ci − 1, if mi �= LSB(Ci) and (k < 0 or Ci = 255)

Ci, if mi = LSB(Ci)

(3.2)

where k is a random variable with constant distribution {+1, −1}, Ci is the ith cover
pixel value before the embedding, Si is the ith pixel value after the embedding process,
and mi is the ith message bit.
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Figure 3.3 Binary representation of grey-scale pixel shows the relationship between
distortion and bit level

Figure 3.4 An example of the LSBM embedding process

3.2.1.2 Pixel Value Differencing (PVD)

Pixel value differencing (PVD) is another powerful spatial domain image steganography
technique using block-based to embed the secret data directly in the cover pixels. Wu
et al. [81] proposed the first version of PVD to provide both a high embedding capacity
and imperceptibility by dividing the cover image into non-overlapping blocks of two
consecutive pixels. A non-fixed number of message bits are embedded inside the cover.
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Later on, other authors introduced modified versions of PVD to improve the embedding
capacity of PVD such as tri-pixel value differencing (TPVD) [82–84].

The PVD technique is based on human vision’s sensitivity to grey variations from
smooth to high contrast regions. The embedding rate in a smooth area is less than
in a complex area. It starts by distributing the grey image into blocks of two pixels
and calculates the difference value of two consecutive pixels in each block. Each block
is classified based on the difference of the grey values of the two pixels in the block.
A large difference value indicates that the block is in a sharp region while the small
difference value indicates that the block is in a smooth region. The human visual
system (HVS) is used as a measurement to decide the appropriate areas in the cover
image to embed more data and not leave any visual perceptible distortion [81]. The
structure of the PVD technique is presented in Figure 3.5.

Figure 3.5 Block diagram of PVD method
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In the PVD method, a grey-scale image is distributed into non-overlapping blocks of
two consecutive pixels (Pi and Pi+1). The absolute difference values (di) are computed
by subtracting Pi from Pi+1. The set of all difference ranges from 0 to 255. A block
with a large value difference is observed as a block of sharp regions, while a small value
difference block is placed in a smooth area. The range table Rk is designed with n

contiguous sub-ranges, where K = 1, 2, . . . , n. lk and uk represent the lower and upper
bound of the sub-range of Rk. The width of the sub-range wk determines how many
bits can be embedded in the block pixels where wk is computed by wk = uk – lk + 1.
Figure 3.6 shows an example of the PVD embedding process.

Table 3.1 PVD Range Table (Rk)

Sub-range R1 R2 R3 R4 R5 R6
Lower - Upper [0 − 7] [8 − 15] [16 − 31] [32 − 63] [64 − 127] [128 − 255]
Hidden bits 3 3 4 5 6 7

The steps of PVD algorithm are described as follows:

Inputs: Cover image (C), secret message (M), range table (R).

Output: Stego image (S).

Step 1 : Divide C into blocks of two adjacent pixels (Pi, Pi+1).

Step 2 : Calculate the absolute difference value di = |pi − pi+1|, for each block.

Step 3 : Use the range table to find out the sub-range which di belongs to. Where
di ≤ ui for all K = 1, 2, · · · , n, d is used to determine the number of secret bits
to embed in each block.

Step 4 : Compute the width wk of Rk as follows: wk = uk – lk + 1, where uk is the upper
bound of Rk and lk is the lower bound of Rk.

Step 5 : Calculate the number of bits (t) to be hidden in a block. It can be computed
using Eq. 3.3.

t = �log2 w� (3.3)

Step 6 : Read t-bits from the secret message and convert it into decimal number b.
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Step 7 : Find the new difference d′
i = li + b.

Step 8 : The new values of the pixels can be computed using Eq. 3.4.

Repeat steps 1−8 until all secret data are embedded into the cover image.

(P ′
i , P ′

i+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if pi ≥ pi+1 and d′
i > di, then (pi + 
(d′

i − di)/2�, pi+1 − �(d′
i − di)/2�)

if pi < pi+1 and d′
i > di, then (pi − �(d′

i − di)/2�, pi+1 + 
(d′
i − di)/2�)

if pi ≥ pi+1 and d′
i ≤ di, then (pi − 
(d′

i − di)/2�, pi+1 + �(d′
i − di)/2�)

if pi < pi+1 and d′
i ≤ di, then (pi + 
(d′

i − di)/2�, pi+1 − �(d′
i − di)/2�)

(3.4)

Figure 3.6 PVD embedding process example

According to the properties of human vision, eyes can tolerate more changes in sharp-
edged areas than smooth areas. Therefore, the PVD method has a high embedding
capacity while preserving good quality. However, it cannot utilize all edge directions
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because it depends on a single direction of either horizontal or vertical edges. Also,
PVD can cause significant distortions to the stego image histogram.

3.2.1.3 Pixel Mapping Method

The pixel mapping method (PMM) is an algorithm for hiding data in a grey-scale
image. It is used to enlarge the capacity of the embedded data without introducing a
visual perception to the stego image. It starts by partitioning the cover into blocks.
Every block has a seed pixel which determines the number of bits to embed [85, 86].

Embedding pixels are selected based on a mathematical function which depends on
the pixel intensity value of the seed pixel. Its eight neighbours are selected in a
counter-clockwise direction. Data embedding is done by mapping each two or four bits
of the secret message in each of the neighbour pixels based on some features of that
pixel [85, 86].

3.2.2 Transform Domain Steganography

In transform domain steganography, the cover image is transformed to another domain,
and then secret data is embedded in the coefficient of the cover image. Spatial domain
techniques are based on embedding the secret message within the original cover directly.
It is also characterized by the ability to include a huge amount of secret data within
the cover in contrast to the transform domain method. However, most spatial domain
methods are affected by any modification operations on the original cover. In other
words, secret data is lost and destroyed when an attacker performs any image-processing
operations such as compression, clipping or cropping [14, 23].

The order of objectives to be achieved from steganography varies from one application
to another. Some applications, such as the military ones, aim to protect data from any
modification during transmission. Transform domain techniques promise to provide
secure and robust steganography methods, but this is done at the expense of data
embedding efficiency. Instead, transform domain steganography is concerned with
converting the original cover to another form and hiding data within the new domain.
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Transform domain steganography is more resistant to sabotage and imperceptible to
the naked eye. There are many transform domain functions that can be used to convert
the cover pixels to frequency value and embed secret data [23, 77].

Transform domain steganography techniques embed the secret data by altering certain
coefficients in the transform domain of the image after applying one or more transforms
such as discrete cosine transform (DCT), discrete fourier transform (DFT) or discrete
wavelet transform (DWT) [77].

3.2.2.1 Discrete Transform Domain

Joint photographic expert group (JPEG) is the most common image format used for
sharing images among people and over the Internet. It is designed to support a wide
range of applications. JPEG (implemented using DCT) became the most popular
image file format due to its high compression ratio and good quality.

Figure 3.7 shows the block diagram of a JPEG image. The JPEG encoding operation
is comprised of three main stages: DCT, quantization and entropy encoding. At the
beginning, in order to achieve a good compression ratio the components of the RGB
image are converted into any Luminance-Chrominance colour space such as YCbCr.
After that, the image is broken into block of size 8 × 8 pixels to transform into 64 DCT
coefficients using Eq. 3.5. In the lossy compression process, the 64 DCT coefficients are
quantized using the default quantization table as shown in Tables 3.2 and 3.3. Each
DCT coefficient F(u,v) is divided by the corresponding value Q(u,v) from the quantization
table. In the next step, zig-zag traversal is performed on the 8 × 8 block to compress
the image using two entropy coding techniques, run length coding (RLC) and Huffman
coding [44, 87].

The scaled average value of the 8 × 8 block intensity is represented in F(0,0), which is
called the (DC) coefficient. The other coefficients are called (AC) coefficients.

The JPEG decoding operation is shown in Figure 3.8. It is also comprised of three steps:
entropy decoding, dequantization and inverse discrete cosine transform (IDCT). At the
beginning, the compressed image is decoded using two entropy coding techniques, run
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Figure 3.7 JPEG encoding

Table 3.2 The default JPEG quantization table for Luminance

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

length coding (RLC) and Huffman coding, to produce the quantized DCT coefficient
(F (u, v)). Then, each block of the quantized DCT coefficient is converted to their
approximate value using Eq 3.7. Finally, the IDCT is applied to reconstruct the spatial
value using Eq. 3.6.

F (u, v) = 1
4C(u)C(v)

7∑
x=0

7∑
y=0

f(x, y) cos
[

π(2x + 1)u
16

]
cos
[

π(2y + 1)v
16

]
(3.5)

F (x, y) = 1
4

7∑
u=0

7∑
v=0

C(u)C(v)F (u, v) cos
[

π(2x + 1)u
16

]
cos
[

π(2y + 1)v
16

]
(3.6)
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Table 3.3 The default JPEG quantization table for chrominance

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

for u = 0, · · · , 7 and v = 0, · · · , 7

where C(u), C(v) =

⎧⎪⎨
⎪⎩

1√
2 for u, v = 0

1 otherwise

F (u, v)′ = {F (u, v) × Q(u, v)|u, v ∈ {0, 1, . . . , 7}} (3.7)

where F (u, v)′ is the approximate DCT value of the quantized DCT coefficient (F (u, v)).

Figure 3.8 JPEG decoding

DCT is considered one of the most important transform domains in steganography in
terms of data security because of its high resistance to sabotage. These methods hide
messages in more significant areas of the cover and they are typically more robust than
other steganography techniques [23, 88]. There are no visual attacks versus the JPEG
image because it modifies the content in the frequency domain. Figure 3.9 defines
the regions of each frequency in the DCT block, where FL, FM , and FH represent the
lowest, medium, and highest frequencies respectively.
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Figure 3.9 DCT regions

3.2.2.2 JPEG Based Steganography

JPEG encoding is the most popular compression standard utilized for still images and
a large number of steganography methods have been implemented for the JPEG image
file format, such as JSteg, Outguess and F5. The most common algorithm to embed
data in quantised DCT coefficients is LSB, which is done by replacing the LSB of DCT
coefficients with the secret bit. Figure 3.10 represents the general steganography for
JPEG encoding where secret data is embedded after the lossy compression (quantization
phase).

Figure 3.10 Steganography method for JPEG encoding

The JSteg algorithm [89] was developed by Upham and was the first JPEG
steganography algorithm. It uses the LSB of the DCT coefficient. The secret data is
hidden after compressing the cover image using lossy compression method, where the
DCT coefficient is scaled using the default quantization table from the JPEG
standard.
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Algorithm 3.3 explains Upham’s algorithm: the embedding process checks the DCT
coefficient in a zig-zag order. JSteg does not utilize 0 or 1 coefficients in the embedding
process because it creates a perceptually and statistically artefacts. Otherwise, it will
replace the LSB of DCT with the secret message bit [89].

JSteg provides a high compression ratio and accepted capacity of about 12.8% of
the cover image size compared to other transform domain steganography algorithms;
however, it is still limited since the zero coefficient is large and not used in the
embedding process [23, 90].

Algorithm 3.3: JSteg Embedding Process
Inputs : Cover image (C), secret message (M).
Outputs : Stego image (S).

1 i ← 1 ;
2 for i ≤ Length(M) do
3 Ci ← Coefficient from C ;
4 while Ci = 0 or Ci = 1 do
5 Ci ← next Coefficient from C;
6 Ci ← mod(Ci, 2) + mi ;
7 Si ← Ci update stego image coefficient ;

The JSteg algorithm is not detected by any visual attacks [71]. However, the
modifications caused by the JSteg embedding process deforms the histogram of the
DCT coefficients [89]. Westfeld and Pfitzmann [71] presume that the frequency for
each pair of values (PoV) is not close to the mean of the PoV. According to the
previous assumption, the chi-square test detects the existence of the secret data,
because the JSteg embedding algorithm changes the frequency of DCT value 2k and
2k + 1 to be almost similar [52].

Various improved versions have been introduced to avoid histogram symmetry between
the two consecutive coefficients or increase the embedding capacity. For instance,
the OutGuess algorithm aims to overcome the chi-square test by selecting random
locations for embedding instead of using a sequential order [23]. Also, the F5 algorithm
was developed by Westfeld to improve the embedding efficiency and capacity of
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JPEG steganography. It extended another JPEG steganography method by adding
permutation straddling characteristic and matrix encoding [90].

3.2.2.3 Wavelet Transform Domain

One of the most commonly used transforms is the discrete wavelet transform (DWT).
It converts spatial domain to frequency domain. The wavelet transform is preferred
over the cosine transform because it clearly divides the image into different frequency
levels [91].

The wavelet transform is a more accurate model aspect of the HVS and requires less
computational cost compared to DCT and FFT (Fourier transform). Generally, wavelet
transform allows for the embedding of data in high frequency regions where HVS
cannot distinguish modifications compared to uniform regions with low frequency.

As shown in Figures 3.11 and 3.12, wavelet transform is a mathematical function that
divides an image into levels such as four sub-bands, which are low (LL), low-high (LH),
high-low (HL) and high (HH) frequency sub-bands. DWT hides information in the
complex region of the cover image because modifications in the edge regions are not
detected by the human eye.

Figure 3.11 DWT sub-bands

Applying a two-dimensional DWT on an image, it is separated into the following
coefficients matrices:
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1. CA matrix (LL): It contains the low frequency coefficients which approximate
the original image.

2. CH matrix (HL): It contains the high frequency coefficients which are presented
in the horizontal details of the original image.

3. CV matrix (LH): It contains the high frequency coefficients which are presented
in the vertical details of the original image.

4. CD matrix (HH): It contains the high frequency coefficients which are presented
in the diagonal details of the original image.

Figure 3.12 An example of the first level of DWT decomposition

Integer wavelet transform (IWT) maps an integer data set to another integer data
set. In the case of DWT, the wavelet filters have floating point coefficients. Therefore,
any truncations in the DWT coefficient values after concealing data will lead to the
loss of the embedded data. In other words, the extraction of the original secret
message becomes difficult. However, by introducing a wavelet transform that maps
integers to integers, the resulting output can be described in integers without losing
any information between forward and inverse transform. The LL sub-band of IWT is
close to the original image compared to the LL sub-band of DWT as shown in Figures
3.12 and 3.13.
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Figure 3.13 An example of the first level of IWT decomposition

3.3 State-of-the-art Steganographic Methods

There is a lot of work related to image steganography in the literature since it is a classic
research topic. In this section, some state-of-the-art research on image steganography
based on edge detection, coding theory and wavelet transform methods in recent years
is reviewed.

3.3.1 Steganography Method Based on Edge Detection

The human visual system (HVS) is less sensitive to changes in high contrast areas
compared to the smooth areas. Therefore, image steganography based on the edge
detection method has attracted the attention of a large number of researchers.
Embedding in the edge pixels aims to improve imperceptibility. Some proposed
techniques, such as PVD, differentiate between the smooth and sharp regions without
computing the actual edges in the image, while many steganography methods take
advantage of the existing edge detection algorithms to compute the actual edges in the
image.

Luo et al. introduced an adaptive LSB matching revisited (EALSBMR) method. It
improves the detectability probability by integrating LSBMR and edge-based techniques.
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It detects the edge regions by computing the difference between two consecutive pixels.
A threshold value is used to select the embedding regions according to the length of the
secret message. This scheme uses horizontal and vertical edges by dividing the image
into blocks then rotating each block by a random angle. However, the relationship
between vertical/horizontal pixels could be destroyed because of the rotation process
[92].

The utilization of the traditional edge detection algorithms does not guarantee
identifying the same edge sets between the cover and stego images. If the secret
message is embedded in the edge pixels, it causes changes in the edge regions between
the cover and stego images. Therefore, the extracted message will not be identical to
the original one. Some of the current edge-based steganography algorithms propose a
solutions to ensure the correct identification of edge pixels such as identifying the edge
pixels based on the MSB or storing information about edge/non-edge pixels. Li et al.
designed a spatial colour image steganography based on the Sobel algorithm. Sobel
edge detection was performed on one of the R, G or B channels of the cover image.
Embedding locations are chosen based on the largest number of gradients among the
R, G and B planes. The LSB of corresponding pixels in different planes are altered to
conceal data. Embedding capacity is improved by repeating these phases many times
until the secret message is embedded. Finally, the separate planes are integrated to
form the stego image [93].

Bassil proposed a colour image steganography that uses canny edge detection to identify
the embedding location and LSB techniques to embed the message bits into the cover
image. For each edge pixel, three least significant bits are replaced by the secret data
bits. The number of edges is also adjusted by three parameters: the size of the Gaussian
filter and the low and high threshold values. However, this scheme does not ensure an
exact match between the cover and stego edge pixels [94].

Modi et al. applied canny edge detection to a grey-scale image where only the six most
significant bits participate to form the edge map. The secret data is concealed in the
least two significant bits of every edge pixel. The number of edges are chosen based on
the length of the secret data. However, this method embeds the same bit numbers in
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every edge pixel without taking into consideration if it is a weak or strong edge. In
addition to this, the secret data is embedded using the LSB method [95].

Chen et al. introduced a high embedding capacity steganography method based on
the hybrid edge detector method. In order to increase the embedding capacity by
finding a larger set of edges, the edges identified by the canny and fuzzy edge detector
algorithms are combined to generate the final edge image. The edge image is then
divided into blocks where each block has n-pixels. For each block, the first pixel (P1)
is used to save the status of the remaining (n − 1) pixels, either the edge or non-edge
pixel. Finally, the LSB method is applied to embed x bits into the non-edge pixels and
y bits into the edge pixels. However, this method creates an unwanted modification
in the stego image because (n − 1) bits from the first pixel of each block has to be
replaced [96].

In order to attain less distortion and higher embedding capacity, Tseng and Leng [97]
extended [96] to a block-based design. Four cases of [x, x + 1], [x, x + 2], [x, x + 3], and
[x, x + 4] are employed to determine the number of embedded bits in the non-edge and
edge pixels. For each pair, the first and second elements indicate the bit numbers that
can be hidden in the non-edge and edge pixels respectively. In the embedding process,
the cover image is divided into non-overlapping blocks of six 4 × 4 and each block is
segmented into four sub-blocks of size 2 × 2. The upper left sub-block contains the
edge/non-edge information of the remaining three sub-blocks. The major limitation
of [96] and [97] is that reserving a large space of the cover image to store information
about the edge and none-edge pixels creates significant distortion to the quality of
stego images. In [97], three-quarters of the whole cover image is utilized just to conceal
the secret data.

Sun presented an image steganography based on edge detection and 2k correction [98].
In the beginning, the secret image is compressed using Huffman coding to minimize the
amount of embedded bits in the cover image. Canny edge detector is applied to identify
the edge regions which are permuted before the embedding process to enhance the
security. This scheme improves the imperceptibility by using a 2k correction algorithm
to reduce the difference between the cover and stego images. However, this method
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is not capable of identifying the same edge pixels in the cover and stego images. In
addition, LSB method is used for embedding the secret data which is detected by most
of the structural detectors.

Bai et al. proposed an image steganography based on LSB replacement and edge
detection algorithms. To improve the embedding payload, the cover pixels are classified
into edge and non-edge pixels using either the canny, Sobel or fuzzy edge detector
methods. The LSB replacement method is then performed to hide x bits in the non-edge
pixel and y bits in the edge pixel. The value of y is greater than x and y is in the
range of 2 to 5 because the HVS can tolerate more changes in the sharp regions than
the smooth regions. To obtain an exact match between the cover and stego edges, the
edge detector method is applied on the three most significant bits and clears the five
least significant bits. The modification rate of this method is 0.5 bpp [99], which is
relatively high. Also, as mentioned earlier, the LSB method is vulnerable to statistical
attack.

3.3.2 Steganography Based on Coding Theory

Improving the embedding efficiency, which is defined as the number of embedded bits
per embedding change (introduced change), is one of the most essential requirements
of steganography systems [100, 101]. Developing a steganography method based on
coding theory has been considered by a number of researchers, as minimizing the
amount of distortion in the stego image caused by the embedding process will improve
the imperceptibility and increase the capability of resisting steganalysis [100]. Some of
the traditional steganography methods, such as LSB, have a high modification rate.
However, the utilization of coding theory enables a decrease in the modification rate
[102].

Nowadays, error correction codes (ECCs) are employed to hide the secret data in
an image and to retrieve the secret data from the modified image. Some of the
famous ECCs are the Bose, Chaudhuri and Hocquenghem (BCH) [103, 104], Hamming
[105, 106], Reed-Solomon [107, 108] and Syndrome-Trellis codes (STC) [109, 110].
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The idea of employing error correction codes, which is also called matrix embedding,
into steganography was firstly introduced by Crandall [102]. The objective of matrix
embedding is to achieve a high embedding efficiency by reducing the difference between
the cover and stego images. In [102], the XOR operation is utilized to embed two bits
of the secret message into a block of three pixels. The maximum embedding rate of
this method is 66.67% and the modification rate is 25%.

In [90], F5 is the first implementation of JPEG steganographic scheme based on matrix
coding, which resorts to the Hamming codes to minimize the change on the quantized
discrete cosine transform (DCT) coefficients of the cover image. Instead of substituting
the LSB of the DCT coefficient with the secret bits, it utilizes (1, n, n − k) Hamming
code to conceal k bits of secret message into 2k − 1 cover bits by changing at most one
bit only. Consequently, this method has a limited embedding capacity, for instance
when the (1, 7, 4) Hamming code is used, the F5 scheme only hides three secret bits
into a block of seven pixels. Also, the computational cost of the Hamming code is high,
as matrix multiplication is required [90].

Hou et al. introduced an approach called tree-based parity check (TBPC) that uses
a tree structure to enhance the embedding efficiency by reducing deformation on the
cover object. The authors proposed a strategy of majority voting for TBPC and argued
that this strategy inherited the efficiency of the TBPC method and produced the
least deformation. Similar to some of the other coding methods, the drawback of this
method is the high computational cost, especially for trees that have multiple levels.
The method can hide 2n bits in a binary tree of n levels. For example, if the binary
tree has two levels, then it hides four secret bits into seven pixels [111].

Mstafa et al. developed a video steganography using Hamming code. This method
uses an uncompressed video and divides video into frames. The colour space of each
frame is converted into YUV components. Each four secret bits are encoded into
code of seven bits using (7,4) hamming code. An XOR operation is then performed
between the encoded data (four bits of message and three bits of parity) and seven
bits of random numbers. Finally, this data is embedded into YUV components [105].
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However, Hamming code has been utilized for error correction detection codes and the
embedding payload of this method is low at around 0.57 bpp.

Bai and Chang presented a data-hiding scheme based on Hamming code to embed the
secret message into the absolute moment block truncation coding (AMBTC) compressed
image. The embedding process has two phases. In the first phase, (7,4) Hamming
code is applied on the low and high mean values of each compressed block to embed
three secret bits and one extra secret bit can be embedded based on the difference
between the low and high mean values. In the second phase, another three secret bits
are embedded in the AMBTC bitmap. In each phase, the alteration of the AMBTC
code can be minimized because only one bit is modified [106]. However, the bit flipping
in the AMBTC bitmap might leave noticeable distortions, in particular if the block
contains edges [112].

Feng et al. [113] introduced a binary image steganographic technique to reduce the
embedding distortion on the texture. The cover vector is generated by splitting the
image into superpixels and syndrome trellis code (STC) is utilized to improve the
embedding efficiency. The complement, rotation and mirroring-invariant local texture
patterns are extracted from the binary image. The changes in complement, rotation
and mirroring-invariant local texture pattern distortion show a strong relationship with
the detectability of the embedding distortion. The flipping distortion measurement
is set with the weighted sum of complement, rotation and mirroring-invariant local
texture pattern changes, where the weight is empirically assigned according to the
discrimination power of the complement, rotation and mirroring-invariant local texture
patterns’ histogram.

3.3.3 Steganography Based on Wavelet Transform

There are various steganography schemes based on wavelet transform domain. Wavelet
transform offers the opportunity to embed the secret data in regions that the HVS is
less sensitive to modifications happening due to the embedding process. The wavelet
transform domain provides better imperceptibility in compatibility with the HVS and
with higher robustness against image processing attacks.
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Ghasemi et al. proposed an image steganography technique based on wavelet transform
and genetic algorithm. This method aims to enhance imperceptibility by reducing the
difference between the cover and stego images as well as improving the robustness of
steganography methods. The cover image was divided into non-overlapping blocks of
4 × 4 pixels and then the frequency representation is computed using 2-D Haar DWT
to obtain LL1, LH1, HL1 and HH1 sub-bands. A genetic algorithm-based mapping
function is utilized to hide the secret data in the DWT coefficients. The optimal pixel
adjustment process is performed after embedding the message [114].

Bhattacharyya and Sanyal presented a steganography method based on discrete wavelet
transform difference modulation (DWTDM). The DWTDM algorithm applied DWT
to transform the cover image into four sub-bands. Then, each sub-band is divided into
block of size 8 × 8 coefficients. After that, four seed pixels are selected from each block
to embed four bytes within every block. The DWTDM was developed to overcome
limitations in the transform domain techniques. It increases the capacity of embedded
data and does not make any visual changes in the cover image [115].

Parul et al. designed a new scheme for image steganography using DWT. Firstly, the
cover is separated into three channels (R, G and B), then DWT is applied to each
channel before the secret image is modified using the Arnold transform and every colour
component of the changed secret images is separated. The secret image is embedded
into the high frequency (HL, HH and LH) sub-bands. Finally, the inverse DWT is
performed to produce the stego image. This method achieves a good result in term of
PSNR and embedding capacity [116].

Reddy and Kumar designed a new information security method that integrates LSB
steganography and advanced encryption standard (AES) cryptography to protect the
data transmission over unsecured or public networks. The secret data is encrypted
using the AES algorithm, then the image is divided into four sub-bands (LL, LH, HL
and HH) using the wavelet transformation function. The encrypted text is embedded
into the LSB of the LL sub-band. The inverse wavelet transform is applied and the
resultant stego image is transmitted to the receiver [117].
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Hemalatha et al. introduced a colour image steganography method based on DWT
and integer wavelet transform (IWT). It begins by converting the colour cover image
into YCbCr colour space. Then, the secret image and Cr component are decomposed
into DWT sub-bands. The LL sub-band of the Cr and secret images are divided into
non-overlapping blocks of size (2 × 2). Then, each block (si) of the LL sub-band of the
secret image is compared with all the LL sub-band blocks (ci) of the Cr component
and the location of the block ci that has the minimum root mean square error (RMSE)
is saved to generate the secret key. The generated key is first compressed using run
length encoded (RLE) and then embedded in the LSB of the higher frequency of IWT
coefficients of the Cr component. This method hides the generated secret key instead
of the actual secret image to improve the security and capacity. A very similar work
to Hemalatha et al.’s scheme has been recently proposed in [118], where only the LL
sub-band of the secret image is embedded into different sub-bands of the colour cover
image [119].

It is clear that most of the proposed methods aim to use wavelet transform to improve
security and imperceptibility, in harmony with the HVS and with higher robustness
against signal processing attacks. Also, the high frequency sub-bands are employed to
carry the secret data.

3.4 Steganography for Medical Image Security

Digital medical images have become an essential part of diagnosis and treatment.
However, secure storage processing and analysis of medical images that do not violate
the Code of Ethics for Health information Professionals are vital. The Digital Imaging
and Communication In Medicine (DICOM) is the international standard for handling,
storing, printing and transmitting medical imaging and related information [120]. It
defines the format for medical images that can be exchanged with the data necessary
for clinical use. However, DICOM was initially introduced without considering network
security or data protection [121–123]. A DICOM encoding method was later initiated
and has been the only data protection for DICOM for nearly 20 years [124].
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3.4.1 Digital Medical Image Steganography

The main aim of utilizing digital steganography for medical images is to increase
the security, confidentiality and integrity for both data records and medical images.
Medical image steganography is considered a special case of image steganography where
medical images have special requirements [125].

In the health care system, the remote exchange of medical images and patient records
between clinics has become part of the daily routine. Image steganography is employed
to protect the EPR’s confidentiality without affecting the medical image quality. It
hides the EPR and diagnosis report in their medical image to solve the authentication
problem by providing a link between the patient’s information and their image [126].

A steganography method consists of two main procedures: embedding and extraction
procedures. In the embedding process, the EPR is embedded into the medical image
without introducing noticeable distortion on the stego image. The extraction process,
on the other hand, is responsible for retrieving the patient’s information from the stego
image [127].

3.4.1.1 Steganography Advantages

Over the last few years, there has been increasing attention paid to enhancing the
privacy of patient information in medical databases by considering steganography
schemes as a solution for hiding EPR in the patients’ images. This interest has
appeared within several steganography techniques that are designed to fit with the
requirements of medical images.

Steganography methods are utilized in the health care system for many reasons, These
include [128–132]:

• Privacy and confidentiality: Data privacy is a significant issue when medical
images and data are exchanged between hospitals over unsecured public networks.
To maintain digital medical image and confidential patients’ information during
the data transmission, steganography coverts the communication channels to
avoid drawing the suspicion of an eavesdropper.
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• Security: The main characteristic of steganography is to be statistically
undiscovered by intruders or unintended users. In steganography, intruders aim
to discover the existence of a secret message without having to exactly retrieve
the embedded message. To be more precise, steganography security is
determined by the supposition that the intruder is not capable of demonstrating
whether the cover medium contains secret data or not [133].

• Saving memory and cost: Computational and memory cost are essential
requirements for evaluating any information system. Since medical system
databases generally have a lot of data to keep, it is reasonable to use procedures
that keep the necessary data but require minimum memory space. In the
Medical Information System (MIS), the required storage for patient’s record can
be minimized by hiding EPR within the medical image. However, the
computational cost of information-hiding methods should be acceptable
compared to other information security methods.

• Availability: Availability is the ability to ensure that authorized users have access
to information system information and services at any authorized time.

3.4.1.2 Limitations of Traditional Medical Security Techniques

It is well known that data security in medical systems has been urgently demanded.
Different information security techniques are employed in MIS such as virtual private
networks, firewalls, digital signatures and encryption methods [123, 128, 134–136].
Nevertheless, traditional security methods have some drawbacks which create a
necessarily demand for finding an alternative scheme to protect medical data. These
are discussed below.

• Firewall: A firewall is a network security system that is used to control the
incoming and outgoing network which is available as software or hardware. It
is placed between a trusted internal network and another network. It shields
the internal network from interruption and malicious software coming from the
external network. An efficient firewall requires three standards: (a) it must act
as a door through which all traffic must pass (incoming and outgoing), (b) it
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must permit only approved traffic to access, and (c) it must be invulnerable to
penetration. However, a firewall is not guaranteed to protect an organization
network without any other assistance protection. For example, if a firewall is not
suitably configured, then it may lead to a denial-of-service (DoS) attack where
services are temporarily unavailable to authorized users [134].

• Virtual private network (VPN): A VPN is a network that transports data in a
secure way over a public network. It is combined with encryption, authentication
and tunnelling to accomplish safe transmission. Various implementations of
VPN are available, such as Point-to-Point Tunnelling Protocol (PPTP), Layer 2
Tunnelling Protocol (L2TP), Internet Protocol Security (IPSec), and SOCKS.
In order to have access to a VPN, users should have a unique identification and
password. In a VPN, the shortage of quality of service (QoS) management over
the Internet may lead to packet loss during transmission. Combining a VPN and
a firewall do not guarantee protection of the data as it may change before/after
any communication takes place. These weakness points mean that different and
alternative methods must be found in order to provide secure transmission [134].

• Encryption: Encryption techniques have been approved in different sectors such
as the health care system to provide the confidentiality, access control, integrity
and privacy of digital data. The encryption process depends on mathematical
operations to hide the meaning of the message. In order to prevent intruders from
understanding the meaning, encryption methods transform the secret message
(plaintext) to an unreadable form (ciphertext). Hence, while people can recognize
the existence of a message, it cannot be understood without decryption [137].

Encryption techniques can be classified into two categories: symmetric (e.g.
data encryption standard (DES) and advanced encryption standard (AES)) and
asymmetric methods (e.g. (Rivest, Shamir, Adleman) RSA). In a symmetric
encryption method, the sender and receiver use one private key for encrypting the
plaintext and decrypting the ciphertext. In comparison, asymmetric encryption
is a cryptography method in which every user has two different keys (public
and private keys) where each key pair is mathematically related. Asymmetric
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encryption can be employed either for authentication or data secrecy purposes.
For authentication, a message is encrypted by the private key of the sender and
can only be decrypted by the related public key of the sender, while for data
secrecy purpose, a message is encrypted by the public key of the receiver and
can only be decrypted by the private key of the sender [137].

Asymmetric methods are preferable because it is not necessary to share the
private key with someone else. However, symmetric methods are faster and more
common than asymmetric methods. The limitations of using encryption methods
are the high computational cost and that the transmission of encrypted text can
stimulate intruders’ attention, and they may attempt to decrypt it. In general,
the strength of encryption method depends on the key length and number of
keys [137].

• Hash function: A cryptographic hash function is used to prevent or discover
modification during data transmission. It is used to prove the integrity of secret
data. The input of the cryptographic hash function is a block of random length,
where the output length, also known as hash value, is fixed. In other words, the
size of the secret message does not affect the size of the hash value [138, 139].
The hash value is the checksum of the secret data, where the checksum represents
the fingerprint of the secret data. The perfect cryptographic hash function has
four fundamental characteristics [138]: (a) hash value for any block must be
easily computed, (b) it is hard to discover a block that has a given hash, (c) it is
hard to alter a block without altering its hash value, and (d) each block message
has a unique hash value. Therefore, it is hard to have two different blocks with
the same hash value.

Message digest 4 (MD4), Message digest 5 (MD5) and Secure Hash Algorithm-1
(SHA-1) are the most common known hash algorithms implementation. For
example, MD5 has a random input size to produce a hash value of 128-bits.
Most of the current cryptographic hash functions methods are susceptible against
coincidental alternations.
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3.4.2 Region of Interest (ROI)

Medical images contain a pivotal and very significant part which is responsible for
diagnosis, i.e., the Region of Interest (ROI). In order not to compromise the diagnosis,
the significant part of the medical image, the ROI, should be spared from any
modification. Since small changes in the ROI may cause mistakes in diagnosis, it is
quite important that secret data be embedded in a region of non-interest in (RONI)
[140]. In information-hiding methods, a ROI might be manually or automatically
identified either in regular or irregular shapes such as ellipses, rectangles or polygons.

3.4.3 Information Hiding Methods for Medical Images

Many methods have been implemented in the area of medical image information-hiding
for different objectives. Al-Qershi classified medical image watermarking schemes
into three groups according to their objective: authentication, data-hiding and both
authentication and data-hiding [141]. Nevas et. al. suggested three key requirements
for EPR data-hiding and transmission: (1) the extraction process of EPR should be
blind, (2) EPR data should be extracted with a zero bit error rate (BER) at the receiver
side and (3) imperceptibility should not be compromised for any reason. For additional
confidentiality, encryption of the EPR can also be used in EPR data-hiding [142]. The
required criteria of medical image information-hiding algorithms are clarified by these
requirements, for example, information-hiding methods should be blind and invisible.
A literature summary that outlines the important aspects of these methods is presented
in Table 3.4. It can be observed from Table 3.4 that most of the proposed techniques
are blind and combined with cryptography to add more security, while the embedding
domains vary between the spatial and transform depending on the objectives behind
introducing the method.

Most of the information-hiding methods use LSB because of its simplicity, acceptable
distortion of the produced stego images and high embedding rate. However, the LSB
technique has many weaknesses [152, 153]. Among the information-hiding methods that
utilize LSB are the methods described in [143–146, 150]. Zhou et al. [143] introduced
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a lossless data embedding scheme for validating the authenticity and integrity of
mammography images. This method embeds the encrypted digital signature and
patients’ information into random pixels of mamograph digital images using the LSB
method.

Table 3.4 Literature review for various information-hiding methods

Method
Image

Modality

Embedding

Domain

Embedding

Technique

Zhou [143]
Mammography
image
(IM)

Spatial
LSB of
random pixels

Chao [144]
Hospital
mark image

DCT LSB

Navas [131] MRI IWT LSB

Ali [145]
IRM
Echo
graphics

Spatial LSB

Nagaraju[146]
CT
MRI
US

Spatial 2-LSB

Rahimi [147]
CT
MRI

SVD
Contourlet
Transform

New method

Lou [148] − Spatial
Difference
Expansion

Memon [149]

CT
MRI
X-ray
US

IWT New hybrid

Memon [150] CT Spatial LSB
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Table 3.4 Literature review for various information-hiding methods

Qershi [151] US DWT
Difference
Expansion

Method Cryptography
Secret

Data

Embedding

Region

Zhou [143]
DES
RSA

Patient’s data
Digital signature

Random pixel in
segmented image

Chao [144]
New proposed
method

EPR
ECG
Digital signature

PRNG pixels

Navas [131]
New proposed
method

EPR RONI

Ali [145] SHA-1
Patient’s data
Medical
Diagonstic

Pixels detected
by Harris
Corner

Nagaraju[146]
New proposed
method

ECG
Patient’s Info

Whole image

Rahimi [147] No
Patient’s data
Signature
Watermark

ROI
RONI

Lou [148] No − Whole image

Memon [149] K⊕W
Patient’s data
Doctor’s code
LSB of ROI

ROI
RONI

Memon [150] MD5

Patient’s data
Message
Hospital logo
Authentication code

RONI
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Table 3.4 Literature review for various information-hiding methods

Qershi [151] MD5

Patient’s data
Hash ROI
ROI embedding
map

ROI
RONI

Method Reversibility Extraction
Embedding

Rate

Zhou [143] Irreversible Blind 6720 bits
Chao [144] Irreversible Non-blind −
Navas [131] Reversible Blind 3400 characters
Ali [145] Irreversible Blind 1700 bits
Nagaraju[146] Irreversible Blind (0.04 − 0.97)%
Rahimi [147] Irreversible Blind 2010 bits

Lou [148] Reversible Blind
Up to
134,898
bits

Memon [149] Reversible Blind

32 char doctor code
96 char patient’s
info 1st LSB
plane ROI

Memon [150] Reversible Blind
(3528 −
23184) bits

Qershi [151] Reversible Blind 10 KB

Method
Image

Quality
Objective

Zhou [143] − Authentication
Integrity

Chao [144] (33.47 − 42.62) dB
Authentication
Integrity
Confidentiality
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Table 3.4 Literature review for various information-hiding methods

Navas [131] 44 dB Data-hiding

Ali [145]
(35-60)dB
(50 − 10)%
JPEG compression

Integrity
Confidentiality

Nagaraju[146] (70 − 40)dB Data-hiding

Rahimi [147] 52.2 dB
Data-hiding
Integrity

Lou [148] (21.59 − 48.86) dB
Data-hiding
Copyright

Memon [149] wPSNR (58.44 −
60.94) dB

Authentication
Security
Confidentiality
Integrity
Control

Memon [150] (63.98 − 55.6) dB Authentication

Qershi [151] 41.25 dB
Authentication
Data-hiding

Chao et al. presented a protected information-concealing procedure to generate
patients’ electronic medical records (EMR) and agent-EMR ciphertext to ensure the
confidentiality of patients’ EMRs stored in the healthcare database. The method
is based on the bipolar multiple-base transformation to permit a mixed of EPR
information to be concealed inside the same mark image. This scheme guarantees
that only authorized users can gain access to the EMR [144]. However, the extraction
process of the watermark needs the original image, a fact that eliminates the value of
this method in practice.

Rahimi and Rabbani introduced a dual and blind watermarking technique which
embeds the watermark bits in the singular value vectors within the low pass sub-bands
in the contourlet transform domain of DICOM images. This method automatically
identifies a rectangular ROI and hides a watermark with a different embedding strength
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in the ROI and RONI, where the RONI is the background region (the black area
around the medical information). This technique is tested using CT and MR images.
However, the embedding rate of this method is limited because of the way a ROI is
selected, where the ROI selected by physician may increase the embedding capacity
[147].

Ali et al. proposed a spatial medical image watermarking technique to maintain the
integrity of medical images and protect the confidentiality of patients’ information
during transmission. The digital signature of the hospital data is generated using a
secure hash algorithm (SHA1), then it is concatenated to the patients’ information.
The secret data is embedded in edge pixels using the LSB method [145]. The quality
of the watermarked medical images is acceptable but, according to [154], the technique
is very fragile and provides a very little security.

Memon et al. developed a hybrid watermarking scheme which hides a robust watermark
in the RONI. In this scheme, the medical image is segmented into ROI and RONI.
After that, a fragile watermark is hidden into ROI using the LSB technique. The RONI
is distributed into blocks of size N × N and then a location map is generated. A robust
watermark is embedded in the RONI coefficients. However, the time complexity of this
method is high because of the required calculation to generate the location map [149].

Navas et al. introduced a blind and reversible data-hiding scheme for telemedicine
applications that depends on integer wavelet transform (IWT). The ROI is manually
identified as a rectangle shape. In order to obviate misdiagnosis, encrypted EPR is
embedded in the RONI and the ROI is stored without any noise [131]. However, this
method can hide at most 3,400 characters and the computational cost is high.

Nagaraju et al. presented a spatial information-hiding method for medical images. To
improve the security of the proposed method, patient information and electrocardiogram
(ECG) signals are encrypted before being concealed inside the cover image, then this
encrypted data is embedded using the LSB method [146].

The main limitation of the previously mentioned methods is the direct implementation
of LSB steganography, which is known for its vulnerability to some steganalysis methods.
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In addition to this, most of these methods do not differentiate between the ROI and
RONI when embedding the secret message.

Lou et al. introduced a lossless multiple-layer spatial data-hiding scheme for medical
images based on pixel-value differencing expansion. This method utilized a reduced
difference expansion scheme to conceal the bit stream in the LSBs of the expanded
differences. In order to provide a high embedding rate and maintain good quality, the
reduced difference expansion method is used [148].

Raul et al. proposed a data-hiding method for radiological medical images which used
image moment theory. In order to minimize the size of data to be hidden, the Huffman
algorithm was utilized to compress DICOM data. For more security, the compressed
data is encrypted using the RC4 method. Finally, secret data bits are embedded in
selection pixels with low homogeneity, which can be obtained by scanning the cover
image in spiral way using the central pixel [155]. The drawback of Rual et al.’s method
is the use of a static key for compression during the embedding and extraction phases.

Bremnavas et al. introduced medical steganography to hide patients’ information in
text form and image form into the cover images using two different algorithms. The
medical details record is converted to UTF format which is then embedded using a
LSB method. The medical image is again encrypted using chaos algorithms [156].

Prabakaran et al. introduced a multi secure and robustness steganography technique
for medical images. In order to protect MRI images, IWT is performed to embed
the secret data bits into a single container image. A dummy container is acquired by
applying the flip left operation on the container image, then the Arnold transform is
performed on the patient’s medical diagnosis image to get a scrambled secret image.
The scrambled secret image is hidden in the dummy container and inverse IWT is
applied to get the stego image [157]. The computational cost for the embedding and
extraction procedures is high.

Tian
(DE) [158]. This has been recently extended in [141, 148, 151] for medical images.
Tian’s method divides the cover image into non-overlapping blocks of two consecutive
pixels. The secret bits are embedded using the difference expansion of each block.
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Differences are classified into three groups, while the secret data is embedded into only
two groups. Additional information concerning the location map is required to specify
which pairs are used. The difference expansion method has an embedding capacity of
0.5 bits per pixel. The limitation of the difference expansion method is the limited
embedding rate [158].

3.5 Summary

This chapter provides a brief literature review of the basic steganography methods.
The steganography methods can be classified into spatial and transform depending
on the embedding domain. The spatial steganography techniques, such as LSB and
PVD, have a high embedding capacity and low computational cost compared to the
transform steganography techniques. On the other hand, transform domain methods
are robust against attacks.

Various transformation algorithms can be used to develop transform domain
steganography techniques, such as DCT, DFT, DWT and IWT. Wavelet transform is
more popular than DCT and DFT because it decomposes the image into different
frequency sub-bands that match the human visual system and offer a high embedding
capacity.

The fact that the modification in high contrast regions is less detectable by the human
visual system compared to the smooth regions has stimulated researchers to develop
image steganography based on edge detection. However, this needs to be applied with
care, as the resultant stego image could have edges that are not 100% identical with
those of the original cover image.

In addition to this, coding theory algorithms, which are also called matrix embedding,
have been utilized in the embedding process in order to improve the embedding
efficiency. However, the computational complexity of the coding theory algorithms,
such as syndrome-trellis code, is high, especially for high dimensional matrices.
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The last part of the chapter discussed steganography for medical images. The main
objective of implementing medical image steganography is to provide security,
confidentiality and integrity for the medical image and patient records. Steganography
for medical image systems is considered as a special case where the ROI should be
preserved from any modification to avoid any misdiagnosis.



CHAPTER 4

Image Segmentation Background

This chapter provides a review of the main techniques of image segmentation. Medical
image processing and magnetic resonance image are explained. This chapter also
discusses state-of-the-art machine learning based brain image segmentation methods.

4.1 Introduction

Image segmentation is considered one of the most significant tools for carrying
information that helps in understanding and interpreting images. The interpreted
information can be employed for different applications, such as the diagnosis of
tumour tissue and object identification and recognition. Image segmentation has been
extensively applied in numerous areas such agriculture, medicine and forensics. Figure
4.1 illustrates the level of image segmentation in the image engineering layer. It is the
major step for the image analysis (middle layer), where the accuracy of segmentation
process has a great impact on the whole process [159].
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Figure 4.1 Image engineering layer

In general, image segmentation is the process of separating the image (I) into different
non-overlapping regions (R1, R2, · · · , Rn) that have a high degree of similarity based
on specific criteria; for instance; image luminance, shape and colour components. To
be more precise, image segmentation is an essential step in image analysis where the
segmentation output affects the accuracy for the entire process. The segmentation
process can be formally defined as follows: if P () is a homogeneity predicate defined on
groups of connected pixels, then segmentation is a partition of the set I into connected
subsets (R1, R2, · · · , Rn) such that I = ⋃n

i=1 Ri with Ri ∩ Rj = Φ and (i �= j). The
uniformity predicate P (Ri) is true for all regions Ri and P (Ri ∩ Rj) is false when i

and j are not equal and Ri and Rj are adjacent [159, 160].

Medical image segmentation has a significant function in analyzing anatomical structure
and tissue types. For instance, in magnetic resonance (MR) brain image analysis, the
segmentation process is employed for measuring and visualizing the brain’s anatomical
structure, analyzing brain changes, delineating pathological regions and for surgical
planning and image-guided interventions [161]. The objective of segmentation is to
simplify the actual illustration of an image into another format which is easier to
understand and analyze. Basically, image segmentation is useful for defining boundaries
between the brain tissues as well as assigning a unique label to each pixel in the image.
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The assigned labels facilitate the classification and grouping of brain tissues where
pixels with a similar label represent a certain computed characteristic such as texture,
intensity, shape or colour [9].

In recent years, numerous segmentation methods have been introduced to divide
the brain image into three tissues with different degrees of accuracy and complexity.
However, these methods suffer from various challenging issues such as the development
of a common approach that is applicable to all image types [162]. The quality of
the image plays an essential role in producing accurate segmentation. However, MR
images obtained from different MRI scanners are prone to image intensity-related
artefacts, such as image noise or the bias field effect, which are highly dependent on the
magnetic field strength. Because of the aforementioned reasons, there is no universally
accepted technique for designing MR image segmentation. Accordingly, automated
image segmentation is not widely accepted by clinicians [161, 163].

This chapter is organized as follows. Sections 4.2 and 4.3 present classification of
segmentation methods based on human interaction and the various automated
techniques respectively. Medical image processing in presented in Section 4.4.
Magnetic resonance brain image processing is introduced in Section 4.5. MR Brain
image segmentation methods are reviewed in Section 4.6. Finally, the summary is
given in Section 4.7.

4.2 Classification of Segmentation Methods Based

on Human Interaction

Image segmentation techniques can be categorized into three different categories based
on the human interaction level: manual, semi and fully automatic.

4.2.1 Manual Segmentation

In manual segmentation, the boundaries of the objects and region of interest are
identified and labelled by a human operator [161]. In this method, the human experts
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use the information presented in the image and add their knowledge to obtain a more
accurate segmentation result. Manual segmentation is performed using customized
software tools with advanced graphical user interfaces (GUI) to simplify the delineation
of regions of interest and display the image [164]. However, manual segmentation is
a time-consuming, complex procedure and is prone to errors [161, 165]. For instance
to determine the tumour area in a MR brain image, MRI scanners produce various
two-dimensional slices and the expert user analyzes the dataset slice by slice to select
the best illustrative slice which segments the ROI accurately [166]. Also, in order to
delineate the ROI a specialist trained user who is expert in brain structure, such as a
radiologist or anatomist, is required. Otherwise, the segmentation results will not be
accurate [164].

The drawing of tumour region procedure slice by slice is tedious and can lead to
creating jagged images due to limits in the expert rater’s view. Thus, the resultant
images are not ideal where they demonstrate a stripping effect [167]. Obviously, manual
segmentation is operator dependent and suffers from high intra and inter-observer
variability [168].

In [169], the delineation of the MRI scans by different expert physicians was evaluated
to check if manual segmentation is operator dependent. The variation was as reported
20%±15% within the same physician (intra-rater); estimated through repeating the task
of diagnosing a brain tumour and 28%±12% between physicians (inter-rater). Figure
4.2 shows an example of inter-rater inconstancy, where four different specialists played
out a manual division of a glioma on a similar slice and patient. The segmentation
result of every expert presents outstanding contrasts [1].

Notwithstanding the intra and inter-rater changeability, manual segmentation is usually
utilized as a ground truth to qualitatively and quantitatively evaluate the segmentation
outputs of the automated algorithms [161].
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Figure 4.2 Manual segmentation by four different experts manual segmentation by four
different experts [1]

4.2.2 Semi-automatic Segmentation

The semi-automatic segmentation technique was designed to engage human interaction
while still relying on a computer to perform the segmentation process. It is an
intermediate between the manual and fully-automatic segmentation approaches. It
might be the ideal approach when a fully-automatic method is unavailable and manual
segmentation will be a time-consuming process [170].

In the semi-automatic segmentation method, the involvement of the user is frequently
required to input some parameters, verify the efficiency of the result and adjust
the segmentation result manually [171]. Recent research has been directed towards
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developing semi-automatic approaches with the aim of minimizing user interaction. The
computational, interactive and user interface are the major elements of an interactive
segmentation method. The computational part correlates to one or more fragments
of the program that are capable of producing an outline of the object of interest if
some parameters are provided. The interactive part mediates information between the
user and the computational part by converting the outcome that is produced by the
computational part into user visual feedback and the data input entered by the user is
converted into program parameters. The output and input devices are responsible for
the interaction between the computer and the user through the user interface. The
visual information displayed on the screen is analyzed by the user and they react
accordingly, providing feedback for the computation [171].

The user interaction in segmentation is classified into three categories [172]:

(1) Initialization: The input of arguments or parameters, image pre-processing to
improve the quality and complexity of the image data are evaluated for improving
decision-making or the user chooses the object that has to be processed from the
first segment of a data set or from a three-dimensional image.

(2) Intervention: Running the process constantly or intermittently towards a suitable
output, giving feedback on the outcome of the data from the process, stopping
the process in between if undesirable results are attained to correct the mistakes,
and then recommencing the process.

(3) Evaluation: Assessing the final outcome of the process to decide if it is satisfactory.
If the results are not satisfactory, the process is replicated after modifying the
parameters; therefore, the results are altered.

The semi-automatic method employs various strategies for incorporating the computer
and the user’s expertise. Therefore, the result from employing this method is dependent
on two factors: the strategy and the computation. These strategies vary based on the
human interaction; that is, whether it will be in the initialization of the segmentation
process, keeping the user in control during the whole process, or improving the concept
of interaction by including intelligent behaviour. However, like manual segmentation,
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semi-automatic segmentation faces the limitation of variations between different expert
users and within the performance of same user [164].

4.2.3 Fully Automatic Segmentation

The fully-automatic segmentation method refers to the process where the computer
identifies the objects without any human interaction to initialize the input parameters
or manually correct the segmentation result. In other words, the user just supplies
the images that need to be segmented. Artificial intelligence and prior knowledge
such as the noise level, appearance and spatial distribution are incorporated into the
fully-automatic algorithms. However, it is not easy to develop a fully-automatic method
because of image variation and complexity [164].

Recently, there has been increased interest in employing machine learning in the
fully-automatic segmentation method to simulate the intelligence of humans to learn
effectively. In spite of this, implementing a substantially accurate automatic method
is still a challenging task. This can be understood when you consider that humans
exploit advanced visual processing and integrate specialized knowledge to segment the
image. For instance, the properties of brain structure can be focused on the MR image
of the head, which is fairly predictable because the brain is well quantified structurally
and the behaviour of various tissues in different MR modalities is well developed.
Moreover, there is no sequential component and the brain stays invariable, so, as a
result, there is no benefit of being able to visually track objects with time. However,
because the human perspective is unable to utilize three-dimensional information in
the segmentation process and analyze the data as a sequence of two-dimensional slices,
there is a benefit of using a fully-automatic rather than a manual segmentation process
[167].

In order to develop a robust automatic segmentation approach, image properties such
as size, shape and appearance can be utilized to guide the segmentation method. This
knowledge may be integrated into the segmentation model in various ways such as
initial conditions, conditions on the model shape parameters or data constraints [164].
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4.3 Techniques of Image Segmentation

Different techniques have been proposed to divide the image into non-overlapping
regions. However, there is not any single technique that can be considered appropriate
for all of the applications and image types [173].

Image segmentation techniques separate the images based on either intensity value
similarity (region based) or discontinuity (boundary based) criteria to define the
region’s border or interior. The segmentation techniques based on similarity divide the
image into regions by grouping the similar intensities in one region, while discontinuity
criteria aim to identify the isolated values based on the sudden variation in the intensity
values such as edges [174, 175]. Figure 4.3 shows three different categories of image
segmentation techniques.

Figure 4.3 Classification of image segmentation techniques

4.3.1 Thresholding-based Segmentation

Thresholding is the most uncomplicated and fast segmentation method that divides the
image into regions based on the intensity level. It is assumed that the pixels belonging
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to a specific range of intensity levels form one region and the rest of the pixels form
the other region. Threshold-based methods can be classified into global and local. In
global thresholding, the image is only separated into object and background regions,
while the local thresholding divides the image into more than two objects [161, 176].

(a) (b) (c)

Figure 4.4 (a) Original image, (b) segmented image using single threshold value and
(c) segmented image using multiple threshold values

• Global thresholding: The image histogram represents a binary pattern, in which
the pixels in one region have similar intensity values. The easiest way to segment
the image is to separate dark and light regions using a single threshold value.
Global thresholding constructs a binary image from the grey-scale image by
converting all pixels below the single threshold value to zero and the rest into one
as shown in Eq 4.1 [176]. Figure 4.4b shows the result of the global thresholding.
It segments the image into two regions: foreground and background.

g(x,y) =

⎧⎪⎨
⎪⎩

1 if f(x,y) ≥ Th

0 otherwise
(4.1)

where g(x,y) is the segmented binary image, f(x,y) is the original pixel value and
Th is the threshold value.

It is possible to achieve an accurate segmentation using the global thresholding
method if the object has uniform intensity or the contrast between the object and
the background regions is noticeable. Nevertheless, global thresholding fails to
provide an acceptable result if there is overlapping between the intensity values
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of two objects. The main limitation of global thresholding is that it divides
the image based on the intensity value without taking into consideration the
relationship between the pixels [164].

• Local thresholding: If there are more than two different regions in the image,
the segmentation is done through local thresholding. In other words, image
segmentation can be accomplished through utilizing multiple threshold values.
The threshold value for each object is known as the local threshold. Equation
4.2 represents the local thresholding using (n − 1)-threshold values [176]. Figure
4.4c shows the result of the multiple thresholding.

g(x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

object 1 If f(x, y) ≤ T1

object 2 If T1 < f(x, y) ≤ T2
... ...

object n If f(x, y) > Tn−1

(4.2)

where g(x,y) is the segmented binary image, f(x,y) is the original pixel value and
(T1, T2, · · · , Tn−1) are the (n − 1)-threshold values.

A threshold value can be chosen either manually or automatically. Threshold recognition
approaches, such as optimal thresholding, p-tile thresholding and histogram shape
analysis, are used to select the threshold value automatically [177].

Usually threshold-based segmentation methods, either global or local, are mostly
incapable of generating accurate segmentation results and thus it is suggested they are
applied as a pre-processing step in the segmentation process [164].

4.3.2 Edge-based Segmentation

Edge detection is a basic and simple algorithm for image segmentation. Edge detection
is classified as a boundary-based segmentation method, where it converts the original
image into an edge image by identifying the sharp changes in the intensity value. In
image processing, edge detection deals with the localization of significant changes of a
grey-level image and the recognition of the physical and geometrical characteristics of
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objects. It is a basic technique which is designed to identify and delineate the object
boundary amongst other objects and the background of the image [175, 177].

Edge-detection algorithms are used in various object-detecting applications like medical
image processing and biometrics. There are three different types of discontinuities in
the grey-level: point, line and edges. Spatial masks can be used to detect all the three
types of discontinuities present in an image [178].

There are various edge-detection algorithms for image segmentation such as Roberts,
Sobel, Prewitt, Kirsch, Robinson, Marr-Hildreth, LoG and canny edge detection
[177, 178]. Edge-detection methods are not appropriate for noisy or complex images
where they can generate missing or extra edges [10].

4.3.3 Region-based Segmentation

A region-based segmentation method constructs objects by associating or dissociating
neighbour pixels based on the fact that neighbour pixels inside one region are
homogeneous and have similar attributes, while there is a high contrast value between
two different regions. It is relatively simple and more immune to noise than
edge-based segmentation. The region-based technique should be compatible with the
following rules for image segmentation [166]:

Suppose I is the original image that is divided into n regions (R1, R2, · · · , Rn), where
i = 1, 2, · · · , n.

(1) I = ⋃n
i=1 Ri, combining the n regions forms the original image.

(2) Ri ∩ Rj = φ, ∀i �= j, the intersection (overlapping) between two different regions
should be an be empty set.

(3) P (Ri) = True, ∀i = 1, 2, · · · , n, the uniformity predicate P (Ri) is true for each
region Ri.

(4) P (Ri ∪ Rj) = False, ∀i, j = 1, 2, · · · , n and i �= j, two adjacent regions should
not have the same uniformity predicate.

(5) Ri must be a connected region.
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Region-based methods are categorized into region growing, region split and merge and
watershed.

• Region-growing method: The region-growing method groups the pixels according
to predefined criteria. It begins by defining a set of seed points. Then, these
seeds grow by appending each seed to the pixel neighbours that have a high
degree of similarity. This process iterates until no pixels can be further included
within the region.The similarity criteria is chosen based on the problem and
image type. The value of the seed points are selected manually. The benefit of
region growing is because it arranges and segments regions that have comparable
properties and can produce connected regions. The region-growing method can
correctly separate regions and generate a connected region that has identical
characteristics [179]. However, the presence of noise in the original image leads
to improper initialization of the seed values.

• Split-merge method: The split-merge method, also known as quadrant
segmentation, relies on the quadtree division of an image. Firstly, it assigns the
root of the tree to the whole input image. If homogeneity (uniformity) is absent,
then the tree node is broken into four regions. However, if four son-squares are
similar, then they can be assembled as one connected region. This process
iterates until no more similar regions need to be merged or heterogeneous
regions need to be split [166].

• Watershed: The concept of the watershed method comes from the behaviour of
water in a landscape. When it rains, the water drops go downhill, passing by
different areas. The water is then collected at the bottom of the valley where the
gravitational pull is the strongest. Water from each valley flows in an area that
is linked with catchment basins which are only connected to a single basin. The
dams are constructed at the points where the water meets from various basins.
The landscape is divided into different areas by dams, when the water level has
attained the highest peak of the landscape [164].
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The watershed method is utilized if the background and foreground of the image
can be identified. It can also recognize the weak edges. However, the watershed
method has a strong potential for over-segmentation [164].

4.3.4 Machine Learning-based Segmentation

Automatic image segmentation has become an important research area in machine
learning. This segmentation scheme depends on pixel classification. The image pixel’s
properties, such as intensity, local texture and luminance, can be used to generate the
feature space where the segmentation process is completed by identifying the similarity
between the pixels based on the feature space. Different methods have been developed
to segment the image based on machine learning, where it can be categorized into three
groups: (1) supervised, (2) semi-supervised and (3) unsupervised learning schemes
[180].

The supervised methods use training data that have been manually labelled, while the
unsupervised methods use clustering algorithms instead of manual labelling.

4.3.4.1 Supervised Learning (Classification)

The supervised methods, also known as classification, require labelled data to separate
the feature space and involve training and testing phases. In the training phase, the
manual labelled data is used to build a training model that matches the feature space to
the labelled data. The testing phase is used to designate labels to unlabelled data based
on the training model. For instance, the simple supervised approach for segmenting a
brain tumour image is to use two labels, normal and tumour, and to select the pixel
intensities as a feature of the model. In the supervised segmentation method, selecting
a suitable training dataset is important because different training datasets can influence
the segmentation accuracy results [161].

The k-nearest neighbours (kNN) is one of the simplest classifications among all of the
machine-learning algorithms. It classifies the testing dataset by computing the distance
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between each query of the testing dataset and the training dataset. The query testing
data is then assigned to the nearest class [181].

The main limitation of the supervised methods is the necessity of having a large amount
of labelled data, which may not always be available, and hence limits its applicability
[182]. Also, the use of the same training set for a large number of images can lead to
biased results that do not take into account anatomical and physiological variability
between different subjects [161].

4.3.4.2 Unsupervised Learning (Clustering)

The unsupervised techniques do basically the same function as the classifier by
separating the image into classes based only on the feature space without having
training (labelled) data. It manually learns from the available input data to group the
similar pixels into one class, while pixels with dissimilar features are grouped into
different classes based on similarity/dissimilarity measurement criteria [161].

The most common clustering methods are the k-means [183], fuzzy c-means (FCM)
[184], self-organized map (SOM) [185] and the expectation-maximization (EM) [186]
algorithms. The K-means clustering algorithm clusters the data by repeatedly
computing the mean intensity for each class then classifying the pixel in the class with
the closest mean. It is also known as a hard classification method because each pixel
should belong to one class. The FCM is a soft classification method, because it is
possible for each pixel to belong to multiple classes. The computational cost of the
FCM is higher than K-means. The EM algorithm applies the same clustering
principles, with the underlying assumption that the data follows a Gaussian mixture
model. The drawback of the clustering techniques is the need to determine the
number of classes in advance.

4.3.4.3 Semi-supervised Learning

Semi-supervised learning is situated halfway between supervised and unsupervised
learning. In semi-supervised clustering approaches, additional information is
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incorporated to adjust the clustering process in order to improve the segmentation
result. There are three different types of additional information: must-link and
cannot-link constraints, label data and a pre-defined membership matrix [187]. These
are discussed below.

(1) Must-link and cannot-link constraints: Must-link constraints mean to identify
the points that must belong to the same class, while cannot-link constraints refer
to the points cannot be in the same class.

(2) Label data: A part of data is labelled and others are unlabelled.

(3) Prior membership matrix: The pre-defined membership matrix from an
unsupervised clustering algorithm is used to guide the semi-supervised learning.

4.4 Medical Image Processing

Current imaging techniques developed for medical purposes provide a huge insight
into detailed images which require a deep analysis in a very short period of time.
The medical images are evaluated by specialists through a number of procedures that
increase the chance of human errors occurring, which increases the time required for
making evaluations and can even lead to wrong interpretations. Medical images are
assessed both qualitatively and quantitatively by professionals on the basis of their
professional experience, but this analysis has limitations as the assessment is purely
based on the human vision system, i.e. human eye vision which can only analyze eight
bits of grey-level [188].

Advanced medical imaging systems have the ability to produce images that have up
to 65,535 different grey levels. Certain essential data produced through the scanner
cannot be examined, let alone be analyzed by a normal human eye. For the in-depth
analysis of both high and low resolution medical images, computer-aided diagnosis
(CAD) can be employed. CAD is a supportive tool that helps surgeons to conduct
examinations of abnormal regions without mistakes. Millions of lives can be saved with
early and accurate diagnoses, which are made possible with this technology [188].
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Nowadays, image processing is extensively integrated in medical imaging systems due
to the rapid improvement and revolution in computerised medical image visualization
for image analysis and computer-aided diagnosis [189]. Image division into a group
of homogeneous regions is necessary for feature extraction and analysis. Different
modalities are available for medical imaging systems, such as computed tomography
(CT), magnetic resonance image (MRI), X-radiation (X-ray) and positron emission
tomography (PET) [190]. Physicians recognize MRIs as the most versatile medical
imaging modality for clinical diagnosis [182].

4.5 Magnetic Resonance Brain Image Processing

Technological growth has positively improved imaging systems, in particular MRIs.
Improvement in the quality and speed of image generation are some of major
consequences of these technological developments. An MRI is a medical imaging
mechanism employed in radiology for detailed visualizing of the organs and tissues
inside the body, particularly for brain imaging. It works by using nuclear magnetic
resonance (NMR) to create an image using the nuclei of atoms located in the body.
MRI techniques give more distinctive information about the internal structure of
organs compared to the other imaging modalities, such as X-rays, ultrasounds or PET,
which produce noisy and blurred images [191].

The MRI sequence is an integration of radio frequency (RF) and gradient pulses
designed to generate the image. An intense magnetic field is employed by the MRI
machine to adjust the magnetization of protons in the body and radio frequency
fields are responsible for systematic change in the alignment of this magnetization.
Consequently, a rotating magnetic field of larger frequency by the scanner is generated
by the protons and this information is recorded to form an image of the scanned area of
the body. Strong magnetic field gradients cause nuclei at different locations to rotate at
different speeds. Three-dimensional spatial information can be obtained by providing
gradients in each direction [192].
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Once an MR image is obtained, several image processing techniques can be applied on
MR brain images, which would lead to a more efficient patient diagnosis. The MR brain
image processing faces certain issues in the research domain. Brain tissue segmentation
and the differentiation of normal and diseased tissues present in multi-channelled MR
brain images, which are in different sequences and are of multi-axis structures [188].

4.6 MR Brain Image Segmentation Methods

The segmentation process of brain images aims to divide the brain image into three
main tissues: white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF)
[193]. Figures 4.5a and 4.5b show an original MR image and its corresponding labelled
segmented image respectively. The assigned labels facilitate the classification and
grouping of brain tissues where pixels with similar labels represent a certain computed
characteristic such as texture, intensity, shape or colour [9].

(a) (b)

Figure 4.5 (a) Original MR brain image and (b) segmented image with WM, GM and
CSF labels

Numerous methods have been implemented in the area of medical segmentation to
provide the accurate segmentation of MR images. Differences in such methods are
based in mechanisms that have been utilized to divide the image into non-overlapping
regions. Table 4.1 shows some existing research relating to brain image segmentation.
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In [194], two unsupervised methods were designed for MR brain image segmentation
using SOM. The first approach is termed as histogram fast segmentation SOM (HFS-
SOM). In HFS-SOM, features are extracted from the histogram of the image. The
feature vectors comprise of intensity occurrence probabilities, the relative position
regarding the intensity value, the mean of the probability values over a 3-bin window
and the variance of that window, which is used to train the SOM. Then, the k-means
is utilized to cluster the SOM output layer. The second approach is known as entropy
gradient segmentation (EGS-SOM). First and second-order statistical features are
extracted from overlapped windows of size 7 × 7 pixels. In order to train the SOM, a
genetic algorithm is applied to select the most discriminative features. Finally, SOM
outputs are clustered using the EGS algorithm. The HFS-SOM method is faster
because it does not require any parameter setup, while the second approach is more
robust under noisy and bad intensity conditions.

Noreen et al. [195] introduced a hybrid MR segmentation method that utilizes DWT
and FCM to remove inhomogeneity. Firstly, DWT was applied to the input MR
image to obtain LL, LH, HL and HH sub-bands. To obtain a sharpened image, the
approximation coefficients of the LL sub-band are set to zero. Then, the IDWT is
applied to get a high pass image. The resultant image is segmented using the FCM
technique. Finally, Kirch’s edge detection mask [196] is performed to fill the missing
edge information and enhance the output image.

As a substitute, brain images can be segmented using Gaussian mixture model (GMM)
[197], where the pixel intensities of each region are modeled by a Gaussian distribution
function [198]. Generally, the GMM parameters are approximated by the EM algorithm
[199]. However, the GMM-EM approach does not take into consideration the spatial
information and uncertainty of the data. To overcome this limitation, Greenspan et al.
[200] and Blekas et al. [201] integrated the spatial constraints into GMM to improve
the segmentation accuracy value.

In [202], an automatic brain MRI segmentation method is proposed. For each label,
the voxel intensities of all MRI sequences are modelled using Gaussian distributions.
The parameters of the Gaussian distributions are evaluated as maximum likelihood
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estimates and the posterior probability of each label is determined using Bayesian
estimation. Regional intensity, texture, the spatial location of voxels and the posterior
probability estimates are used as features that are utilized to classify each voxel into
one of the four classes (CSF, GM, WM and background) using a multi-category support
vector machine (SVM).

Table 4.1 Literature review for various brain image segmentation methods

Author Segmentation

Technique

Description

Selvy et al.
(2011) [203]

Four different
clustering techniques

The grey MRI is transformed to
colour space using pseudo-colour
transformation. Then, a clustering
technique is applied to segment the
image

Ortiz et al.
(2013) [194]

HFS-SOM clustering Features are extracted from the
whole volume histogram which is
trained by using SOM. Then, the
k-means is utilized to cluster the
SOM output layer.

Ortiz et al.
(2013) [194]

EGS-SOM clustering Features are extracted from
overlapped windows of a size
7 × 7 pixel. Genetic algorithm
(GA) is applied to select the most
discriminative features to train the
SOM.
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Table 4.1 Literature review for various brain image segmentation methods

Author Segmentation

Technique

Description

Ortiz et al.
(2013) [204]

SOM-FCM The 3D statistical features are
extracted from the image. The
GA-based selection is performed
over the extracted features to form
an optimized number of feature
vectors. These feature vectors are
modelled by SOM. Then, FCM is
used to compute the degree of voxel
modelled by SOM.

Goncalves et al.
(2014) [205]

Discriminative
clustering
(DC) using labels
obtained
from consistent SOM

A pre-processing is applied to
correct field inhomogeneities.
Then, this method employed a
semi-supervised (DC) method
using labels obtained from SOM
to segment the brain image.

El-Dahshan et al.
(2014) [206]

Feedback pulse-
coupled
neural network
(FPCNN)

The MR image is segmented
using the FPCNN. Then, DWT
features are extracted from the
image and reduced using is
principal component analysis
(PCA). Finally, the FBPNN is
applied to classify the image into
pathological or abnormal.
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Table 4.1 Literature review for various brain image segmentation methods

Author Segmentation

Technique

Description

Kong et al.
(2015) [207]

Information theoretic
discriminative
segmentation
(ITDS)

The simple linear iterative
clustering (SLIC) is employed to
generate 3D supervoxels for brain
MRI. Features are extracted from
each supervoxel. ITDS is used for
clustering the supervoxels.

Pereira et al.
(2016) [208]

Convolutional neural
networks (CNN)

Features are extracted using sparse
auto-encoder NN. Different CNN
architecture segments the brain
image, exploring the use of small
convolution kernels. Then, post-
processing is applied to remove
classes that is smaller than a
predefined threshold.

4.7 Summary

This chapter presented an overview of image segmentation methods. The segmentation
methods can be classified into three categories: manual, semi and fully-automatic
methods, depending on the human level of interaction. The main limitations of
manual segmentation are time consumption and impracticality. On the other hand,
user interaction in automatic segmentation is not necessary, however, automatic
segmentation suffers from many challenges that limits its practical applications.

This chapter also discussed the different segmentation techniques, including the low
and high level stages. In the discussion of low level image segmentation, edge-based,
thresholding-based and region-based are explained. Segmentation results of these
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method are not very accurate because they do not incorporate high level knowledge
about the image. These techniques are usually used in the pre-processing stage of the
segmentation process.

MRI is one of the most versatile imaging techniques in medical analysis, such as in the
examination and treatment of brain tissues, where it has helped in the identification
and differentiation of normal and diseased tissues.

Finally, this chapter reviewed various methods that have been implemented in the area
of brain image segmentation to provide accurate segmentation of MR images.



CHAPTER 5

Image Steganography based on Edge Detection and
Coding1

This chapter presents a novel image steganography algorithm that combines the
strengths of edge detection and XOR coding, to conceal a secret message either in the
spatial domain or an Integer Wavelet Transform (IWT) based transform domain of
the cover image. In order to enhance the imperceptibility, edge detection algorithm
identifies sharp edges in the cover image for embedding to cause less degradation to
the image quality compared to embedding in a pre-specified set of pixels that do not
differentiate between sharp and smooth areas. In addition, the secret data is embedded
in the edge pixels using the XOR operation to minimize the difference between the
cover and stego images.

1The contents of this chapter have been published in the Journal of Expert Systems with
Applications, Vol. 46, (2016), entitled "A Steganography Embedding Method Based on Edge
Identification and XOR Coding".
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5.1 Introduction

The major challenge in developing the embedding process of steganography is ensuring
a high quality of the stego image without compromise the embedding capacity. As
mentioned earlier in Section 2.6, several requirements should be taken into
consideration during design steganographic system. However, these requirements are
strongly dependent upon each other and there is a trade-off between them [44].

The LSB substitution is one of the conventional steganography methods that most
of the researchers used due to its simplicity, low computational cost and low memory
space. Also, LSB is visually imperceptible based on the assumption that the least
significant bit of the pixel value is unimportant. However, the LSB method does not
differentiate between the smooth and high contrast regions which highly facilitates
the steganalysis process. Currently, LSB method can be discovered and identified by
existing steganalysis method.

In order to improve the detectability and capacity of LSB, many adaptive steganography
techniques have been proposed based on the fact that the human visual system is
less sensitive to change in the edge areas compared to the smooth area. However, the
methods employ the edge detection algorithms, such as Sobel and Canny, for identifying
the embedding location are either offer low embedding capacity or not able to identify
the same edge between the cover and stego images. Also, some of these algorithms are
unable to utilize the four edge directions, such as PVD [81] and EALSBMR [92]. PVD
and EALSBMR offer a high embedding capacity, but it does not accommodate with
the undetectability requirement.

A novel image steganography method is presented, which conceals secret data either
inside the spatial domain or Integer Wavelet Transform (IWT) domain in such a way
that it offers a good image quality without compromise the embedding capacity. The
new edge detection method ensures the identification of the same edges between the
cover and stego images. The probability of detecting the existence of the hidden
message is solidly based on the amount of the embedding distortion in the cover image
caused by the embedding process. Therefore, designing steganography system with less
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number of modification for the same embedding capacity is recognized as an essential
requirement to minimize the distortion function. In this chapter, a new and simple
XOR operation(embedding process) is developed to improve the embedding efficiency
and reduce the artefacts occurred because of the embedding process. Moreover, the
computational cost for the embedding process is lower than steganography algorithms
based on matrix embedding.

This chapter is organized as follows. Section 5.2.1 introduces the new edge detection
algorithm. The Spatial Domain Algorithm using one bit per pixel and n bits per pixel
are explained in Sections 5.2.2 and 5.2.3 respectively. Section 5.2.4 presents the integer
wavelet transform domain algorithm (n bits per pixel). Finally, the summary is given
in Section 5.3.

5.2 The Proposed Methodology

In this section, the image steganography is presented. The framework is based on new
edge detection algorithm and XOR operation. Also, the secret data can be embedded
whether in the spatial domain or Integer Wavelet Transform (IWT) based transform
domain of the cover image. Three different implementations of the proposed method
are explained in sections 5.2.2, 5.2.3 and 5.2.4.

5.2.1 Identification of Edges

It is well known that the human visual system is less tangible to changes in image areas
that contain edges and sharp transitions in comparison to smooth areas. Accordingly, it
is logical to conceal the message in edge areas in order for the steganography algorithm
to have a good imperceptibility.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 5.1 (a) Cover image, (b−d) Edge pixels in a cover image using Canny method,
(e−g) Edge pixels in a stego image using Canny method with 3%, 10% and 19%
embedding rates and (h−j) Difference between edge pixels in the cover and stego

images
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The edge image generated by traditional edge detection methods is usually sensitive to
changes in the original grey image, even if the changes are minor or not significant.
This property limits the utilization of edge detection in steganography, as concealing
the message would introduce some changes to the original image. Thus, embedding
in pixels identified by one of the existing edge detection methods, such as Canny,
cannot guarantee the identification of the exact edge intensities for the cover and stego
images. The cover image of size 256 × 256 is shown in Figure 5.1a. Figures 5.1b, 5.1c
and 5.1d show the corresponding edge pixels, which are identified by applying Canny
edge detection using different threshold values. Edge pixels of three stego images
produced after embedding messages of length 2000, 6553 and 12639 bits using the LSB
steganography method are shown in Figures 5.1e, 5.1f and 5.1g respectively. Figures
5.1h, 5.1i and 5.1j show the difference between edge pixels in the cover and stego images
using low, medium and maximum embedding rates (3%, 10% and 19% respectively),
which indicate that edge pixels in the cover and stego images are not identical.

A new and simple edge detection algorithm is proposed to discover the edge (sharp)
regions of the cover image, such that the two edge images generated using the original
cover image and the stego image are identical. This will enable the correct extraction
of the concealed message from the stego image. The algorithm starts by dividing
the image into non-overlapping blocks that would be individually evaluated and then
categorized as either edge or non-edge blocks. The key idea behind preserving the
same edge image is not to embed in the pixels that are used to calculate the edge
strength, which are the outer pixels of the block. The edge detection algorithm (5.1) is
explained in the following steps:

Step 1: Divide the image C into non-overlapping blocks of the size n × n. Figure 5.2
shows a 3 × 3 block.

Step 2: Compute the absolute mean difference between the left and right columns of
the block (magnitude of vertical edge (V E)). Repeat for horizontal (HE), first
diagonal (D1) and second diagonal (D2) edges. Edge magnitude can be computed
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using Eq. 5.1.

HE = avg
∣∣∣([P(i−1,j−1), P(i−1,j+1)] − [P(i+1,j−1), P(i+1,j+1)])

∣∣∣
V E = avg

∣∣∣([P(i−1,j−1), P(i+1,j−1)] − [P(i−1,j+1), P(i+1,j+1)])
∣∣∣

D1 = avg
∣∣∣(P(i−1,j+1) − P(i+1,j−1))

∣∣∣
D2 = avg

∣∣∣(P(i−1,j−1) − P(i+1,j+1))
∣∣∣ (5.1)

Step 3: Find the maximum of the four values and assign it to e, which is computed using
Eq. 5.2. If e > Th, then the block is considered to be an edge block, otherwise it
is not an edge block. Construct E that contains the calculated e value of each of
the edge blocks (which reflects the edge strength), and 0 for non-edge blocks. A
binary edge image can also be constructed, which contains 1 for edge blocks and
0 for non-edge blocks.

e = max

{
HE, V E, D1, D2

}
(5.2)

Step 4: For the edge blocks, embed in the white 5 pixels,
P(i−1,j), P(i,j−1), P(i,j), P(i,j+1), P(i+1,j), as shown in Figure 5.3a.

(a) (b) (c) (d)

Figure 5.2 An example of 3 × 3 block edges for four directions (a) Horizontal, (b)
Vertical, (c) First Diagonal and (d) Second Diagonal
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(a) (b)

Figure 5.3 (a) Selected pixels for embedding 3 × 3 block and (b) a 3 × 3 block of input
image

Algorithm 5.1: Edge Detection
Inputs : Cover image (C), block size (n × n, which is expected here to be

3 × 3), threshold value (Th).
Outputs : Edge image with edge magnitude (E) and Binary edge image (B)

1 n ← 3;
2 [row,col] ← size(C);
3 E ← [ ] ; B ← [ ];
4 i ← 1 ;
5 while i ≤ row do
6 j ← 1 ;
7 while j ≤ col do
8 Subblock = C(i : i + (n − 1), j : j + (n − 1));
9 Compute the four magnitude using Eq. 5.1;

10 Find e using Eq. 5.2 ;
11 E(i : i + (n − 1), j : j + (n − 1)) = e;
12 if e > Th then
13 B(i : i + (n − 1), j : j + (n − 1)) = 1;
14 else
15 B(i : i + (n − 1), j : j + (n − 1)) = 0;
16 j ← j + n ;
17 i ← i + n ;

For example to evaluate the block shown in Figure 5.3b as edge or non-edge block, the
magnitude of the four directions are computed as follows:

• The magnitude of the horizontal row is
∣∣∣(160 + 159) − (160 + 164)

∣∣∣ = 5.



5.2 The Proposed Methodology 104

• The magnitude of the vertical column
∣∣∣(160 + 160) − (159 + 164)

∣∣∣ = 3.

• The magnitude of the first diagonal is
∣∣∣159 − 160

∣∣∣ = 1.

• The magnitude of the horizontal row is
∣∣∣160 − 164

∣∣∣ = 4.

Finally, e is the maximum of (5,3,1,4). If e = 5 > Th, then this block is categorized as
edge region. Otherwise, It is non-edge block.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.4 (a) Input image, (b) edge image using Th = 70, (c) edge image using
Th = 60, (d) edge image using Th = 50, (e) edge image using Th = 40, (f) edge image

using Th = 30, (g) edge image using Th = 20, (h) edge image using Th = 10
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(a) (b)

Figure 5.5 Edge image using Sobel method (a) Th = 0.1 and (b) Th = 0.01

In order to evaluate the obtained binary edge image of the proposed algorithm, we
considered the grey image shown in Figure 5.4a and used different values of threshold
in constructing binary edge images using a block size of 3 × 3, as shown in Figures
5.4b− 5.4h. The edge images indicate the ability of this method in detecting edges
with an acceptable accuracy compared to the existing edge detection methods as shown
in Figure 5.5. Out of the nine pixels of the block, the five pixels shown in Figure 5.3a
will be used for embedding if the block is identified as an edge block. Thus, the four
corner pixels that are used for estimating the edge strength will remain unchanged
after embedding. This guarantees each block in the cover image to have the same edge
strength as its counter part in the stego image.

5.2.2 The Spatial Domain Algorithm (0.75 bit per pixel)

5.2.2.1 The Embedding Process

The flow diagram of our proposed method is illustrated in Figure 5.6. The data
embedding process begins with reading the cover image and the secret message. A
high threshold (96) is initially considered, which is then adjusted based on the number
of pixels needed for embedding the message (identified by the generated binary edge
image) and the message length, according to the following condition:

For the given threshold value, if (no. of edge pixels ≥ (4 * Message Length) /3 ) )
then the discovered area is enough to embed the secret message.
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The embedding process is performed on the detected edge locations using the proposed
XOR coding. This method partitions the index table into groups of four pixels and
encodes three message bits into the pixels of each group. The XOR operation ensures
that the secret message is concealed into the cover with minimum number of pixel
changes. Thus, the three secret bits m1, m2, and m3 are embedded in the four LSBs
p1, p2, p3, and p4 (one bit for each edge pixel) according to the following procedure:

Figure 5.6 Data embedding process in the spatial domain

1. Perform the following three XOR operations

k1 = p1 ⊕ p2

k2 = p3 ⊕ p4

k3 = p1 ⊕ p3

2. To embed the three secret bits m1, m2, and m3, the three calculated bits k1, k2

and k3 are compared with the secret message bits m1, m2, and m3. The result
of this comparison, which can take one of eight possibilities, determines which
of the four bits p1, p2, p3, and p4 have to be modified, as shown in Table 5.1.
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We will refer to the new four bits of the stego image as q1, q2, q3, and q4. The
table indicates that embedding 3 message bits into 4 cover bits will cause an
average modification of 0.3125 bits. For instance, in the following experiment,
an embedding process of a secret message of size 3249 bits that are randomly
generated into 4332 cover bits modifies 1358 bits. The average modification of
this experiment is 1358/4322=0.3135.

Table 5.1 Embedding conditions

Condition Action to be taken
m1 = k1 m2 = k2 m3 = k3 No change required
m1 = k1 m2 = k2 m3 �= k3 Complement p3 and p4

m1 = k1 m2 �= k2 m3 = k3 Complement p4

m1 = k1 m2 �= k2 m3 �= k3 Complement p3

m1 �= k1 m2 = k2 m3 = k3 Complement p2

m1 �= k1 m2 = k2 m3 �= k3 Complement p1

m1 �= k1 m2 �= k2 m3 = k3 Complement p2 and p4

m1 �= k1 m2 �= k2 m3 �= k3 Complement p1 and p4

3. The index of the threshold value should also be embedded, as it is needed by
the extraction process. In this algorithm, the index of the threshold value is
embedded into the four LSBs of the last pixel to avoid making a significant
change in the original pixel.

Suppose three message bits (1, 0, 1) needs to be embedded in the edge block as shown
in Figure 5.3b. The following steps illustrate the message embedding process:

(1) The LSB values of the four edge pixels (161,163,165 and 161) are (p1 = 1, p2 =
1, p3 = 1andp4 = 1) respectively.

(2) The secret message bits are (m1 = 1, m2 = 0andm3 = 1).

(3) The XOR operation result is k1 = 1 ⊕ 1 = 0, k2 = 1 ⊕ 1 = 0 and k3 = 1 ⊕ 1 = 0.

(4) According to Table 5.1, p1 is changed (p1 = 0) because m1 �= k1 and m3 �= k3.

(5) The stego edge pixels are (160,163,165 and 161).
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5.2.2.2 The Extraction Process

The extraction process is easier and faster than the embedding process. Figure 5.7
represents the flow diagram of the extraction process. It starts by retrieving the
threshold value. The edge blocks of the stego image are then identified using the
retrieved threshold, which will return the same edge image as the one obtained using
the cover image. This will be followed by dividing the LSBs of the edge pixels into
groups of four. Finally, for each of the four stego edge bits q1, q2, q3, and q4 the XOR
operations listed below are used to retrieve three message bits m1, m2, and m3

m1 = q1 ⊕ q2

m2 = q3 ⊕ q4

m3 = q1 ⊕ q3

Figure 5.7 Data extraction process in the spatial domain

When considering any combination of m1, m2, m3, p1, p2, p3, and p4 to verify the
embedding and extraction processes, one can find that the extraction process truly
restores the original message.

5.2.3 The Spatial Domain Algorithm (n bits per pixel)

5.2.3.1 The Embedding Process

In order to improve the embedding capacity, we present here an extension of our 0.75
bpp algorithm to embed n bits in each edge pixel. The value of n is to be determined
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based on the edge mean value of each block. Thus, strong edges will enable the
embedding of more bits than the less strong ones. Hence, unlike the embedding of one
bit per pixel that only considers the existence of an edge in a block, this algorithm
utilizes the edge strength of each block, e. Embedding n bits per pixel, where n varies
from one block to another, may also improve the security of the message, as in this
case n needs to be correctly calculated for each block in order to successfully reveal
the message.

The data hiding process begins with reading the cover image and the secret message.
The new edge detection is then applied to produce the edge strength, e, of each block.
In order to specify the number of bits to embed, n, the edge pixels are classified into
five groups (G1, G2, G3, G4 and G5) based on the edge strength, e, of the block. The
chosen of the group width depends on the sensitivity of human visual system to the
alternations of gray value from smooth to sharp area. Table 5.2 lists the range of
each of the five groups, and Eq. 5.3 determines the length of the message that can be
embedded into the edge bits. If the identified edge pixels are not enough for embedding
the whole message, then adjust the threshold and repeat the process until the actual
length of the message satisfies Eq. 5.3.

(4 × Msg Length)/3) ≤ No. of Edge Bits
[

(3 × G5 pixel) + (3 × G4 pixel) +

(3 × G3 pixel) + (2 × G2 pixel) + (1 × G1 pixel)
]

(5.3)

where the multiplier of each term represents the number of secret bits to embed in the
edge pixel based on the group it belongs to.

Table 5.2 Number of bits can be utilized from each edge pixel according to the group
it belongs to

Group Group 1 Group 2 Group 3 Group 4 Group 5
n (bpp) 1 2 3 3 3
Range [4, 7] [8, 15] [16, 31] [32, 63] [64,255]
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The embedding process starts with the G5 pixels and then moves to the remaining
groups, where after it completes G4 it moves to G3 then G2 and finally G1 to embed 3,
3, 3, 2 and 1 bits in each of the corresponding edge pixels of these groups.

5.2.3.2 The Extraction Process

The retrieving process starts with performing the edge detection algorithm described
earlier to get the edge strength, which would be used to categorize the edge blocks into
group. Then, the XOR extraction operations are applied to extract three bits from the
G5 pixels, and then it respectively considers the G4, G3, G2 and finally G1 pixels to
extract the corresponding number of bits from each of them.

5.2.4 The Integer Wavelet Transform Domain Algorithm (n

bits per pixel)

5.2.4.1 The Embedding Process

The flow diagram of our proposed Integer Wavelet Transform (IWT) based embedding
is illustrated in Figure 5.8. The process starts by converting the cover image to the
wavelet domain using IWT. Since the HVS is sensitive to small modification into the
lower frequency band compared to the higher frequency, the secret data is embedded
only in the high frequency sub-bands of the IWT domain to achieve a high robustness
and imperceptibility results. In other words, data hiding is carried out in the three
sub-bands HH, LH and HL (the LL sub-band is excluded). Similar to the spatial
domain embedding, the XOR operation is also utilized here.

The embedding process begins with HH sub-band and identify the edge coefficients to
start embedding with the strongest edges to the weakest edges. If the HH sub-band is
not enough to embed the secret message, then the process moves to the LH sub-band,
and then to the HL sub-band.

The implementation of the embedding process is explained in the following steps:

1. Read the cover image and the secret message.
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Figure 5.8 Data embedding process in the Integer Wavelet Transform domain

2. Apply the First-Level of IWT on the cover image to decompose the cover image
into four sub-bands (LL, HL, LH and HH).

3. Identify edge regions in the high frequency sub-bands (HL, LH and HH). To
increase the embedding payload of the wavelet transform method, n LSB from
each edge coefficients are utilized in embedding. A higher threshold value (Th) is
initialized, which is then decreased based on the number of coefficients needed for
embedding and the message length. To identify the edge regions, HH sub-band
is divided into non-overlapping blocks of 3 × 3 coefficients as shown in Figure
5.3a. For each block, the average value (avg) of the four non-shaded coefficients
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(Pi−1,j−1, Pi−1,j+1, Pi+1,j−1, Pi+1,j+1) is calculated. Finally, if the average value
(avg) ≥ Threshold, the block is selected for embedding.

4. Arrange the edge coefficients into five groups, as shown in Table 5.2. According
to Eq. 5.3, if there are enough coefficients to embed the secret message, then
embedding process is performed using XOR operation. Otherwise, repeat step
3 after adjusting the threshold value. This process is repeated on the other
two sub-bands (LH and HL) until finding enough area for embedding the whole
message.

5.2.4.2 The Extraction Process

The extraction process begins with retrieving the threshold value to apply the edge
detection method. Edge detection method is performed on the high frequency sub-
bands by dividing the sub-band into non-overlapping blocks of size 3 × 3 to identify
the edge area that has been utilized in the embedding process. For each of the three
high frequency sub-band (HH, LH and HL), edge blocks are arranged into five groups
according to the edge strength. Then, the XOR extraction operations are performed
to retrieve n bits from each group as described in Table 5.2.

5.3 Summary

This chapter presented an efficient steganography method that makes use of the fact
that the human visual system is less sensitive to changes in high contrast areas of the
image and therefore attempts to embed the secret message into edge pixels.

The main contribution of the proposed method is introducing new and efficient edge
detection algorithm using non-overlapping blocks that estimates the same edge
intensities for the cover and stego images. Also, the incorporation of coding theory
makes the embedding more efficient. The proposed method that has been
implemented in the spatial and wavelet transform domains to ensure the balance
between embedding rate, imperceptibility and security.



CHAPTER 6

Combined Cryptography and Coding based
Steganography for Medical Images1

This chapter presents an information security scheme conceals coded Electronic Patient
Records (EPRs) into medical images in order to protect the EPRs’ confidentiality
without affecting the image quality and particularly the Region of Interest (ROI),
which is essential for diagnosis. The secret EPR data is converted into ciphertext
using private symmetric encryption method. Then, the encoded data is embedded
in edge pixels of the Region of Non Interest (RONI), which will lead to an improved
stego image quality and preserve the ROI from any modification. Two message coding
mechanisms have been utilized to enhance the ±1 steganography. The first one, which
is based on Hamming code, is simple and fast, while the other which is known as the
Syndrome Trellis Code (STC), is more sophisticated as it attempts to find a stego
image that is close to the cover image through minimizing the embedding impact.

1The contents of this chapter have been published in the Journal of Computer methods and
programs in biomedicine, Vol. 127, (2016), entitled "Quality optimized medical image information
hiding algorithm that employs edge detection and data coding".
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6.1 Introduction

Digital medical images are essential for diagnosis and treatment of many diseases.
Therefore, it is extremely important to guarantee secure storage, processing and
analysis of medical images without violating the Code of Ethics for Health Information
Professionals [209]. As the ever-growing numbers of digital medical images and the
necessity to transmit them between different hospitals and clinics for precise diagnosis
and treatment planning demand that patients’ confidential data to be preserved.
In response to this demand, the Digital Imaging and Communication in Medicine
(DICOM) standard accepts different encryption methods such as Data Encryption
Standard (DES), Triple-DES, and RSA (Rivest, Shamir, Adleman) to protect the
privacy and confidentiality of health information [124]. However, encryption methods
do not ensure confidentiality of important data, because the transmission of encoded
text certainly stimulates intruders’ attention, whom may attempt to decrypt it [152].
Information hiding on the other hand is the process of embedding information inside
another medium for secure transmission.

Digital steganography has different attractive features to complete the current security
measures that can improve the protection for diverse applications. However, image
steganography schemes require to be utilized with special consideration for medical
imaging systems. Firstly, the steganography method should not compromise the quality
of the image, in particular region of interest. Secondly, secret patient data concealed
within the cover image should be perfectly extracted [153].

In this chapter, a secure digital medical imaging information system based on a
combined steganography and cryptography techniques is introduced. The proposed
steganography methodology represents an integration of two main components: two
different syndrome codes (STC or Hamming code) that have been utilized to enhance
the embedding efficiency by minimizing the distortion function caused due to data
embedding, and an accurate method to identically identify sharp regions in both cover
and stego images for improving the imperceptibility and to embed larger payload.
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This chapter is organized as follows. Section 6.2 introduces the Syndrome Trellis Code
(STC). Section 6.3 presents the Hamming code. The proposed methodology is described
in Section 6.4. Finally, the summary is given in Section 6.5.

6.2 Syndrome Trellis Code (STC)

Convolutional codes are introduced in [210] and considered one of the most common
Error Correcting Codes (ECC). Basically, the encoder of the convolutional codes has
memory and outputs depend on the current and previous inputs. A binary convolutional
code C is specified by three parameters (N, K, h), where K is the number of inputs, N

is the number of outputs and h is the constraint height which represents number of
shift registers.

Filler et al. [109, 110] proposed an efficient coding method for steganography, which is
called the Syndrome-Trellis Code (STC). It aims to minimize the embedding distortion
by finding the closest stego image to the cover image. The STC, which is classified as
convolutional code class, represents the codeword by the parity-check matrix. In the
binary syndrome-trellis code, the parity-check matrix H ∈ {0, 1}k×n of size k × n is
represented by placing a small sub-matrix Ĥ of size h × w and shifting it down by one
row for a number of times. Equation 6.1 shows an example of a parity-check matrix H

with k = 4 and n = 8 formed from the sub-matrix Ĥ (h = 2, w = 2).

Ĥ =

⎡
⎢⎣1 0
1 1

⎤
⎥⎦ , H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 1 1 0

1 1 1 0
1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.1)

It is worth to mention that the constraint height h influences the embedding process
speed (typically, 6 ≤ h ≤ 15).

The syndrome-trellis code is a graph compromising a number of blocks, where each
block of the trellis represent one sub-matrix and has 2h(w + 1) nodes structured in a
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grid of 2h rows and w + 1 columns. A bipartite graph is created between the nodes of
the two adjacent columns.

Suppose the cover vector X ∈ {0, 1}n is changed to the stego vector Y ∈ {0, 1}n after
embedding a secret data vector m ∈ {0, 1}k. The extraction process of the syndrome
code is calculated as shown in Eq. 6.2.

Ext(y) = HyT (6.2)

There are many solutions of y that can satisfy Eq. 6.2. The set of all possible solutions
of y is called coset of m, which is identified by C(m) = {z ∈ {0, 1}n | Hz = m}. To
select the best solution of y that achieves the minimum distortion, the embedding
method computes the additive distortion function for each y from the coset using Eq.
6.3. The additive distortion function Dst is used to identify the total effect of the
embedding modifications caused by the embedding process, such that the lower value
of Dst the less detectable by steganalysis [109, 110, 211].

Dst (x, y) =
n∑

i=1
ρ (xi, yi) (6.3)

where ρ (xi, yi) is the cost of altering xi with yi and di ∈ [0, ∞]. To improve the
embedding efficiency, the syndrome embedding process is to select y that minimizes
the embedding distortion using Eq. 6.4.

Emb(x, m) = arg min
y∈C(m)

D (x, y) (6.4)

The embedding process is comprised of two stages: a forward and backward stages.
The forward stage involves constructions of the trellis based on Hk×n and Ext(y), while
the identification of the closest codeword is implemented in the backword stage.

Each path in the trellis begins in the leftmost all-zero state and extends to the right.
The edges represent adding (y [i] = 1) or not adding (y [i] = 0) the ith column of Hk×n

to the current partial syndrome. The calculation of the syndrome trellis is explained
step-by-step on each path. For example, in Figure 6.1, the first two edges that connect
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Figure 6.1 Example of STC embedding

the state 00 (S00) from column P0 with states 11 (S11) and 00 (S00) in the next column,
correspond to adding or not adding the first column of H[.,1] to S00. At the end of the
first block, all paths for which the first bit of the partial syndrome does not correspond
to the message bit m1 are finished. Then, we get a new column P1 of the trellis, which
will be utilized as the starting column of the next block. The previous step is repeated
at each sub-block of the matrix H. To achieve the best match between the stego and
cover bits, a weight is computed to each edge in the trellis. Therefore, the path that
has the minimum weight is considered the closest match between the cover and stego
bits. It is easy to find this path using the backward path from the rightmost state
using the edges that were not terminated and create the stego bits (y).

Figure 6.1 represents an example to embedding process using syndrome-trellis when
the secret message (m) is 1001 and the cover vectors (X) is 10011011. The path with
the minimum weight using the backward step is used to produce the stego vector (Y )
which is 10110011.
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6.3 Hamming Code

Hamming code is a linear error-correcting codes that detects and corrects one-bit error
at the receiver. To fulfil this objective, extra bits (parity check bits) should be added
to the original data before transmission to form a codeword. Encoding 4 bits using
(7,4) Hamming code requires 3 additional parity check bits; i.e. the original 4 bits are
expanded to 7 bits. Figure 6.2 indicates the relationship between original and parity
check bits, where bi refers to an original bit and Pi to a parity check bit. Parity check
bits P1, P2, and P3 are computed using Eq. 6.5.

(a) (b)

Figure 6.2 (a) Encoding of 4 bits using (7,4) Hamming code (b) The relationship
between the original and parity check bits

P1 = b1 ⊕ b2 ⊕ b4

P2 = b1 ⊕ b3 ⊕ b4

P3 = b2 ⊕ b3 ⊕ b4 (6.5)

Decoding procedure aims to detect and correct errors, and then retrieve the original
bits. For error detection and error correction, a syndrome vector (SR) is computed by
multiplying the parity check matrix and the received codeword using Eq. 6.6, where
the multiplication operation performed using a bitwise AND between two bits followed
by an XOR between the terms. If the syndrome vector is not equal to zero, then there
exist an error in the received codeword and the decimal value of the syndrome vector
indicates error location in the codeword. According to the codeword arrangement, the
variable in the fourth digit is inverted to its complement.
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SR = H × W T (6.6)

where H =

⎡
⎢⎢⎢⎢⎣
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎦

2

6.4 The Proposed Methodology

Since the Human Visual System (HVS) is less sensitive to modification in sharp image
regions compared to uniform regions, the proposed method hides the EPR in the sharp
regions by utilizing a simple edge detection method. In order to maintain good quality
of the generated stego images a syndrome code is utilized. Moreover, to add a second
layer of security, we introduce an efficient and simple encryption method to conceal
the meaning of EPR.

The flow diagram of our proposed method is illustrated in Figure 6.3. The proposed
method begins with encrypting the secret data using the symmetric encryption
algorithm, then embeds the ciphertext into the cover image. To retrieve the secret
data, the encrypted data is extracted from the stego image using the extraction
procedure. Finally, the decryption procedure is utilized to retrieve the original secret
data.

The proposed method comprises five main procedures: encryption, edge detection,
embedding, extraction, and decryption.

6.4.1 The Encryption Process

To enhance the confidentiality of the patient information records, secret data is
encrypted using the symmetric encryption approach before embedding in the medical
image. However, the existing encryption methods have many limitation such as high
computational cost. Therefore, we present a new and simple encryption approach
which comprises three main stages: first round permutation, substitution and second
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Figure 6.3 The block diagram of the proposed method

round permutation. Permutation operation is a core element of cryptography methods
that aim to generate shuffled order of the plaintext. While the substitution operation
is the backbone of almost every cryptography method. It seeks to make the statistical
relationship between the plaintext and ciphertext as complex as possible.

The implementation of this process is explained in the following steps:

Algorithm 1: Encryption Process.

Inputs: Plaintext (PT ), key1 (X), key2 (Y ), key3 (Z).

Output: Ciphertext (CT ).

(1) Permutation 1st Round (T1): The first round permutation is illustrated in Figure
6.4a with 25 characters organized into a 5 × 5 matrix. Each entry in the matrix
represent a character index within a 25 data block. These indices are written in
spiral order, then read column by column as shown in Figure 6.4a.

(2) Substitution Round: We present a simple mathematical function to implement a
poly-alphabetic substitution cipher, where each ASCII code is mapped to many
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(a) (b)

Figure 6.4 Permutation boxes (a) box-1 and (b) box-2

ASCII code symbols using Eq. 6.7.

CT =
[ (

(PT − X) × Y
)

mod 256
]

⊕ Z (6.7)

where CT is the ciphertext, PT is the plaintext, X is a group of four values
ranging from 1 to 255, repeated as many times as necessary, Y is the second key.

Y value is between 1 and 255, such that Y and 256 is relatively prime, i.e. greatest
common divisor (Y, 256) = 1. Finally, Z is a sequence of binary digits that is
extracted from the cover pixels. To reduce the shared information between sender
and receiver, key values are derived from the cover image.

(3) Permutation 2nd Round (T2): The order of the output from the substitution
stage are rearranged using Box-2 as shown in Figure 6.4b. For example, we want
to encrypt the following secret data "There is a negative sign.". We select four
pixels from specific locations to be assigned to the first key (X), and Y = 3. An
illustration of the data encryption process is shown in Table 6.1.

6.4.2 Edge Detection

It is well known that embedding data in sharp contrast areas of an image is less
noticeable by the human eye compared to uniform areas [81, 212]. Consequently,
patient’s information is embedded in edge areas in order to produce a high quality stego
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Table 6.1 An illustration of data encryption process

PT Box-1
(T1)

ASCII
(PT) X PT−X (PT−X)*Y [(PT−X)*Y]

mod 256 Z CT Box-2
(T2)

T e 101 113 −12 −36 220 139 87 185
h g 103 92 11 33 33 148 181 143
e a 97 10 87 261 5 132 129 179
r t 116 1 115 345 89 130 219 205
e T 84 113 −29 −87 169 122 211 157

h 104 92 12 36 36 115 87 71
i i 105 10 95 285 29 120 101 198
s n 110 1 109 327 71 107 44 44

g 103 113 −10 −30 226 109 143 211
a n 110 92 18 54 54 114 68 129

32 10 22 66 66 130 192 219
n i 105 1 104 312 56 139 179 68
e . 46 113 −67 −201 55 142 185 192
g v 118 92 26 78 78 136 198 188
a e 101 10 91 273 17 137 152 182
t r 114 1 113 339 83 151 196 198
i e 101 113 −12 −36 220 155 71 164
v 32 92 −60 −180 76 129 205 148
e s 115 10 105 315 59 135 188 204

a 97 1 96 288 32 150 182 196
s 32 113 −81 −243 13 144 157 152
i s 115 92 23 69 69 137 204 101
g i 105 10 95 285 29 137 148 87
n 32 1 31 93 93 155 198 181
. e 101 113 −12 −36 220 120 164 87

image. If adopting one of the existing edge detection methods to identify and embed
in the edge regions, then the generated stego image will be slightly different from the
original cover image. Thus, when trying to perform edge detection on the stego image
to identify the edges (or produce the edge image) for the purpose of extracting the
message, some of the identified edges will not exactly match the original ones, and
hence, there is no guarantee that all pixels used to extract the message will be identical
to those used in embedding it. Therefore, we utilized the proposed edge detection
algorithm (Section 5.2.1) to identify the edge regions on the cover image, such that
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Figure 6.5 An example of a 3 × 3 block

the two edge images generated using the cover and stego images are identical. This
will enable the correct extraction of the concealed message from the stego image. The
algorithm starts by dividing the image into non-overlapping blocks that would be
individually evaluated and then categorised as either edge or non-edge blocks.

To discover the edge regions, the cover image (C) is divided into non-overlapping blocks
of size 3 × 3 pixels, an example of which is shown in Figure 6.5. The edges in an image
are categorized into horizontal (H), vertical (V ), and two diagonal directions (D1 and
D2). For each block, the magnitude for each direction can be computed by finding the
absolute mean difference between the four shaded pixels (for H and V ), or between
two of the shaded pixels (for D1 and D2). Edge magnitude can be computed using Eq.
5.1. The edge magnitude of each block (e) is the maximum of the four edge values.
Finally, if e > Threshold, the block is considered as an edge block, otherwise it is not
an edge block.

6.4.3 The Embedding Process

The flow diagram of the embedding procedure is illustrated in Figure 6.6. The
embedding procedure starts by dividing the cover image into ROI and RONI. To
identify the edge region, a high value is initially assigned to the threshold variable,
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which is then modified based on the message length and the number of pixels needed.
A STC is used to encode the secret data and then embed it into the identified edge
pixels. The implementation of the embedding process is explained in the following
steps.

Figure 6.6 The block diagram of embedding process

Algorithm 2: The Embedding Procedure.

(1) Identification of ROI and RONI: Medical image usually contains a particular
region that is referred to as the Region of Interest (ROI). It is quite important
to protect this region from any modifications in order not to compromise the
diagnosis. A rectangular or ellipse ROI is identified by the user manually using
four-element vector that specifies its initial coordinates and size. After the
identification of ROI, the medical image is converted into a binary image, where
pixels that have a value of 1 belong to ROI, while those that have a value of 0
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belong to RONI, as shown in Figure 6.7. The secret data is embedded only in
edge blocks of RONI to avoid making any change to the ROI. The extraction
process requires ROI coordinates to identify the embedding region, and therefore,
the coordinates of ROI are concatenated with the secret message to form the
data that will be embedded.

(a) (b)

(c) (d)

Figure 6.7 (a) and (c) ROI of MRI cover images. (b) and (d) corresponding Binary
Image of ROI

(2) Identification of Edges: In order to increase the embedding rate, n LSBs from each
edge pixel are used in embedding. Algorithm 5.1 (Edge Detection) is applied to
detect edge regions. The magnitude value (e) of each block determines the number
of bits, n, to be utilized from each pixel as shown in Table 6.2. Accordingly, a
high mean value which represents strong edges will carry more bits than a lower
mean value. Based on this, we may not need to embed in all blocks of the RONI.
The magnitude of each block is compared to the initial threshold value. However,
to reduce the computational cost of edge detection algorithm, initial threshold
value is set to a value of four. Then, edge blocks are classified into four groups
according to the magnitude value (e) as shown in Table 6.2. According to Eq.



6.4 The Proposed Methodology 126

6.8, three secret bits are embedded into four bits of the cover image.

(4 × Message Length) /3) ≤ Number of edge bits (6.8)

where edge bits are the utilized n LSBs from each edge pixel as shown in Table
6.2.

Table 6.2 Numbers of bits that can be embedded in each of pixels of an edge block
based on the group it belongs to

Group − G1 G2 G3 G4
Range of group [0−3] [4−7] [8−15] [16−63] [64−255]
Threshold 0 4 8 16 64
n (bpp) 0 bit 1 bit 2 bits 3 bits 3 bits

Region Smooth Region
(Unused)

Smooth
Region

Smooth
Region

Sharp
Region

Sharp
Region

(3) Comparison between ROI and edge region locations: As the ROI coordinates
are embedded in the initial edge blocks, a comparison between the first/last
row of the ROI with the first/last edge regions is required to ensure the initial
edge blocks are excluded from ROI pixels. The comparison is explained in the
following cases:

– Case 1: If the location of the first row of the edge region is below than that
of the first row of ROI, the secret data is embedded from top to bottom
of the cover image, and the cover pixel C(1, 1) is changed to even value to
determine the extraction process direction.

– Case 2: If the location of the first row of ROI is below than or equal to the
first row of edge region and the location of the last row of ROI is below than
that of the last row of the edge region, the secret data is embedded from
bottom to top of the cover image, and the cover pixel C(1, 1) is changed to
odd value to determine the extraction process direction.

– Case 3: If the top and bottom rows of the edge regions are completely
included in the ROI, return to step 1 of the embedding process to re-identify
the ROI.
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In case 3, steps 1 - 2 will be repeated, otherwise we proceed to step 4. The
first pixel C(1,1) must be modified so that it indicates the direction of the
extraction process. Extract the secret message from top to bottom of the
stego image if the C(1,1) pixel is even. Otherwise, extraction process will
start from bottom to top.

(4) Classification of edge pixels: To improve the embedding capacity, RONI pixels
are classified into four groups ([4 − 7], [8 − 15], [16 − 63], and [64 − 255]) based on
the magnitude value, e, of their corresponding edge blocks. Thus, more bits can
be embedded in sharp edges compared to less strong edges. Another advantage of
this approach is that embedding different number of bits per pixel may improve
the security of the message.

(5) Linear Cost Function: Embedding capacity and image quality are two key
factors that should be considered when implementing a steganography method.
However, some of these factors are conflicting. For example, improving the image
quality generally implies decreasing the embedding capacity. We propose here
an optimization function that balances between the embedding capacity (secret
message length) and number of bits utilized from each group. For example, if
the message length is less than the number of pixels that belong to Group 4,
then we utilize only 1-bit from Group 4 instead of using 3-bits to improve the
imperceptibility. In other words, If we utilize 3 bits from each pixel in Group 4,
then the difference between the cover and stego pixels will be in the range [0 − 7]
according to the weight of each digit in the binary system, where the first LSB is
of weight 20, the second LSB is of weight 21, and the third LSB is of weight 22.

Number of edge bits = (a × G4 pixels) + (b × G3 pixels) + (c × G2 pixels)

+ (d × G1 pixels) (6.9)

where a, b, c and d are integer numbers ranging from 0 to n.

(6) Embedding function: To modify the cover bits according to the message bits,
either Hamming or Syndrome-Trellis codes have been utilized to find the stego
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bits. Those two coding methods have been considered as one of them is simple and
fast while the other is more sophisticated and computationally more expensive.

a) Embedding using a (7,4) Hamming Code: Hamming code is utilized to
minimize the number of bits that need to be modified in the stego image.
In this stage, Hamming code is used to hide each 3 bits of the secret
data (m1, m2 and m3) into 4 cover bits (b1, b2, b3 and b4) that come from
two embedding pixels (selected as described in the previous step). A
codeword, W , is formed by arranging the seven bits in the following order:
W = [m1, m2, b1, m3, b2, b3, b4]. The parity check matrix and the codeword
are multiplied to determine which of the cover pixels need to be modified, as
shown in Eq. 6.6. SR indicates the bits that need to be modified based on
the codeword W . If SR is equal to the 3rd, 5th, 6th or 7th column of H, then
one bit is changed from the cover pixels. For example, when SR = [0, 1, 1]
then b1 is changed. If SR is equal to the 1st, 2nd or 4th column of H, then
two bits of cover pixels are changed. For example, if SR = [0, 0, 1] then b3

and b4 are changed. If b1, b2 or b4 are converted to its complement, then m2

or m3 are modified while they do not require any modification. So, we have
selected two cover bits to change given that one of them should be used to
compute m1, m2, and m3, and the other cover bit is used to compute m2 and
m3. If SR = [0, 1, 0] then b2 and b4 are changed. Finally, if SR = [0, 1, 1]
then b1 and b4 are changed. An example of embedding 3 secret bits is shown
in Figure 6.8.

b) Embedding using Syndrome-Trellis Code: The syndrome-trellis coding
(STC) [109, 110] is utilized for data hiding using Eq. 6.4. As described in
section 6.2, the framework of steganography based on STC, the additive
distortion function (Dst) is defined to choose the codeword having the lowest
distortion.

(7) Update the stego image: Modify the stego image using Least Significant Bit
Matching (LSBM) as defined in the following embedding function:
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Suppose secret data = [ 1, 0, 0 ] and cover pixel bits = [ 1, 0, 1, 1 ]
Codeword = [ m1 , m2 , p1 , m3 , p2 , p3 , p4 ]
Codeword = [ 1 , 0 , 1 , 0 , 0 , 1 , 1]

Codeword’

Parity Check 
Matrix

Syndrome 
Error Position

Parity Check meSyndrom

Codeword

p3 is changed because the Syndrome = 6    column of parity check matrix
Modified codeword = [  1  ,  0  ,  1   ,  0  ,  0  ,  0  ,  1 ]

th

0

X =

 

Figure 6.8 An illustration of embedding 3 secret bits into 4 cover bits using Hamming
code

Sbi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bi + 2pos−1, ifmi �= bi and (k > 0 or bi = 2 × (pos − 1))
bi − 2pos−1, ifmi �= bi and (k < 0 or bi = 255 − 2 × (pos − 1))

bi, ifmi = bi

(6.10)

where Sbi is the ith stego bit obtained by using LSBM , bi is the modified cover
bit produced from step 6, k is the random variable with uniform distribution on
{+1, −1} and pos the right most ith LSBs of bi ranging from 1 to 3. Note that
LSBM has been chosen over LSB replacement, as according to [213] it proved to
be more efficient.

6.4.4 The Extraction Process

Algorithm 3: The Extraction Procedure.
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(1) Extraction of the shared information: Identify the extraction direction from the
first pixel S(1, 1).

(2) Identification of Edges: Identify edge regions in the stego image using Algorithm
5.1 (EdgeDetection) and the extracted threshold value.

(3) Identification of ROI and RONI: To divide the stego image into ROI and RONI,
coordinates of ROI should be extracted from the initial edge blocks using the
following XOR operations:
m1 = b1′ ⊕ b2′ ⊕ b4′
m2 = b1′ ⊕ b3′ ⊕ b4′
m3 = b2′ ⊕ b3′ ⊕ b4′
Where (b1′, b2′, b3′ and b4′) are the stego bits and (m1, m2 and m3) are the secret
bits.

(4) Classification of edge region: RONI pixels are classified into groups based on the
edge mean value of each block as shown in Table 6.2.

(5) Linear Cost Function: Apply the cost function to determine how many bits are
used from each group.

(6) Secret message extraction: extract the secret data bits (m1, m2 and m3) using the
previous XOR operations when the embedding function applied the Hamming
code. Otherwise, if the STC was performed, then extract the secret message
using Eq. 6.2.

6.4.5 Decryption Process

Algorithm 4: The Decryption Procedure.

(1) Inverse Permutation of Round 2 (T -1
2 ): Apply the inverse permutation (T-1) on

the extracted ciphertext to get the original order. The inverse permutation is
defined in the following sequence.

T-1
2 = [25, 24, 10, 11, 9, 23, 22, 8, 2, 12, 13, 3, 1, 7, 21, 20, 6, 4, 14, 15, 5, 19, 18,

16, 17].
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(2) Inverse Substitution: An inverse substitution function should be applied to
replace the ciphertext with the original text (plaintext). The corresponding
decryption function is defined in Eq. 6.11.

PT =
( [

( CT ⊕ Z ) × Y −1
]

+ X

)
mod 256 (6.11)

where CT is the ciphertext, PT is the plaintext, X is a group of four values
ranging from 1 to 255, repeated as many times as necessary, and Y-1 is the
multiplicative inverse of the second key (Y), in the range 1 to 255, such that
Y.Y-1 ≡ 1 mod 256.

(3) Inverse Permutation of Round 1 (T -1
1 ): Finally, inverse permutation of round 1 is

performed to get the correct order of the plaintext. The inverse permutation is
defined in the following sequence.

T-1
1 = [5, 6, 15, 16, 25, 24, 23, 22, 21, 20, 11, 10, 1, 2, 3, 4, 7, 14, 17, 18, 19, 12, 9,

8, 13].

6.5 Summary

This chapter handles the security issue of patient’s information in the digital medical
system. It presented an efficient combination between cryptography and information
hiding techniques in order to ensure the security and privacy of patients’ information
through concealing the meaning of the secret data and its existence. Because medical
images have to be carefully processed, as introducing modifications to their important
regions, known as the region of interest (ROI), may impact diagnosis of patients’
conditions, we have refrained from making any modifications to the ROI and developed
our algorithm to conceal the secret data in the Region of Non Interest (RONI). Moreover,
based on the characteristic of the human visual perception, we focused on embedding
data into the sharp edges of the RONI, as this would attract less attention from
intruders about the existence of secret data in the image. To further enhance the
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embedding efficiency and increase data security, we incorporated a coding algorithms
that helped in reducing modifications to the original (cover) images.



CHAPTER 7

Medical Image Segmentation based on Clustering
Fusion1

This chapter presents an efficient fully-automatic brain tissue segmentation algorithm
based on a clustering fusion technique. In the training phase of this algorithm, the
pixel intensity value is scaled to enhance the contrast of the image. The brain image
pixels that have similar intensity are then grouped into objects using a superpixel
algorithm. Further, three clustering techniques are utilized to segment each object. For
each clustering technique, a neural network (NN) model is fed with features extracted
from the image objects and is trained using the labels produced by that clustering
technique. In the testing phase, pre-processing step includes scaling and resizing the
brain image are applied and then, the superpixel algorithm partitions the image into
multiple objects (similar to the training phase). The three trained neural network
models are then used to predict the respective class of each object and the obtained
classes are combined using majority voting.

1 The contents of this chapter have been published in the Journal of Neurocomputing, Vol. 275,
(2018), entitled "A Clustering Fusion Technique for MR Brain Tissue Segmentation"
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7.1 Introduction

The segmentation process of brain images aims to divide the brain image into three
main tissues: white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF)
[193]. The objective of segmentation is to simplify the actual illustration of an image
into another format, which is easier to understand and analyze [9]. Basically, image
segmentation is useful to define boundaries between the brain tissues as well as assigning
a unique label to each pixel in the image.

Despite image segmentation has distinct benefits, there are various challenging issues
associated with image segmentation algorithms, such as development of a common
approach that can be used to all image types and applications. The image quality
plays an important role in producing accurate segmentation. However, MR images
obtained from different MRI scanners are prone to image intensity-related artefacts,
such as image noise or the bias field effect, which are highly dependent on the magnetic
field strength [161, 163]. Also, the selection of a suitable method for certain image
types can be quite challenging. Because of the aforementioned reasons, there is no
universally accepted technique for designing MR image segmentation [162].

In recent years, there has been a growing interest in developing an image segmentation
technique based on clustering techniques. According to [214], clustering is considered
one of the most popular and efficient techniques for image segmentation. Common
clustering methods are the k-means, the fuzzy c-means (FCM), Gaussian mixture
model (GMM), and self-organized map (SOM). Each one of these methods has its own
advantages and disadvantages. For instance, the k-means method is fast and easy to
implement, but it is strongly affected by outlier points and sensitive to initialization
[215]. FCM, on the other hand, is less sensitive to initialization, while SOM achieves
comparatively better results for overlapped classes when compared to the k-means
method; however, the computational cost of FCM and SOM is high. Obviously, it is
difficult to have one clustering method that combines all the strength points of the
existing clustering techniques in a single method. This motivated this research to
explore the possibilities of incorporating numerous clustering techniques to produce
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the final segmentation result that possesses two main properties; namely, enhanced
accuracy and reduced computational cost for the testing phase.

In order to attain the salient features of a number of clustering methods, a fully-
automatic segmentation method for MR images based on the concept of clustering
fusion and neural networks (NN) is presented. In this process, the image is first divided
into superpixels which are used by a number of different clustering algorithms to
produce the segmentation results. A neural network model is then trained using the
results of each clustering algorithm and the obtained results of the different neural
network models are combined to produce the final clustering results for each superpixel.

This chapter is organized as follows. Section 7.2 presents three different clustering
techniques. Section 7.3 introduces the Artificial Neural Networks (ANNs). The
proposed methodology is described in Section 7.4. Finally, the summary is given in
Section 7.5.

7.2 Clustering Techniques

Clustering techniques are mostly unsupervised learning algorithm not reliant on
labelled data. The clustering algorithm divides the image into non-overlapping classes
with similar intensities based on image features. Moreover, the unsupervised clustering
technique strongly based on the initialization and image features to obtain an
appropriate result. Usually, the clustering algorithms used are k-means, fuzzy c-mean
(FCM) and self-organizing map (SOM).

7.2.1 K-means

K-means is one of the most popular unsupervised clustering technique that separates
the input data into groups based on their distance from each other. It is simple and
fast to apply on images with large data points [216]. It consists of two main steps: (i)
generating a new grouping by assigning each data point to the closest cluster centre
and (ii) calculating the k centroid values [217]. The k-means method is described in
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Algorithm 7.1.

Algorithm 7.1: k-means
Inputs : Data points (X) of size n × r and number of clusters (k).
Outputs : Cluster indices (C) of size n × 1.

1 Randomly initialize cluster centres (Cj), where Cj = {c1, c2, · · · , ck};
2 repeat
3 Calculate the distance between each data point of X and cluster centre of

C using Eq. 7.1;
4 Assign each data point (xi) to cluster cj which has the closest centroid;
5 Calculate the new cluster centre using Eq. 7.2;
6 until the cluster centres no longer change;

J =
n∑

i=1

k∑
j=1

∥∥∥∥xi − cj

∥∥∥∥2
(7.1)

where n is the number of data points (x1, x2, · · · , xn), and k is the number of cluster
centres.

cj = 1
mi

∑
x∈cj

x (7.2)

cj is the jth cluster centre and mi is the number of data points (x) in the jth cluster
centre.

7.2.2 Fuzzy c-mean

Fuzzy c-mean (FCM) [184] depends on the primary idea of the k-means (hard) clustering
with some modifications. In the hard clustering, each data point should belong to
only one cluster, while in the FCM, each data point can belong to more than one
cluster according to the degree of membership associated with each data point. FCM
aims to improve the membership matrix and cluster centres. The objective function is
calculated as shown in Eq. 7.3. The FCM method is described in Algorithm 7.2.
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Algorithm 7.2: Fuzzy c-means
Inputs : Data points (X) of size n × r, number of clusters (c), the fuzzifier

(m), threshold (ε) and maximum number of iterations.
Outputs : Membership matrix U and cluster centres C.

1 t ← 0;
2 ut

ij initialized randomly;
3 repeat
4 t ← t + 1;
5 Calculate Ct

j using Eq. 7.4;
6 Calculate ut

ij using Eq. 7.5;
7 until ‖ut − ut+1‖ < ε, or max iteration is reached;

J =
n∑

i=1

c∑
j=1

um
ij ×

∥∥∥∥xi − cj

∥∥∥∥2
(7.3)

where
c∑

i=1
uij = 1 and uij ∈ [0, 1] , ∀j = 1, · · · , n

n is the number of data points (x1, x2, · · · , xn), c is the number of cluster centres and
uij is the membership degree of data point xi to cluster cj.

The cluster centre and membership matrix values are defined in Eqs. 7.4 and 7.5
respectively.

cj =
∑n

j=1 um
ij xj∑n

j=1 um
ij

(7.4)

uij = 1∑c
k=1

( ‖xi−cj‖
‖xi−ck‖

) 2
m−1

(7.5)

where m is the fuzzier that determines the level of cluster fuzziness (in our proposed
method, m is set to 2). Also, m ∈ R with m ≥ 1.

7.2.3 Self Organizing Map

Self-organizing map (SOM) [185] is an unsupervised learning neural network. SOM
has a feed-forward structure and, like other types of neural network, does not require
the targeted output be specified because it divides data point into groups by learning
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from the data itself instead of constructing a rule set. The map contains two layers:
the input and output (competitive) layers. In the input layer, each node corresponds
to single input data, while the output layer is organized into a two-dimensional grid
of competitive neurons, as shown in Figure 7.1. Each input node is connected to the
output node by adjustable weight vector and is updated in each iterative process.

The winner neuron, also is known as best matching unit (BMU), is determined by
selecting the minimum Euclidean distance between the input data and weight vector at
each iteration. SOM also utilizes the neighbourhood function. So, when the node wins
a competition, the node neighbours are also updated. Let X = {x1, x2, · · · , xN} be
the input data of size N × 1 and wij is the weight vector of the node xi. The winner
neuron is computed using Eq. 7.6.

c = ‖xi − wij‖ (7.6)

The winner neuron and its neighbors are updated using Eq. 7.7.

wij(t + 1) = wij(t) + Hci

[
xi(t) − wij(t)

]
(7.7)

where wij and wij(t+1) are the old and new adjusted weight for the node xi respectively,
t describes the iteration number of the training process, xi(t) is the input data at
iteration t, and Hci is the neighbourhood function for the winner neuron c, which is
calculated using Eq. 7.8.

Hci = α

⎡
⎣ exp(− ‖rc−ri‖2

2σ(t)2 )
⎤
⎦ (7.8)

where α is learning rate, ri and rc are the positions of the node i and the winner node
c in the topological map (output space) respectively, ‖rc − ri‖ is the distance between
the i and winning neurons and σ is the search distance (the number of neighbourhood
pixels).
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Figure 7.1 Self-Organizing Map (Rectangular Topology)

The SOM algorithm can be summarized as follows:

1. Initialization phase: Initialize random weight to all the nodes .

2. Competitive phase: Select the BMU by examining all the grid nodes with the
input data using Eq. 7.6. The minimum Euclidean distance presents the highest
matching.

3. Cooperation: The neighbourhood function of the BMU is computed using Eq.
7.8. The radius of neighbours decreases over iteration.

4. Learning stage: Update the weight vector of the winning neuron and its neighbours
using Eq. 7.7.

7.3 Artificial Neural Networks

An artificial neural network (ANN) is an information processing mechanism which
imitates the biological nervous system in processing information. It comprises of
large number of interconnected processing elements, which is also known as neurons,
which are working to resolve a particular issue. An ANN system learns by sitting
different examples, in order to be configured for a later specific application during a
learning process. Learning within ANNs systems includes modulation to the existence
connections between the neurons, which is called the synaptic connections [218].
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As shown in Figure 7.2, NNs are arranged into layers, where each layer consists of
a number of interconnected nodes which contains an activation function. Patterns
are introduced to the network via the input (first) layer, which connects to one or
more hidden layers and the processing is done through weighted connections. Also, the
hidden layers are connected to the output layer where the ANNs output is considered
as weighting graphs.

The supervised learning process comprises of having the desired output for specific input
set. In other words, each training sample contains the input data and its corresponding
(desired) outputs [219].

In the supervised learning strategy, the weights and thresholds of the NN are consistently
modified through the use of comparative activities, performed by the learning process
itself, that observe the inconsistency between the generated and desired outputs,
utilizing this distinction on the alteration process. The network is counted trained
when this error is within a reasonable range [219].

Figure 7.2 Architecture of neural network
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7.4 The Proposed Methodology

This chapter demonstrates a brain tissue segmentation method by incorporating various
clustering techniques and an artificial neural network (ANN). This chapter demonstrates
a brain tissue segmentation method by incorporating various clustering techniques
and an ANN. In general, the goal of the proposed method is to generate individual
segmentation using neural networks that learn from each clustering technique separately
and then combine the segmentation results of those neural networks using a majority
voting approach. This will help to enhance the overall segmentation performance
and reduce the testing computational cost in comparison to the original clustering
algorithms. The proposed method is categorized into two main phases: training and
testing. Each phase involves several steps as shown in Figures 7.3 (training) and 7.10
(testing) respectively.

7.4.1 Training Stage

7.4.1.1 Pre-processing

The pre-processing phase is mainly introduced to enhance the MR segmentation of the
cerebrospinal fluid (CSF) region. The preprocessing and enhancement step consists of
image scaling and resizing.

� Image scaling: In order to enhance the contrast of the image, the image value
distribution is scaled to cover a wide range from 0 to 255. Eq. 7.9 is applied to
generate the new image.

Scale pixel = a + ((Original pixel − c) ∗ F )

where F = b − a

d − c
(7.9)

where a and b are the target minimum and maximum grey-levels respectively
and the original grey-levels fall in the range [c, d].

� Image resizing: The dimension of the original and ground truth images are
doubled (from 256×256 to 512×512) by replicating each pixel into a block of size
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Figure 7.3 The training phase of the proposed method

2 × 2. Most of the existing algorithms have poor CSF classification performance
compared to that of GM and WM. The CSF class covers a small area that
has an average ratio of 2.10 in the brain image compared to the GM and WM,
whose average ratio is 54.22 and 43.68 respectively. When using the superpixels
algorithm, classes might be combined with other classes. Therefore, the objective
of doubling the size of the original and ground truth images is to prevent the
merging of CSF objects with the other objects to make it clearer for the clustering
step.
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7.4.1.2 Pre-segmentation

� Simple linear iterative clustering (SLIC) superpixels [220, 221]: The SLIC
performs a constrained search space in the neighbourhood of the cluster centre
by integrating intensity and spatial location to generate the superpixels.

The scaled image is over-segmented into objects using the SLIC superpixels
algorithm [220] as shown in Figure 7.6a. In the beginning, the required number
of superpixels, k, is manually defined. The initial superpixel cluster centres
Cj = [Ij, xj, yj]T with j = {1, 2, · · · , k}, where Ij is the pixel intensity and
(xj, yj) is the coordinator of the centre. The initial cluster centres are sampled
on a regular grid spaced S pixels. In order to have approximately equal size of
superpixel, the grid size is set to

√
N
k

, where N is the total number of image
pixels. Then, the centres are moved to the lowest gradient position in a 3 × 3
neighbourhood to prevent centring a superpixel on an edge or a noisy pixel. The
pixels are grouped based on intensity similarity. After each iteration, the cluster
centres are modified based on the pixels assigned to that cluster. The iterations
continue until the superpixel centres do not change.

Figures 7.4 and 7.5 illustrate the impact of the compactness and number of
superpixel parameters on the boundary adherence ability of superpixels. The
compactness parameter (m) controls the shape regularity of the superpixel
region (flexibility of superpixel boundaries). It is clear that higher compactness
values generate more regular and smoother shapes as shown in Figures 7.4a -
7.4d. However, a higher value of compactness affects the boundary adherence of
superpixels. In our experiments, the superpixel size (k) and the compactness (m)
set to 1500 and 5 respectively. Also, A small number of superpixels would lead
to a large superpixel size as shown in Figure 7.5a.

� Merge the small objects: After dividing the image into several groups based on
the SLIC superpixels algorithm, a small object is merged with its neighbour
object according to some rules. In the beginning, we need to predict the small
objects which have less than 30 pixels. Then, neighbours of the small objects
are identified and sorted in ascending order based on their sizes. Finally, the
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(a) (b)

(c) (d)

Figure 7.4 Visual illustration of the effect of SLIC superpixel parameters (number of
superpixel (k) and compactness (m)) in brain tissue segmentation: (a) k = 2000 and
m = 5, (b) k = 2000 and m = 10 , (c) k = 2000 and m = 20, (d) k = 2000 and m = 30

small objects are merged with the biggest neighbour. Figure 7.6b presents the
over-segmented image after the merging step.

� Remove the background: The merged image is divided into background and
object regions based on Eq. 7.10.

g(x,y) =

⎧⎪⎨
⎪⎩

1 if f(x,y) ≥ Th

0 otherwise
(7.10)

Where g(x,y) is the segmented binary image, f(x,y) is the original pixel value and
Th is the threshold value.

The global threshold value is selected based on the dataset that used for evaluation.
The histogram of the background of the training samples are examined to decide
the threshold value. The threshold value is identified by Th = �( max. pixel
value − min. pixel value ) × 3%�. The � � operation is the floor function.
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(a) (b)

(c) (d)

Figure 7.5 Visual illustration of the effect of SLIC superpixel parameters (number of
superpixel (k) and compactness (m)) in brain tissue segmentation: (a) k = 500 and m
= 10, (b) k = 1000 and m = 10, (c) k = 1500 and m = 10 and (d) k = 2000 and m =

10

(a) (b)

Figure 7.6 (a) Zoomed area from the SLIC superpixels algorithm and (b) zoomed area
of the SLIC superpixel after merging the small objects
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7.4.1.3 Feature Extraction

Pixel intensity features are extracted for all objects and fed to three different clustering
techniques simultaneously. Hence, the sizes of the over-segmented objects are varied.
For each object, the histogram is identified and sorted in ascending order. The five
highest frequencies of pixel intensity are extracted. The size of the feature matrix is
k × 5, where k is number of objects and five is number of features for each object.
Figure 7.7 shows pixel intensities of one object and Figure 7.8 shows its histogram,
where the first five shaded intensities (highest frequencies) are the extracted features
of that object.

Figure 7.7 An example of object pixel intensities

7.4.1.4 Clustering Techniques

A number of base clustering techniques are utilized to divide the brain image into
groups. The inputs for each clustering algorithm are features, centre values and the
class label (there are three classes for the MR brain images excluding the background).
In order to enhance the segmentation accuracy, the number of classes is increased to six
to address the issue of intra-class variability. This will help in differentiating between
objects that belong to different classes and yet have small differences between their
intensity levels (e.g. some regions of the CSF and GM classes). Three base clustering
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Figure 7.8 The histogram of Figure 7.7

algorithms are chosen to be used in this work, which are k-means, FCM and SOM. A
brief description of each of these three algorithms is given below.

7.4.1.5 Matching Classes

For the brain tissue dataset, this step aims at forming three classes from the six
classes that were produced in the previous step, where the desired number of brain
tissues is three (WM, GM and CSF). In other words, the six classes produced by the
segmentation algorithms are grouped to form three classes. The mapping function is
described in Algorithm 7.3.

7.4.1.6 Back Propagation Neural Network (BPNN)

The BPNN is considered to be one of the simplest methods for supervised training of
multi-layered neural networks. It estimates the non-linear relationship between the
input and the output by adjusting the weight values. The back propagation method
is a generalization of the least mean square (LMS) algorithm that updates network
weights to reduce the mean squared error between the network and targeted outputs.
The supervised network is trained using two inputs: the input data points (extracted
features) and the targeted outputs. The BPNN algorithm can be summarized as follows
[222]:
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Algorithm 7.3: Mapping n-classes to 3
Inputs : k objects, clustering output, ground truth image.
Outputs : new class.

1 cu ← {1, 2, . . . , 10};
2 i ← 1;
3 for i ≤ 10 do
4 Find which objects from the clustering output are equal to class cu(i)

[row, col] ← find (clustering output == cu(i));
5 class ← [ ];
6 j ← 1;
7 for j ≤ 10 do
8 GT ← Find the class value of object(rowj, colj) in the ground truth

image;
9 class ← [class ; GT];

10 class no ← 3;
11 class value ← [128, 196, 254];
12 m ← 1;
13 for m ≤ class no do
14 [R, C] ← find (GT == class value(m));
15 Percentage (m) ← Length (R) divide by Frequency of class value (m) in

the ground truth;
16 Accuracy (m) ← Percentage (m) divide by Total of frequency for all

classes in the ground truth image;
17 Assign for cui the maximum accuracy value;

1. Initialize weights and node offset to random values.

2. Present a training example and propagate it through the network. The training
example includes a input vector (x0, x1, · · · , xn−1) and desired output vector
(d0, d1, · · · , dn−1).

3. Compute the actual output (y) using the sigmoid non-linearity function.

4. Adjust weights starting from the output layer and working backwards (backward
pass) to the first hidden layer using Eq. 7.11.

wij(t + 1) = wij(t) + μδjx′i (7.11)
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where wij(t + 1) is the weight from hidden node i or from an input to node j at
time t, x′i is either the output of node i or is an input, μ is the gain term and δj

is an error term for node j. δj is calculated using Eq. 7.12.

δj =

⎧⎪⎨
⎪⎩

yj(1 − yj)(dj − yj) If node j is an output node
xj(1 − x′j)∑k δjwjk If node j is an internal hidden node

(7.12)

where dj is the desired output of node j, yj is the actual output of node j, k is
over all nodes in the layers above node j and xj is the input of node j.

5. If the LMS is greater than a predefined threshold value then repeat step 2 to 5.

6. Stop the training process and store the optimal weights.

The three BPNN models are trained to imitate the three clustering algorithms, as this
would enable the use of trained models instead of the original clustering methods in
the testing stage, which helps reduce the complexity of the system. Therefore, after
segmenting the training dataset using the three clustering methods, target outputs that
represent the clustering labels for each method are used to train the neural networks
that are fed with the extracted features of the superpixel objects as shown in Figure
7.9. The first five images of the dataset are used for training. Thus, a model for brain
tissue segmentation is learned from the training dataset for each clustering technique
independently.

Figure 7.9 The training model of NN under supervised learning
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7.4.2 Testing Stage

The flow diagram of our testing stage is illustrated in Figure 7.10. The first three steps
are identical to the training stage. The process begins by performing the pre-processing
step, which includes contrast enhancement and image resizing. In the next step,
the SLIC superpixels algorithm divides the brain image into multiple objects. The
subsequent step involves feature extraction, where the five highest frequencies of pixel
intensity are extracted from each object. For each clustering technique, the training
model is utilized to predict the class for each object. Below are the detailed steps of
the testing stage:

Pre-processing

Scale

Resize
Feature 

Extraction

Combine the 
smaller objects

Remove 
background

SLIC superpixels

P
re

d
ic

ti
on

Neural Network

K-means TM

SOM TM

FCM TM

Class selection 
using majority 

voting

Post-
processing

Segmented  Image

Testing Image

Figure 7.10 The testing phase of the proposed method

1. Pre-processing step: The pixel intensity of the test image is modified using Eq.
7.9 to improve the image contrast. The image size is then increased to help in
accurately identifying the CSF region.
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2. Pre-segmentation step: The SLIC superpixels algorithm is applied to divide the
image into objects. Then, any small object that has less than 30 pixels is merged
with its biggest neighbour. Finally, the background is excluded using a global
threshold value.

3. Feature extraction: For each object, the five highest frequencies of pixel intensity
are extracted.

4. Neural network: The trained NN models are used to predict the segmented image
for each of the clustering methods separately.

5. Select the final segmented image: The segmented image is combined using a
majority voting approach, where each object is assigned to the class that receives
the highest votes.

6. Post-processing step: Correction of boundary labels may be required, especially
for under-represented classes, such as the CSF that was found to be confused
with GM. To correct the partition result, we need to identify the CSF region
and identify their distance from the centre of the image using Eq. 7.13. If the
distance (D) of a CSF object is greater than a certain threshold (set here to 80),
then this object is reassigned to the GM class.

D =

√√√√( image row
2 − avg.Oir

)2
+
(

image column
2 − avg.Oic

)2

, ∀i = 1, · · · , t

(7.13)
where Oi is the CSF object, Oir is the row of object Oi, and Oic is the column of
object Oi.

Figure 8.15 shows an example of the segmented image before and after applying
the post-processing step. Figures 7.11a and 7.11b are identical, while Figures
7.11c and 7.11d are different.
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(a) (b)

(c) (d)

Figure 7.11 Subject 111-2, slice 20: (a) without the post-processing step, (b) with the
post-processing step, Subject 205-3, slice 20: (c) without the post-processing step, and

(d) with the post-processing step

7.5 Summary

In this chapter, a segmentation method was developed that combines the SLIC
superpixel, three clustering techniques and a neural network to divide the MR brain
image into three tissues of WM, GM and CSF. The method comprises two stages:
training and testing. Both stages start with a pre-processing step to improve the
image contrast, as the brain structure is not realized by unique intensities in MR
images. This step also incorporates image scaling and resizing, was it has been found
that this helps to achieve a better clustering outcome, particularly for the
under-represented class of CSF. Then, the brain image is partitioned into objects
using the SLIC superpixels algorithm, where the utilization of superpixels proved
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useful in segmenting complex objects, such as those of brain images. The training
stage involves the training of a NN model for each base clustering of the proposed
method to imitate its segmentation outcome. Features extracted from the frequencies
of pixel intensities are used for this purpose. In the testing stage, the trained NN
model of each clustering technique was utilized to predict the class for each object.
The outcome of the segmentation results are then combined using majority voting and
a post-processing step is used to correct the boundary labels.

The main contribution of the proposed method is introducing an efficient ensemble-
based clustering method to enhance the segmentation of MR brain tissues. The testing
stage of the proposed method is computationally efficient and more accurate than the
segmentation obtained using a single clustering technique.



CHAPTER 8

Experimental Results and Discussions

This chapter presents the results of the steganography and segmentation methodologies
mentioned in chapters 5, 6 and 7. Several experiments have been carried out to
evaluate the performance of the proposed method, and to compare its performance
with some of the existing algorithms. In the beginning, a complete description of the
employed datasets is given. Afterwards, the results of the steganography methodologies
using general and medical datasets for evaluation are presented. Finally, quantitative
assessment of the segmentation methodology is carried out different computing metrics.

8.1 Steganography Performance Evaluation

8.1.1 Image Dataset

BOWS2 (abbreviations of Break Our Watermarking System) database [223] contains
10,000 grey-scale natural images of size 512 × 512 (http://bows2.ec-lille.fr/).
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8.1.2 Evaluation

Different evaluation metrics are typically used to measure the performance of
steganography techniques. The embedding capacity, embedding distortion (objective
test) and security metrics are used to evaluate the overall performance of the proposed
methodologies. The proposed methodologies are implemented in MatlabR2014b.

8.1.2.1 Embedding Capacity Evaluation

Embedding capacity is an essential measurement to evaluate the performance of
steganography methods. It refers to the amount of bits that can be embedded into
the cover image. High embedding capacity is an attractive characteristic that most
steganography methods strive to achieve. Embedding capacity is computed using Eq.
8.1 [224]. In our experiments, a uniformly distributed random message is generated.

E = K

WH
(bpp) (8.1)

where K is the maximum number of secret message bits that can be embedded in the
cover image, and W and H are the cover image width and height respectively.

8.1.2.2 Embedding Distortion Evaluation

There is no unique method to measure imperceptibility of steganography methods.
One of the commonly used measures of imperceptibility is the peak signal-to-noise
ratio (PSNR) between the cover and stego images, which is calculated using Eq. 8.2.

PSNR = 10 log10

[
2552

MSE

]
(dB) (8.2)

where MSE is the mean square error between cover and stego images, which is defined
as:

MSE = 1
WH

W∑
i=1

H∑
j=1

(Cij − Sij)2 (8.3)
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where Cij and Sij are the grey values of pixel (i, j) of the cover and stego images. W

and H are the width and height of the cover image (the stego image has the same size).

PSNR quality measures the distortion occurred on the cover image and it does not
take HV S into consideration. The weighted peak signal-to-noise ratio (wPSNR) is
an alternate measurement quality, which is defined using Eq. 8.4. It utilizes an extra
parameter called noise visibility function (NV F ). wPSNR is roughly equivalent to
PSNR for flat areas because NV F is close to one in smooth areas. But for edge
regions, wPSNR is higher than PSNR, because NV F is close to zero for complex
regions, and hence it attempts to reflect how the HVS perceives images.

wPSNR = 10 log10

(
max(x)2

‖NV F (C − S)‖2

)
(dB) (8.4)

where NV F is defined as:

NV F(i , j ) = 1
1 + σ2

L(i , j)

(8.5)

where σ2
Li,j

denotes the local variance of an image in a window of size (3 × 3) centred
on the pixel with coordinates (i, j).

The average difference is a simple and popular image quality evaluation criterion. It is
computed by averaging the absolute difference between the cover and stego images,
which is calculated as shown in Eq. 8.6 [225].

Average Difference = 1
WH

W∑
i=1

H∑
j=1

| cij − sij | (8.6)

8.1.2.3 Security Evaluation

Security is an important issue in steganography systems. The goal of steganography
is reducing the distortion caused by the embedding process, and accordingly prevent
statistical detection of differences between the altered (stego) and original (cover)
images. The proposed methodology is evaluated under blind steganalysis method.
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Li-110D [226] is one of the most efficient steganalyzers used for detecting spatial domain
steganography.

In [226], the blind image steganalysis method is considered as a texture classification.
Image textures are classified into regular, near regular, irregular and stochastic. The
proposed approach is based on the fact that the embedding process affects the texture
of the original (cover) image by generating more stochastic (random) textures.

Li-110D [226] extracts statistical moment features of probability density function
(PDF) from the normalized histogram of the local linear transform (LLT) coefficients
of the image. These features aim to detect particular alternations of the local texture
caused by the embedding process based on the fact that steganography introduces
more stochastic textures to the stego images in a fine scale.

It has been proved that many of the steganography techniques mainly affect the
medium and high frequencies of the image [227]. Also, medium and high frequency
components can be classified as stochastic textures which might be introduced by the
embedding process. Since local DCT can offer meaningful visions regarding the image
characteristics of the spatial and frequency domains [228]. Li-110D utilized the medium
and high coefficient statistics of the local DCT to recognize between the cover and
stego images [226].

Three one-dimensional DCT base vectors, u1 = [1, 1, 1]T , u2 = [1, 0, −1]T and u3 =
[1, −2, 1]T , are used to create a set of two-dimensional DCT (T DCT ) masks of size 3 × 3
using Eq. 8.7 [229]. In [226], six 2D DCT masks were only chosen using Eq. 8.8.

T DCT
ij =

{
ui × uT

j |(i , j) ∈ {1, 2, 3}
}

(8.7)

T DCT
ij =

{
ui × uT

j |(i , j) ∈ {(1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}
}

(8.8)
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The six local two-dimensional DCT masks are given as follows:

T DCT
13 =

⎡
⎢⎢⎢⎢⎣
1 −2 1
1 −2 1
1 −2 1

⎤
⎥⎥⎥⎥⎦ T DCT

22 =

⎡
⎢⎢⎢⎢⎣

1 0 −1
0 0 0

−1 0 1

⎤
⎥⎥⎥⎥⎦ T DCT

23 =

⎡
⎢⎢⎢⎢⎣

1 −2 1
0 0 0

−1 2 −1

⎤
⎥⎥⎥⎥⎦

T DCT
31 =

⎡
⎢⎢⎢⎢⎣

1 1 1
−2 −2 −2
1 1 1

⎤
⎥⎥⎥⎥⎦ T DCT

32 =

⎡
⎢⎢⎢⎢⎣

1 0 −1
−2 0 2
1 0 −1

⎤
⎥⎥⎥⎥⎦ T DCT

33 =

⎡
⎢⎢⎢⎢⎣

1 −2 1
−2 −4 −2
1 −2 1

⎤
⎥⎥⎥⎥⎦

In addition to TDCT masks, another four convolution kernels (W ) for local transform
are introduced which are equivalent to the second-order derivative (T SOD). The four
convolution kernels are identified as follows:

T SOD
1 =

⎡
⎢⎢⎢⎢⎣
0 0 0
1 −2 1
0 0 0

⎤
⎥⎥⎥⎥⎦ T SOD

2 =

⎡
⎢⎢⎢⎢⎣
0 1 0
0 −2 0
0 1 0

⎤
⎥⎥⎥⎥⎦ T SOD

3 =

⎡
⎢⎢⎢⎢⎣
1 0 0
0 −2 0
0 0 1

⎤
⎥⎥⎥⎥⎦ T SOD

1 =

⎡
⎢⎢⎢⎢⎣
0 0 1
0 −2 0
1 0 0

⎤
⎥⎥⎥⎥⎦

The final local linear transform (LLT) mask includes ten masks, i.e., T LLT = T DCT ∪
T SOD. Then, the features (F ) are extracted by convolving the input image (I) with
the final local linear transform masks (T LLT ) using Eq. 8.9. Finally, the probability
mass function (PMF) are produced by calculating the normalized histogram of the
extracted features (F ).

Fi =
{
I ∗ T LLT

i |i ∈ {1, 2, 3, · · · , 10}
}

(8.9)

where the symbol ∗ refers to the convolution operation.

Kullback–Leibler Divergence (KLD) [230] is one of the common security measures to
analyze the steganography system. It measures the difference between two probability
distributions P and Q. Suppose the cover and stego images are represented by C

and S respectively and the probability distribution function of C and S are denoted
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by pc and qs. KLD between two probability functions is computed using Eq. 8.10.
The smaller KLD value introduced by the embedding process is the less detectable by
steganalysis method.

KLD(pc ‖ qs) =
∑
g∈G

pc(g) log pc(g)
qs(g) (8.10)

where g ∈ G = {0, 1, 2, · · · , 255} is the grey-scale of the cover and stego images.

8.1.3 Image Steganography Methodology Results

This section presents the experimental results of the proposed methodologies, which is
introduced in Sections 5.2.2, 5.2.3 and 5.2.4. The proposed methods have been tested
using the BOWS2 database [223].

(a) (b)

Figure 8.1 (a) Cover image 512 × 512 and (b) Cover image histogram

8.1.3.1 Embedding Capacity and Distortion Evaluations

Some steganography methods, such as LSB, provide fixed embedding rate. The
embedding payload of the proposed method differs from one image to another, and
hence, the embedding rate depends on the contents of the cover image and the threshold
value used to discover edges.
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Figures 8.1a and 8.1b show one of the cover image used in the experiment and its
histogram. Figures 8.2a, 8.2c and 8.2e are the stego images resulting from the 1 bpp
embedding algorithm (Section 5.2.2) in spatial domain for 5%, 20% and 40% embedding
rates. The visual differences between the cover and stego images cannot be discovered
by the human eye, and even the histograms of the stego images (illustrated in Figures
8.2b, 8.2d and 8.2f are quite similar to that of the cover image. Figure 8.3 shows the
KLD of Figure 8.1a using the 1bpp proposed method with different embedding rates.
The difference between the probability distribution of the histogram of the cover and
stego images is small, which indicates a high security.

Figures 8.4a-8.4c show the cover and stego images obtained from 1bbp embedding
algorithm for 10% and 30% embedding rates. Smoother and textural parts from both
the cover and stego images are zoomed as shown in Figures 8.4d - 8.4f. It can be
observed that is hard to notice the difference between the cover and stego images.

Figures 8.5a, 8.5c and 8.5e show the stego images obtained from applying the n bpp
embedding algorithm (Section 5.2.3) for 5%, 20% and 40% embedding rates. The visual
difference between the cover and stego images cannot be discovered by the human eye.
The stego histogram of the n bpp embedding algorithm shown in Figures 8.5b, 8.5d
and 8.5f indicate a very high degree of similarity with the histogram of the cover image.
Figure 8.6 shows the KLD of the image shown in Figure 8.1a using the proposed Nbpp
method with different embedding rates. The results reveal that the difference between
the probability distribution of the histogram of the cover and stego images is small,
which indicates a high security. The KLD of the proposed Nbpp method is smaller than
that of the proposed 1bpp method because the Nbpp method utilizes less number of
pixels to embed the same message. Figures 8.7a-8.7c represent the difference between
the cover and stego images resulting from N bpp embedding algorithm with 5%, 20%
and 40% embedding rates respectively. The white pixels denote the pixels that have
been changed after the embedding process.

Figures 8.8a, 8.8c and 8.8e show the stego images obtained from applying the n bpp
embedding algorithm in IWT domain (Section 5.2.4) for 5%, 20% and 40% embedding
rates. The stego histogram of the n bpp embedding algorithm shown in Figures 8.8b,
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Table 8.1 Image quality evaluation with various 1-bpp steganographics methods in the spatial domain and embedding rates
over 10,000 stego images. The red values indicate the best result

Embedding
Rate Method MSE PSNR wPSNR Avg.

difference

5%
LSB-based TBPC [111] 0.0269(±4.6×10−4) 63.82(±0.099) 64.84(±1.43) 0.0269(±4.6×10−4)
Edge-LSB EALSB-MR [92] 0.0322(±3.8×10−3) 63.07(±0.425) 69.99(±2.88) 0.0301(±1.8×10−3)

Proposed 0.0207(±3.3×10−4) 64.98(±0.069) 71.01(±2.15) 0.0207(±3.2×10−4)

10%
LSB-based TBPC [111] 0.0415(±7.6×10−4) 61.94(±0.086) 62.98(±1.42) 0.0415(±7.7×10−4)
Edge-LSB EALSB-MR [92] 0.0578(±9.8×10−3) 60.55(±0.574) 66.23(±2.96) 0.0531(±4.4×10−3)

Proposed 0.0413(±4.6×10−4) 61.98(±0.049) 66.83(±1.74) 0.0413(±4.6×10−4)

20%
LSB-based TBPC [111] 0.0809(±1.1×10−3) 59.04(±0.068) 60.32(±1.36) 0.0809(±1.2×10−3)
Edge-LSB EALSB-MR [92] 0.1088(±2.5×10−2) 57.85(±0.807) 62.14(±2.91) 0.0969(±1.1×10−2)

Proposed 0.0826(±6.6×10−4) 58.96(±0.034) 62.92(±1.52) 0.0826(±6.6×10−4)

25%
LSB-based TBPC [111] 0.1012(±9.7×10−4) 58.99(±0.077) 60.32(±1.39) 0.1012(±1.1×10−3)
Edge-LSB EALSB-MR [92] 0.1369(±3.5×10−2) 56.87(±0.907) 60.69(±2.89) 0.1198(±1.5×10−2)

Proposed 0.1033(±7.4×10−4) 57.99(±0.031) 61.77(±1.45) 0.1033(±7.4×10−4)

30%
LSB-based TBPC [111] 0.1230(±1.1×10−3) 57.23(±0.073) 58.77(±1.37) 0.1230(±1.2×10−3)
Edge-LSB EALSB-MR [92] 0.1790(±4.9×10−2) 55.73(±1.012) 59.02(±2.87) 0.1529(±2.2×10−2)

Proposed 0.1239(±8.1×10−4) 57.19(±0.028) 60.98(±1.36) 0.1239(±8.1×10−4)

40%
LSB-based TBPC [111] 0.1652(±1.5×10−3) 55.95(±0.045) 57.85(±1.09) 0.1652(±1.5×10−3)
Edge-LSB EALSB-MR [92] 0.2448(±6.6×10−2) 54.38(±1.079) 57.20(±2.78) 0.2022(±2.7×10−2)

Proposed 0.1624(±9.3×10−4) 56.12(±0.024) 60.59(±1.09) 0.1652(±9.2×10−4)
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(a) (b)

(c) (d)

(e) (f)

Figure 8.2 (a), (c) and (e) Stego images using the 1bpp proposed algorithm (Section
5.2.2) in the spatial domain with 5%, 20% and 30% embedding rate, and (b), (d) and

(f) Histograms of the corresponding stego images
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Figure 8.3 KLD for Figure 8.1 using 1bpp proposed method with various embedding
rates

Table 8.2 The computational cost of various 1-bpp steganographic methods in the
spatial domain to embed 12902 bits

TBPC [111] EALSB-MR [92] Proposed
Computational cost

(sec) 23.87 0.104 2.033

8.8d and 8.8f indicate a very high degree of similarity with the histogram of the cover
image.

Two measures are commonly used to estimate the quality of the stego images with
respect to cover images, which are Peak Signal-to-Noise ration (PSNR) and its weighted
version wPSNR. Despite of being widely used, the PSNR quality metric does not take
into consideration the HVS characteristics. It calculates the degradation in all regions
in the same way. wPSNR has been introduced to give a more accurate image quality
measurement. Table 8.1 presents the quality of the stego images using different 1-bpp
steganography methods with embedding rates ranging from 5% to 40%. It is observed
that, the proposed 1 bpp method (5.2.2) obtained the best image quality compared to
EALSBMR [92] since it utilizes the XOR operation to reduce the difference between
the cover and stego images. Also, EALSBMR performs readjustment operation in
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(a) (b) (c)

(d) (e) (f)

Figure 8.4 (a) Cover image, (b-c) Stego Images using the 1bpp proposed algorithm in
the spatial domain with 10% and 30% embedding rate, (d) zoomed area from the cover
image, and (e-f) zoomed area from the stego image with 10% and 30% embedding rate

some cases to guarantee the extraction of the exact secret message in the receiver side.
The PSNR values of the TBPC [111] and the 1 bpp proposed method are found to be
close because both methods use coding to reduce the difference between the cover and
stego images, where the TBPC uses a tree structure and the proposed method uses
XOR operations. However, the wPSNR values of the proposed method are better than
that of the TBPC. The reason is that the proposed method embeds the secret data on
the edge regions. Also, the computational cost of the TBPC method is high because of
the use of tree structure as shown in Table 8.2.

On the other hand, Table 8.3 presents the results of embedding n-bpp using TPVD,
edge adaptive PVD, edge adaptive n-LSBs and our proposed method (5.2.3). In
edge adaptive PVD, the secret data is embedded in the edge regions according to the
difference value between each two adjacent pixels. In edge adaptive n-LSBs method,
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(a) (b)

(c) (d)

(e) (f)

Figure 8.5 (a), (c) and (e) Stego images using the Nbpp proposed (5.2.3) algorithm in
the spatial domain with 5%, 20% and 40% embedding rate and (b), (d) and (f)

Histograms of the corresponding stego images
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Figure 8.6 KLD for Figure 8.1 using Nbpp proposed method with various embedding
rates

the LSB steganography method is expanded and the proposed edge detection method
is used to discover the sharpest regions for the embedding process. It is similar to
the embedding method excluding the XOR operations. The visual quality results are
noticeably high for the proposed method compared to the other methods.

The embedding rates listed in Table 8.3 indicate that the embedding payload of the n

bpp algorithm is about double that of the 1 bpp algorithm and it exceeds 70% of the
cover image size. This is achieved with reduction in image quality, as indicated by the
PSNR and wPSNR values (shown in Table 8.3).

Table 8.4 presents the visual quality performance results of the proposed method in the
Integer Wavelet Domain (5.2.4). The results show that the proposed method obtain a
good PSNR and wPSNR values for different embedding capacity. The PSNR values are
between 61.37 dB and 48.45 dB with 5% - 50% embedding rates, where the minimum
acceptable value of the PSNR is 35 dB. Moreover, the maximum average difference
between the cover and stego images is up to 0.461.

In order to have a comparison between the two proposed N-bpp methods (spatial and
IWT domains), a graphical representation of the PSNR and wPSNR values are shown
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Table 8.3 Image quality evaluation with various N-bpp steganographics methods in the
spatial domain and embedding rates over 10,000 stego images. The red values indicate

the best result

Embedding
Rate Method MSE PSNR wPSNR Avg.

difference

10%

Edge-based Adaptive PVD [231] 0.675 49.84 58.50 0.1401
TPVD [232] 0.998 48.14 52.11 0.1598

Adaptive N-LSB 0.307 53.26 60.69 0.0842
Edge-XOR-based Proposed 0.289 53.53 60.43 0.0849

25%

Edge-based Adaptive PVD [231] 0.957 48.32 54.74 0.4669
TPVD [232] 2.845 43.59 47.64 0.5154

Adaptive N-LSB 0.853 48.82 54.73 0.2216
Edge-XOR-based Proposed 0.694 49.72 55.13 0.2085

40%

Edge-based Adaptive PVD [231] 1.167 47.46 52.60 0.3784
TPVD [232] 5.742 40.54 45.14 0.6853

Adaptive N-LSB 1.334 46.88 52.37 0.3446
Edge-XOR-based Proposed 1.072 47.83 52.86 0.3282

50%

Edge-based Adaptive PVD [231] 1.292 47.02 51.59 0.4492
TPVD [232] 6.654 39.90 43.85 0.8914

Adaptive N-LSB 1.675 45.89 51.35 0.4292
Edge-XOR-based Proposed 1.316 46.94 51.98 0.4049

60%

Edge-based Adaptive PVD [231] 1.706 45.81 50.58 0.5557
TPVD [232] 11.833 37.40 42.78 1.1052

Adaptive N-LSB 2.014 45.09 50.43 0.5173
Edge-XOR-based Proposed 1.571 46.17 51.14 0.4842

70%

Edge-based Adaptive PVD [231] 1.816 45.54 50.04 0.6178
TPVD [232] 17.381 35.73 41.70 1.3555

Adaptive N-LSB 2.350 44.42 49.69 0.6027
Edge-XOR-based Proposed 1.833 45.50 50.53 0.5651

in Figures 8.9a and 8.9b. It is clear that the stego images of the proposed IWT method
achieves a higher visual quality compared to those obtained using the spatial domain
method. However, the spatial domain method provides a higher embedding capacity
compared to the IWT method, i.e., 70% compared to a maximum of 50% based on Eq.
8.1 because the LL sub-band is excluded from the embedding process.
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(a) (b) (c)

Figure 8.7 (a-c) Difference between the cover and stego images using the Nbpp
proposed algorithm in the spatial domain with 5%, 20% and 40% embedding rate

Table 8.4 Image quality evaluation of the N-bpp IWT proposed method with
embedding rates over 10,000 stego images

Embedding
Rate MSE PSNR wPSNR Avg. Difference

5% 0.047 61.37 65.49 0.041
10% 0.103 58.14 62.04 0.081
25% 0.369 52.46 56.44 0.225
30% 0.487 51.30 55.37 0.274
40% 0.710 49.62 53.86 0.372
50% 0.929 48.45 52.95 0.461

The effect of utilizing one or n bits per pixel of the proposed method is illustrated in
Tables 8.1, 8.3 and 8.4. If only the first bit is only used in the embedding process, then
the error will be in the range [−1, +1] based on the value of the secret bit. On the other
hand, the N-bpp proposed method utilizes three bits from the sharp region, which
increases the error of the pixel value to be in the range [−7, +7]. The degradation of
stego image quality increases when using more bits.

8.1.3.2 Security Evaluation

Analysis of the proposed method is performed by extracting feature sets from the
original and stego images. These features are used to train an SVM (support vector
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(a) (b)

(c) (d)

(e) (f)

Figure 8.8 (a), (c) and (e) Stego images using the Nbpp proposed (5.2.4) algorithm in
the integer wavelet domain with 5%, 20% and 40% embedding rate and (b), (d) and

(f) Histograms of the corresponding stego images
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(a)

(b)

Figure 8.9 (a) PSNR values and (b) wPSNR values of the proposed N-bpp in the
spatial and wavelet domains

machine) classifier to learn the difference in features produced by data embedding.
In the experiments, the linear function kernel with the default parameter setting is
selected and the Matlab implementation of SVM is used. Also, Testing is done in
two-fold cross-validation, i.e., half of the cover and stego images are randomly selected
for training, and the remaining images are used for testing. This test is repeated twenty
times, and the average of the obtained accuracy values (shown in Tables 8.5 and 8.6)
indicate that TBPC, EALSB-MR, TPVD, edge adaptive PVD and edge adaptive n

LSBs are detected with an accuracy greater than the proposed method for most of the
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embedding rates (since the number of stego and cover images are equal, the random
guess accuracy is 50%). Moreover, when the embedding rate increased, the accuracy
value of the SVM classification increased. For example, when the embedding rate is
40% using 1 bpp method, the accuracy value is 60.23%. Even though the obtained
classification accuracy values of the proposed method are higher than that of the
random guess, these values are not high enough to enable the differentiation between
the cover and stego images with an acceptable precision. This however is not the case
for other steganography methods, especially with the high embedding rates. Please
note that the IWT steganography algorithm has not been tested using this steganalysis
method, as the Li-110D has been mainly developed to detect spatial steganography.

Table 8.5 The average accuracy value (for 10,000 cover images and their corresponding
stego images) against Li-110D with various 1-bpp methods. The red values indicate

the best result

Embedding
Rate 5% 10% 20% 25% 30% 40% Avg

TBPC [111] 65.51 74.87 81.10 84.06 85.26 89.09 79.98
EALSB-MR [92] 49.74 52.14 57.02 59.40 63.21 69.87 58.56
1bpp Proposed 49.58 51.27 54.37 55.69 57.45 60.23 54.78

Table 8.6 The average accuracy value (for 10,000 cover images and their corresponding
stego images) against Li-110D with various N-bpp methods. The red values indicate

the best result

Embedding
Rate 10% 25% 40% 50% 60% 70% Avg

Adaptive-PVD [231] 51.89 61.56 74.28 80.44 84.48 86.69 73.22
TPVD [232] 68.35 84.90 90.50 92.24 93.55 94.58 87.35
Adaptive-N LSB 54.73 59.02 62.35 67.66 69.50 76.37 64.93
N-bpp Proposed 52.80 58.83 62.74 63.27 64.72 66.01 61.39

8.1.4 Medical Image Steganography Methodology Results

This section presents the experimental results of the proposed medical image
steganography method, which is introduced in Section 6.4. The proposed methodology
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is evaluated using 100 MRI cover images (all of them are grey-level of size 255 × 255).
Figures 8.10a and 8.10b represent one of the cover images used in the experiment and
its ROI. Figure 8.10c shows the corresponding histogram of the cover image.

(a) (b)

(c)

Figure 8.10 (a) MRI cover images, (b) ROI of the cover image, and (c) histogram of
the cover image

8.1.4.1 Embedding Capacity and Distortion Evaluation

The quality of the embedding process is often evaluated by the embedding efficiency (e).
It represents the number of embedded bits per embedding change (introduced change),
where a maximized embedding efficiency value is related to a minimized embedding
distortion. It can be determined by e = K/d, where K is the length of the secret
message and d is the number of bit changes [109, 110].

The stego images produced with embedding rates of 5%, 20% and 40% using the
proposed method using STC are shown in Figures 8.11a, 8.11c and 8.11e. One can
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notice that it is difficult for the human eye to differentiate between the original and
stego images. Moreover, the histogram of the stego images (represented in Figures
8.11b, 8.11d and 8.11f) are quite similar to that of the cover images. It is important to
mention that for a 255 × 255 image, which contains 65025 pixels, an embedding rate
of 40% means embedding (40/100) ∗ 65025 = 26010 bits, which is equivalent to 3,715
ASCII characters. For a 512 × 512 image, an embedding rate of 40% means embedding
104757 bits or 14,979 ASCII characters.

In order to have a comprehensive comparison with the proposed method, PVD, TPVD,
edge adaptive PVD and edge adaptive n-LSBs methods are implemented. In edge
adaptive PVD, the secret data is embedded in the sharp regions first based on the
difference value between each two consecutive pixels (without overlap). In edge adaptive
n-LSBs method, the LSB steganography method is expanded and the proposed edge
detection method is used to discover the sharpest regions for the embedding process. It
is similar to the proposed embedding method excluding the coding algorithm and cost
function. The visual quality performance results are shown in Table 8.7. It is clear
that the proposed method using STC obtained the best image quality in all image
metric measurements compared to the other methods, followed by the Hamming code
implementation of the proposed algorithm.

Similar to other measures, the average difference increases with the increase of the
embedding rate, but for the proposed method using STC an average difference of 0.21
is obtained using an embedding rate of 50%. The average difference for the Hamming
code is found to be the second best, with a maximum of 0.323 for 50% embedding rate.
These results indicate that the difference between the cover and stego images obtained
using the proposed method is generally small. The proposed method and the edge
adaptive n-LSB results confirm the effectiveness role of using the coding theory, which
aims to reduce the difference between the cover and stego images.

A graphical representation of the PSNR and wPSNR values are shown in Figures 8.12a
and 8.12b respectively. Those two figures demonstrate the superior performance of the
proposed method using STC, and to a slightly less degree using Hamming code, in
comparison to the other methods with PSNR values greater than 50 dB and wPSNR
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(a) (b)

(c) (d)

(e) (f)

Figure 8.11 Stego images produced by STC (a) 5%, (c) 20% and (e) 40% embedding
rate, (b), (d) and (f) Histogram of the corresponding stego images
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Table 8.7 Comparison of the results of PVD, TPVD, Adaptive PVD, Adaptive N-LSB
and the N-bpp proposed methods using XOR, Hamming and STC. The red values

indicate the best result

Method Embedding
rate 5% 10% 25% 30% 40% 50%

PVD [81]

Avg. Diff 0.044 0.088 0.219 0.259 0.344 0.428
Avg. MSE 0.136 0.269 0.635 0.762 1.025 1.242
Avg. PSNR 56.81 53.84 50.01 49.31 48.12 47.19
Avg. wPSNR 62.51 9.51 55.68 54.95 53.67 52.69

TPVD [232]

Avg. Diff 0.146 0.292 0.754 0.912 1.228 1.515
Avg. MSE 3.891 9.017 23.83 28.45 38.03 46.67
Avg. PSNR 42.23 38.58 34.36 33.59 32.33 31.44
Avg. wPSNR 52.35 48.78 44.19 43.26 41.80 40.78

Adaptive PVD [231]

Avg. Diff 0.104 0.164 0.284 0.318 0.386 0.453
Avg. MSE 0.798 1.016 1.271 1.325 1.436 1.542
Avg. PSNR 49.11 48.06 47.09 46.91 46.56 46.25
Avg. wPSNR 61.96 59.68 56.59 55.74 54.39 53.37

Adaptive N-LSB

Avg. Diff 0.043 0.086 0.215 0.258 0.343 0.425
Avg. MSE 0.168 0.338 0.842 1.010 1.343 1.661
Avg. PSNR 55.87 52.84 48.88 48.09 46.85 45.93
Avg. wPSNR 66.65 62.97 56.07 54.75 52.89 51.70

Proposed Method
Edge-XOR

Avg. Diff 0.043 0.086 0.216 0.258 0.344 0.421
Avg. MSE 0.147 0.295 0.739 0.886 1.175 1.421
Avg. PSNR 56.45 53.43 50.44 48.76 47.43 46.61
Avg. wPSNR 67.65 63.30 56.01 54.85 53.26 52.18

Proposed Method
Hamming code

Avg. Diff 0.021 0.042 0.106 0.145 0.237 0.323
Avg. MSE 0.022 0.043 0.111 0.181 0.419 0.637
Avg. PSNR 64.71 61.82 57.70 55.56 51.91 50.09
Avg. wPSNR 72.73 67.92 61.76 60.02 56.87 54.40

Proposed Method
STC

Avg. Diff 0.009 0.022 0.071 0.091 0.164 0.210
Avg. MSE 0.010 0.023 0.111 0.150 0.422 0.594
Avg. PSNR 68.02 64.59 57.71 56.43 52.05 50.39
Avg. wPSNR 74.02 69.66 62.45 60.81 56.97 55.43

values greater than 55 dB, which means the hidden data is undetectable according to
the human visual perception.
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(a)

(b)

Figure 8.12 (a) PSNR values and (b) wPSNR values for PVD, TPVD, edge adaptive
PVD, edge adaptive n-LSB and the proposed method using Hamming and trellis codes

Table 8.8 presents the quality of the stego images using different 1 bpp steganography
methods and the proposed method using the XOR and STC with embedding rates
ranging from 5% to 30%. It is observed that, the proposed 1 bpp method using
STC obtained the best image quality compared to the proposed method using XOR
operation, EALSBMR [92] and Bassil [94] since it utilizes the trellis code to reduce the
difference between the cover and stego images.
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Table 8.8 Comparison of the results of EALSB-MR, LSB Canny, the 1-bpp proposed
method using XOR and the 1-bpp proposed method using STC. The red values

indicate the best result

Method Embedding
rate 5% 10% 20% 25% 30%

EALSB-MR [92]

Avg. Diff 0.030 0.053 0.097 0.120 0.153

Avg. MSE 0.032 0.058 0.109 0.137 0.179

Avg. PSNR 63.07 60.55 57.85 56.87 55.73

Avg. wPSNR 69.99 66.23 62.14 60.69 59.02

LSB Canny [94]

Avg. Diff 0.030 0.053 0.101 0.126 0.148

Avg. MSE 0.030 0.053 0.101 0.126 0.148

Avg. PSNR 63.28 60.85 58.10 57.13 56.42

Avg. wPSNR 69.57 65.23 60.70 60.42 57.73

Proposed Method
XOR (1 bpp)

Avg. Diff 0.021 0.042 0.083 0.104 0.125

Avg. MSE 0.019 0.041 0.079 0.103 0.124

Avg. PSNR 64.94 61.93 58.93 57.96 57.17

Avg. wPSNR 72.54 68.11 63.79 62.06 60.81

Proposed Method
STC (1 bpp)

Avg. Diff 0.009 0.019 0.045 0.056 0.062

Avg. MSE 0.010 0.019 0.046 0.057 0.061

Avg. PSNR 68.28 66.48 62.55 61.02 60.36

Avg. wPSNR 72.99 70.48 65.22 64.75 62.17

Table 8.9 Comparison of embedding efficiency for STC and Hamming code with
different payloads

Method Payload Embedding Efficiency

STC 20% 4.47
50% 4.44

Hamming code 20% 2.39
50% 2.40

Table 8.9 shows the embedding efficiency of the proposed algorithm for the two coding
techniques of STC and Hamming Code. The results indicate that STC achieves a
better embedding efficiency (causes less modifications to the cover image) compared
to the Hamming code. On the other hand, it is worth mentioning that due to the
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Figure 8.13 The computational cost and PSNR values for the proposed method using
Syndrome-Trellis and Hamming codes

shift operations, the STC has noticeably higher computational time compared to the
Hamming code. Figure 8.13 illustrates the computational time and PSNR values of
the STC and hamming code for various embedding rates. The implementation of the
proposed methodology was running on a PC with Intel I5-3470 Quad core 3.20GHz and
8GB RAM. According to [109, 110], the constraint height is usually ranged between
6 to 15, and therefore, a value of 12 is chosen in implementing the STC. The figure
shows that the difference in PSNR between the two methods gets smaller for higher
embedding rates (25% or more), whereas the difference in computational time gets
bigger, where it exponentially increases with the increase of the embedding rate for
the STC method. Therefore, based on the length of the message to be embedded, i.e.,
embedding rate, and the need for computational time saving, the choice between the
STC and Hamming code implementations can be left to the user.

The effect of varying the size of ROI has also been investigated for different embedding
rates, as shown in Figure 8.14. As explained earlier, the proposed method demonstrated
a high embedding capacity with a very good visual quality in terms of PSNR and
wPSNR. However, as the ROI size gets bigger, the RONI size gets smaller, and hence



8.1 Steganography Performance Evaluation 179

the number of bits that can be embedded gets smaller. Even if the message can be fully
embedded when using a bigger ROI, the algorithm will need to embed in less sharp
regions, which will have an impact on PSNR, wPSNR and MSE. For an acceptable
visual quality of the MRI dataset, the maximum possible message length which may be
embedded around a particular ROI was determined and analyzed, for cover images of
size 255 × 255 as shown in Table 8.10. From this evaluation, we observed the following:
an ROI of size 105 × 105 that is covering 17% of the original image size was capable of
carrying a message length of up to 32,512 bits, whereas for a bigger ROI (165 × 165)
covering 41%, the message length reduced to only 19,507 bits.

Figure 8.14 Cover Image with different ROI size

8.1.4.2 Security Evaluation

The security of the proposed method has been tested on the medical database, which
contains 100 gray-scale images of size 255×255. Also, it has been tested on the BOWS2
database [223], which contains 10,000 grey-scale natural images of size 512×512 without
taking into consideration ROI. It then trains a classifier to differentiate between stego
and cover images. In the experiments, stego images are created using the proposed
method with different embedding rates ranging from 5% to 50%. Then image features
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Table 8.10 The image quality results of the proposed method using STC with different
ROI and EPR sizes

Size of ROI Embedding
Rate 5% 10% 20% 25% 30% 40% 50%

45x45
MSE 0.010 0.023 0.052 0.096 0.137 0.334 0.557
PSNR 68.11 64.60 61.04 58.36 56.78 53.77 50.70
wPSNR 74.05 69.92 64.75 63.00 61.31 58.43 55.70
Avg. Diff 0.009 0.022 0.047 0.067 0.087 0.146 0.202

75x75
MSE 0.010 0.023 0.060 0.108 0.144 0.403 0.589
PSNR 68.05 64.59 60.52 57.83 56.60 52.29 50.44
wPSNR 74.01 69.73 64.49 62.56 60.96 57.11 55.42
Avg. Diff 0.009 0.022 0.049 0.070 0.089 0.161 0.208

105x105
MSE 0.010 0.023 0.074 0.116 0.175 0.474 0.611
PSNR 67.98 64.60 59.58 57.51 55.86 51.42 50.28
wPSNR 74.01 69.44 64.16 62.14 60.34 56.49 55.37
Avg. Diff 0.010 0.022 0.053 0.073 0.096 0.172 0.213

135x135
MSE 0.011 0.023 0.096 0.184 0.292 0.532 -
PSNR 67.66 64.49 58.31 55.83 53.69 50.87 -
wPSNR 73.82 68.73 63.02 60.52 58.71 55.98 -
Avg. Diff 0.010 0.022 0.061 0.088 0.117 0.184 -

165x165
MSE 0.012 0.026 0.145 0.247 0.364 - -
PSNR 67.48 64.08 56.90 54.45 52.54 - -
wPSNR 73.64 68.33 61.75 59.47 57.82 - -
Avg. Diff 0.011 0.023 0.070 0.099 0.129 - -

are extracted from the cover and stego images. An SVM (Support Vector Machine)
classifier is utilized to train these features to learn the difference in features produced
by data embedding. Testing is done in two fold cross-validation i.e., half of the cover
and stego images are selected randomly for training, and the remaining images are
used for testing. This test is repeated twenty times, and the averages of the obtained
accuracy values are shown in Tables 8.11 and 8.12. It can be noticed that the proposed
method using STC outperforms the other methods for most of the embedding rates.
When the embedding rate increased the difference between the cover and stego images
increased, and consequently the error rate of the SVM classification decreased. Since
there are only two classes and they have the same number of images in our problem,
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an error rate of 50% means random guess. Table 8.12 shows that the proposed method
had error rates between 49% and 59% for embedding rates that are 40% and less. This
range of error rate indicates that it is hard to make conclusive judgement about the
existence of secret data in images. Even when the embedding rate is as high as 50%,
the error rate was still quite high (35%) by using STC and (33%) by using Hamming
code, which proves the efficiency of the proposed information hiding method.

Table 8.11 The average accuracy value of the proposed method (for 100 medical cover
images and their corresponding stego images) against Li-110D steganalysis method

Embedding
Rate 5% 10% 20% 25% 30% 40% 50% Avg

Proposed Method
Hamming 44.73 46.02 49.63 51.9 57.3 59.48 68.05 53.87

Proposed Method
STC 45.38 44.78 47.8 50.01 53.63 56.73 58.82 51.02

Table 8.12 The average accuracy value of PVD, TPVD, Adaptive PVD, Adaptive
N-LSB and the proposed method (for 10,000 cover images and their corresponding

stego images) against Li-110D steganalysis method

Embedding
Rate 5% 10% 20% 25% 30% 40% 50% Avg

PVD 58.35 66.20 79.34 80.92 81.33 84.01 85.84 76.57
TPVD 59.26 68.35 80.94 84.90 87.38 90.50 92.24 80.51

Adaptive-PVD 49.86 51.89 57.81 61.56 65.86 74.28 80.44 63.10
Adaptive-LSB 52.34 54.73 57.44 59.02 60.10 62.35 67.66 59.09

Proposed Method
Hamming 49.62 51.63 56.04 58.09 59.45 62.41 66.81 57.72

Proposed Method
STC 49.02 50.83 53.87 54.66 56.05 59.24 65.40 55.58

8.1.4.3 Evaluation of the Proposed Method with Other Medical

Information Hiding

Table 8.13 shows a comparison with an existing medical information hiding methods
(Navas [131], Bremnavas [156], Thiyagarajan [233]), in term of embedding process,
embedding capacity and encryption process. The extraction process of all methods is
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classified as blind, i.e., does not need the cover image to extract the secret data. The
efficiency of the encryption methods depends on three factors: key generation,
substitution and transposition operations. In [131] and [156], mono-alphabet
substitution operation was utilized to encrypt the EPR, which replaces each plaintext
letter with one ciphertext letter. While the proposed encryption method performs
poly-alphabet substitution operation by representing each plaintext letter with
multiple cipher letters. In terms of information hiding technique evaluation, the
proposed method provides a high embedding rate compared to the other methods, and
hence can be used to efficiently embed large amount of secret data.

Similar to other spatial steganography and many of the transform ones, the proposed
algorithm is fragile to changes in the stego image (change in size, rotation, etc). However,
even in such cases, the hidden information will not be revealed to the intruder, while
the original image and EPR data can always be retrieved from the source.

Table 8.13 A comparison between the proposed method various information hiding
techniques

Algorithms
[131] [156] [233] Proposed

Embedding
Domain IWT Spatial Spatial Spatial

Embedding
Technique

Difference between
coefficients in LH
and HL sub-bands

LSB LSB LSBM with STC
or Hamming code

Encryption Yes Yes NO Yes

ROI Yes No

Yes, RONI is
the background
region using
Canny method

Yes

Shape of ROI Rectangular No Irregular Rectangular
Ellipse

Embedding
Rate 8500 bits

13%
Patient record
around 20 bytes

(650−1850)
bits (3251−32600) bits

(5−50)%
Key Yes No Yes Yes
Extraction

Process Blind Blind Blind Blind
Shared Info NA NA NA Coordinates of ROI
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8.1.4.4 Encryption Process Evaluation

The transposition process transforms a plaintext by arranging the positions of the
secret data digits of the original text without changing the identities of the digits. Let L

represents the length of plaintext/ciphertext and K represents all possible permutations
of {1, 2, . . . , L}. The random key matrix which is used in Figures 6.4a and 6.4b, is a
5 × 5 matrix. There can be 25! = 1.55 e + 25 possible permutations for each stage. If
the key is not known to the attacker, the brute force attack has to do a comprehensive
search among these possibilities and it requires a large computational cost to find the
correct order. Moreover, the hacker has to start in the reverse order to retrieve the
original plaintext and the encryption process replaces the digits, where the ciphertext
will not have exactly the same letter frequency distribution (the ciphertext is not
vulnerable to the frequency distribution analysis methods).

The poly-alphabetic substitution cipher replaces each plaintext letter by a number of
ciphertext letters. In the proposed encryption process, there are three different keys
(x, y and z), and therefore the number of possible keys is [(256 × 51) − 1) × 2S], where
S is the length of the secret data in the binary system. For example, if the secret data
length is 500 byte, then the key space is 1.72 e + 1208.

In addition, the XOR operation is considered unconditionally secure since the plaintext
and key lengths are equal and are only used once and never repeated with different
embedding process. It is worth mentioning that state-of-the-art encryption techniques
could be more robust against attacks. However, they are usually more computationally
expensive, which would increase the overall computational cost of the steganography
algorithm, especially that it contains a number of other building blocks.

Table 8.14 illustrates the computational time for two different encryption algorithms and
the proposed encryption algorithm. The table shows that the AES and DES methods
have higher computational times compared to the proposed encryption method.
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Table 8.14 The computational cost for the AES-128, DES and the proposed encryption
algorithm

AES DES Proposed encryption
method

Plaintext length
(bit) 128 64 200

Computational cost
(sec) 1.4136 0.6418 0.0374

8.2 Segmentation Performance Evaluation

This section presents the segmentation results obtained by the proposed automatic
brain tissue segmentation methodology based on clustering fusion. The proposed
methodology is implemented in MatlabR2016b.

8.2.1 MRI Image Datasets

In this study, image datasets are used from the Internet Brain Segmentation
Repository (IBSR), which is made available by the Center for Morphometric Analysis,
Massachusetts General Hospital (http://www.cma.mgh.harvard.edu/ibsr). The MRI
image database consists of two datasets for brain tissue segmentation of normal
subjects, one with 20 subjects and another with 18 subjects. The first and second
dataset are known as IBSR20 and IBSR18 respectively. IBSR20 and IBSR18 contain a
T1-weighted (T1-w) and the manual segmentation (ground truth) for each image [234].

The IBSR20 dataset contains a three-dimensional T1-weighted MRI brain dataset
for 20 normal subjects and the corresponding manual segmentation. The size of the
volume is 256 × 256 × 65 voxels grid with 3.1 mm slice thickness.

The IBSR18 dataset contains a three-dimensional T1-weighted MRI brain data set
for 18 normal subjects and the corresponding manual segmentation. The size of the
volume is 256 × 256 × 128 voxels grid with 1.5 mm slice thickness [235]. IBSR18 scans
present higher resolution and image quality than IBSR20, with no apparent acquisition
artefacts that can bias the accuracy of some scans [236].
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8.2.2 Evaluation

The manual segmentation of WM, GM, and CSF is utilized as the ground truth to
evaluate the proposed method results. However, the provided labels consider the sulcal
cerebrospinal fluid (SCSF) as part of GM not CSF. The difficulty of using the IBSR20
dataset is due to presence of some artefacts and intensity irregularities [236].

The three base clustering methods of k-means, FCM and SOM are applied along with
the proposed method to segment a random slices of IBSR18 and slice 20 of the IBSR20
dataset, which was chosen randomly. Firstly, an evaluation about the ability of BPNN
in imitating the performance of each of the three clustering methods is presented. As
mentioned in Section 7.4.2, the trained BPNN models are chosen to utilize instead
of the actual base clustering methods in the testing phase in order to reduce the
testing computational complexity. The first five images were used for training and
the remaining ones for testing. Differences in performance between the trained BPNN
models and the actual base clustering methods are shown in Tables 8.15 and 8.16.
Results reveal that the prediction error for the three clustering methods is quite small.
Table 8.17 presents the average difference between the trained BPNN model results and
the ground truth. The trained model of SOM method achieves the lower prediction
error value compared to the other trained models.

Table 8.15 Average difference between each actual base clustering method and its
corresponding trained BPNN model results

Base clustering : Trained BPNN Prediction error
k-means and BPNN 0.131
FCM and BPNN 0.127
SOM and BPNN 0.149

Figure 8.15a shows one of the ground truth images used in the experiment. Figures
8.15b, 8.15c and 8.15d show the segmentation results of the three base clustering
methods of k-means, FCM and SOM respectively. Figures 8.15e and 8.15f show
the segmentation results of the proposed method after the majority voting and post-
processing steps respectively. The figures show that the proposed method segmented the
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Table 8.16 Average difference between two different clustering methods results

Clustering 1 : Clustering 2 Avg. different pixels
Avg. total object pixels

k-means and FCM 3280 : 46688
k-means and SOM 2081 : 46688
FCM and SOM 4840 : 46688

Table 8.17 Average difference between each trained BPNN model results and ground
truth

Trained BPNN: Ground truth Prediction error
Trained k-means and ground truth 0.189
Trained FCM and ground truth 0.193
Trained SOM and ground truth 0.186

brain image more efficiently than the other base methods, as they have a higher incorrect
segmentation percentage compared to the proposed method. Different evaluation
measurements are used to assess and compare the results, as explained below.

8.2.2.1 Spatial Overlaps

In order to evaluate the accuracy of the segmentation method, the Jaccard similarity
(JS) metric is used [237], which is computed as the ratio between the intersection and
union of the segmented and ground truth images. The range of JS is between 0 and 1.
Higher JS values indicate that the segmented region matches more of the ground truth
region. The JS is defined using Eq. 8.11.

JS = S1 ∩ S2

S1 ∪ S2
(8.11)

where S1 is the ground truth image and S2 is the segmented image.

Table 8.18 presents the results of JS using k-means, FCM, SOM and the proposed
method. It is observed that the proposed method achieved a higher degree of similarity
for all three classes (WM, GM and CSF) than the other three segmentation methods.



8.2 Segmentation Performance Evaluation 187

(a) (b)

(c) (d)

(e) (f)

Figure 8.15 Subject 12-3, slice 20: (a) Ground truth, (b) k-means, (c) FCM, (d) SOM,
(e) proposed method after the majority voting step and (f) proposed method after

applying the post-processing step

On the other hand, the other methods were found to perform quite well for the WM
and GM classes, but the performance was noticeably lower for the CSF class.
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Table 8.18 JS values of the proposed method and trained NN of k-means, FCM and
SOM using random slice

Dataset Class k-means FCM SOM Proposed

IB
SR

20

WM 0.706±0.099 0.704±0.096 0.706±0.101 0.712±0.094

GM 0.694±0.076 0.633±0.086 0.730±0.076 0.745±0.079

CSF 0.329±0.092 0.270±0.096 0.431±0.122 0.545±0.105

Avg of tissues 0.576±0.055 0.536±0.064 0.622±0.061 0.668±0.057

IB
SR

18

WM 0.767±0.058 0.765±0.081 0.771±0.038 0.788±0.030

GM 0.644±0.143 0.615±0.148 0.641±0.139 0.759±0.075

CSF 0.429±0.083 0.406±0.072 0.432±0.087 0.641±0.074

Avg of tissues 0.614±0.062 0.595±0.062 0.615±0.058 0.729±0.038

Figures 8.16a - 8.16d show the JS results for the IBSR20 subjects, slice 20. All the
methods achieve a good segmentation results for the three classes, expect for some
instances. For example, the WM class of subject (15-3). This could be caused by the
high level of overlap in pixel intensity between the GM and WM classes as shown in
Figure 8.17. Figure 8.16 also shows that the proposed method has better JS results for
GM and CSF tissues compared to the other segmentation methods.

The Dice similarity coefficient (DSC) is a statistical validation metric that was proposed
to evaluate the accuracy of segmentation methods [236]. It describes the overlap between
the segmented and ground truth images using Eq. 8.12:

DSC = 2 × S1
⋂

S2

| S1 | + | S2 | = 2 × TP

TP + FP + TP + FN
(8.12)

where TP (true positive) is the number of common pixels between the segmented and
ground truth tissues, FN (false negative) is the number of pixels that are not detected
in the segmented tissue and FP (false positive) is the number of pixels incorrectly
assigned as tissue in the segmented image compared to the ground truth image as
shown in Figure 8.18.

Table 8.19 shows the results of the DSC obtained using the three based segmentation
methods and the proposed method. The results are consistent with that of Table 8.18
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(a) (b)

(c) (d)

Figure 8.16 JS results for IBSR20 dataset, slice 20: (a) CSF, (b) GM, (c) WM and (d)
average

in terms of achieving better segmentation than other methods and for scoring high
values for the WM, GM and CSF tissues.

Figures 8.19a - 8.19d show the box plot of DSC for all of the segmentation methods.
The proposed method achieves more accurate results compared to the other methods
and scores the highest median results for all the tissues. However, the performance of
the proposed method for the WM segmentation is only slightly better than the other
methods, while the lowest DSC values of the GM and CSF tissues were obtained using
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Figure 8.17 Pixel intensity overlapping between the brain tissues

Figure 8.18 Venn diagram of true positive, true negative, false positive and false
negative

FCM. Even though all methods achieved comparable results for the segmentation of
WM, the proposed method was superior to the base clustering methods for the other
two classes of GM and CSF and, accordingly, achieved on average better segmentation
results.

The outcome of the segmentation method is also tested using Root Mean Square Error
(RMSE). The RMSE is a statistical metric that finds the difference between the ground
truth and segmented images. It is computed using Eq. 8.13.

RMSE =

√√√√∑W
i=1
∑H

j=1 (S2 − S1)2

W × H
(8.13)
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Table 8.19 DSC values of the proposed method and trained NN of k-means, FCM and
SOM using random slice

Dataset Class k-means FCM SOM Proposed

IB
SR

20

WM 0.824±0.079 0.822±0.074 0.823±0.081 0.829±0.073
GM 0.818±0.055 0.769±0.066 0.841±0.052 0.852±0.053
CSF 0.491±0.109 0.409±0.101 0.588±0.112 0.698±0.086

Avg of tissues 0.710± 0.049 0.667±0.053 0.750±0.048 0.793±0.043

IB
SR

18

WM 0.885±0.036 0.882±0.051 0.887±0.023 0.891±0.020
GM 0.784±0.104 0.762±0.112 0.781±0.101 0.861±0.052
CSF 0.664±0.081 0.648±0.076 0.669±0.085 0.779±0.056

Avg of tissues 0.777± 0.050 0.764±0.051 0.780±0.050 0.840±0.027

where W and H are the width and height of the ground truth (S1) and segmented
(S2) images.

Table 8.20 shows the experimental results of the proposed method compared to the
k-means, FCM and SOM. It can be observed from Table 8.20 that the proposed method
obtained better results compared to the other methods in terms of RMSE values.

Table 8.20 RMSE of the proposed method and trained NN of k-means, FCM and SOM
using slice number 20

Subject k-means FCM SOM Proposed
12-3 0.199 0.225 0.179 0.176

15-3 0.245 0.267 0.232 0.230

205-3 0.161 0.178 0.147 0.143

Average RMSE 0.198 0.219 0.182 0.178

Table 8.21 presents the results of a single NN that is trained directly using manual
annotation (ground truth) and the results obtained using the proposed fusion method.
The results show that the single NN that was trained directly using ground truth
was not able to perform as well as the proposed method and could not recognize the
under-represented class of the CSF tissue in the IBSR20 dataset.
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(a) (b)

(c) (d)

Figure 8.19 DSC results for IBSR20 dataset,slice 20: (a) CSF, (b) GM, (c) WM and
(d) average

8.2.2.2 Accuracy, Sensitivity and Specificity

Accuracy, sensitivity and specificity are used for the qualitative evaluation of the
proposed method. Sensitivity refers to the ability of the clustering method to accurately
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Table 8.21 A comparison between the proposed method versus a single neural network
trained using the ground truth annotation

NN trained using ground truth Proposed method
dataset Class JS DSC RMSE JS DSC RMSE

IB
SR

20

WM 0.409 0.558 0.251 0.712 0.829 0.178
GM 0.639 0.773 0.745 0.852
CSF 0.000 0.000 0.545 0.698

Average 0.349 0.444 0.251 0.668 0.793 0.178

IB
SR

18

WM 0444 0.579 0.241 0.788 0.891 0.172
GM 0.568 0.705 0.759 0.861
CSF 0.284 0.412 0.641 0.779

Average 0.432 0.571 0.241 0.729 0.840 0.172

identify the tissue regions in the segmented image. It can be defined as shown in Eq.
8.14.

Sensitivity = TP

TP + FN
(8.14)

The specificity, which is defined in Eq. 8.15, reflects the ability of the clustering method
to accurately identify the non-tissue regions.

Specificity = TN

TN + FP
(8.15)

where TN (true negative) is the number of pixels not labelled either in the segmented
or ground truth tissues.

The accuracy of the clustering method is computed as the rate of correctly predicted
over all predicted pixels using Eq. 8.16.

Accuracy = TP + TN

TP + TN + FN + FP
(8.16)
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Table 8.22 shows the qualitative performance of the proposed method compared to
the k-means, FCM and SOM. The proposed method performs more accurately in
identifying the WM, GM and CSF tissues than the other methods.

Table 8.22 Mean of Accuracy, Sensitivity and Specificity values of k-means, FCM,
SOM and the proposed method using slice number 20

Sensitivity Specificity Accuracy
k-means 76.77±6.798 98.74±0.437 97.66±0.791

FCM 77.97±5.981 98.52±0.466 97.21±0.859

SOM 75.66±6.975 98.86±0.433 97.91±0.778

Proposed 79.66±7.099 98.97±0.415 98.10±0.752

The spatial overlap metric does not estimate the overall performance in terms of
error. Therefore, sensitivity, specificity and accuracy values are presented for each
method in Table 8.22. The quantitative results show that the proposed method
has better segmentation results for WM, GM and CSF tissues than the three base
clustering techniques as shown in Figures 8.20a - 8.20c. The higher levels of qualitative
evaluation metrics achieved by the proposed method demonstrate the benefit of the
clustering confusion technique. This confirms the initial hypothesis that collecting the
segmentation results from different clustering techniques gives the best combination
result.

As stated in the experiment results, the segmentation results depends on the image
resolution. To be more precise, the performance of the proposed method decreases in
the presence of high pixel intensities overlap. It is worth mentioning here that all the
images used to evaluate this method were obtained from real brain scan. Therefore,
the noise permanently existed on all of the images due to the acquisition process.

8.2.2.3 Impact of SLIC Parameters

Figure 8.21 illustrates the impact of SLIC parameters on the segmentation results.
Selecting a suitable number of superpixels is important for improving the overall
segmentation accuracy and reducing the computational cost. A small number of
superpixels tends to increase the superpixel size, which can guarantee a lower
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(a) (b)

(c)

Figure 8.20 (a) Sensitivity, (b) Specificity and (c) Accuracy results for IBSR20 dataset,
slice 20

computational cost. However, a small number of superpixels (with a large superpixel
size) may cause boundary superpixels to fall on the edge of two or more different
classes, which causes inaccurate features and classification, while a large number of
superpixels (with a small superpixel size) has a stronger chance of including only one
type of tissue. Moreover, it is evident that the small compactness value (m = 5)
produces better segmentation results in terms of DSC mainly because the brain tissues
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possess irregular shape, whereas large compactness values (particularly for m = 20)
generate more regular shapes.

Figure 8.21 The impact of SLIC superpixel parameters (number of superpixels and
compactness) on the DSC

Table 8.21 presents the results of a single NN that trained directly using manual
annotation (ground truth), and the results obtained using the proposed fusion method.
The results show that the single NN that was trained directly using ground truth
was not able to perform as good as the proposed method and could not recognize the
under-represented class of the CSF tissue in the IBSR20 dataset.

8.2.2.4 Computational Cost

Table 8.23 The computational cost for the k-means, FCM and SOM clustering
techniques and the trained NN of single clustering technique in the testing phase

k-means FCM SOM Trained NN
(testing phase)

Computational
cost (sec) 1.72 1.86 8.51 0.035

Table 8.23 illustrates the computational time for the three different clustering techniques
and the trained NN model of single clustering algorithm in the testing phase (we assume
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that the three clustering algorithms would run in parallel). The table shows that the
base clustering methods have higher computational times compared to the trained NN
model. These results prove that the computational cost of the proposed method is
noticeably lower than that of the base clustering methods (even if the three trained
NNs are to run in series).

8.3 Summary

The evaluation process of steganography and segmentation is a fundamental step
for assessing the performance and selecting the appropriate technique. This chapter
utilized different metrics to evaluate the efficiency of the proposed methodologies.

The embedding capacity, imperceptibility and security requirements of the first proposed
image steganography method are tested on a large dataset that consists of 10,000
images of size 512 × 512. The results demonstrated that the stego images produced
using the proposed IWT algorithm achieved a high level of robustness and visual quality
with acceptable embedding capacity compared to 1bpp and nbpp proposed methods
in the spatial domain. On the other hand, the spatial domain methods achieved a
good embedding payload and maintained low perceptibility, where it achieved a PSNR
value of 50.53 dB with 70% embedding rate. The proposed method demonstrated
considerable improvements in term of image quality and security (tested using a well-
established textural steganalysis method) compared with other popular steganography
methods.

Moreover, the medical steganography methodology has been tested on 100 MRI images
of size256 × 256. Experimental results indicated that the proposed algorithm achieved
high embedding rate with low level of embedding distortion, and hence provided a good
compromise between payload and quality of the stego images. Moreover, steganalysis
results of the proposed algorithms obtained using the Li-110D technique proved the
superiority of the proposed algorithm compared to the well-known PVD algorithm and
two of its variants.
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Finally, the performance of MR brain image segmentation method has been evaluated
using different statistical measurements that include: jaccard similarity, dice similarity
coefficient, root mean square error, accuracy, sensitivity and specificity. The
experimental results show that the proposed method can achieve a good segmentation
results than the based clustering techniques.



CHAPTER 9

Conclusions and Future Work

This chapter concludes the thesis with a summary of the presented methodologies. It
begins by summarizing the research contributions, then outlines future research that
would lead to more development of these research fields.

9.1 Conclusions

The main objective of the research introduced in this thesis is to investigate digital
image steganography and segmentation in order to offer a methodical way for designing
and developing them, with a particular concentration on medical images security and
MR brain image segmentation. Digital image steganography is an advancing innovation,
which has an incredible potential for handling multimedia information security. On the
other hand, digital medical images are the result of the developed technology that has
allowed health care systems to exchange medical images and patient records remotely
between different clinics and hospitals. In this manner, medical images are vulnerable
to increased security threats while being transmitted over public networks. Moreover,
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traditional security techniques, such as encryption algorithms, do not offer the required
protection. Therefore, this research examines digital image steganography in order to
address this issue.

Despite of its distinct benefits, digital image steganography has not been extensively
accepted in practice. As stated in Section 1.3, digital steganography suffers from some
limitations. Additionally, validation of the appropriateness of the existing steganography
techniques for specific applications is more difficult because there is no standard model
that can evaluate the performance of steganography for particular applications. The
steganography requirements are also not well determined for interpreting and reflecting
accurate results when developing and applying steganography in practice. To be more
precise, there is no any standard definition for the steganography requirements of
medical imaging systems.

The most critical requirements of any steganographic system are imperceptibility and
capacity. Subsequently, this thesis addresses and enhances these two major requirements
of digital steganography techniques: the embedding capacity and stego image quality
(imperceptibility). In this thesis, novel and efficient image steganography methods
are proposed to improve the stego image quality and increase the embedding capacity.
Further, the precision of PSNR and wPSNR are investigated. These two measures
are essential for evaluating the resultant (stego) image quality in order to assess the
performance of the steganography method.

Computer vision algorithms can also help biomedical image processing to improve and
accomplish their tasks, such as restoration, registration, segmentation or tracking.
Image segmentation aims to divide the image into meaningful and non-overlapping
regions. It is considered an essential process in many important biomedical
applications, for example tumour detection, quantitative tissue analysis and
computer-integrated surgery. Image segmentation can be categorized based on either
the level of human interaction or the technique type, i.e., pixel-based, edge-based or
region-based methods. The accurate segmentation of MR brain images is a
complicated and challenging problem due to the variable tissue types.
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A number of original contributions have been introduced in this thesis as follows:

(1) The development of an edge detection algorithm: The utilization of the traditional
edge detection based steganography algorithms does not guarantee identifying
the same edge sets between the cover and stego images. In order to enable the
correct extraction of the concealed message from the stego image, a new and
simple edge detection algorithm is proposed to discover the edge (sharp) regions
of the cover image, such that the two edge images generated using the original
cover and stego images are identical.

(2) Increasing the embedding capacity without compromising the imperceptibility:
A high embedding capacity without compromising the quality of the stego image
was achieved by introducing the new edge detection algorithm. It is inspired
by the fact that the human visual system (HVS) is less sensitive to changes in
the edge areas compared to smooth areas. Thus, strong edges will enable the
embedding of more bits than less strong ones.

(3) Improving imperceptibility and security: A high stego image quality was achieved
by utilizing coding theory. Coding theory aims to reduce the difference between
the cover and stego images.

(4) The development of a steganographic system: The edge detection and XOR
coding are combined to develop a steganography algorithm that conceals a secret
message in either the spatial domain or an integer wavelet transform (IWT)-based
transform domain of the cover image. In order to enhance the imperceptibility, the
edge detection algorithm identifies sharp edges in the cover image for embedding
in order to cause less degradation to the image quality than embedding in a
pre-specified set of pixels that do not differentiate between sharp and smooth
areas. In addition to this, the secret data is coded before embedding using an
XOR based formula to minimize the difference between the cover and stego
images.

(5) The development of a medical image steganographic system: An efficient
combination between cryptography and information-hiding techniques is
presented in order to ensure the security and privacy of patients’ information
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through concealing the meaning of the secret data and its existence. Medical
images have to be carefully processed, as introducing modifications to their
important regions, known as the region of interest (ROI), may impact the
diagnosis of patients’ conditions, therefore this research refrains from making any
modifications to the ROI and the algorithm developed instead conceals the secret
data in the region of non interest (RONI). Moreover, based on the characteristic
of the human visual perception, this research focused on embedding data into
the sharp edges of the RONI, as this would attract less attention from intruders
about the existence of secret data in the image. To further enhance the
embedding efficiency and increase data security, coding algorithms were
incorporated that helped to reduce modifications to the original (cover) images.

(6) The development of brain image segmentation based on clustering fusion: This
research presents an efficient fully-automatic brain tissue segmentation algorithm
based on a clustering fusion technique. The segmentation method combines the
SLIC superpixel, three clustering techniques and a neural network to divide the
MR brain image into three tissues of WM, GM and CSF.

9.2 Future Work

Further work includes increasing the embedding capacity of the proposed steganography
methods which were discussed in Chapters 5 and 6 by utilizing the edge detection
algorithm. Also, there are different directions to extend the proposed method of MR
brain image segmentation presented in Chapter 7.

The following directions are recommended for future research.

• The proposed edge detection algorithm can be enhanced through the more
accurate identification of edge regions while maintaining the identification of the
same edge sets in both the cover and stego images.

• The embedding capacity can be improved by utilizing more pixels per block for
embedding.
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• Enabling the automatic identification of ROI in medical images.

• Applying the wavelet transform for the medical image steganography method to
ensure the robustness against image processing operations.

• Further analysis is needed to optimally identify number of classes of the clustering
algorithm.the number of classes.

• In order to separate brain image into the background and object regions using
threshold-based segmentation, additional analysis is required to generate dynamic
threshold instead of fixed threshold value for the dataset.

• Extending the segmentation method to 3D images.
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