

# DEVELOPMENT OF SPECIFIC GRANULAR GROWTH ANAEROBIC MEMBRANE BIOREACTORS FOR DOMESTIC WASTEWATER TREATMENT

# **Cheng Chen**

Submitted in fulfillment for the degree of

## **Doctor of Philosophy**

In

Faculty of Engineering and Information Technology

**University of Technology Sydney** 

New South Wales, Australia

2018

CERTIFICATION OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a

degree nor has it been submitted as part of requirements for a degree except as part of

the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have

received in my research work and the preparation of the thesis itself has been

acknowledged. In addition, I certify that all information sources and literature used are

indicated in the thesis. This research is supported by an Australian Government

Research Training Program Scholarship.

Production Note:

SIGNATURE OF STUDENT: Signature removed prior to publication.

DATE: 18/01/2018

#### **ACKNOWLEDGEMENTS**

I would like to express my deepest appreciation and admiration to my principle supervisors for their endless guidance, inspiring encouragement and experienced advice throughout the dissertation. My greatest gratitude and sincerest thanks go to my principal supervisor, Dr Wenshan Guo, for her invaluable advice, emotional support and endless inspiration to guide me through the dark. Not only did she lead me through the novel academic research, but also inspire me to be a better person. I am also deeply thankful for my co-supervisor, Prof Huu Hao Ngo, whose infinite passion, constructive comments and kind suggestions to get me through any difficulties during my PhD studies.

I must acknowledge University of Technology Sydney (UTS) for providing Research Excellence Scholarship to financially support my doctoral study at UTS. Heartfelt thanks are extended to many excellent fellow postgraduate students in our research group including Yunlong, Zuo, Hang, Van-son who shared their knowledgeable expertise and helped me during my graduate study. Special acknowledgements much be given to my colleague Dr Lijuan Deng, lab manager Dr Johir Mohammad, research laboratory manager Mrs. Katie McBean from Faculty of Science, UTS and Dorothy Yu from University of New South Wales (UNSW) for their help throughout my experimental set-up and laboratory analysis. Additionally, I appreciate the support from academic and administration staff from the Faculty of Engineering and Information Technology (FEIT) and Graduate Research School (GRS).

Last but not least, I would like to take this opportunity to thank my wife, who is unquestionably the main source of my energy to pursue my academic career. It is her continuous support and unconditional love that made me successful in delivering the final thesis.

### **TABLE OF CONTENTS**

| Acknowledgements                            | ]    |
|---------------------------------------------|------|
| <b>Table of Contents</b>                    | I    |
| List of Figures                             | VII  |
| List of Tables                              | IX   |
| List of Abbreviations                       | XI   |
| List of Symbols                             | XVI  |
| Abstract                                    | XIX  |
| Chapter 1 Introduction                      | 1-1  |
| 1.1 Research background                     | 1-2  |
| 1.2 Research objectives                     | 1-4  |
| 1.3 Scope of the study                      | 1-4  |
| 1.4 Organization of the report              | 1-6  |
| Chapter 2 Literature Review                 | 2-1  |
| 2.1 Introduction                            | 2-2  |
| 2.2 Anaerobic membrane bioreactors (AnMBRs) | 2-2  |
| 2.2.1 Evolution of AnMBRs                   | 2-2  |
| 2.2.2 Mechanisms of anaerobic digestion     | 2-4  |
| 2.2.3 Current status of AnMBR applications  | 2-6  |
| 2.2.4 Membrane fouling and control          | 2-14 |
| 2.3 Biogas production from AnMBRs           | 2-27 |
| 2.3.1 Types of AnMBRs for biogas production | 2-28 |
| 2.3.1.1 Conventional AnMBRs                 | 2-28 |
| 2.3.1.2 Modified AnMBRs                     | 2-36 |
| 2.3.2 Inhibitors of biogas production       | 2-48 |
| 2.3.2.1 Ammonia                             | 2-48 |
| 2.3.2.2 Sulfide                             | 2-49 |
| 2.3.2.3 Salinity                            | 2-51 |
| 2.3.2.4 Long chain fatty acids (LCFAs)      | 2-51 |

| 2.3.3 Influential factors on biogas production                       | 2-54 |
|----------------------------------------------------------------------|------|
| 2.3.3.1 Temperature                                                  | 2-54 |
| 2.3.3.2 pH                                                           | 2-55 |
| 2.3.3.3 Hydraulic retention time (HRT)                               | 2-56 |
| 2.3.3.4 Solid retention time (SRT)                                   | 2-57 |
| 2.3.3.5 Organic loading rate (OLR)                                   | 2-58 |
| 2.4 Granular bioreactors                                             | 2-63 |
| 2.4.1 Mechanisms of granulation                                      | 2-63 |
| 2.4.2 Factors affecting granulation                                  | 2-64 |
| 2.4.2.1 Innoculum                                                    | 2-64 |
| 2.4.2.2 Substrate                                                    | 2-66 |
| 2.4.2.3 Reactor configuration                                        | 2-68 |
| 2.4.2.4 Operational parameters                                       | 2-71 |
| 2.4.3 Recent development of granular membrane bioreactor             | 2-74 |
| 2.4.3.1 Granular anaerobic membrane bioreactor (G-AnMBR)             | 2-74 |
| 2.4.3.2 G-AnMBR versus suspended growth AnMBR (S-AnMBR)              | 2-77 |
| 2.4.3.3 G-AnMBR for municipal wastewater treatment                   | 2-81 |
| 2.4.3.4 Aerobic granular-membrane bioreactor (AG-MBR)                | 2-92 |
| Chapter 3 Experimental Investigation                                 | 3-1  |
| 3.1 Introduction                                                     | 3-2  |
| 3.2 Materials                                                        | 3-2  |
| 3.2.1 Synthetic wastewater                                           | 3-2  |
| 3.2.2 Membrane                                                       | 3-3  |
| 3.2.3 Sponge                                                         | 3-4  |
| 3.3 Experimental set-up and operation protocol                       | 3-5  |
| 3.3.1 Preliminary experiments                                        | 3-5  |
| 3.3.2 G-AnMBR system (submerged and external configuration)          | 3-6  |
| 3.3.3 Sponge assisted-granular anaerobic membrane bioreactor (SA-    | 3-7  |
| GAnMBR)                                                              |      |
| 3.3.4 Sponge-assisted aerobic moving bed-anaerobic granular membrane | 3-9  |
| bioreactor (SAAMB-AnGMBR)                                            |      |
| 3.4 Analytical methods                                               | 3_12 |

| 3.4.1 Organics, nutrients, pH, ORP and DO                            | 3-12 |
|----------------------------------------------------------------------|------|
| 3.4.2 Sludge properties                                              | 3-13 |
| 3.4.2.1 Sludge volume index (SVI), settling velocity and zeta-       | 3-13 |
| potential                                                            | 2 14 |
| 3.4.2.2 Particle size distribution (PSD) and microscopic observation | 3-14 |
| 3.4.2.3 Biomass concentration and growth rate                        | 3-14 |
| 3.4.3 Nitrification and denitrification rate                         | 3-15 |
| 3.4.4 Volatile fatty acid (VFA) and biogas                           | 3-15 |
| 3.4.5 Membrane fouling determination and fouling rate                | 3-16 |
| 3.4.6 Soluble microbial products (SMP) and extracellular polymeric   | 3-17 |
| substances (EPS) extraction and measurement                          |      |
| 3.4.7 Fouling resistance determination                               | 3-18 |
| 3.4.8 Foulant characterization                                       | 3-19 |
| 3.4.8.1 Liquid chromatography-organic carbon detection (LC-OCD)      | 3-19 |
| 3.4.8.2 Excitation emission matrices (EEMs)                          | 3-20 |
| Chapter 4 Preliminary research on granular anaerobic membrane        | 4-1  |
| bioreactor (G-AnMBR)                                                 |      |
| 4.1 Introduction                                                     | 4-2  |
| 4.2 Modification of G-AnMBR configuration                            | 4-3  |
| 4.3 Effect of HRT on organic and nutrient removal                    | 4-8  |
| 4.4 Effect of HRT on sludge properties and fouling                   | 4-10 |
| 4.5 Conclusions                                                      | 4-14 |
| Chapter 5 Impact of reactor configuration on the performance of a G- | 5-1  |
| AnMBR                                                                |      |
| 5.1 Introduction                                                     | 5-2  |
| 5.2 Effect on organic and nutrient removal                           | 5-3  |
| 5.3 Effect on granular sludge properties                             | 5-4  |
| 5.3.1 Granular sludge                                                | 5-4  |
| 5.3.2 Granules                                                       | 5-5  |
| 5.4 Effect on membrane fouling behaviour                             | 5-7  |
| 5.4.1 TMP and fouling rate                                           | 5-7  |

| 5.4.2 SMP and EPS in the mixed liquor                                    | 5-8  |
|--------------------------------------------------------------------------|------|
| 5.4.3 Fouling resistance                                                 | 5-10 |
| 5.4.4 SMP and EPS content in the cake layer                              | 5-11 |
| 5.4.5 Nature of foulant organics                                         | 5-12 |
| 5.5 Effect on VFA accumulation and biogas production                     | 5-13 |
| 5.6 Conclusions                                                          | 5-16 |
| Chapter 6 Evaluation of the performance of a SA-GAnMBR                   | 6-1  |
| 6.1 Introduction                                                         | 6-2  |
| 6.2 Impact of sponge addition on treatment performance                   | 6-3  |
| 6.3 Impact of sponge addition on granular sludge properties              | 6-4  |
| 6.3.1 Granular sludge                                                    | 6-4  |
| 6.3.2 Granules                                                           | 6-5  |
| 6.4 Effects of sponge addition on membrane fouling behaviour             | 6-8  |
| 6.4.1 TMP and fouling rate                                               | 6-8  |
| 6.4.2 SMP and EPS in the mixed liquor                                    | 6-9  |
| 6.4.3 Fouling resistance                                                 | 6-11 |
| 6.4.4 SMP and EPS content in the cake layer                              | 6-12 |
| 6.4.5 Characterization of foulant organics                               | 6-13 |
| 6.5 Effects of sponge addition on VFA accumulation and biogas production | 6-16 |
| 6.6 Conclusions                                                          | 6-18 |
| Chapter 7 Evaluation of the performance of hybrid SAAMB-AnGMBR           | 7-1  |
| under different influent C/N ratios                                      |      |
| 7.1 Introduction                                                         | 7-2  |
| 7.2 Effects of C/N ratio on organic and nutrient removal                 | 7-3  |
| 7.3 Effects of C/N ratio on membrane fouling behaviour                   | 7-7  |
| 7.3.1 TMP profile                                                        | 7-7  |
| 7.3.2 EPS and SMP in the mixed liquor                                    | 7-8  |
| 7.3.3 EPS and SMP in the granular sludge                                 | 7-10 |
| 7.3.4 Fouling resistance and cake layer analysis                         | 7-11 |
| 7.3.5 LC-OCD and EEM analysis                                            | 7-13 |
| 7.4 System recovery from overloaded nitrogen events                      | 7-15 |

| 7.4.1 Organic and nutrient removal               | 7-16 |
|--------------------------------------------------|------|
| 7.4.2 Membrane fouling                           | 7-16 |
| 7.5 Conclusions                                  | 7-18 |
|                                                  |      |
| <b>Chapter 8 Conclusions and recommendations</b> | 8-1  |
| 8.1 Conclusions                                  | 8-2  |
| 8.2 Recommendations                              | 8-4  |
|                                                  |      |
| References                                       | R-1  |
|                                                  |      |
| Appendix                                         | A-1  |

### LIST OF FIGURES

| Figure 2.1  | A schematic diagram showing the comprehensive processes of anaerobic                       |
|-------------|--------------------------------------------------------------------------------------------|
|             | digestion                                                                                  |
| Figure 2.2  | A typical classification of membrane fouling in AnMBRs                                     |
| Figure 2.3  | Strategies for membrane fouling mitigation                                                 |
| Figure 2.4  | The proposed structure of a typical anaerobic granule                                      |
| Figure 2.5  | Schematic of G-AnMBR configurations                                                        |
| Figure 3.1  | U-shape hollow fiber PVDF membrane module                                                  |
| Figure 3.2  | Sponge carrier used in the studies                                                         |
| Figure 3.3  | Experimental setup for preliminary G-AnMBR                                                 |
| Figure 3.4  | The experimental setup of SG-AnMBR and EG-AnMBR                                            |
| Figure 3.5  | The experimental setup of SA-GAnMBR                                                        |
| Figure 3.6  | The experimental setup of SAAMB-AnGMBR                                                     |
| Figure 3.7  | The analytical instruments used in the experimental investigation: a)                      |
|             | DOC analyser; b) pH meter; c) ORP meter; d) DO meter                                       |
| Figure 3.8  | The instrument for Zeta-potential measurement                                              |
| Figure 3.9  | The schematics of the procedure for VFA extraction                                         |
| Figure 3.10 | The procedure for SMP and EPS extraction (Modified from Deng (2015))                       |
| Figure 3.11 | LC-OCD analysis instrument at University of New South Wales                                |
| Figure 4.1  | Microscopic observation of reactor sludge on Day 50                                        |
| Figure 4.2  | Biomass concentrations over the operation time                                             |
| Figure 4.3  | TMP profile over the operation time                                                        |
| Figure 4.4  | Organic removal efficiency of the modified G-AnMBR                                         |
| Figure 4.5  | Nutrient removal efficiencies of the modified G-AnMBR                                      |
| Figure 4.6  | Microscopic observations of anaerobic granules on Day 7 (a), Day 55 (b),                   |
|             | and Day 85 (c)                                                                             |
| Figure 4.7  | Granule growth course of the modified G-AnMBR                                              |
| Figure 4.8  | MLSS, MLVSS and bed expansion of the modified G-AnMBR                                      |
| Figure 4.9  | TMP development of the modified G-AnMBR                                                    |
| Figure 5.1  | TMP values of G-AnMBRs over the experimental period                                        |
| Figure 5.2  | Variations of EPS (including EPS <sub>P</sub> and EPS <sub>C</sub> ) concentrations in the |

mixed liquor of SG-AnMBR settling zone and EG-AnMBR membrane tank Figure 5.3 Variations of SMP (including SMP<sub>P</sub> and SMP<sub>C</sub>) concentrations in the mixed liquor of SG-AnMBR settling zone and EG-AnMBR membrane tank Figure 5.4 Nature of foulant organics in the G-AnMBRs by LC-OCD analysis Figure 6.1 DOC, COD, TN and PO<sub>4</sub>-P removals in the CG-AnMBR and SA-**GAnMBR** Figure 6.2 Particle size distribution of seed sludge, and granular sludge for both G-**AnMBRs** Figure 6.3 Microscopic observations of seed sludge (day 0) and sludge granules from the CG-AnMBR (a, b, c) and SA-GAnMBR (d, e, f) on day 15, 25. Figure 6.4 TMP profile of the CG-AnMBR and the SA-GAnMBR over the experimental period Figure 6.5 Variations of EPS and SMP concentrations in the settling zone of G-AnMBR at designated TMPs Figure 6.6 SMP and EPS content in the cake layer of G-AnMBRs Figure 7.1 TMP profiles for the hybrid SAAMB-AnGMBR at different C/N ratios Figure 7.2 Filtration resistance distribution under different C/N ratios Figure 7.3 Compositions of EPS and SMP of cake layer in the hybrid system at different C/N ratios Figure 7.4 Nature of foulant organics at different C/N ratios

Figure 7.5

EEM fluorescence spectra of membrane foulants at different C/N ratios

### LIST of TABLES

| Table 2.1 | Effects of major parameters on membrane fouling in AnMBRs                               |
|-----------|-----------------------------------------------------------------------------------------|
| Table 2.2 | Key features, advantages and challenges of conventional AnMBRs                          |
| Table 2.3 | Key features, advantages and challenges of modified AnMBRs                              |
| Table 2.4 | Advantages and disadvantages of AnMBRs for the mitigation of                            |
|           | problems induced by inhibitors                                                          |
| Table 2.5 | The effects of operational factors on biogas production from AnMBRs                     |
|           | and possible suggestions for optimized biogas production                                |
| Table 2.6 | Comparison of conventional aerobic treatment, anaerobic treatment, S-                   |
|           | AnMBR and G-AnMBR                                                                       |
| Table 2.7 | Summary of G-AnMBR performances for municipal wastewater                                |
|           | treatment                                                                               |
| Table 3.1 | Characteristics of the synthetic wastewater (displayed in the case of                   |
|           | COD: N: $P = 100$ : 5: 1)                                                               |
| Table 3.2 | Operation conditions for the preliminary research on G-AnMBR                            |
| Table 4.1 | Removal efficiencies of the G-AnMBR trail                                               |
| Table 5.1 | Removal efficiencies of DOC, COD, NH <sub>4</sub> -N and PO <sub>4</sub> -P in EG-AnMBR |
|           | and SG-AnMBR during the operation period                                                |
| Table 5.2 | Comparision of sludge characteristics of inoculated sludge, granular                    |
|           | sludge from G-AnMBRs when operation was terminated                                      |
| Table 5.3 | PSD of seed sludge and granular sludge from G-AnMBRs (%)                                |
| Table 5.4 | Fouling resistance distribution of G-AnMBRs at the end of the operation                 |
| Table 5.5 | Cake layer analysis of G-AnMBRs at the end of the operation                             |
| Table 5.6 | VFA concentrations of the mixed liquor from the EG-AnMBR and SG-                        |
|           | AnMBR                                                                                   |
| Table 6.1 | Summary of sludge characteristics of seed sludge and granular sludge in                 |
|           | G-AnMBRs                                                                                |
| Table 6.2 | Fouling resistance for both G-AnMBRs                                                    |
| Table 6.3 | Organic fractions of membrane foulants based on LC-OCD analysis                         |
| Table 6.4 | VFAs concentrations in the CG-AnMBR and the SA-GAnMBR                                   |
| Table 6.5 | Riogas yield from the CG-AnMRR and the SA-GAnMRR                                        |

Table 7.1 Treatment performance of the hybrid SAAMB-AnGMBR under various C/N ratios Table 7.2 Specific nitrification rates and denitrification rates (SNR and SDR) of biomass under different C/N ratios Table 7.3 The concentration and properties of EPS and SMP in the mixed liquor of the SS-AnGMBR settling zone and anaerobic granular sludge Table 7.4 Summary of sludge properties of seed sludge and granular sludge in the SS-AnGMBR at different C/N ratios Table 7.5 System recovery in terms of organic and nutrient removal in phase 2 Table 7.6 The summary of membrane fouling analysis results during system recovery after overloaded nitrogen event

#### LIST OF ABBREVIATIONS

ABR Anaerobic baffled reactor

ADUF Anaerobic digestion ultrafiltration

AF Anaerobic filter

AFBR Anaerobic fluidized bed reactor

AFMBR Anaerobic fluidized bed membrane bioreactor

AG-MBR Aerobic granular-membrane bioreactor

AG-MMBR Aerobic granule-mesh filter MBR

AHR Anaerobic hybrid reactor

AMBR Anaerobic migrating blanket reactor

AMBBR Anaerobic moving bed biofilm reactor

AMBRs Aerobic membrane bioreactors

Anammox Anaerobic ammonium oxidization

AnAOB Anaerobic ammonia-oxidizing bacteria

AnBEMRs Anaerobic bio-entrapped membrane bioreactors

AnDMBRs Anaerobic dynamic membrane bioreactors

AnGBR Anaerobic granular bioreactor

AnMBRs Anaerobic membrane bioreactors

AnMDBRs Anaerobic membrane distillation bioreactors

AnMSBRs Anaerobic membrane sponge bioreactors

AnOMBRs Anaerobic osmotic membrane bioreactors

ARMBR Anaerobic rotary disk membrane bioreactor

ASBR Anaerobic sequencing batch reactor

ATU Allylthiourea

BOD Biological oxygen demand

BPC Biopolymer clusters

C-AnMBRs Conventional anaerobic membrane bioreactors

CANON Completely autotrophic nitrogen removal over nitrite

CDOC Chromatographic dissolved organic carbon

CFMBR Continuous flow membrane bioreactor

CFV Crossflow velocity

CG-AnMBR Conventional granular anaerobic membrane bioreactor

CGSFDMBR Continuous-flow bioreactor with aerobic granular sludge and self-

forming dynamic membrane

COD Chemical oxygen demand

DCE Dichloroethylene

DM Dynamic membrane

DO Dissolved oxygen

DOC Dissolved oxygen demand

DS Draw solution

EEM Excitation emission matrix

EG-AnMBR External granular anaerobic membrane bioreactor

EGSB Expanded granular sludge bed reactor

EGSB-ZBF Expanded granular sludge bed reactor-Zeolite bed filtration

EPS Extracellular polymeric substances

EPS<sub>C</sub> Polysaccharides concentration of extracellular polymeric substances

EPS<sub>P</sub> Protein concentration of extracellular polymeric substances

Ex/Em Exitation/Emission

FA Free ammonia

FAN Free ammonium nitrogen

FB Fluidized bed

F/M ratio Food-to-microorganisms ratio

FO Forward osmosis

FOG Fat, Oil, and Grease

FS Feed solution

GAC Granular activated carbon

G-AnMBR Granular anaerobic membrane bioreactor

GHG Greenhouse gas

Gl-AnMBRs Gas-lifting AnMBRs

GLS Gas/liquid/solid

GWP Global warming potential

H/D Height to diameter ratio

HOC Hydrophobic organic carbon

HPI Hydrophilic organics

HPO Hydrophobic organics

HRARs High rate anaerobic reactors

HRT Hydraulic retention time

HSP Hydraulic selection pressure

IAFMBR Integrated anaerobic fluidized-bed membrane bioreactor

ID Internal diameter

JFAB Jet flow anaerobic bioreactor

KSAMBR Kubota Submerged Anaerobic Membrane Bioreactor

LCFAs Long chain fatty acids

LC-OCD Liquid chromatography-organic carbon detection

LMW Low molecular weight

MARS Membrane anaerobic reactor system

MBR Membrane bioreactor

MD Membrane distillation

MFSBR Conventional floc based membrane bioreactor

MF/UF Microfiltration/Ultrafiltration

MGSBR Membrane bioreactor with aerobic granular sludge

MLSS Mixed liquor suspended solids

MLVSS Mixed liquor volatile suspended solids

MPB Methane producing bacteria

MS Mass spectrometer

MTBE Methyl-tert-butyl ether

O&G Oil and grease

ORP Oxidation and reduction potential

PAOs Phosphate accumulating microorganisms

PCP Pentachlorophenol

PES Polyethersulfone

PP Polypropylene

PSD Particle size distribution

PTFE Polytetrafluoroethylene

PUS Polyester-urethane sponge

PVC Poly vinyl chloride

PVDF Polyvinylidene fluoride

SAAMB- Sponge-assisted aerobic moving bed-anaerobic granular membrane

AnGMBR bioreactor

SAAMBR Sponge-assisted aerobic moving bed reactor

SAF-MBR Staged anaerobic fluidized membrane bioreactor

SA-GAnMBR Sponge assisted-granular anaerobic membrane bioreactor

SAMA Specific acetoclastic methanogenic activity
SAnMBR Submerged anaerobic membrane bioreactor

S-AnMBR Suspended growth AnMBR

SBR Sequencing batch reactor

SCOD Soluble chemical oxygen demand

SDR Specific denitrification rate

SG-AnMBR Submerged granular anaerobic membrane bioreactor

SIM Selected ion monitoring

SMA Specific methanogenic activity

SMP Soluble microbial products

SMP<sub>C</sub> Polysaccharides concentration of soluble microbial products

SMP<sub>P</sub> Protein concentration of soluble microbial products

SND Simultaneous nitrification and denitrification

SNR Specific nitrification rate

SOLR Specific organic loading rate

SRB Sulphate reducing bacteria

SRT Solid retention time

SS Suspended solids

SS-AnGMBR Submerged sponge-assisted anaerobic granular sludge membrane

bioreactor

STP 0° C Standard Temperature and 1 atm Pressure

SVI Sludge volume index

TCE Trichloroethylene

TCOD Total chemical oxygen demand

TMP Transmembrane pressure

TN Total nitrogen

TOC Total organic carbon

TPAD Two-phase anaerobic digestion

TPAnMBRs Two-phase AnMBRs

TS Total solids

TSS Total suspended solids

OLR Organic loading rate

UAGB Upflow anaerobic granular bioreactor

UASB Upflow ananerobic sludge bed

UASB-AFF Upflow-anaerobic fixing filter

US-AnMBR Ultrasonic anaerobic membrane bioreactor

UTS University of Technology Sydney

V-AnMBRs Vibrating AnMBRs

VC Vinyl chloride

VFAs Volatile fatty acids
VTS Volatile total solids

WAS Waste activated sludge

WHO World Health Organization Guidelines

WWTPs Wastewater treatment plants

ZVI-UASB Zero valence iron packed UASB

### LIST OF SYMBOLS

B - A The number of days that the system is operated

C<sub>2</sub> Acetic acid

C<sub>3</sub> Propionic acid
C<sub>4</sub> Butyric acid

C<sub>5</sub> Valeric acid

Ca Calcium

CaCl<sub>2</sub>·2H<sub>2</sub>O Calcium chloride

 $CH_4$  Methane  $C_6H_{12}O_6$  Glucose Co Cobalt

CoCl<sub>2</sub> Cobalt chloride CO<sub>2</sub> Carbon dioxide CuSO<sub>4</sub>·5H<sub>2</sub>O Cupric sulphate

Fe Iron

Fe<sup>2+</sup> Ironized ferrous

FeCl<sub>3</sub> Ferric chloride anhydrous

FeSO<sub>4</sub> Ferrous sulfate

H<sub>2</sub> Hydrogen

 $H_2S$  Hydrogen sulfide  $H_2SO_4$  Hydrogen sulfate  $i-C_4$  Iso-butyric acid  $i-C_5$  Iso-valeric acid

IC<sub>50</sub> 50% activity inhibitory concentration

J Permeation flux

KH<sub>2</sub>PO<sub>4</sub> Potassium phosphate

Mg Magnesium

MgSO<sub>4</sub>·7H<sub>2</sub>O Magnesium sulphate

MLSS<sub>A</sub> MLSS concentration of granular sludge when operation is started

MLSS<sub>A1</sub> MLSS concentration of sponge-attached biosolids when operation is

initiated

MLSS<sub>B</sub> MLSS concentration of granular sludge when operation is terminated

MLSS<sub>B1</sub> MLSS concentration of biosolids attached on the sponge when

operation is terminated

MnCl<sub>2</sub>·7H<sub>2</sub>O Manganese chloride

N<sub>2</sub> Nitrogen gas
Na<sup>+</sup> Ionized sodium

NaCl Sodium chloride

NaClO Sodium hypochlorite
NaHCO<sub>3</sub> Sodium biocarbonate

Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O Sodium molybdate dehydrate

NaOH Sodium hydroxide

(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> Ammonium sulphate

NH<sub>3</sub> Free ammonia

NH<sub>4</sub><sup>+</sup> Ionized ammonia

NH<sub>4</sub>-N Ammonia nitrogen

Ni Nickel

NiSO<sub>4</sub> Nickel sulphate

NO<sub>2</sub>-N Nitrite nitrogen

NO<sub>3</sub>-N Nitrate nitrogen

PO<sub>4</sub>-P Orthophosphate

R<sub>C</sub> Cake layer resistance

R<sub>M</sub> Intrinsic membrane resistance

R<sub>P</sub> Pore blocking resistance

R<sub>T</sub> Total resistance

SO<sub>4</sub>-S Sulfate sulfur

SO<sub>4</sub><sup>2</sup>- Ionized sulfate

Sw The weight of sponge

TMP<sub>A</sub> The transmembrane pressure value (kPa) when operation is started

TMP<sub>B</sub> The transmembrane pressure value (kPa) when operation is

terminated

μ Dynamic viscosity of the permeate

U<sub>v</sub> Upflow velocity

V<sub>T</sub> Total volatile fatty acids

ZnSO<sub>4</sub>·7H<sub>2</sub>O Zinc sulphate

 $\Delta MLSS/\Delta t$  Biomass growth rate

ΔMLSS/Sw Attached biomass growth rate

 $\Delta P$  Transmembrane pressure

 $\Delta TMP/\Delta t$  Membrane fouling rate

### PhD DISSERTATION ABSTRACT

**Author:** Cheng Chen

**Date:** 12 September 2017

**Thesis title:** Development of specific granular growth anaerobic

membrane bioreactors for domestic wastewater

treatment

**Faculty:** FEIT

**School:** Civil and Environmental Engineering

**Supervisors:** Dr. Wenshan Guo (Principal supervisor)

Dr. Huu Hao Ngo (Alternative supervisor)

#### **Abstract**

In recent years, water scarcity has brought global health and environmental concerns. To overcome this issue, anaerobic granular membrane bioreactors (G-AnMBRs) have been widely used for reclaiming domestic wastewater. However, there were still critical issues associated with G-AnMBRs, such as membrane fouling and granule fragmentation.

This thesis focused on developing a novel sponge-based G-AnMBR for domestic wastewater treatment. Results showed that the G-AnMBR start-up could be successfully accomplished using flocculent aerobic sludge as the inoculum. Hydraulic retention time (HRT) of 12 h permitted better organic removal and superior granular sludge quality. The external G-AnMBR (EG-AnMBR) served as a better G-AnMBR configuration due to less fouling propensity and superior granule quality. Membrane direct incorporation into the submerged G-AnMBR (SG-AnMBR) significantly enhanced microbial products (e.g. soluble microbial products (SMP) and extracellular polymeric substances (EPS)) in the mixed liquor and cake layer, and reduced granules EPS content and

settleability. The EG-AnMBR demonstrated less SMP and EPS in the mixed liquor and cake layer, which might reduce the cake layer resistance and lower fouling rate.

The sponge assisted-granular anaerobic membrane bioreactor (SA-GAnMBR) showed enhanced treatment performance than the converntional G-AnMBR (CG-AnMBR). Granular sludge from the SA-GAnMBR had superior quality with better settleability, larger particle size, higher EPS content and more granule abundance. The SA-GAnMBR also exhibited slower fouling development with 50.7% lower total filtration resistance than those of the CG-AnMBR. Sponge addition effectively reduced the concentration of microbial products in the cake layer and settling zone mixed liquor, and lowered the concentrations of major foulant organics, thus alleviating the fouling propensity.

The new hybrid sponge-assisted aerobic moving bed-anaerobic granular membrane bioreactor (SAAMB-AnGMBR) showed organic removal efficiencies over 94% at all COD/N (C/N) ratio conditions. Nutrient (nitrogen and phosphate) removal was over 91% at C/N ratio of 100/5 but was negatively affected when decreasing C/N ratio to 100/10. At lower C/N ratio (100/10), more noticeable membrane fouling was caused by aggravated cake formation and pore clogging, and EPS accumulation in the mixed liquor and sludge cake as a result of deteriorated granular quality. Significant difference existed in the foulant organic compositions under different C/N ratios. The performance of the hybrid system was found to recover when gradually increasing C/N ratio from 100/10 to 100/5. This work aimed to offers a useful performance enhancement and fouling control strategy for G-AnMBR operation, and provide a solid platform for advances in novel G-AnMBR applications for domestic wastewater treatment.

Keywords: Granular anaerobic membrane bioreactor; Membrane fouling; Methane yield; Biogas; Soluble microbial products; Sponge; Nutrient removal