Investigation of Organic Materials for Lithium Batteries

A thesis presented for the award of the degree of

Doctor of Philosophy

from

University of Technology Sydney

By Jinqiang Zhang, B. Sc., M. Sc.

July, 2017

Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has

it been submitted as part of requirements for a degree except as fully acknowledged within

the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In addition, I

certify that all information sources and literature used are indicated in the thesis.

Production Note:

Signature removed prior to publication.

Jinqiang Zhang

July 2017

i

Acknowledgements

It has been four years since I was enrolled as a PhD student in 2013. It is not a particularly long time, but I have received numerous help from many members from our institute to support me finishing my PhD study. Firstly, I would like to express my sincere gratitude to my supervisor, Prof Guoxiu Wang, who has patiently guided, supported and encouraged me during my four-year study. I cannot thank you enough for all the advice that lead to the improvement of my research and all the concern of my life. I also would like to thank my co-supervisors, Associate Professor Alison Ung and Associate Professor Andrew McDonagh for their kindness and selfless suggestions. They helped build up my knowledge, my skills, and my research. I am truly lucky and grateful to have you as my teachers, my supervisors, and my mentors.

I wish to thank all my colleagues in the research team of Centre for Clean Energy Technology, Dr Hao Liu, Dr Xiaodan Huang, Dr Bing Sun, Dr Dawei Su, Dr Kefei Li, Dr Anjon Kumar Mondal, Dr Shuangqiang Chen, Dr Yufei Zhao, Dr Xiuqiang Xie, Dr Sinho Choi, Dr Jianjun Song, Jing Xu, Katja Kretschmer, Linfeng Zheng, Xin Guo, Weizhai Bao, Tuhin Subhra Sahu, Anastasia Tkacheva, and all the new members for the help both in my research and life during my PhD period. Special thanks would be addressed to Dr Yueping (Jane) Yao, for the administrative assistance and lab management as well as the great support for our life. It is a great pleasure to work with all of you and I wish you all the best luck.

I wish to thank Dr Ronald Shimmon, Alexander Angeloski, Dr Linda Xiao, and all the staff members from Faculty of Science for the training and their kind support. And I am

also grateful for the administration help from the staff who have helped so much to support my study in the university.

Financial support provided by the Commonwealth of Australia through the Automotive Australia 2020 Cooperative Research Centre (Excellerate Australia) and the Australian Research Council (ARC) through the ARC Discovery Project (DP160104340) is gratefully acknowledged.

Finally, I would love to thank my family for their help and support. I wish to thank my parents and my brother for their endless love and support. They believe in me even in the toughest time when I did not believe in myself anymore. And there is always a time that I so despaired that I wished so much to quit. It is my beloved wife, Dr Yufei Zhao, who is standing beside me always, supporting me, and selflessly helping me. It is she who persuades me to continue my research, it is she who makes it certain that she will be with me all the time, and it is she who brings me light when there is only darkness inside my heart. I cannot ever express my gratitude and my love for her because she makes me the person that I always dreamt of being. Thank you and I love you, with all my heart.

Abstract

The performances of lithium-based batteries can be significantly influenced by the electrolyte and cathode materials. In this PhD project, functional organic materials were synthesised and applied as electrolyte and cathode components for lithium-ion (Li-ion) and lithium-oxygen (Li-O₂) batteries to improve overall performances. Theoretically, organic materials can be tailored with functional groups to fit various purposes, making them suitable for battery applications. Post-synthesis techniques such as field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used to characterise the physical properties. Electrochemical analyses including galvanostatic discharge-charge method, cyclic voltammetry, linear sweep voltammetry, and impedance spectroscopy were conducted to determine the electrochemical performance of the materials.

Porous polymer membranes based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) are prepared using the breath-figure method. The as-prepared PVDF-HFP porous membrane showed a highly ordered honeycomb-like structure. The highly porous structure could absorb large quantities of liquid electrolyte, resulting in a high ionic conductivity. Moreover, the non-combustible PVDF-HFP membrane could significantly enhance safety properties of Li-ion batteries compared to the one using a conventional Celgard separator. The combination of the PVDF-HFP membrane with liquid electrolyte resulted in a higher capacity and prolonged cycle life.

Further investigation on coating poly(methyl methacrylate) (PMMA) on PVDF-HFP porous membranes to achieve hierarchical structures with sandwich-like morphology was

carried and studied. By the combination of porous PVDF-HFP and PMMA with higher affinity towards liquid electrolyte, the ionic conductivity was further improved. As a result, the electrochemical performance of Li-ion battery was significantly enhanced.

A bi-functional organic catalyst poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) was synthesized by a two-step method. The unique properties of PTMA during n-doping and p-doping could facilitate the discharge and charge processes, respectively. It was discovered that the discharge capacity increased and the charge overpotential was reduced. The mechanism investigation showed that it was the functional N-O radical interacting with oxygen and Li₂O₂ to catalyse the battery reactions. As a result, the cycling life of the Li-O₂ battery was significantly prolonged.

Further investigation of employing co-polymers as binder in the cathode for Li-O₂ batteries was carried out. The binder was synthesized by co-polymerizing methyl methacrylate (MMA) and 2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate (TMA) monomers. The ratio between both monomers was also studied. The results indicated that the direct contact of co-polymer binder and liquid electrolyte would transfer it into a gel polymer electrolyte membrane which enabled the catalytic N-O radical group to function as restricted redox mediator. The electrochemical performance of Li-O₂ batteries can be further enhanced by employing PTMA.

An investigation of the mechanism when tetrathiafulvalene (TTF) was used in Li-O₂ batteries in the presence of LiCl was studied. It is revealed that the addition of LiCl in the electrolyte completely changed the functional mechanism of TTF in Li-O₂ batteries. Instead of functioning as a solution-based redox mediator, the combination of TTF and LiCl

resulted in a deposition of an organic conductor on the surface of Li_2O_2 , providing additional ways for electron transference. As a result, the cycling efficiency was improved, and with the use of porous graphene as cathode material the cycle life was prolonged.

Publication list

- Zhang, J.; Sun, B.; Zhao, Y.; Kretschmer, K.; Wang, G., Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O₂ batteries, *Angewandte Chemie International Edition* 2017. Accepted, in press. DOI: 10.1002/ange.201703784, and DOI: 10.1002/anie.201703784.
- Zhang, J.; Sun, B.; McDonagh, AM.; Zhao, Y.; Kretschmer, K.;, Guo, X.; Wang, G., A multi-functional gel co-polymer bridging liquid electrolyte and solid cathode nanoparticles: An efficient route to Li–O₂ batteries with improved performance, *Energy Storage Materials* 2017, 7, 1-7. Selected as one of the cover images.
- 3. **Zhang, J**.; Sun, B.; Xie, X.; Zhao, Y.; Wang, G., A bifunctional organic redox catalyst for rechargeable lithium–oxygen batteries with enhanced performances, *Advanced Science* **2016**, 3, 1500285.
- 4. **Zhang, J**.; Sun, B.; Xie, X.; Kretschmer, K.; Wang, G., Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly (vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether, *Electrochimica Acta* **2015**, 183, 56-62.
- Zhang, J.; Chen, S.; Xie, X.; Kretschmer, K.; Huang, X.; Sun, B.; Wang, G.,
 Porous poly (vinylidene fluoride-co-hexafluoropropylene) polymer membrane with
 sandwich-like architecture for highly safe lithium ion batteries, *Journal of Membrane Science* 2014, 472, 133-140.

- 6. **Zhang, J**.; Sun, B.; Huang, X.; Chen, S.; Wang, G., Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety, *Scientific reports* **2014**, 4, 6007.
- 7. **Zhang, J**.; Sun, B.; Ahn, H.-J.; Wang, C.; Wang, G., Conducting polymer-doped polyprrrole as an effective cathode catalyst for Li-O₂ batteries, *Materials Research Bulletin* **2013**, 48, 4979-4983.
- 8. Zhao, Y., **Zhang, J.**, Li, K., Ao, Z., Wang, C., Liu, H., Sun, K., Wang, G., Electrospun cobalt embedded porous nitrogen doped carbon nanofibers as an efficient catalyst for water splitting, *Journal of Materials Chemistry A* **2016**, 4, 12818-12824.
- 9. Wang, Y., Kretschmer, K., **Zhang, J.**, Mondal, A.K., Guo, X., Wang, G., Organic sodium terephthalate@graphene hybrid anode materials for sodium-ion batteries, *RSC Advances* **2016**, 6, 57098-57102.
- Kretschmer, K., Sun, B., Zhang, J., Xie, X., Liu, H., Wang, G., 3D Interconnected
 Carbon Fiber Network Enabled Ultralong Life Na₃V₂(PO₄)₃@ Carbon Paper
 Cathode for Sodium-Ion Batteries, Small 2016.
- 11. Guo, X., Sun, B., **Zhang, J.**, Liu, H., Wang, G., Ruthenium decorated hierarchically ordered macro-mesoporous carbon for lithium oxygen batteries, *Journal of Materials Chemistry A*, **2016**, 4, 9774-9780.

- 12. Zhao, Y., Xie, X., **Zhang, J.**, Liu, H., Ahn, H.J., Sun, K., Wang, G., MoS₂ nanosheets supported on 3D graphene aerogel as a highly efficient catalyst for hydrogen evolution, *Chemistry–A European Journal* **2015**, 21, 15908-15913.
- 13. Xie, X., Su, D., **Zhang, J.**, Chen, S., Mondal, A.K., Wang, G., A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO₂/graphene for sodium-ion batteries, *Nanoscale* **2015**, 7, 3164-3172.
- 14. Xie, X., Kretschmer, K., **Zhang, J.**, Sun, B., Su, D., Wang, G., Sn@ CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries, *Nano Energy* **2015**, 13, 208-217.
- 15. Xie, X., Ao, Z., Su, D., **Zhang, J.**, Wang, G., MoS₂/Graphene Composite Anodes with Enhanced Performance for Sodium Ion Batteries: The Role of the Two Dimensional Heterointerface, *Advanced Functional Materials* **2015**, 25, 1393-1403.
- 16. Su, D., **Zhang, J.**, Dou, S., Wang, G., Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries, *Chemical Communications* **2015**, 51, 16092-16095.
- 17. Xie, X., Su, D., Sun, B., **Zhang, J.**, Wang, C., Wang, G., Synthesis of Single Crystalline Spinel LiMn₂O₄ Nanorods for Lithium Ion Batteries with High Rate Capability and Long Cycle Life, *Chemistry A European Journal* **2014**, 20, 17125-17131.

- 18. Xie, X., Su, D., Chen, S., **Zhang, J.**, Dou, S., Wang, G., SnS₂ Nanoplatelet@ Graphene Nanocomposites as High Capacity Anode Materials for Sodium Ion Batteries, *Chemistry An Asian Journal* **2014**, 9, 1611-1617.
- 19. Sun, B., Huang, X., Chen, S., Zhao, Y., Zhang, J., Munroe, P., Wang, G., Hierarchical macroporous/mesoporous NiCo₂O₄ nanosheets as cathode catalysts for rechargeable Li–O₂ batteries, *Journal of Materials Chemistry A* 2014, 2, 12053-12059.
- 20. Sun, B., Huang, X., Chen, S., **Zhang, J.**, Wang, G., An optimized LiNO₃/DMSO electrolyte for high-performance rechargeable Li–O₂ batteries, *RSC Advances* **2014**, 4, 11115-11120.
- 21. Mondal, A.K., Su, D., Chen, S., **Zhang, J.**, Ung, A., Wang, G., Microwave-assisted synthesis of spherical β-Ni (OH)₂ superstructures for electrochemical capacitors with excellent cycling stability, *Chemical Physics Letters* **2014**, 610, 115-120.
- 22. Chen, S., Huang, X., Liu, H., Sun, B., Yeoh, W., Li, K., Zhang, J., Wang, G., 3D Hyperbranched Hollow Carbon Nanorod Architectures for High Performance Lithium Sulfur Batteries, Advanced Energy Materials 2014, 4.

Table of Contents

Certificate of original authorship	i
Acknowledgements	ii
Abstract	iv
Publication list	vii
Table of Contents	xi
List of Figures	xvii
List of Tables	xxx
Introduction	xxxi
Chapter 1 Literature reviews	1
1.1 Overview	1
1.2 Lithium ion (Li-ion) batteries.	4
1.2.1 History of Li-ion batteries	4
1.2.2 Basic concepts and designs for Li-ion batteries	5
1.2.3 Overall criteria for commercial Li-ion battery systems	12
1.2.4 Organic Electrolyte for Li-ion batteries	13
1.2.4.1 Ion transport	15
1.2.5 Organic porous polymer membrane	31
1.3 Lithium oxygen (Li-O ₂) batteries	34
1.3.1 Anode	37

1.3.2 Organic electrolyte	42
1.3.3 Cathode	48
1.4 Summary	52
Chapter 2 Experimental	53
2.1 Overview	53
2.2 Materials and chemicals	54
2.3 Material preparations	55
2.3.1 Breath-figure method	56
2.3.2 General organic synthesis	57
2.4 Material characterization	58
2.4.1 X-ray diffraction analysis (XRD)	58
2.4.2 Raman spectroscopy.	60
2.4.3 Thermogravimetric analysis (TGA)	61
2.4.4 Scanning electron microscopy (SEM)	63
2.4.5 Fourier transform infrared (FTIR) spectroscopy	64
2.4.6 Ultraviolet-visible (UV-vis) spectroscopy	64
2.4.7 Nuclear magnetic resonance (NMR) spectroscopy	65
2.5 Electrode preparation and battery assembly	67
2.5.1 Lithium ion (Li-ion) battery	67
2.5.2 Lithium oxygen (Li-O ₂) battery	68

2.6 Electrochemical measurements	70
2.6.1 Cyclic voltammetry (CV)	70
2.6.2 Electrochemical impedance spectroscopy (ESI)	71
2.6.3 Linear Sweep Voltammetry (LSV)	72
2.6.4 Galvanostatic discharge-charge	73
Chapter 3 Honeycomb-like porous gel polymer electrolyte membrane for lithium ic	on
batteries with enhanced safety	75
3.1 Introduction	75
3.2 Experimental details	77
3.2.1 Preparation of PVDF-HFP polymer electrolyte membranes	77
3.2.2 Characterization of PVDF-HFP membranes	77
3.2.3 Electrochemical characterization of PVDF-HFP electrolyte membrane	78
3.3 Results and Discussions	79
3.3.1 Optimisation	79
3.3.2 Morphology	82
3.3.3 Physical Characterization	86
3.3.4 Electrochemical characterizations	90
3.3.5 Battery performances	94
3.4 Summary	98

Chapter 4 Porous poly(vinylidene fluoride-co-hexafluoropylene) polymer membrane v	with
sandwich-like architecture for highly safe lithium ion batteries	100
4.1 Introduction	100
4.2 Experimental details	102
4.2.1 Preparation of PVDF-HFP porous polymer membranes	102
4.2.2 Preparation of PMMA/PVDF-HFP porous polymer membranes	103
4.2.3 Preparation of gel polymer electrolyte membranes	103
4.2.4 Characterizations of the as-prepared porous polymer membranes	103
4.2.5 Electrochemical characterization of polymer electrolyte membranes	104
4.3 Results and discussions.	105
4.3.1 Morphology	105
4.3.2 Physical characterizations	109
4.3.3 Electrochemical characterizations	117
4.3.4 Battery performances	120
4.4 Summary	122
Chapter 5 A Bi-functional Organic Redox Catalyst for Rechargeable Lithium-Oxy	gen
Batteries with Enhanced Performances	123
5.1 Introduction	123
5.2 Experimental details	124
5.2.1 Synthesis of PTMA	124

5.2.2 Characterization	126
5.2.3 Electrochemical characterization	126
5.3 Results and discussions	128
5.3.1 Physical characterizations	128
5.3.2 Electrochemical characterizations	131
5.3.3 Battery performances	134
5.3.4 Mechanisms	140
5.3.5 Catalytic behavior	144
5.4 Summary	145
Chapter 6 A Multi-Functional Gel Co-Polymer Bridging Liquid El	lectrolyte and Solid
Cathode Nanoparticles: An Efficient Route to Li-O ₂ Batteries with Im-	proved Performance
	146
6.1 Introduction	146
6.2 Experimental	148
6.2.1 Synthesis of P(TMA-MMA) co-polymers	148
6.2.2 Characterization	150
6.2.3 Electrochemical characterization	150
6.3 Results and discussions.	151
6.3.1 Physical characterizations	151
6.3.2 Electrochemical performances	155

6.3.3 ¹ HNMR tests	157
6.3.4 Battery performances	159
6.3.5 Mechanisms	162
6.4 Summary	177
Chapter 7 Transform tetrathiafulvalene as an organic condu	actor for improving
performances of Li-O ₂ batteries	178
7.1 Introduction	178
7.2 Experimental details	179
7.2.1 Electrolyte preparation	179
7.2.2 Carbon black electrode preparation	179
7.2.3 Porous graphene electrode preparation	180
7.2.4 Characterizations	180
7.2.5 Electrochemical characterizations	181
7.3 Results and discussions	182
7.3.1 Electrochemical characterizations	182
7.4 Summary	199
Chapter 8 Conclusions	200
8.1 General conclusions	200
8.2 Outlook	202
References	204

List of Figures

Figure 1-1 The timeline of battery evolution.
Figure 1-2 The gravimetric energy density of commonly used rechargeable batteries 3
Figure 1-3 Schematic illustration of the rocking chair mechanism during discharge and
charge
Figure 1-4 The potential ranges vs. Li ⁺ /Li and specific capacities of electrode materials for
Li-ion batteries. 7
Figure 1-5 Comparison of self-diffusivities for Li ⁺ , counter-anions, and solvent molecules
and their dependences on salt concentration. The asterisk at 0 M represents D_{GBL} of neat
GBL
Figure 1-6 Schematic illustrations of the primary solvation sheath of Li ⁺ in 0.1 M LiBF4
solution in EC-DMC (1-1) with different coordination umbers based on MD simulation of
LiBF ₄ in EC/DMC. 19
Figure 1-7 Viscosity versus cosolvent content plots for sulfolane-binary solutions:
sulfolane + dimethylcarbonate
Figure 1-8 Cycling performance of Li/LiNi _{0.5} Mn _{1.5} O ₄ cells with standard (STD) and
DMMP containing electrolyte. 23
Figure 1-9 Common ionic liquids ion families utilized in lithium-ion batteries
Figure 1-10 Improved cycling performances of lithium-ion cells at elevated temperatures
75°C for NCA and 60°C for LFP.
Figure 1-11 Schematic mechanism of Li ⁺ movement through PEO based polymer
electrolyte. 29

Figure 1-12 (a) Surface and (b) cross-section morphologies of the prepared porous polymer
membrane. 34
Figure 1-13 Specific energy densities of various rechargeable batteries
Figure 1-14 Schematic illustration of the discharge and charge processes of Li-O ₂ batteries
Figure 1-15 The characterizations of anodic lithium during discharge-charge cycling 38
Figure 1-16 Voltage profiles of Li-O ₂ battery with 1 M LiNO ₃ in DMA at 0.1 mA cm ⁻² a
room temperature
Figure 1-17 Schematic mechanism of decomposition of PC electrolyte in Li-O ₂ batteries.44
Figure 1-18 a) First charge/discharge profiles of carbon paper/Li cells with and without
0.05 M TEMPO at a current rate of 0.025 mA cm ⁻² . b) The cycling stabilities and
efficiencies of the cell with 0.05 M of TEMPO at a current rate of 0.025 mA cm ⁻² . c,d
Nyquist plots of the impedances of the Li/Li symmetric cell with bare Li and with TEMPO
(c), and with the CPL-coated Li and with TEMPO (d). e) Digital pictures of bare Li and
CPL-coated Li electrodes after prolonged storage test (scale bar, 5 mm)
Figure 1-19 Schematics of reactions on discharge (left) and the effect of DBBQ on the
potential determining step (right). 51
Figure 2-1 Schematic illustration for material preparation, characterization and application
Figure 2-2 Conventional BF methods. (a) Dynamic and (b) static BF processed
Figure 2-3 Schematic drawing of Bragg's law.
Figure 2-4 Photo of the XRD instrument of Bruker D8 Discover
Figure 2-5 Photo of the Raman instrument

Figure 2-6 The photo of the TGA instrument	. 62
Figure 2-7 The photo of SEM of Supra 55 VP	. 63
Figure 2-8 Photo of the thermo FTIR instrument	. 64
Figure 2-9 Photo of the UV instrument of Cary 60	. 65
Figure 2-10 Photo of the NMR instrument	. 66
Figure 2-11 Photo of the glovebox used to assemble the batteries	. 67
Figure 2-12 Schematic illustration of the construction of a Li-ion battery	. 68
Figure 2-13 Schematic illustration of the construction of a Li-O ₂ battery	. 69
Figure 2-14 Photo of the CH instrument Electrochemical workstation	. 71
Figure 2-15 A typical impedance Nyquist curve of a battery system	. 72
Figure 2-16 Photo of the Neware battery testing system	. 74
Figure 3-1 SEM images of porous membranes prepared with different concentrations	s of
PVDF-HFP: (a) 1 wt%, (b) 2 wt%, (c) 5 wt%, and 10 wt%. The scale bar is 1 μm for	all
images.	. 80
Figure 3-2 SEM images of porous membrane prepared in different humidities of (a) 65	; %,
(b) 76 %, (c) 86 %, and (d) 98 %. The scale bar is (a) 2 μ m, (b) 2 μ m, (c) 2 μ m, and (d)	d) 1
μm.	. 81
Figure 3-3 FESEM images of (a, b) the front side, (c, d) the back side, and (e, f) the cro	oss-
section of the PVDF-HFP honeycomb-like porous polymer membrane	. 83
Figure 3-4 FESEM image of (a) the front side and (b) the back side of the PVDF-F	НFР
honeycomb-like porous membrane	. 84
Figure 3-5 Schematic illustration: (a) The preparation process of the PVDF-HFP por	ous
polymer membrane. (b) The 3D architecture of PVDF-HFP polymer membrane. And	(c)

the porous gel polymer electrolyte with the combination of two membranes as one
integrated separator (two back sides are exposed to the outside)
Figure 3-6 FTIR spectrum of the PVDF-HFP membrane 87
Figure 3-7 Thermogravimetry (TG, solid line) and differential scanning calorimetry (DSC,
dot line) curves of PVDF-HFP porous polymer membrane in air. The temperature rising
rate is 10 °C min ⁻¹ .
Figure 3-8 The thermal shrinking test of the PVDF-HFP porous membrane (a) before and
(b) after heating to 150 °C for 30 min, and the combustion test of the membrane (c) before
and (d) after set on fire.
Figure 3-9 Thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of
the PVDF-HFP polymer electrolyte membrane in N2. The temperature rising rate is 2 °C
min ⁻¹
Figure 3-10 The Arrhenius plots of the ionic conductivity vs. temperature. The inset is the
a.c. impedance spectra 91
Figure 3-11 The linear sweep voltammogram of the PVDF-HFP polymer electrolyte
membrane and Celgard 2400 separator. The scanning rate is 0.1 mV s ⁻¹
Figure 3-12 The cyclic voltammetry curve of lithium ion cells with the PVDF-HFP
polymer electrolyte membranes. The scanning rate is 0.1 mV s ⁻¹ . The potential range is set
between 2.0 to 4.2 V. 94
Figure 3-13 Electrochemical performances of lithium ion cells with LiFePO ₄ as cathode
materials: (a) Charge-discharge curves using PVDF-HFP polymer electrolyte membranes,
(b) Charge-discharge curves using Celgard 2400 separators saturated with liquid electrolyte,
(c) Cycling performances. The cut-off voltages are 2 V and 4.2 V. The current density is

0.2 C. (d) Rate behaviour. The current densities of discharge and charge are 0.2 C, 0.5 C, 1
C, and 2 C respectively.
Figure 3-14 The cycling performance of the lithium ion cells with the PVDF-HFP polymer
electrolyte membrane. The current density is 1 C
Figure 3-15 The charge-discharge curves of the lithium ion cells with the PVDF-HFP
polymer electrolyte membranes at different current densities
Figure 4-1 FESEM images of (a) the front side, (b) the back side, and (c) the cross-section
of the PVDF-HFP porous polymer membrane, and (d) the outside surface, (e, f) the cross-
section of the PMMA/PVDF-HFP porous polymer membrane
Figure 4-2 FTIR spectra of the PVDF-HFP and PMMA/PVDF-HFP membranes110
Figure 4-3 Thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of
the PVDF-HFP and PMMA/PVDF-HFP porous polymer membranes in air. The
temperature rising rate is 10 °C min ⁻¹
Figure 4-4 The thermal shrinking test of (left) the Celgard 2400 separator, (middle) the
PVDF-HFP porous polymer membrane, and (right) the PMMA/PVDF-HFP porous
polymer membrane (a) before and (b) after heating to 150 °C for 30 min, and the
combustion test of (left) the Celgard 2400 separator, (middle) the PVDF-HFP porous
polymer membrane, and (right) the PMMA/PVDF-HFP porous polymer membrane (c)
before and (d) after set on fire
Figure 4-5 Thermogravimetry (TG) and differential scanning calorimetry (DSC) curves of
the PVDF-HFP and PMMA/PVDF-HFP polymer electrolyte membrane in N ₂ . The
temperature rising rate is 2 °C min ⁻¹ .

Figure 4-6 The Arrhenius plots of the ionic conductivity vs. temperature. The inset is the
a.c. impedance spectra
Figure 4-7 The linear sweep voltammogram of the electrolyte membranes and Celgard
2400 separator. The scanning rate is 0.1 V mV s ⁻¹
Figure 4-8 Electrochemical performances of lithium ion cells with LiFePO ₄ as cathode
material. (a) The cycling performances of the polymer electrolyte membranes and Celgard
2400 separator. The cut-off voltages are 2 V and 4.2 V. The current density is 0.2 C. (b)
The rate behaviour. The current densities of discharge and charge are 0.2 C, 0.5 C, 1 C, and
2 C, respectively
Figure 5-1 (a) The illustration of the PTMA synthesis process and (b) digital photo of the
as-prepared PTMA, reactant MTMP, and intermediate PMTMP
Figure 5-2 FT-IR spectra of the as-prepared MTMP and PTMA
Figure 5-3 (a) Illustration of the processes to form the PTMA / carbon black electrode
material. Insets show SEM images of the materials (b) before and (c) after dissolving in
NMP. (d) The digital photos of PTMA dissolving into NMP. 129
Figure 5-4 EDX mapping of the PTMA electrode
Figure 5-5 (a) Digital photos of PTMA before and after soaked in DEGDME solvent. (b)
FTIR spectra of the DEGDME solvent before and after PTMA soaked for two hours131
Figure 5-6 (a) The cyclic voltammetry curves of the sealed cells in an argon atmosphere
with PTMA and bare CB electrodes. Scanning rate is 0.1 mV s ⁻¹ and potential range is 2.0
to 4.5 V. The inset is the redox reactions of PTMA during p-doping and n-doping. (b) The
CV curves of PTMA electrodes both in argon and oxygen atmosphere. Scanning rate is 0.1

mV s ⁻¹ and potential range is 2.0 to 4.5 V. The inset is the enlarged curves from 2.5 V to
3.3 V
Figure 5-7 (a) Discharge/charge profiles of Li-O ₂ batteries with PTMA electrode and bare
CB electrode at a discharge depth of 1000 mAh g ⁻¹ and a current density of 200 mA g ⁻¹ . (b)
Cycling profile of both Li-O ₂ batteries. And discharge/charge profile during cycling of Li-
O ₂ batteries with (c) PTMA electrode, and (d) bare CB electrode. The cut-off voltage was
set to be 2.3 V/4.8 V. The current density and capacities were calculated by the weight of
the active materials in the electrodes (PTMA+CB and CB)
Figure 5-8 (a) Fully discharge/charge profile of Li-O ₂ batteries with PTMA and bare CB
electrodes. The current density is 200 mAh g^{-1} . The cut-off voltage is set at 2.3 V/4.5 V. (b)
The full discharge/charge profile of the cell with PTMA electrode in Argon atmosphere.
The current density is 200 mAh g ⁻¹ . The cut-off voltage is set as 2.3 V-4.5V135
Figure 5-9 Rate capabilities of Li-O ₂ batteries with PTMA (a), and bare CB (b) with
current density from 50 to 1000 mA g ⁻¹
Figure 5-10 The rate capability of Li-O ₂ batteries with PTMA electrodes with current
densities from 100 to 500 mA g ⁻¹ . The cut-off voltage is set at 2.3 V/4.5 V
Figure 5-11 The SEM images of PTMA electrode (a) before discharge, (b) after first
discharge, and (c) after first charge. (d) XRD pattern of the electrode after discharge139
Figure 5-12 The FTIR spectrum of the PTMA electrode after discharge
Figure 5-13 Aqueous ORR and OER with PTMA electrocatalyst. Operating in an O ₂ -
saturated 1 M KOH aqueous solution, the results are electrochemically measured LSVs of
(a) PTMA and (b) CB towards ORR at different rotation rates indicated; (c) ORR and (d)
OER catalytic activity of PTMA and CB at a rotation rate of 1600 rpm

Figure 5-14 Schematic illustration of mechanism of PTMA during discharge and charge
processes. To simplify the illustration, the structure of PTMA is replaced by its nitride
oxide moiety as it is the main functional group.
Figure 5-15 Liner sweep voltammetry of electrode with and without commercial Li ₂ O ₂ .
The scanning rate is 0.1 mV s ⁻¹ . The range is set from open circuit voltage to 4.4 V145
Figure 6-1 Schematic synthesis process of the co-polymers
Figure 6-2 (a) Digital photos, (b) FTIR spectra, and (c) Raman spectra of the as-prepared
P ₁₁ , P ₁₂ , P ₁₃ , and P ₁₄ co-polymers. 152
Figure 6-3 (a) Schematic illustration of the electrode fabrication process, and SEM images
of the electrodes with (b) P_{11} , (c) P_{12} , (d) P_{13} , and (e) P_{14} co-polymer binders. The insets are
higher magnification SEM images of the electrodes.
Figure 6-4 EDX mapping results of the electrode. A P ₁₃ co-polymer electrode was chosen
to represent the co-polymers.
Figure 6-5 (a) Impedance spectra of test batteries with different binders in Argon
atmosphere. (b) The discharge-charge profiles and (c) cyclabilities of the Li-O ₂ batteries
with P_{11} , P_{12} , P_{13} , P_{14} co-polymers, and PTFE binder. The current density was 200 mA g ⁻¹ .
The cut-off voltages were 2.3 V /4.6 V.
Figure 6-6 The digital image of P_{13} co-polymer (a) before and (b) after soaking with
electrolyte for one day. P ₁₃ co-polymer has been used as a representative for the P(TMA-
MMA) co-polymers. It is evident that the powder-like P ₁₃ co-polymer changed to a
transparent gel-like morphology after soaking in liquid electrolyte, confirming its capability
to form a gel polymer membrane

Figure 6-7 (a) Schematic illustration of the preparation for NMR testing. The ¹ HNMR
results of the solution extracted from (b) the P_{13} electrode, and (c) the PTFE electrode158
Figure 6-8 Discharge-charge profiles of the Li-O ₂ batteries with P ₁₁ , P ₁₂ , P ₁₃ co-polymers
and PTFE binder. The current density was 500 mA g ⁻¹
Figure 6-9 SEM images of (a) the pristine electrode, (b) the electrode after discharge, and
(c) the electrode after charge. A P_{13} co-polymer was used as a representative, and the
current density was 200 mA g ⁻¹ . (d) XRD patterns of the electrode after discharge.
Compared with the pristine electrode (a), toroidal-shaped structures were observed after
discharge (b) and vanished after charge (c). The discharge products have been confirmed to
be Li ₂ O ₂ by XRD measurement (d). These results further indicate the stability and
compatibility of P ₁₃ in Li-O ₂ batteries
Figure 6-10 FTIR spectra of the cathode with P_{13} before cycle and after 5 cycles. The
characteristic peaks of the co-polymer remain unchanged after 5 cycles, indicating the
exceptional stability of the co-polymer in the attack of Li ₂ O ₂
Figure 6-11 Schematic mechanisms of the co-polymers facilitating Li-O ₂ battery reactions
during discharge and charge
Figure 6-12 The LSV curves of the Li-O ₂ batteries with (a) CB electrodes and (b)
CB+Li ₂ O ₂ electrodes. The scan rate is 0.1 mV s ⁻¹
Figure 6-13 (a) The discharge-charge profiles and (b) cyclabilities of Li-O ₂ batteries with
P ₁₃ and PTMA-PMMA. The current density was 200 mA g ⁻¹ , and the cut-off voltages were
2.3 V/4.6 V. (c) Graphical illustration of the Li_2O_2 formation mechanism on P_{13} and
PTMA+PMMA electrodes during discharge

Figure 6-14 (a) Orientation of the sample during ATR-FTIR experiments. (b) ATR-FTIR
spectra of the electrodes surfaces. A band assigned to the N-O group of the TMA unit in P ₁₃
at 1332 cm ⁻¹ is indicated by *
Figure 6-15 Discharge profiles of Li-O ₂ batteries with P ₁₃ and PTMA+PMMA electrodes.
The current density was 200 mA g ⁻¹ , and the cut-off voltage was 2.3 V169
Figure 6-16 Discharge-charge profiles of Li-O ₂ batteries with (a) P ₁₃ and (c)
PTMA+PMMA electrodes. The current density was 200 mA g ⁻¹ and cut-off potentials were
2.3 V/4.3 V. The dQ/dV vs voltage profiles of (b) P ₁₃ and (d) PTMA+PMMA electrodes
based on (a, c) profiles.
Figure 6-17 Rate performance of the Li-O ₂ batteries with P ₁₃ co-polymer as catalyst/binder
The discharge and charge current densities of each cell were kept the same
Figure 6-18 Discharge-charge profiles of Li-O ₂ batteries with (a) P ₁₃ and (b) PTFE all
discharged at 100 mA g ⁻¹ , charged at 100, 200, and 500 mA g ⁻¹ , respectively. Discharge-
charge profiles of Li-O ₂ batteries with (c) P ₁₃ and (d) PTFE discharged at 100, 200, and 500
mA g ⁻¹ , respectively, all charged at 100 mA g ⁻¹ .
Figure 6-19 Discharge-charge profiles of Li-O ₂ batteries with (a, c) P ₁₃ and (b, d) PTFE all
discharged at (a, b) 200 mA g ⁻¹ or (c, d) 500 mA g ⁻¹ , charged at 100, 200, and 500 mA g ⁻¹ ,
respectively. 173
Figure 6-20 The SEM images of discharged electrodes at current densities of (a) 100 mA g
¹ , (c) 200 mA g ⁻¹ , and (e) 500 mA g ⁻¹ . (b, d, f) Illustration of the proposed mechanism for
forming different morphologies of Li ₂ O ₂
Figure 6-21 FTIR spectra of the electrolyte before and after 1 cycle when using P ₁₃ co-
polymer catalyst/binder

Figure 6-22 The discharge-charge profiles of Li-O ₂ batteries with different percentages of
P_{13} co-polymer in the cathode. The current density was 200 mA g^{-1}
Figure 7-1 (a) CV curves of the cells with different electrolytes in argon atmosphere. The
scan rate is $0.5\ \text{mV}\ \text{s}^{\text{-1}}$. The galvanostatic discharge and charge profiles with current
densities of (b) 200 mA $g^{\text{-1}}$ and (c) 500 mA $g^{\text{-1}}$, and (d) the cycling performances of Li-O ₂
batteries in oxygen atmosphere. The current density is 200 mA g ⁻¹ , and the cut-off voltages
are 2.0 V/4.6 V. The positive electrodes are prepared with carbon black
Figure 7-2 CV curves of the two-electrode (Li-O ₂) cells with different electrolytes in
oxygen atmosphere. The scan rate is $0.5\ \text{mV}\ \text{s}^{\text{-1}}$. The cell is constructed by assembling a
swaglok-type cell using a lithium metal as the anode, and a carbon black electrode as the
cathode
Figure 7-3 XRD patterns of the electrodes after (a) discharge and (b) charge185
Figure 7-4 FTIR post-characterization of the electrode before and after first cycle. The
electrolyte contains 30 mM TTF and 30 mM LiCl. (a) All the electrodes are carefully rinsed
several times with electrolyte solvents DEGDME until there is no colour detected in the
upper liquid. The electrodes are then dried in vacuum before test. (b) FTIR result of the
electrodes
Figure 7-5 SEM images of carbon black electrodes (a) before cycling, (b) after discharge,
(c) after charge, and (d) after second discharge to 3.0 V. The electrolyte is 30 mM TTF+30
mM LiCl. The highlighted thread-like structure is the deposited TTF^+Cl_x . The cycle depth
is 1000 mAh g ⁻¹ based on the electrode mass
Figure 7-6 The second cycle discharge-charge profiles of the batteries with different
electrolytes. The current density is 200 mA g ⁻¹

Figure 7-7 The discharge-charge profiles of the Li-O ₂ batteries with different electrolytes
cycling at larger fixed capacities of 3000 mAh g ⁻¹ . The electrolytes used are (a) 30 mM
TTF and (b) 30 mM TTF+30 mM LiCl in DEGDME electrolyte. The current density is 200
mA g ⁻¹ . Compared to the large reversible capacities, the capacity of TTF redox is
insignificant
Figure 7-8 Digital photos of the separators after 5 cycles in the Li-O ₂ batteries (discharge
state). The electrolytes are (a) pure electrolyte, (b) 30 mM TTF, (c) 30 mM TTF+30 mM
LiCl
Figure 7-9 FTIR spectra of the electrodes after the first charge. The peaks referring to the
formation of TTF are visible on the charged TTF+LiCl electrode indicating the deposit of
TTF-species.
Figure 7-10 EDX results of the electrode after first cycle (a) discharge and (b) charge. The
electrolyte is 30 mM TTF+30 mM LiCl+ 0.5 M LiTFSI in DEGDME
Figure 7-11 UV spectra of the electrolytes after the first (a) discharge and (b) charge. (c)
The digital photos of a two-electrode device with TTF electrolyte and TTF+LiCl electrolyte
The scan rate is 1 mV s ⁻¹ . (d) Schematic illustration of the mechanism of TTF ⁺ Cl _x
facilitating the decomposition of Li ₂ O ₂ .
Figure 7-12 Visual experiment of TTF ⁺ Cl _x ⁻ when a GC electrode is used. The scanning rate
is 50 mV s ⁻¹
Figure 7-13 The SEM image of the electrode after charge. The thread-like structure is the
as-deposit TTF+Clx-, which is different from the morphology of glass fibre (shown in the
inset image)

Figure 7-14 (c, e) Digital photos and (d, f) SEM images of the lithium anode after five
cycles. (a, b) are the pristine lithium anode. (c, d) are the lithium anode in 30 mM TTF
electrolyte, and (e, f) are the lithium anode in 30 mM TTF+30 mM LiCl electrolyte. The
fibre-like structures in (b, d) originate from the glass fibre separators
Figure 7-15 The discharge and charge profiles of Li-O ₂ batteries containing electrolytes
with different concentrations of (a) TTF and (b) LiCl in oxygen atmosphere. The cycling
performance of a Li-O ₂ battery with 50 mM TTF and 0.1 M LiCl in oxygen atmosphere
with (c) a carbon black electrode and (d) a porous graphene electrode. The current densities
are 200 mA g^{-1} . The cut-off voltages are 2.3 V/4.6 V
Figure 7-16 LSV result of the cells with different electrolytes and electrodes. The
electrolytes are 30 mM LiCl in DEGDME (referring as LiCl) and pure DEGDME (referring
as Blank), and the electrodes used are carbon black electrode and carbon black+Li $_2\mathrm{O}_2$
electrode. 197
Figure 7-17 The discharge-charge profiles of the Li-O ₂ batteries with 30 mM LiCl in
DEGDME electrolyte at different fixed capacities in oxygen atmosphere. One cell is
directly charged in argon atmosphere and another cell is used without the addition of LiCl,
as comparisons. The current densities are 200 mA g ⁻¹
Figure 7-18 Schematic illustration of the material loss during discharge and charge
processes with (a) carbon black electrode and (b) porous graphene electrode
Figure 7-19 SEM images of PGE.
Figure 7-20 The cycling performance of the battery with 50 mM TTF electrolyte using a
PGE electrode. The current density is 200 mA g ⁻¹ .

List of Tables

Table 1-1 The electrolytes used for Li-ion batteries.	8
Table 2-1 Materials and chemicals used in the research project.	54