

Connecting the dots of the bacterial cell cycle: a potential role for SpoOJ in Z ring positioning

Isabella Veronica Hajduk

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

February 2018

Certificate of Authorship/Originality

I, Isabella Veronica Hajduk, certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This research is supported by an Australian Government Research Training Program Scholarship.

Production Note: Signature removed prior to publication.

Isabella Hajduk, February 2018

Acknowledgements

What a journey this has been. I have so many people to thank that have come along on this ride with me. First and foremost, my supervisor, mentor and inspiring friend and woman, Liz Harry. Thank you for all your guidance, love and support over all these years on all fronts: scientific, mental and emotional. Thank you for picking me up on the bad days and showering me with praise on the good ones. Thank you for also introducing me to the cutest kitties in the world!

Thank you to my co-supervisor and original lab mentor back in the day, Chris Rodrigues. You are an absolute force to be reckoned with. Thank you for keeping me on my toes scientifically, and for igniting in me the fire for science both in the past and the present. Also thank you to both Liz and Chris for all your feedback and drafting of this thesis.

Thank you to all the Harry lab family: immediate and extensive, past and present. Thank you for accepting my high expectations for morning tea, but my goodness, we've had some good food over the last few years! Thank you for the laughs, love and support, both in and out of the lab. Also special thank you to Kevin, my first honours student, and the best student anyone could ask for – thanks mate!

Thank you to my PhD crew. Thank you for all the caffeine over the years, but mostly thank you for listening to me vent and sharing in my PhD woes. A special thanks to Kate, Jacqueline and Krish, my immediate PhD family, for all the laughs and food (especially from Krish)! Thank you to Cyn, Jen and Sue for cheering me on and providing priceless advice over the last few years. To my non-PhD friends, I'm sorry for being so MIA over the years, but thank you for still sticking by me and I promise my ghosting days are coming to an end!

A huge thanks to my family including mum, Rob, dad, and Ciocia for always trying to understand what I do, but also for your patience and support. I especially thank my mum for being the bestest buddy and mum anyone could ask for. You have been an absolute champion with your love and support over all these years. To my darling partner Michael, I could not ask for a better person to have by my side through this adventure. I can't put into words what you mean to me, and I will be forever grateful for our time together. I can't wait to explore the post-PhD life with you <3 > |0

Finally, I would also like to thank the Australian Commonwealth Government Department of Industry for the Australian Postgraduate Award Scholarship I received throughout my PhD candidature.

Abstract

Cell division is of utmost importance for the propagation of all living organisms. In bacteria, the earliest stage of cell division is the formation of the cytokinetic Z ring at the division site at the cell centre (midcell), which must be tightly co-ordinated with chromosome replication and segregation to ensure that each newborn cell receives a full complement of the genetic material. What still eludes us is how bacterial cells position their division site so precisely at the cell centre to enable the production of two genetically identical daughter cells.

The current understanding of how bacterial cells position their division site is that it occurs via the combination of two negative regulators, the Min system and nucleoid occlusion mediated by the protein Noc. These two systems act by preventing the Z ring from forming at incorrect positions, either at the cell poles or within the vicinity of the chromosome, respectively. The overall result is that the two systems prevent the Z ring from forming anywhere other than the cell centre. However, as discovered recently, they do not define the division site, suggesting the existence of other regulatory mechanisms for midcell Z ring assembly. So what does define the division site? It has been shown in *Bacillus subtilis* that Z ring assembly may be coupled with the early stages of DNA replication and recent work in this area has led to the proposed Ready-Set-Go model.

The Ready-Set-Go model proposes a putative link between Z ring positioning and DNA replication such that the progress through the initiation phase of DNA replication promotes an increase in ability of the Z ring to assemble midcell. Specifically, mutants blocked at an early stage of initiation lead to fewer midcell Z rings than those blocked at later stages of initiation. Importantly, this correlation between DNA replication initiation progression and Z ring position is only observed in *noc* mutants. Interestingly the observations that led to this model also hinted at an alternative possibility: mechanisms linked to chromosome organisation may also impact Z ring positioning. Thus the primary objective of the work presented in this

thesis was to obtain a better understanding of the link between the early stages of DNA replication and cell division in the model organism *B. subtilis*, and how chromosome organisation plays into this link. To explore this possibility further, and ultimately test the validity of the Ready-Set-Go model, this thesis examined the role of Soj and SpoOJ, two players with distinct roles in the regulation of DNA replication initiation and chromosome organisation, in Z ring positioning using the same conditions that led to the Ready-Set-Go model. Surprisingly, a *spoOJ noc* double mutant, but not a *soj noc* double mutant, allows for wild-type levels of midcell Z ring assembly, regardless of the block imposed at the initiation stage of DNA replication. This suggests that the ability to assemble a Z ring at midcell is not linked to the progression of the initiation stage of DNA replication, thus challenging the idea of a link between DNA replication initiation and Z ring position. Importantly, this result and others, also suggest a role for SpoOJ in the regulation of Z ring position.

To start to elucidate how Spo0J plays into the regulation of Z ring position, Z ring positioning was examined in cells blocked at an early event of DNA replication initiation that also harbor point mutants of Spo0J impacting its function in DNA replication initiation through *soj* or points mutants that impact its function in the recruitment of SMC (required to organise the chromosome). Interestingly, this data and others support two models for how Spo0J may function in Z ring positioning: Spo0J, like Noc, is a nucleoid occlusion protein or Spo0J-mediated chromosome organisation blocks midcell Z ring assembly by a generating a nucleoid morphology that inhibits midcell Z ring assembly. Both models are discussed and contrasted in detail in light of recent advances in the understanding of bacterial chromosome organisation.

Collectively, this thesis challenges the long-standing idea of a link between DNA replication initiation and Z ring positioning and creates a solid foundation for future studies examining how chromosome organisation impacts Z ring positioning.

Table of Contents

Acknow	ledge	ements ii
Abstractiv		
Table of	Con	tents vi
Table of	[:] Figu	res and Tablesx
Publicat	ions	xiv
Abbrevi	atior	۱۶ xv
Chapter	1.	Introduction1
1.1	Pref	ace 2
1.2	Intro	oduction5
1.3	DNA	replication5
1.4	Chro	pmosome segregation7
1.5	Cell	division and regulation of division-site placement11
1.5.	1	Negative regulators of Z ring placement11
1.5.	2	Positive regulators of Z ring placement
1.6	Coo	rdinating cell division with DNA replication17
1.7	Coo	rdinating cell division with chromosome organisation and segregation19
1.8	Con	cluding remarks21
1.9	Thes	sis aims
Chapter	2.	Materials and Methods 24
2.1	Chei	micals, reagents and solutions25
2.2	Baci	<i>Ilus subtilis</i> strains and growth conditions26
2.2.	1	Testing for the disruption of the <i>amyE</i> locus in <i>Bacillus subtilis</i> cells31
2.2.	2	Testing for the temperature sensitive DNA replication mutation
2.3	Prep	paration, germination and outgrowth of <i>B. subtilis</i> spores
2.4	Prep	paration and transformation of competent <i>Bacillus subtilis</i> cells
2.4.	1	Preparation of competent <i>Bacillus subtilis</i> cells
2.4.	2	Transformation of competent Bacillus subtilis cells
2.5	Gen	eral DNA methods
2.5.	1	Bacillus subtilis chromosomal DNA extraction
2.5.	2	Polymerase Chain Reaction (PCR)
2.5.	3	Determination of DNA concentration

2	2.5.4	Agarose gel electrophoresis	35
2	2.5.5	DNA sequencing	35
2.6	Mic	roscopy Methods	36
2	2.6.1	Immunofluorescence microscopy (IFM)	36
2	2.6.2	Ethanol fixation for nucleoid visualisation	37
2	2.6.3	Preparation of cells for live cell fluorescence microscopy	38
2	2.6.4	Phase-contrast and fluorescence microscopy	38
2	2.6.5	Cell scoring and statistics	39
2.7	DNA	A content quantification via flow cytometry	39
2.8	We	stern blot analysis	40
2	2.8.1	Whole cell protein extraction for Western blotting	40
2	2.8.2	SDS-polyacrylamide gel	41
2	2.8.3	Western transfer	42
2	2.8.4	Immunodetection and quantification	42
Chap	ter 3.	Spo0J influences Z ring positioning when the early stages of DN	A
replie	cation a	re blocked	14
3.1	Intr	oduction	45
3.2	Res	ults	48
	3.2.1	The absence of both <i>soj</i> and <i>spoOJ</i> partially restores midcell Z ring formation	
I		ith an early block to initiation of replication	
	3.2.1.1		18
	3.2.1.2 spores		52
3	3.2.2	Z rings form at the cell centre only in the absence of <i>spo0J</i>	55
	3.2.2.1		
	3.2.2.2		
	3.2.3 chain elo	Investigating Z ring positioning and nucleoid morphology when entry to DNA ngation is blocked in the absence of <i>soj</i> and <i>spo0J</i>	
	3.2.3.1	Z ring positioning in the absence of soj and spo0J in the presence of HPUr	а
			52
	3.2.3.2 blocke	2 Characterization of nucleoid morphologies when early DNA elongation is d in Δ soj-spo0J	55
	3.2.3.3 blocke	$Co-visualisation of Z rings and nucleoids when entry to DNA elongation is d in \Deltasoj-spo0J$	57
	3.2.4 nitiation	Investigating changes to chromosome organisation via <i>oriC</i> -labelling when of DNA replication is blocked in the absence of <i>soj</i> and <i>spo0J</i>	70

3.2.5 Synthesis of DNA does not account for the increase in midcell Z rings in t		
absence	of <i>soj-spo0J</i> when initiation of DNA replication is blocked	
3.3 Disc	ussion78	
3.3.1	Spo0J impacts Z ring positioning by affecting nucleoid morphology79	1
3.3.1.1	Noc-mediated nucleoid occlusion80	1
3.3.1.2	Chromosomal inter-arm interactions80	
3.3.2	Does the origin of replication affect Z ring positioning?	
3.3.3	Testing Spo0J further in the HPUra condition83	
Chapter 4.	Investigating the role of Spo0J and Noc in division site placement 85	
4.1 Intro	oduction	
4.2 Resu	ılts	,
4.2.1 replicatio	Examining Noc localization in the absence of <i>spoOJ</i> when initiation of DNA n is blocked at the earliest stage	
4.2.2 and Noc	Examining Z ring positioning in the absence of all three proteins, Soj, SpoOJ91	
4.2.2.1 spo0J a	Characterization of Z ring positioning in dna-1 cells in the absence of soj, and noc at the non-permissive temperature91	
4.2.2.2 the pre	Characterisation of Z ring positioning in the absence of soj, spo0J and noc in esence of HPUra	
4.2.3 when init	Investigating nucleoid morphologies in the absence of <i>soj, spo0J</i> and <i>noc</i> iation of DNA replication is blocked101	
4.2.3.1 noc	Characterization of nucleoid morphology in the absence of soj, spo0J and	
4.2.3.2 is blocl	Co-visualisation of Z rings and nucleoids when initiation of DNA replication sed in the absence of soj, spo0J and noc104	
4.3 Disc	ussion	
4.3.1 absence o	The complete restoration of midcell Z rings in <i>dna-1</i> and +HPUra in the of both <i>spo0J</i> and <i>noc</i> disproves the Ready-Set-Go model	
4.3.2	Noc-independent nucleoid occlusion111	
4.3.2.1	Could Spo0J have a nucleoid occlusion function?	
Chapter 5. DNA of replie	Investigating how SpoOJ affects Z ring positioning when initiation of cation is blocked	
5.1 Intro	oduction	
5.2 Resu	ılts116	j
5.2.1	Investigating Z ring positioning in <i>spo0J</i> point mutations	j
5.2.1.1	Construction and characterisation of spo0J point mutations	

	5.2.1.2	Nucleoid morphology analysis of spo0J point mutations	122
	5.2.1.3	Z ring positioning analysis of spo0J point mutations	123
	5.2.1.4 absent		
5	.2.2	Z ring positioning analysis in the absence of SMC	130
	5.2.2.1	Characterisation of the SMC-degron system	130
	5.2.2.2	Nucleoid morphology	135
	5.2.2.3	Z ring positioning	136
5.3	Disc	ussion	139
5	.3.1	Further testing the nucleoid occlusion function of Spo0J	139
	5.3.1.1	Test a SMC-degron noc null strain	140
	5.3.1.2	Over-expression of Spo0J	140
	5.3.1.3 functio	Identify Spo0J point mutations that affect its predicted nucleoid occlusion	
	5.3.1.4	Identify potential interaction proteins	142
Chapt	er 6.	General Discussion	143
6.1	Z rin	g positioning is not linked to the early stages of DNA replication	144
6.2	Pote	ntial roles for SpoOJ in the regulation of Z ring positioning	147
6	.2.1	Is SpoOJ a nucleoid occlusion protein?	148
	.2.2 ng posit	Is Spo0J masking an unexplored aspect of how the chromosome impacts Z ioning?	149
Refer	ences		152

Table of Figures and Tables

Table of Figures

Figure 1.1: Roles for <i>SpoOJ</i> in chromosome replication and segregation9
Figure 1.2: Regulation of Z ring positioning
Figure 1.3: The Ready-Set-Go model linking DNA replication initiation to midcell Z ring assembly
Figure 3.1: Z ring positioning when initiation of DNA replication is blocked during spore outgrowth in the <i>dna-1</i> temperature-sensitive mutant
Figure 3.2: Different nucleoid morphologies observed in Δsoj-spo0J cells when initiation of DNA replication is inhibited by the <i>dna-1</i> mutation
Figure 3.3: Z ring and nucleoid co-visualisation in live <i>ftsZ-yfp</i> -containing <i>B. subtilis</i> outgrown spore cells at 48°C
Figure 3.4: Z ring positioning when either <i>Soj</i> or <i>SpoOJ</i> are absent and initiation of DNA replication is blocked early on in the <i>dnaB</i> mutant
Figure 3.5: Nucleoid morphology in ethanol-fixed DAPI stained vegetative cells of <i>dna-1</i> , <i>dna-1</i> Δ <i>soj</i> and <i>dna-1</i> Δ <i>spo0J</i>
Figure 3.6: Z ring positioning when entry into DNA chain elongation is blocked during spore outgrowth in the presence of HPUra64
Figure 3.7: Nucleoid morphology in live DAPI-stained outgrown spores of wild-type and Δ <i>soj-spo0J</i> outgrown spores in the presence of HPUra
Figure 3.8: Co-visualization of the Z ring and nucleoids in wild-type and Δ <i>soj-spoOJ</i> live outgrown spores when early elongation is blocked by addition of HPUra
Figure 3.9: Origin-proximal focus localisation when initiation of DNA replication is blocked at different stages in the absence of <i>soj-spo0J</i> 73
Figure 3.10: Flow cytometry profiles of Δ <i>soj-spoOJ</i> strains when initiation of DNA replication is blocked via <i>dna-1</i> mutation or addition of HPUra77
Figure 4.1: Noc localisation in the absence of s <i>po0J</i> when initiation of DNA replication is blocked

Figure 4.2: Z ring positioning in the individual mutants, <i>soj</i> or <i>spo0J</i> , in the <i>dna-1</i> Δ <i>noc</i> mutation at the non-permissive temperature
Figure 4.3: Z ring positioning when initiation of DNA replication is blocked during spore outgrowth in the <i>dna-1</i> temperature-sensitive mutation97
Figure 4.4: Z ring positioning when entry into DNA chain elongation is blocked during spore outgrowth in the +HPUra conditions
Figure 4.5: Nucleoid morphology in ethanol-fixed DAPI stained vegetative cells of the <i>dna-1</i> mutation in absence of <i>noc, soj</i> and/or <i>spo0J</i>
Figure 4.6: Nucleoid morphology in live DAPI-stained outgrown spores of wild-type and $\Delta soj-spoOJ \Delta noc$ in the presence of HPUra
Figure 4.7: Co-visualization of the Z ring and nucleoids in live outgrown spores absent of <i>soj</i> , <i>spo0J</i> and <i>noc</i> when initiation of DNA replication is blocked at different stages
Figure 5.1: Sporulation ability of <i>spo0J</i> point mutations
Figure 5.2: SMC and nucleoid co-visualisation in live <i>spo0J</i> point mutation vegetative cells at 48°C
Figure 5.3: Nucleoid morphology in ethanol-fixed DAPI stained vegetative cells of <i>dna-1 spo0J</i> point mutation strains
Figure 5.4: Nucleoid morphology in ethanol-fixed DAPI stained vegetative cells of <i>dna-1</i> Δ <i>noc spoOJ</i> point mutation strains
Figure 5.5: Z ring positioning scatter plot in <i>spo0J</i> point mutations when initiation of DNA replication is blocked and <i>noc</i> is absent
Figure 5.6: Different cell morphologies observed when SMC is depleted and initiation of DNA replication is inhibited by the <i>dna-1</i> mutation
Figure 5.7: Western analysis of SMC levels in the wild-type and SMC-depletion germinated spore cells
Figure 5.8: Nucleoid morphology in ethanol-fixed, DAPI stained, SMC-depletion germinated spore cells
Figure 5.9: Z ring positioning when initiation of DNA replication is blocked during spore outgrowth in the <i>dna-1</i> temperature-sensitive SMC-depleted mutant

Table of Tables

Table 2.1: Commonly used aqueous buffers and solutions 25
Table 2.2: Bacillus subtilis strains
Table 2.3: Bacillus subtilis growth media
Table 2.4: Antibiotics used for selection in <i>Bacillus subtilis</i>
Table 2.5: Primers used for PCR reaction
Table 2.6: Antibodies used for primary and secondary detection for both IFM and Westernblot analysis
Table 2.7 Constituents used to make the SDS-polyacrylamide gel
Table 3.1: Analysis of Z ring positioning in the <i>dna-1</i> temperature-sensitive mutant in theabsence of <i>soj-spo0J a</i> t 48°C
Table 3.2: Frequency of different nucleoid morphologies and midcell Z rings when initiationof DNA replication is blocked
Table 3.3: Analysis of Z ring positioning in the <i>dna-1</i> temperature-sensitive in the absence ofsoj-spo0J at 48°C.59
Table 3.4: Analysis of Z ring positioning in the absence of soj-spo0J with the addition ofHPUra.65
Table 3.5: Frequency of different nucleoid morphologies and midcell Z rings when entry toDNA elongation is blocked.68
Table 4.1: Analysis of Z ring positioning in vegetative cells of the <i>dna-1</i> temperature-sensitive mutant in the absence of <i>noc, soj</i> and <i>spo0J</i> at 48°C94
Table 4.2: Analysis of Z ring positioning in the <i>dna-1</i> temperature-sensitive mutation in theabsence of <i>noc</i> and <i>soj-spoOJ</i> at 48°C.98
Table 4.3: Analysis of Z ring positioning in outgrown spores in the absence of soj-spo0J andnoc with the addition of HPUra.101
Table 5.1: Z ring positioning in spoOJ point mutations at the non-permissive temperature(48°C)

Table 5.2: Analysis of Z ring positioning in the <i>dna-1</i> temperature-sensitive <i>spoOJ</i> point	
mutants in the absence of noc at 48°C.	. 128
Table 5.3: Analysis of Z ring positioning in the <i>dna-1</i> temperature-sensitive SMC-depleted	b
mutant at the non-permissive temperature	.138

Publications

Journal articles

Monahan LG, <u>Hajduk IV</u>, Blaber SP, Charles IG, Harry EJ (2014) Coordinating Bacterial Cell Division with Nutrient Availability: a Role for Glycolysis. *mBio* **5**

<u>Hajduk IV</u>, Rodrigues CDA, Harry EJ (2016) Connecting the dots of the bacterial cell cycle: Coordinating chromosome replication and segregation with cell division. *Seminars in Cell & Developmental Biology* **53**: 2-9

Conference proceedings

Poster presentation Australian Society for Microbiology Annual Scientific Meeting	2014
Poster presentation Gordon Research Conference, Vermont	2014
Poster presentation BacPath 12	2013
Poster presentation Federation of European Microbiology Societies	2013
Oral presentation 12th East Coast Bacillus Meeting	2012
Poster presentation 29th RNSH/UTS/USYD Scientific Research Meeting	2012
Poster presentation 28th RNSH/UTS/USYD Scientific Research Meeting	2011

Abbreviations

AGRF	Australian Research Genome Facility
Ab	antibody
В.	Bacillus
bp	base pair(s)
BP	band pass
BSA	bovine serum albumin
cat	chloramphenicol
CFP	cyan fluorescent protein
cm	centimetres
CCD	charged coupled device
DAPI	4'6-diamidino-2-phenylindole
DNA	deoxyribonucleic acid
Ε.	Escherichia
erm	Erythromycin
et al.	and others
FRAP	fluorescence recovery after photobleaching
fts	filamentation temperature sensitive
g	centrifugal force
g	gram(s)
GFP	green fluorescent protein
GMD	germination medium defined
IFM	immunofluorescence microscopy
lgG	Immunoglobulin G
IPTG	isopropyl-1-thio-β-D-galactopyranoside
kan	Kanamycin
L	litre(s)
LP	long pass
Μ	moles per litre
MQW	Milli-Q purified water
MSA	mineral salts A
NA	numerical aperture
N/A	not applicable

neo	Neomycin
OD _x	optical density at (x refers to the wavelength in nm)
Р	probability
P _{xyl}	xylose-inducible promoter
PAB	penassay antibiotic medium 3 broth
PAGE	polyacrylamide gel electrophoresis
PBP	penicillin binding protein
PBS	phosphate buffered saline
PCR	polymerase chain reaction
рН	power of Hydrogen
phleo	phleomycin
RNA	ribonucleic acid
ROW	reverse osmosis purified water
rpm	revolutions per minute
RT	room temperature
SDS	sodium dodecyl sulfate
SEM	standard error of the mean
spp.	species
spc	spectinomycin
TBAB	tryptose blood agar base
tet	tetracycline
thy	thymine auxotroph
Tris	tris(hydroxymethyl)methylamine
Trp	L-Tryptophan
ts	temperature sensitive
U	units (enzyme activity)
UV	ultraviolet
V	volt(s)
v/v	volume per volume
w/v	weight per volume
YFP	yellow fluorescent protein
μ	micro- (10 ⁻⁶)
	1