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Abstract

Autonomous robotic systems require building representations of the environment in order to ac-

complish their particular tasks. Creating rich, continuous probabilistic maps is essential for the

robot to perceive the world. As the complexity of the task increases, robots need more sensors or

more data to build maps. Noisy and incomplete data is common for the robotic sensors outputs;

Gaussian Process (GP), a flexible and powerful statistical model, has become a popular method to

cope with the incompleteness of sensory information, incorporate and handle uncertainties ap-

propriately and allow a multi-resolution representation of space. GP regression has been applied

in robotic mapping to predict spatial correlations and fill in gaps in unknown areas across the

field. The key component of GP for robotic mapping is that it captures spatial correlations and

thus increases the accuracy of the representation when fusing data. When multiple sources of

data are available, spatial correlations also can be used in fusion to improve accuracy. For large

datasets, however, exploiting correlations can become prohibitively expensive. One attractive

strategy for reducing storage and computational cost is submapping, which works by dividing

the environment into small regions. If no information is shared between maps, submaps are

statistically independent.

This thesis investigates how to effectively and efficiently model the necessary spatial correlations

that are required to build accurate large-scale maps. Three near-optimal probabilistic mapping

frameworks that exploit global and local strategies such as submapping are proposed. SubGPBF
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applies submapping techniques imposing the conditional independence between submaps. It de-

velops a novel approach to propagate information forward and backwards, which allows spatial

correlations to be transferred between submaps after fusing sensor data only within submaps.

GMRF-BF is a global mapping approach, which exploits the inherent structure of the recently

proposed continuousGaussianMarkov RandomField (GMRF) and Bayesian fusion in information

form, to model spatial correlations using a sparse information matrix. This leads to information-

form Bayesian fusion that is linear in cost. To further increase computational efficiency, this

thesis combines ideas from the previous two approaches (the GMRF model and the information-

form submapping) to propose another new framework named subGMRF-BF. The forward and

backward update algorithms formulated in information form are introduced to produce a highly

efficient approach due to the conditional independence between submaps when assuming Gaus-

sian distribution.

All three frameworks lend themselves to generate accurate 2.5D probabilistic maps at high res-

olution. They can handle varying noise from disparate sensor sources and incorporate spatial

correlations in a statistically sound way. They are all efficient in memory requirements as there

is no need to recover the full covariance matrix or information matrix.

The performance of the three frameworks was evaluated on one controlled terrain elevation

dataset and a real water pipe thickness dataset. Five other methods, including one optimal global

(fully correlated) method and one without spatial correlations, were used to benchmark the pro-

posed methods. The experiments show that the accuracy, reliability and consistency are im-

proved when the spatial correlations are correctly modelled and incorporated. The experiments

also show that all three frameworks achieve storage and computational gain compared with the

fully correlated benchmark approach, while subGMRF-BF outperforms all others.
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Chapter 1

Introduction

1.1 Motivation

Constructing accurate maps of environments remains a fundamental yet challenging task

for mobile robots. The mapping problem is arguably regarded as one of the most sig-

nificant issues in the pursuit of attaining truly autonomous mobile robots. The generation of

reliable and accurate spatial models of the robot’s surroundings is central to the goals of local-

isation (Borenstein et al. 1996), manipulation (Kortenkamp et al. 1998) and path planning (Elfes

1989). There are various kinds of representations for different tasks. For example, some com-

monly used Two-and-a-half Dimensional (2.5D) representations include height maps (Gutmann

et al. 2005), multi-level surface maps (Triebel et al. 2006), occupancy maps (Elfes 1989) and pipe

wall thickness maps (see Figure 1.1). Since robots live in the Three-Dimensional (3D) world, in

recent years, 3D representations, such as voxel grid maps (Wurm et al. 2010), point clouds (Rusu

et al. 2008) and meshes (Newcombe and Davison 2010), are getting more popular. Different rep-

resentations, generated with various sensors or approaches, can for instance be at different res-

olutions, e.g. Figure 1.1, and they can be combined to improve the accuracy and reduce the un-

certainty (Mahler 2007; Durrant-Whyte and Henderson 2008).

A key challenge in robotic mapping arises from how to model the spatial correlation. The spa-

tial correlation represents the relationship between nearby spatial locations. Tobler’s first law

1
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(a) (b) (c)

Figure 1.1: Two-Dimensional (2D) view of pipe wall thickness maps. (A) Complete measure-

ments located at uniform grids. (B) Incomplete measurements located at non-uniform grids. (C)

Complete measurements located at uniform, finer grids.

of geography states that "everything is related to everything else, but near things are more re-

lated than distant things" (Tobler 1970, p. 236). One of the main reasons why spatial correlations

are necessary is that robotic mapping problems usually assume the observed data to be statisti-

cally independent to make the problem relatively easy to solve. Unfortunately, in the real world,

correlations exist and the variables being mapped are statistically dependent. For example, in

Figure 1.1a, the small thickness values are close in 2D locations to each other (see the red areas).

Accounting for the correlations properly duringmapping is the key to buildingmaps successfully.

Incorporating spatial correlations in maps comes with the issue of efficiency, especially when

mapping large environments or using all the information from high-resolution sensors. For ex-

ample, volumetric laser scanners or depth cameras may generate millions of points in a single

scan; even if correlations are not taken into account, these sensors require efficient mapping al-

gorithms. However, considering the spatial correlations among all data points incurs a heavy

computation burden. How to overcome this issue remains an open problem.

In recent years, Gaussian Process (GP) (Rasmussen andWilliams 2006), one of the state-of-the-art

machine learning techniques for regression and classification, has been applied to probabilistic

robotic mapping, e.g. terrain mapping (Vasudevan et al. 2009), occupancy mapping (O’Callaghan

and Ramos 2012) and surface reconstruction (Kim and Kim 2014). Compared to the traditional

deterministic approaches for mapping, the GP based methods open up the door to stochastic
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and data-driven approaches. In mapping applications, GP is applied to learn the noise-free la-

tent process together with the spatial correlations from the noisy input data. The prediction at

unknown spatial locations is treated as a regression problem and takes into account the correla-

tions, which are measured via the covariance. Intuitively, known points close to a query point

should contain information about the query point’s value. The GP predicted probabilistic maps

can be further used for grasping (Mahler et al. 2015), path planning and exploration (Jadidi et al.

2013). Meanwhile, Vasudevan (2012) has applied GP for data fusion by regarding the data from

multiple sources as different samples of a common underlying terrain. Later, Vidal-Calleja et al.

(2013) propose Gaussian Processes for Bayesian Fusion (GPBF), in which spatial correlations are

learned through a GP to generate a prior map which subsequently will be used in a Bayesian

fusion framework for mapping with multiple sources of information.

Particularly, a GP models the full spatial correlations of all data, which can be thought of as an

entirely connected Bayes network (Koller and Friedman 2009, Chapter 3); therefore, a wide-range

of algorithms can be applied to obtain accurate and reliable robotic maps. However, one of the

major disadvantages of GP based approaches is the high memory requirements and computa-

tional complexity due to the allocation and inversion of the covariance matrix. For instance, GP

for fusion in Vasudevan (2012) requires inverting the dense covariance matrix of all data in each

iteration of the hyperparameter optimisation. This gives the O(N3
all ) time and O(N2

all ) memory

complexity per iteration, where Nall is the total number of all sources of data. Therefore, the GP

based approaches are not directly applicable to large-scale robotic mapping.

1.2 Research Problems and Scope

To reduce the computational complexity of grid mapping using GP, this thesis develops efficient

algorithms which maintain the necessary spatial correlations to model the underlying process

of observed data. The research objectives also include taking into account the noisy, sparse and

large volumes of data; and building continuous high-resolution1 2.5D grid maps. Three methods,

named Gaussian Processes for Bayesian Fusion with Conditionally Independent 2.5D Submap-

ping (subGPBF), Gaussian Markov Random Fields for Bayesian Fusion (GMRF-BF) and Gaussian

Markov Random Fields for Bayesian Fusion with Conditionally Independent 2.5D Submapping

1 A high-resolution map is a map that is sharp and finely detailed rather than blurry and inexact, e.g. Figure 1.1c.
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(subGMRF-BF), are developed for building large-scale 2.5D grid maps via data fusion. GMRF-BF

is a global method and the other two are based on submaps. The three of them are different while

having some underlying connections.

The mathematical basis for this thesis is primarily based on the Bayesian approaches, the prop-

erties of Multivariate normal (MVN) distributions and the Conditional Independence property

(CI property). Characteristics of these mathematical and statistical tools are as follows:


 Using Bayesian approaches allows for the realistic and accurate estimation of the uncer-

tainty, and it is easy to incorporate the prior information into the current estimation. The

Bayesian approaches used here include, but are not limited to, Bayes rule, which has long

been used in data fusion, and GP. Despite the growing prevalence of Bayesian fusion, it has

rarely been studied in order to gain memory and computational efficiency when involving

the spatial correlation within Bayesian fusion for grid mapping.


 MVNdistributions arewidely usedmainly due to their succinct analytical properties, which

often comewith a closed-form solution. In Simultaneous LocalisationAndMapping (SLAM),

the research concerning information-form MVN distributions2 has given rise to an impor-

tant estimator - Sparse Extended Information Filter (SEIF) (Thrun et al. 2004), which allows

for efficient, scalable SLAM. The key is to exploit the sparsity in the information form as

opposed to using the dense covariance matrix. This sparse information matrix is remi-

niscent of a Gaussian Markov Random Field (GMRF). However, due to the complexity of

defining and solving the continuous GMRFmodel, to the best of our knowledge, GMRF has

not been applied for continuous robotics mapping.


 Conditional Independence (CI) can be exploited in some different ways, e.g. it is charac-

teristic of the SLAM problem and in turn leads to a factored representation (Montemerlo

et al. 2002; Walter et al. 2007). Piniés and Tardós (2008) impose the CI property between

submaps, i.e. decomposed global map, for large-scale SLAM. However, their work was de-

veloped in a SLAM context. This thesis only focuses on the Mapping problem, where

transition and measurement models are not available and correlations have to be learned

through a machine learning technique, i.e. GP. It is worth exploring how to generalise the

Conditionally Independent (CI) submapping technique to such cases.

2This is sometimes referred to as the canonical form for multivariate Gaussian distributions.
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It is worth noting that in this thesis it is assumed that the locations of sensor measurements are

known and accurate. It is also assumed that the variables are MVN distributed and the sensor

observation model is linear Gaussian. Besides, the CI property of submaps is imposed.

1.3 Main Contributions

The main contribution of this thesis is to allow the use of correlations for large-scale discrete and

continuous mapping problems through the design and development of efficient approaches that

exploit either the CI property, the information form or both for MVN distributions. The specific

contributions are as follows:


 SubGPBF

− Development of a unified framework for large-scale 2.5D mapping, which can handle

arbitrarily large maps. It side-steps the high computational and memory cost induced

by incorporating the spatial correlation within GP interpolation and Bayesian fusion

via building CI submaps.

− Design of a new pair of correlation propagation algorithms, which not only enables

information to be transmitted between submaps bidirectionally, but also can recover

the optimal global map given the CI condition. In addition, each submap is ensured

to be always currently optimal.

− SubGPBF is easy to use and generally applicable, and two variants: probabilistic pre-

diction and incremental online mapping are described in the thesis.


 GMRF-BF

− Development of a unified framework, which studies the effect of the information-

form MVN variables on substantially reducing the computation complexity. The

GMRF modelling and the information-form Bayesian fusion are seamlessly used to-

gether in an algorithm that only requires square time complexity.

− Introduction of the continuously indexed GMRF approach, which originated from

the spatial statistics field, into robotic mappings and the use of it for modelling the

spatially correlated, noisy sensor data.
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− Investigation of the explicit link between the hyperparameters of GP and the contin-

uously indexed GMRF.


 SubGMRF-BF

− Development of a unified framework which has gained further computational ad-

vantages by imposing the CI property between the information-form MVN submaps.

This is inspired by the fact that the CI property and spatial correlations are encoded

in the sparse information matrix, whose sparsity enables efficient computations.

− Investigation and the use of the close links of the Bayes network, the CI property, the

sparsity structure of the information matrix in the GMRF representation.

− Design of a novel pair of information-form correlation propagation algorithms, which

not only enables information to be transmitted between submaps bidirectionally, but

also can recover the optimal global map, given the CI condition, in constant time.

Submaps are always currently optimal.

SubGPBF and subGMRF-BF have been developed based on local strategies while GMRF-BF is a

global approach. GMRF-BF and subGMRF-BF exploit the computational efficiency in the infor-

mation form. SubGMRF-BF achieves improved efficiency in building submaps when compared

with subGPBF. In short, all three methods address main limitations of GPs particularly in terms

of scalability to large sets of query points.

1.4 Thesis Structure

Figure 1.2 shows an overview of the structure of this thesis. The detailed outline of each chapter

follows:

Chapter 2 reviews the related work in probabilistic robotic mapping and statistical models.

Firstly, SLAM and some of concepts used in this thesis are briefly introduced, followed by the

discussion of two Bayesian approaches, GP and GMRF, for modelling the imperfect data and

mapping. Then, probabilistic data fusion approaches, including those with GP and Bayesian
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Figure 1.2: Overall thesis structure.

Committee Machine (BCM), are discussed. Next, some approximation methods which address

the scalability problem are discussed. The link between some literature work and this thesis is

then explained.

Chapter 3 describes the mathematical background knowledge used throughout this thesis. The

mathematical notations, some basic probability theories, GP, GMRF and Bayesian fusion are

briefly introduced. In particular, Section 3.6 formally introduces the Gaussian Processes for

Bayesian Fusion (GPBF), which forms the basis and benchmark of our approach.

Chapter 4 describes subGPBF. Firstly, GP regression for creating prior submaps and Bayesian fu-

sion for updating the submaps are explained. Then the novel correlation propagation algorithms

for the CI submapping are elaborated. In addition, two variants of subGPBF, one for prediction

and the other for sequential mapping, are shown in Section 4.4.



8 Chapter 1. Introduction

Chapter 5 elaborates GMRF-BF, which uses the continuously indexed GMRF for prior mapping,

and uses the information-form Bayesian fusion with spatial correlations for updating the prior

map. Then, a discussion about the efficient techniques for mean and variance recovery is pre-

sented.

Chapter 6 explains subGMRF-BF, which can be seen as an adaptation of subGPBF in information

form or combining GMRF-BF with CI submapping. The focus is on the novel information-form

correlation propagation algorithms.

Chapter 7 evaluates the above three approaches against five other methods on two different

datasets. The created maps are presented, and the computational complexity, the real computa-

tional time and the map accuracy are compared.

Chapter 8 summarises the research work, discusses the limitations, and draw the future lines of

the work.

1.5 Publications

The initial idea of performing CI submapping with Gaussian Processes and Bayesian fusion, re-

ferred to as Covariance-form Conditionally Independent Submapping (CCIS), was firstly pre-

sented in Sun et al. (2015). However, CCIS cannot guarantee the optimal global map due to the

assumption that the last submap is globally optimal. To get the optimal global map, this thesis

designs the forward update algorithm and uses it together with CCIS, thus getting subGPBF.

The development of GMRF-BF was presented in (Sun et al. 2016).

The information-form CI submapping with GMRF and Bayesian fusion, named as Information-

form Conditionally Independent Submapping (ICIS), was initially presented in (Sun et al. 2017).

However, ICIS cannot guarantee the optimal global map due to the assumption that the last

submap is globally optimal. Again in this thesis, subGMRF-BF creates the optimal global map by

designing a new forward update algorithm and using it together with ICIS.

The publication list in reverse chronological order is as follows:
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 ICRA’17: Sun, L., Vidal-Calleja, T., and Valls Miro, J. (2017). Coupling Conditionally Inde-

pendent submaps for large-scale 2.5D mapping with Gaussian Markov Random Fields. In

2017 IEEE International Conference on Robotics and Automation, pages 3131-3137. (Sun

et al. 2017)


 IROS’16: Shi, L., Valls Miro, J., Zhang, T., Vidal-Calleja, T., Sun, L., and Dissanayake, G.

(2016). Constrained sampling of 2.5D probabilistic maps for augmented inference. In 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3131-3136.

(Shi et al. 2016)


 ICRA’16: Sun, L., Vidal-Calleja, T., and Valls Miro, J. (2016). Gaussian Markov random

fields for fusion in information form. In 2016 IEEE International Conference on Robotics

and Automation, pages 1840-1845. (Sun et al. 2016)


 ICRA’15: Sun, L., Vidal-Calleja, T., and Valls Miro, J. (2015). Bayesian fusion using Con-

ditionally Independent submaps for high resolution 2.5D mapping. In 2015 IEEE Interna-

tional Conference on Robotics and Automation, pages 3394-3400. (Sun et al. 2015)


 ACRA’15: Shi, L., Sun, L., Vidal-Calleja, T., and Valls Miro, J. (2015). Kernel-specific

Gaussian Process for predicting pipe wall thickness maps. In Australasian Conference on

Robotics and Automation 2015. AARA. (Shi et al. 2015)





Chapter 2

Related Work

HOWto learn to construct rich and reliablemaps from sensor observations is a fundamental

problem in both robotics and computer vision. An accurate map with uncertainty can

aid complex tasks during robot exploration, such as path planning and object grasping. Despite

significant progress in this area, it still poses great challenges. In practice, most sensors have

different limitations, such as low resolution, measurement noise and a limited field of view, which

render most sensory data uncertain and incomplete. Meanwhile, as the scale of environments

grows or due to the high resolution of sensors, sensor data could quickly become hard to manage.

2.1 Localisation and Mapping

Before revisiting the previous contributions in mapping using Gaussian Processes and Gaussian

Markov Random Field, we firstly review the related work in the field of Simultaneous Localisa-

tion and Mapping (SLAM) (Durrant-Whyte and Bailey 2006; Bailey and Durrant-Whyte 2006).

Mapping is SLAM when the localisation is given. The reminder of this subsection summarises

the previous work in solving the SLAM problem, specifically focusing on the sub-mapping algo-

rithms.

The objectives of SLAM problem solving consist of two parts: (1) estimate the state of the robot

which is equipped with sensors to perceive the environment and (2) reconstruct the map of the

environment which the robot is manoeuvred in. The first Localisation problem and the latter

11
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Mapping problem are solved simultaneously rather than sequentially. Generally speaking, the

state in the first sub-problem is described using the 2D/3D pose of the robot and the latter one

is to represent the map using estimated places of interests such as landmarks, lines or surfaces.

However, in the mapping problem, the localisation problem is no longer of interested, and build-

ing higher level understanding of the environment is attached with higher priority. For example,

in this thesis, the significant focus is to build a continuous map with uncertainty.

The approaches in solving SLAM problem can be categorised into two groups of methods: (1)

filter based approaches (Dissanayake et al. 2001; Julier and Uhlmann 2004; Montemerlo et al.

2002) and (2) optimisation based approaches(Grisetti et al. 2010; Olson et al. 2006; Kaess et al.

2008). Given the motion model and the observation model, filter based approaches process the

inputmotion commands and observationmeasurements sequentially using state propagation and

update to estimate the mean and covariance of the state. By linearising the models, Dissanayake

et al. (2001) firstly proposed an Extended Kalman Filter (EKF) based solution towards the SLAM

problem and analysed its convergence property under first order approximations. Huang and

Dissanayake (2007) also provided an analytical illustration towards the inconsistency issue of

the EKF-SLAM solution which is caused by the fact the Jacobians cannot be evaluated at the

true states. Huang et al. (2008a) proposed an alternative solution to solve the consistency issue

by manipulating the Jacobian matrices. Besides EKF-SLAM and its variants, Unscented Kalman

Filter SLAM (Huang et al. 2009) and FastSLAM (Montemerlo et al. 2002) have been proposed to

formulate and solve the SLAM problem. In contrast, optimisation based approaches, for both

feature based SLAM and pose graph SLAM, can converge to the global minimum under various

situations and can avoid the inconsistency issue through iterative optimisation. To solve the

SLAM problem as a Maximum a Posteriori (MAP) estimation problem, factor graph (Kaess et al.

2012) has been widely accepted to manage the independence among variables.

For the SLAM problem, a key concern to is reduce the complexity of the original problem.

Submapping algorithms reduce the complexity by dividing the whole map into groups of state

vector variables (features and/or vehicle poses) that are processed separately. Looked from the

factor graph perspective, this is divided into different subgraphs and the overall graph is opti-

mised by alternating local optimisation of each subgraph, with a global refinement. Submaps are

often assumed to be statistically independent, and they can be consistently joined usingMap Join-

ing algorithm (Tardós et al. 2002) or equivalent Constrained Local Submap Filter (CLSF) (Williams



Chapter 2. Related Work 13

et al. 2002) with joining cost O(n2). Later, the Divide and Conquer SLAM (Paz et al. 2008a) pro-

vides a more efficient strategy to join local maps with O(n) cost in exploration. However, the

main limitations of these techniques are their inability to share information between maps and

a memory cost of O(n2). To address these problems, the CI-Graph SLAM approach (Piniés et al.

2009) has been developed upon the Conditionally Independent (CI) Submaps, which were devel-

oped by Piniés and Tardós (2008). The technique in Piniés and Tardós (2008) allows local submaps

to share submap components and information in a consistent manner. Additionally, the final map

obtained is the same as with the classical EKF SLAM algorithm. CI-Graph SLAM is also efficient

in memory requirements since it does not need to recover the full covariance matrix.

There are some submapping techniques that reduce the complexity of EKF SLAM via trading off

precision (Leonard and Feder 2000). Some of these techniques combine submaps with a graph

structure that represents adjacency relations betweenmaps. For instance, in the Atlas Framework

(Bosse et al. 2003), nodes of a graph correspond to submaps, and links between nodes represent

the relative locations between adjacent submaps. However, in order to achieve high efficiency,

there are no loop constraints imposed to update the graph estimation.

2.2 Probabilistic 2.5D Mapping with Statistical Tools

2.2.1 Probabilistic Mapping

2.5D grid map is one of the favoured choices in both ground robotic mapping (Qiu et al. 2009)

and spatial statistics (Diggle et al. 2003; Banerjee and Fuentes 2012). A typical example is the

elevation maps, which "store in each cell of a discrete grid the height of the surface at the corre-

sponding place in the environment" (Pfaff et al. 2007). Some approaches also store the variance

or uncertainty of height in each cell (Qiu et al. 2009). The benefits include the simplicity, low

computation cost, compactness and the low sensitivity to discretisation errors (Tse et al. 2012).

Some major drawbacks are the inability to handle abrupt changes, the dependence on grid size

and the issue of scalability in large environments.

Practically, many state-of-the-art algorithms for robotic mapping in the literature are probabilis-

tic (Thrun et al. 2005). They all employ probabilistic models and rely on probabilistic inference
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for turning sensor measurements into maps. The popularity of probabilistic techniques stems

from the fact that robotic mapping is characterised by uncertainty and sensor noise. These two

issues are often ubiquitous in robotics as sensor capabilities are limited. Probabilistic algorithms

address these problems by explicitly modelling (different sources of) noise and their effects on

the measurements. For example, in terrain mapping through elevation maps, Kelly and Stentz

(1997) used the concept of a "scatter matrix" to represent the local geometric uncertainty in a

grid. Lacroix et al. (2002) developed stereo-vision based elevation maps and recognised that the

main problem was uncertainty management. To address this issue, they proposed a heuristic

data fusion algorithm on the basis of the Dempster-Shafer theory (Dempster 1967).

A majority of probabilistic robotic mapping approaches have the strict assumption that all grid

cells are independent, while observations are often inclined to spatial correlations. As a result,

this strict assumption may lead to incorrect results, e.g. sparse sensor measurements yield dis-

continuous maps. This thesis argues that spatial correlations should be taken into account in

probabilistic data models, even if sensor data were collected discretely. This is because the envi-

ronment is normally locally correlated, and observations at locations in close spatial proximity

often tend to be more similar than observations at locations far apart. However, computing the

spatial correlations for large-scale datasets usually incurs high computational and storage com-

plexity. Large-scale mapping quickly becomes infeasible in a field robotics scenario, e.g. a mining

or space exploration scenario.

There have been many interpolation strategies reported to acquire continuous maps from sparse

sensormeasurements. Most of the interpolationmethods are borrowed from spatial statistics (Cressie

1992; Stein 1999). The choice of interpolation methods can have severe consequences on accu-

racy. Kidner et al. (1999) reviewed the grid data interpolation methods and recommended apply-

ing higher order polynomial interpolation methods. More recently, Li and Heap (2014) reviewed

and categorised a broader range of approaches, some of which can handle sparse data on regu-

larly or irregularly spaced samples. In robotics, Ye and Borenstein (2003) used median filtering to

fill in the missing data on an elevation map. However, these interpolation methods have tended

to focus on filling the missing data; other complications, such as measurement error, have not

been considered.

In short, probabilistic 2.5D maps are popular and widely used. However, they have the main
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weaknesses of lacking a statistically direct way of coping with data uncertainty, the inability to

appropriately describe spatial correlations and to manage big data. The rest of this section intro-

duces two popular statistical approaches, GP and GMRF models, which give possible solutions

to address the issues mentioned above.

2.2.2 Gaussian Processes for Probabilistic Mapping

In recent years there has been a growing interest in GPs (Rasmussen and Williams 2006) for

probabilistic robotic mapping. GP is a flexible non-parametric Bayesian approach1 for regres-

sion and classification. Not only in the robotics field, "GPs have been known for a long time in

the statistics and geostatistics field" (Rasmussen and Williams 2006), where it is known under

the name Kriging (Stein 1999; Schabenberger and Gotway 2004). In 2.5D mapping, GP can be

used to learn from the noisy data (2D spatial location and the interested value being the third di-

mension) to generate a continuous-domain, compact, and non-parametric representation of the

targeted environment. The trained GP model can assign the gaps in sensor data with best linear

unbiased estimates that are correlated to neighbouring areas covered by the sensor; therefore

sensor limitations and occlusions can be overcome. Also, maps at any required resolution can be

predicted.

GP regression was firstly introduced into terrain mapping by Lang et al. (2007) and later by Plage-

mann et al. (2008a,b, 2009) and Vasudevan et al. (2009). The former four implementations used

the equivalence of a stationary squared exponential covariance kernel and Vasudevan et al. (2009)

used the neural network, to handle both smooth surfaces and the inherent (characteristic) sur-

face discontinuities. Lang et al. (2007) initialised the kernel matrices evaluated at each point with

parameters learnt for the corresponding stationary kernel and then iteratively adapted them to

account for local structure and smoothness. Plagemann et al. (2008a,b) introduced "hyper-GP"

(an independent stationary kernel GP) to predict the most probable length-scale parameters to

suit the local structure. Plagemann et al. (2008b, 2009) modelled the space as an ensemble of a GP

in order to reduce computational complexity. The measurement model was assumed to be uni-

modal zero-mean Gaussian with a constant variance throughout data collection. Kjærgaard et al.

(2011) proposed a slightly more flexible measurement model, which allowed two hypotheses of

1A Bayesian non-parametric model is a Bayesian model on an infinite-dimensional parameter space. (Orbanz and

Teh 2010)
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measurement noise variances, one for the ground measurements and the other for the measure-

ments around obstacles, within the same dataset. Similar as before, they assumed a parametric

zero-mean Gaussian likelihood distribution.

GP classification can be used to attain binary labelled maps, such as occupancymap. O’Callaghan

and Ramos (2012) developed Gaussian Processes Occupancy Map (GPOM), which used GPs to in-

fer occupancy probabilities of cells not directly intersected by sensors bymaking use of the spatial

correlations. The continuity property of GPs overcomes the traditional assumption of indepen-

dence between cells. GPOMwas further investigated for planning and exploration by Jadidi et al.

(2014, 2015). The uncertainty map that is predicted by the GP could be used to highlight unex-

plored regions and optimise a robot’s search plan. Kim and Kim (2014) adapted GPOM for 3D

cases, and they developed a "divide-and-conquer" strategy to reduce the computational cost of

building 3D GPOMs.

AlthoughGPsmappingmethods enjoy greater flexibility to capture dependency and build reliable

maps, yet they are not suitable for online use (Thrun 2003). The primary cause is that GPs scale

cubically in the number of training data and squarely with storage demands when performing

exact inference. The memory requirements of GPs will increase by several orders of magnitude

when the map resolution or the size of mapped environments increases. For large problems (data

number bigger than 10000) both storing the covariance matrix and inverting it are prohibitive

on modern workstations.

2.2.3 Gaussian Markov Random Fields for Probabilistic Mapping

In Section 2.2.2, GPs mapping methods treat the domain as a continuous Gaussian Random Field

(GRF). On discrete domains, such as grids or more generally any collection of countably 2D lo-

cations, a popular choice is to use GMRFs.

GMRFs are discrete GRFs equipped with the Markov property or the Markov Random Fields

(MRFs) combined with the Gaussian assumption (Rue and Held 2005). GMRFs possess appeal-

ing computational properties due to the sparsity of the information matrices. GMRFs have been

extensively used in the analysis of 2.5D data in different areas of spatial statistics, yet there has

been little research in applying GMRFs for statistically modelling the spatially correlated data
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in robotic grid mapping. Nevertheless, there has been some study in robotics that use standard

MRFs to express spatial correlations. For instance, Wellington et al. (2005) included multiple

MRFs, which interact through a hidden semi-Markov model, to enforce relative smoothness of

labellings. The trained model can make inference at unknown places. Their results show that

including the correlations significantly improves obstacle classification accuracy. Tse et al. (2012,

2015) designed a MRF model which incorporates sensor uncertainties and enables probabilistic

fusion between sensor and terrain information. Local spatial correlations were modelled by the

numerically defined clique potential functions of neighbourhoods, while the information matrix

was not used at all. All these three examples require manually defining the complex clique poten-

tials before solving the sophisticated graphical model. Such methods are not generally applicable

for mapping, and the computation cost of optimisation can be high. Another concern is that none

of these methods shows or investigates the connections between MRFs and GRFs when a joint

Gaussian distribution is assumed.

While the basic MRFs are restricted to discrete, regular grids, much research work has been car-

ried out to make MRFs continuous in the Gaussian field. For instance, Rue and Tjelmeland (2002)

showed that general stationary covariance models could be closely approximated by MRFs by

numerically minimising errors in the resulting covariances. A drawback of the methods is that

the numerical optimisation must, in general, be performed for each distinct parameter configu-

ration. Recently, Lindgren et al. (2011) has derived a method for building an explicit and continu-

ous Markov representation of a Gaussian Matérn field (a GRF with Matérn covariance function),

named as GaussianMarkov Random Field via the Stochastic Partial Differential Equation (GMRF-

SPDE). The method uses the fact that Gaussian Matérn field is a solution to a certain Stochastic

Partial Differential Equation (SPDE). By considering weak solutions to this SPDE concerning

some set of local basis functions, an approximation is obtained. GMRF-SPDE re-formulates the

GMRF model in combination with the finite element method from numerical analysis to account

for randomly located data, without the limitation to uniform grid maps. Besides, the information

matrix of a GMRF model, which is sparse, can be written directly as a function of the parame-

ters, without any need for costly numerical calculations. Besides, Lindgren and Rue (2015) has

shown that GMRF-SPDE can cope with the uncertain and incomplete data while modelling the

spatial correlations. GMRF-SPDE has been widely applied in different areas of geostatistics, and

the most recent survey is in Rue et al. (2017).
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2.3 Probabilistic Fusion for 2.5D Mapping

To estimate an accurate representation of the environment, it is usually necessary to fuse mea-

surements obtained at different times while a robot moves, or from multiple sensors at the same

time. In a robotic system, probabilistic fusion methods are usually needed to combine data, ex-

press data uncertainty and handle data inconsistency (Mitchell 2007; Durrant-Whyte and Hen-

derson 2008), with the goal of reducing estimation error and increasing reliability. For a compre-

hensive review of data fusion techniques, please refer to Castanedo (2013) and Durrant-Whyte

and Henderson (2008).

At the core of probabilistic methods lies the Bayes estimator, which enables fusion of data based

on Bayes rule, hence the name "Bayesian Fusion". New sensor observations can be fused at each

time, and the probability density of the state estimates is updated. Data inconsistency and un-

certainty can thus be handled. In the robotics literature, Bayesian fusion has been extensively

used in probabilistic 2.5D mapping. For instance, Pfaff et al. (2007) fused multiple sensors’ mea-

surements by using the sum of weighted variances of the uncorrelated data. Vidal-Calleja et al.

(2013) proposed to insert spatial correlation in thickness mapping within the standard Bayesian

fusion, thereby improving the estimation accuracy. However, the dense covariance matrix needs

to be inverted in Bayesian fusion, which takes cubic time. Kassem et al. (2016) demonstrated that

Bayesian fusion could reduce uncertainty and eliminate noises caused by the cross-talk phenom-

ena from sensor readings.

GPs provide a natural way to integrate multiple sources of incomplete and uncertain data. An ini-

tial study was carried out by Girolami (2016), who integrated heterogeneous information within

a GP classification setting for protein fold recognition. Each feature was considered independent

and was represented by a separate GP, and hence a composite covariance function was defined

regarding a linear sum of GP priors. Vasudevan (2012) applied data fusion to estimate the ele-

vation of terrain, given all datasets and the respective GPs (hyperparameters) that were used to

model them. They presented three state-of-art fusion approaches grounded on GP regression,

and the major differences between them were how to model noises and how to set the hyperpa-

rameters. The first approach added new data to an existing GP model with a fixed noise variance
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(homoscedasticity1). The second approach was based on the concepts of the heteroscedastic2 GP

(HGP) (Kersting et al. 2007). It treated individual terrain data sets as homoscedastic in nature

but different data sets considered together form a heteroscedastic system. Data from the same

entity was modelled using a single set of GP hyperparameters with just the noise parameter vary-

ing between datasets. Then the fusion problem is treated as a standard GP regression problem

with data having different noise parameters. This first and second approach can be problematic

when faced with data from heterogeneous sensors. To overcome this problem, the dependent

GP (DGP) method (Vasudevan et al. 2011) was proposed. DGP learns separate hyperparameters

and noise parameters for each heterogeneous dataset and then models correlations between the

individual GPs. DGP can generate multiple, correlated outputs, while being very complex and

time-consuming.

Both Bayesian fusion and GP based fusion methods can take spatial correlations into considera-

tion, which improves the accuracy but induces high computational and storage cost. As a result,

these two approaches are usually used in offline scenarios. In particular, GP fusion approach can

interpolate at the unobserved locations while Bayesian fusion cannot.

The information-form Bayesian fusion together with Gaussian variables were applied by Thomp-

son et al. (2011) for efficient estimation of large scale terrain. They focused on a hierarchical dis-

tributed system in which each node estimates a subset of its parent’s region, with the top-level

node estimating a terrain map of the whole area. This method used a pre-specified regular finite-

element mesh and the elevations of the mesh vertices were the estimated state variables. The

smoothness term was applied to maintain the smoothing properties and allow for interpolation

in unobserved regions. In the information form, Bayesian fusion are additive and the information

matrix remains sparse, enabling constant-memory fusion of observations, efficient distribution

among multiple sensing platforms and efficient solving for the estimates and uncertainty.

1Homoscedasticity is a property of a set of random variables where each variable has the same finite variance.
2Heteroscedasticity is the property of a series of random variables of not every variable having the same finite

variance.
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2.4 Efficient Approximation Methods

As was mentioned in Section 2.2.2 and 2.3, both GPs mapping and Bayesian fusion with spatial

correlations have high memory consumption and computational cost, which inspired a number

of approximation methods. The most related approximate methods are discussed as follows.

2.4.1 Gaussian Processes Approximations

In machine learning field, various methods have been proposed to approximate GP regression

withGaussian exact inference (Quiñonero-Candela and Rasmussen 2005; Rasmussen andWilliams

2006; Sun et al. 2012; Chalupka et al. 2013).

The most commonly studied may be the subset methods, in which the training data, maybe the

test data as well, are divided into subsets. Then GP training and prediction are done locally. The

local estimates are integrated together to get the global result. An example of this is the study by

Kim and Kim (2013, 2014), in which the global map was divided into overlapping submaps, and

one local GP was trained for one submap. Moore and Russell (2015) developed the Gaussian Pro-

cess Random Field (GPRF), which is in fact a fully connected undirected graphical model, where

each node represents a submap. However, computation is still costly since the spatial correlations

between each two submaps are coupled to compute the global map. However, the subset methods

only preserve short length-scale structure within each submap. Moreover, choosing a submap

raises questions concerning sensitivity to the choice of submaps and limitations in estimating

fine-scale structure in regions that are not well covered by the submap.

Pseudo-input approaches reduce the training cost by selecting a particular subset which can

represent the whole training dataset (Snelson and Ghahramani 2006). Quiñonero-Candela and

Rasmussen (2005) has presented a unifying view of pseudo-input methods. Common to all the

pseudo-input approximation methods is that only a subset of the underlying function values of

a smaller size than the real ones are treated exactly, and the remaining latent values are approx-

imated with cheaper computational demand. The critical and challenging issues include how to

decide the number of pseudo-inputs and how to select pseudo-inputs. The choice of the number

of pseudo-inputs is governed by computational cost and sensitivity to the choice.
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The sparse covariancemethods are developed upon the fact that the spatial correlation, computed

by isotropic kernel functions, decreases gradually to almost zero as the distance between two

points increases. These methods set the actual cross-covariances that are beyond a certain range

to zero while ensuring the covariance matrix to be positive definite. As a consequence, a sparse

covariance matrix is obtained, and the efficient sparse solvers can be employed for inference.

The sparse covariance methods can be classified into two kinds, concerning how the covariance

matrix is constructed. One is to design a particular kernel function which naturally generates a

sparse covariance matrix, as per Melkumyan and Ramos (2009). The other is to approximate a

given covariance model by multiplying the covariance function with some compactly supported

taper function. (Furrer et al. 2006; Bolin and Wallin 2016). One of the major drawbacks of the

sparse covariance methods is that the approximated structures may limit modelling flexibility.

Another drawback is that the problems that depend on the spatial structure of locations may

happen since the original model has changed.

Other representative GPs approximation methods include but are not restricted to: low-rank ap-

proaches (Williams and Seeger 2001; Banerjee et al. 2008), Laplace inference (Williams and Barber

1998) or expectation propagation inference (Minka 2001) methods, stochastic variational inference

methods (Hensman et al. 2013; Gal et al. 2014). Sometimes more than one approximations are

used together. For example, Ramos and Ott (2015) builtHilbert maps, by using fast kernel approx-

imations that project data into a Hilbert space where a logistic regression classifier was learnt;

then, the stochastic gradient approach was used to optimise the hyperparameters efficiently.

2.4.2 Bayesian Committee Machine

Bayesian Committee Machine (BCM) (Tresp 2000; Schwaighofer and Tresp 2003) is a typical

mixture-of-expert method. BCM can be used together with GPs: local GPs take place over

exclusively non-overlapping test regions, and predictions by various GPs are combined and

weighted by the inverse covariance of each local prediction. An intuitively appealing effect of this

weighting scheme is that modules which are uncertain about their predictions are automatically

weighted less than modules that are certain about their predictions. Tresp (2000) randomly parti-

tioned training data into subsets, while Schwaighofer and Tresp (2003) found that pre-processing
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the training data with a simple clustering algorithm can lead to a drastic reduction of error rates.

Note that the clustering does not make use of the target values, only the inputs.

Kim et al. (2011) firstly used BCMwith GPs for occupancymapping. Each occupancy submapwas

firstly predicted via local GPs. Then the predictions of the shared parts between submaps were

combined via BCM. In online 3D occupancy mapping, BCM can be used to recursively update

submaps with sequential observations, as has been shown by Kim and Kim (2014). More recently,

Wang and Englot (2016) used BCM twice for online 3D occupancymapping. BCMwas firstly used

to fuse local GP predictions together, and then to fuse new sensor observations into the existing

occupancy map. Also, BCM can also be used to fuse GP occupancy submaps repeatedly with the

global map during robot exploration (Jadidi et al. 2014). However, Jadidi et al. (2014) and Wang

and Englot (2016) ignore the cross-correlations of test subsets to accelerate the algorithms for

online mapping, which may increase estimation error.

BCM can avoid the pitfalls of subsets approximation methods, by averaging the predictions from

all local GPs. BCM is formally equivalent to a pseudo inputs model in which the test points

are the inducing points; i.e. it assumes that the training subsets are conditionally independent

given the test data. However, the BCM approximation methods mentioned above may not reduce

the computational cost. The main reason lies in the nature of BCM: it requires inverting the

covariance matrices of all local GPs when fusing local estimates to predict each submap. For

instance, in Kim and Kim (2014) and Wang and Englot (2016), the spatial size of each training

subset, i.e. extended block, is defined to be 26 times bigger than that of the test subset, and

inverting such a big covariance matrix of the training subset is costly.

The BCM approach is transductive2 (Vapnik 1995) rather than inductive, in the sense that the

method computes a test-set dependent model making use of the test set input locations. The BCM

approximation is calculated when the inputs to the test data are known. In contrast, inductive

methods, such as the pseudo-input, sparse covariance and low-rank approaches introduced in

Section 2.4.1, build a model solely on basis of information from the training data.

2Originally, the differences between transductive and inductive learning where pointed out in statistical learning

theory (Vapnik 1995). Inductive methods minimize the expected loss over all possible test sets, whereas transductive

methods minimize the expected loss for one particular test set.
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2.4.3 Submapping Techniques

Submapping strategies have become interesting approaches in robotic mapping since they work

in small regions of the environment to reduce the computational cost. In the majority of cases,

independent submaps of limited size are considered (Williams et al. 2002; Huang et al. 2008b;

Paz et al. 2008b). Independent submaps can be consistently joined using a map joining algorithm

(Tardós et al. 2002) with joining cost of O(n2), or using divide and conquer method (Paz et al.

2008b) with amortised linear cost. A severe limitation with independent submaps is that they

ignore the correlations between each other submap, thus producing an approximate solution and

the estimates will tend to be inconsistent and inaccurate. Besides, valuable information present

in one submap cannot be applied to improve the estimation of other submaps.

To address these issues, Piniés and Tardós (2008) assumed Conditional Independence, (CI), be-

tween submaps. Submaps that share common parts are firstly built, and the correlations between

submaps can be obtained while recovering the global map. Kim and Kim (2013, 2014) also built

submaps that share common parts, named "extended block". However, these submaps are inde-

pendent submaps and information cannot be transmitted between them.

2.4.4 Tree data structures

The tree data structure can be used to achieve the computational gain in large-scale robotic

mapping, since the tree stores and accesses data efficiently. Bertram et al. (2003) firstly used a

quadtree-like clustering of the measurements into subsets, and then locally fitted them by a con-

tinuous B-spline surface. However, data correlations are not considered. Vasudevan et al. (2009)

used KD-tree, a space-partitioning data structure, to search for training data near each test point.

The training dataset was then approximated by the subset that lay within a specified range of the

test point. Regression was performed for each test point in the centre of a corresponding sliding

window. Wang and Englot (2016) proposed a new test-data octree to prune back and condense

similarly-valued test data. This is on account of the fact that in occupancy mapping, many nodes

in the octree share the same state class and thus can be pruned to reduce memory cost.
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2.4.5 Markovian Approximation

Another intuitive idea is to use the Markov property to reduce the range of correlations, namely

only correlations within a limited range of a region are computed. GMRFs can be regarded as

global approximations to GPs, since some cross-correlations are ignored. A GMRF comes with

a sparse information matrix, which allows the use of sparse matrices techniques for efficient

computation. Unfortunately, GMRF suffers from a number of pitfalls. One of themajor difficulties

is how to specify the information matrix such that the corresponding covariance function is

similar to some commonly used covariance function for a given dataset. This problem has been

investigated by Rue and Tjelmeland (2002), and they proved that: for data observed on regular

grids in 2D, for a large family of covariance functions, GPs can be well approximated by GMRFs

with small neighbourhood structures. However, the standard MRFs are defined on grids and

it is still unclear how to construct the information matrix for data that are not organised on

regular grids. On the other hand, a number of approaches applied the grid-based GMRFs for

non-grid data. For instance, the nearest neighbour mapping from data locations to grid locations,

as per Hrafnkelsson and Cressie (2003), assumed that the GMRF values for non-grid points were

equal to the closest grid cells (Wikle et al. 1998). Hartman (2006) used linear interpolation of

the GMRFs grid values to assign values to non-grid locations. Although these approaches are

straightforward, accuracy cannot be ensured. In recent years, Lindgren et al. (2011) proposed a

continuous Markov representation of the latent Gaussian field, which has an explicit link with

GPs. The most important implication of the work is that it provides a spatially consistent method

for approximating continuous GPs using GMRFs.

2.5 Links to the Proposed Work

This section discusses the relations between some of the previous work discussed above and this

thesis.

Considering that spatial correlations are essential concerning both sensor data modelling and

probabilistic fusion (see Section 2.2 and 2.3), the three proposed methods in this thesis include

spatial correlations during the whole mapping process. In particular, they aim for efficiently ap-

proximating the optimal global GP mapping method, named GPBF, by Vidal-Calleja et al. (2013).
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subGPBF models the spatially correlated and noisy sensor data using GP regression, which is the

same as GP mapping approaches (see Section 2.2.2). To address the scalability problem of GPBF,

subGPBF combines GP with a novel CI submapping method. The concept of "CI submaps" has

been proposed by Piniés and Tardós (2008). In particular, the backward update algorithms in sub-

GPBF are directly inspired by their "back-propagation" algorithm, which is used for recovering

the global map after loop closures. In the back-propagation algorithm, information flows in one

direction starting with the most recent local submap and is propagated back through the chain of

previous submaps. However, the primary limitation for the problem at hand is that: there is no

explicit transition model as in a SLAM system. As a result, submap initialisation is a challenging

problem when the correlation has to be learned in a map. SubGPBF addresses this problem by

designing the forward update algorithm, which can initialise the following submap and ensure

it contains all the currently available information.

GMRF-BF and subGMRF-BF investigate the use of GMRF models (see Section 2.2.3 and 2.4.5)

and spatial correlations are modelled using sparse information matrices. A continuous GMRF

representation is built using the GMRF-SPDE model proposed by Lindgren et al. (2011). GMRF-

BF is a global mapping approach. It does almost all computations in information form, thereby

reducingmemory consumption and computational burden. subGMRF-BF speeds up GMRF-BF by

imposing the CI property between submaps, based on which the information-form forward and

backward update algorithms have been developed. Significant computational gain is achieved by

(1) using the sparse matrix techniques and (2) by exploiting the Gaussian distribution property

with the CI property. Both GMRF-BF and subGMRF-BF are significantly faster and cheaper than

the original GP based 2.5D mapping approaches, such as Vidal-Calleja et al. (2013).

SubGPBF and subGMRF-BF are similar to the submapping approaches in applying a divide-and-

conquer strategy but differ in that the spatial correlations between nearby submaps are saved

and updated. These two methods are more efficient than GPRF (Moore and Russell 2015), which

couples the correlations of every two submaps for recovering the optimal global map. Mean-

while, their main difference with Kim and Kim (2013, 2014) is that the latter build overlapping

but marginally independent submaps, and information transmission between submaps is infea-

sible. Besides, how to use GP regression to build each submap is different. Kim and Kim (2013,

2014) recursively updates each submap with every one of its adjacent submaps, and each submap

can have at most 26 neighbours in 3D space. In contrast, subGPBF and subGMRF-BF only update
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each submap at most three times, during Bayesian fusion, forward update and backward update.

As a result, the proposed methods in this thesis take less computational time than that of Kim

and Kim (2013, 2014).

The three proposedmethods are all inductive, i.e. model training is not dependent on the test data,

although they seem to be similar with BCM in that the locations of test data are known. Their

models, once learned, can be applied to arbitrary test points. It is a common practice in many

other works regarding GP for Robotics mapping, such as (Plagemann et al. 2008a; Vasudevan

et al. 2009; Wang and Englot 2016), to train a model and then use it for prediction at unobserved

locations.

Concerning data fusion, GPBF and subGMRF-BF perform Bayesian fusion within submaps, and

GMRF-BF and subGMRF-BF apply the information-form Bayesian fusion. They resemble terrain

mapping in Pfaff et al. (2007) in that Bayesian fusion is also used, yet Pfaff et al. (2007) considers

only the variance of every single value. The proposed methods consider all the auto-covariances

and cross-covariances during data fusion, which is similar to the GPs based data fusion approach

by Vasudevan (2012). However, Vasudevan (2012) formulated data fusion as a GP regression

problem, which requires much higher computational and memory cost. In addition, while the

second and third method in Vasudevan (2012), which borrow the idea from HGP (Kersting et al.

2007), can handle heteroscedastic data from homogeneous or heterogeneous sensors, this thesis

considers only fusing homoscedastic datasets (the noise variance within each dataset is fixed and

assumed to be known), from either homogeneous or heterogeneous sensors.

Both subGMRF-BF and Thompson et al. (2011), which was introduced in Section 2.3, are infor-

mation (inverse-covariance) methods for efficient large-scale terrain mapping. Both approaches

take advantages of the sparsity of information matrices, the constant-memory Bayesian fusion of

Gaussian variables and the efficient mean recovery. Both approaches use finite element analysis

to represent the terrain surface during prior mapping, yet the mesh modelling in subGMRF-BF is

more flexible and powerful than that in Thompson et al. (2011). On the other hand, subGMRF-BF

models and fuses observations at terrain surface points, while Thompson et al. (2011) estimated

and fused data at the mesh vertices. In Thompson et al. (2011), the size of the system to be solved

was roughly constant for a given area of a given resolution, yet at the cost of increased estimation

error. To reduce the computational cost, subGMRF-BF builds CI submaps while Thompson et al.
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(2011) applied a decentralised data fusion algorithm (Durrant-Whyte and Stevens 2001). Besides,

subGMRF-BF can obtain consistent estimation in the boundary areas between submaps while

Thompson et al. (2011) cannot (due to the independence of local nodes).

2.6 Summary

This chapter first briefly introduced the SLAM problem, which degenerates to the Mapping prob-

lem when robot’s poses are known. This chapter then reviewed some of the influential contri-

butions that accounted for spatial correlations, data uncertainty and large-scale dataset in the

context of probabilistic robotic mapping from the following aspects: (1) GPs and GMRFs for map-

ping; (2) the Bayesian approaches for data fusion; (3) efficient approximations to GP and Bayesian

fusion in detail. Moreover, the motivations for the work in this thesis, and its relationship with

existing research were explained in detail.





Chapter 3

Background Theories and Techniques

This chapter establishes the mathematical notation as well as the necessary background

theories and techniques used throughout this thesis. In addition, GPBF, the benchmark

method for this thesis, is introduced.

3.1 Symbols and Notation

Matrices are capitalised, e.g. X . Column-wise vectors are denoted in lower case bold type, such

as x and ξ. 1: n means integers from 1 to n. xi indicates a reference to the i-th element of the

vector x, and xA refers to a set of elements whose indices are defined byA. With a slight variation

of notion, only in Section 3.2, X represents a random variable, and x represents its realisation. In

particular, for GP regression, X denotes the training input matrix, and X∗ represents the query

input matrix. The n-by-n identity matrix is denoted by In. The Euclidean norm is shown by ‖·‖,
and |x| represents the absolute value. The calligraphic letterN represents a Gaussian distribution

in the covariance form, andNc represents its information form. The symbolE[·],V[·], andC��[·]
denote the expected value, variance, and covariance, respectively. A superscript symbol of �

denotes the transpose operation. The superscript minus sign − indicates the prior estimate, and

the superscript plus sign + indicates the updated, or posterior estimate, e.g. μ+.

29
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Some terms that are not distinguished in general and used interchangeably in this thesis include

(1) test points and query points; (2) Markov property and CI property; (3) observations and mea-

surements; and (4) some other interchangeable concepts stated in Section 3.2.

3.2 Probability Theory Preliminary

This section briefly reviews some basics of probability theory that are used in this thesis. The

concepts and description follow Murphy (2012).

3.2.1 Some Basic Concepts and Rules

Suppose X is a continuous random variable, i.e. X can take an uncountable number of values

from a finite or countably infinite set X . The probability of the event that X = x is represented

by p(X = x), or just p(x) for short. Here p() is called the Probability Density Function (pdf), or

density, which satisfies the properties that 0 ≤ p(x) ≤ 1 and
∫ ∞
−∞ p(x)dx = 1 . Let Y be another

continuous random variable, which can take an uncountable number of values from a finite or

countably infinite set Y .

The joint distribution, or joint probability, of the event that X = x and Y = y is denoted as p(x,y).

The conditional probability, or conditional distribution, of the event that X = x given Y = y is

defined as

p(x|y) = p(x,y)
p(y)

, if p(y) > 0 , (3.1)

where | is the conditioning bar. Given the joint distribution and the conditional distribution, the

marginal distribution is defined as

p(x) =
∫
y∈Y

p(x,y)dy =
∫
y∈Y

p(x|y)p(y)dy . (3.2)

Based on the definitions defined above, the product rule is

p(x,y) = p(x|y)p(y) . (3.3)
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The product rule can be applied multiple times to yield the chain rule of probability:

p(x1:n) = p(x1)p(x2|x1)p(x3|x2,x1)p(x4|x3,x2,x1) . . .p(xn|x1:n−1) , (3.4)

where the notation x1:n−1 denotes the set {x1,x2, . . . ,xn−1}.

Based on the definitions stated above, Bayes rule, also known as Bayes Theorem, is

p(x|y) = p(x,y)
p(y)

=
p(x)p(y|x)

p(y)
. (3.5)

When there are three random variablesX , Y , andZ , Bayes rule also applies. Bayes rule can relate

the prior, p(x|z), and the likelihood, p(y|x,z), thus giving the posterior:

p(x|y,z) = p(y|x,z)p(x|z)
p(y|z) . (3.6)

The mean, or expected value, denoted as μx, of X with respect to p(x) can be expressed through

the following integral:

μx = E[x] =
∫
X
xp(x)dx . (3.7)

The conditional expectation, denoted as μx|y , with respect to a conditional distribution p(x|y) is

μx|y = E[x|y] =
∫
X
xp(x|y)dx . (3.8)

The variance of X is

V[x] = E[x2]−E[x]2 . (3.9)

The covariance of X and Y is

C��[x,y] = E[x,y]−E[x]E[y] . (3.10)

In the case of two random vectors, x and y, the covariance is a matrix, denoted as Σ, and

Σ = C��[x,y] = E[x,y][xy�]−E[x]E[y�] . (3.11)
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3.2.2 Multivariate Normal Distribution

"The multivariate Gaussian or multivariate normal (MVN) is the most widely used joint

probability density function for continuous variables" (Murphy 2012, pp. 46). The pdf of the

MVN on d-dimensional random vector x is defined by the following:

x ∼N (μ,Σ) =
1

(2π)d/2|Σ|1/2 exp
(
−1
2
(x−μ)�Σ−1(x−μ)

)
, (3.12)

where the mean state vector μ = E[x] ∈ R
d and the positive definite covariance matrix Σ =

C��[x] ∈ Rd×d . The representation as (3.12) is in the covariance form, or the moment form.

The MVN can also be represented in the information form, or the canonical form, which is

x ∼Nc(η,Q) = (2π)−d/2|Q|1/2 exp
(
−1
2
(x�Qx+η�Q−1η − 2x�η)

)
, (3.13)

where η = Σ−1μ denotes the information vector, and Q = Σ−1 represents the information ma-

trix, or precision matrix. The canonical representation for the MVN is the dual of the covariance

form in the sense of the fundamental processes of marginalisation and conditioning, as exem-

plified in Theorem 3.1 to 3.4. In particular, conditioning is easier in the information form, and

marginalisation is simpler in the covariance form.

Given x = [x1,x2] and x ∼ N (μ,Σ) = Nc(η,Q). Suppose the mean, covariance, information

vector and information matrix of this pdf can be partitioned as follows:

μ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
μ1

μ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Σ11,Σ12

Σ21,Σ22

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , η =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
η1

η2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Q11,Q12

Q21,Q22

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (3.14)

Theorem 3.1. Marginalisation in the covariance form (Murphy 2012, pp. 111).

p(x1) =N (μ1,Σ11) , (3.15)

p(x2) ∼N (μ2,Σ22) . (3.16)
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Theorem 3.2. Conditioning in the covariance form (Murphy 2012, pp. 111).

p(x1|x2) =N (μ1|2,Σ1|2) , where (3.17)

μ1|2 = μ1 +Σ12Σ
−1
22(x2 −μ2) (3.18)

= μ1 −Q−111Q12(x2 −μ2) , (3.19)

Σ1|2 = Σ11 −Σ12Σ
−1
22Σ21 (3.20)

=Q−111 . (3.21)

Theorem 3.3. Marginalisation in the information form (Murphy 2012, pp. 115).

p(x1) =Nc(η1 −Q12Q
−1
22η2,Q11 −Q12Q

−1
22Q21) , (3.22)

p(x2) =Nc(η2 −Q21Q
−1
11η1,Q22 −Q21Q

−1
11Q12) . (3.23)

Theorem 3.4. Conditioning in the information form (Murphy 2012, pp. 115).

p(x1|x2) =Nc(η1 −Q12x2,Q11) . (3.24)

3.2.3 Independence and Conditional Independence

X and Y are independent, or marginally independent, denoted as X⊥Y , if we can represent the

joint distribution as the product of the two marginals

X⊥Y ⇐⇒ p(X,Y ) = p(X)p(Y ) . (3.25)

X and Y are conditionally independent (CI) given Z if and only if (iff) the conditional joint distri-

bution can be written as the product of the two conditional marginals

X⊥Y |Z ⇐⇒ p(X,Y |Z) = p(X |Z)p(Y |Z) . (3.26)

In addition, (3.26) can be written as a graph X −Z −Y , which captures that all the dependencies

between X and Y are mediated via Z , as will be explained in Section 3.2.4.
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3.2.4 Probabilistic Graphical Models

This section briefly introduces some basics about Bayes network, also known asDirected Graphical

Model (DGM).

Definition 3.5 (Graph). A graph G = (V ,E) contains a set of nodes, or vertices, V = 1, . . . ,V , and

a set of edges, E = (i, j) : i, j ∈ V . The neighbours of a node is defined as the set of all immediately

connected nodes. A Directed Acyclic Graph (DAG) is a directed graph with no directed cycles.

Definition 3.6 (Graphical Model (GM)). A graphical model is a method to represent a joint distri-

bution by making CI assumptions. Particularly, the nodes in the graph represent random variables,

and the lack of edges represent CI assumptions. A Bayes network is a GM whose graph is a DAG.

Definition 3.7 (CI property). ξA⊥ξC |ξB ⇐⇒ A is d-separated from C given B.

Definition 3.8 ((first order) Markov assumption). In a sequence of observations {ξ1,ξ2, . . . ,ξt}, if

ξt⊥ξ1:t−2|ξt−1 , (3.27)

the conditional probability becomes

p(ξt |ξt−1,ξt−2, . . . ,ξ1) = p(ξt |ξt−1) . (3.28)

Definition 3.9 (the chain rule of Bayes Network). Based on Markov assumption and the chain

rule, the joint distribution can be written as follows:

p(ξ1,ξ2, . . . ,ξt−1,ξt) = p(ξ1)
t∏

i=2

p(ξi |ξi−1) . (3.29)

This is called a (first-order) Markov chain. They can be characterised by an initial distribution

over states, p(ξ1), plus a state transition model p(ξt |ξt−1) , t > 2.

For example, Figure 3.1 shows a simple Bayes network, which represents the probabilistic de-

pendence between a set of variables ξa, ξb and ξc . It shows that the set of nodes a is d-separated

from c given b iff each path from every node ai ∈ a to every node ci ∈ c is d-separated by b.
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Figure 3.1: Schematic representation of a Bayes network showing three sets of nodes.

Consider the probability p(ξa,ξb,ξc) encoded in Figure 3.1. When conditioning on ξb , we have

p(ξa,ξc |ξb) = p(ξa)p(ξb |ξa)p(ξc |ξb)
p(ξb)

=
p(ξa,ξb)p(ξc |ξb)

p(ξb)
= p(ξa|ξb)p(ξc |ξb) ,

and thus ξa⊥ξc |ξb (see (3.26)). Note that the set of nodes b breaks the chain into two, as in a

Markov chain.

Consider the nodes in Figure 3.1 represent a set of Gaussian variables, and take nodes ξa1 , . . . ,ξan

as an example. For i � j , node ξai is correlated with node ξaj , thus the covariance matrix of

p(ξa1 , . . . ,ξan) is dense. Meanwhile, for i � j , ξai and ξaj are conditionally independent given the

rest of nodes. Therefore, Qξai ,ξaj
= 0 for i � j and Q has most of the elements being zero, where

Q is the information matrix of p(ξa1 , . . . ,ξan). This shows that while the covariance matrix models

the independence of variables, the information matrix encodes the conditional independence; in fact,

the CI property is naturally reflected in the sparse pattern of the information matrix.

3.2.5 Linear Gaussian Systems

Suppose we have two random variables x ∈ Rdx and y ∈ Rdy . Suppose x is a hidden variable, and

y is the noisy observation of x. Let us assume we have the following prior and likelihood:

p(x) =N (μx,Σx) , (3.30)

p(y|x) =N (Hx+b,Σy) , (3.31)

whereH is a matrix of size dy×dx. This is an example of a linear Gaussian System. The following

rule can be used to infer x from y.
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Theorem 3.10. Bayes rule for linear Gaussian systems (Murphy 2012, pp. 119). Given a linear

Gaussian system, as in (3.30) and (3.31), the posterior distribution of x is given by

p(x|y) =N (μx|y,Σx|y) , where (3.32)

Σ−1x|y = Σ−1x +H�Σ−1y H , (3.33)

μx|y = Σx|y
(
H�Σ−1y (y−b) +Σ−1x μx

)
. (3.34)

3.3 Gaussian Processes

GPs were initially formalised for machine learning tasks by Williams and Rasmussen (1996) and

Neal (1996). GPs have become one of the most popular non-parametric Bayesian models which

have been developed for different tasks such as density estimation, regression, classification, topic

modelling. In this thesis, we will focus only on regression problems. GPs are often the preferred

approach as they offer several useful properties:


 GPs provide a principled, practical, and probabilistic approach to doing inference and learn-

ing in kernel machines. The Bayesian nature allows GPs to incorporate prior knowledge

and link the related sources of information. GPs also provide a measure of estimate uncer-

tainty, taking into account the noise of the data points.


 GPs do not require a discretised representation of an environment and they are able to

predict function values at arbitrary locations.


 GPs can approximate a wide range of problem domains. Instead of working over a pa-

rameter space, GPs place a prior directly on the space of functions without parametrising

the function, thus being non-parametric. Consequently, the computational complexity of

inference scales as the number of data points instead of number of parameters.

The rest of this section gives a brief introduction of GPs. The concepts and notation are mainly

on the basis of Gaussian Processes for Machine Learning by Rasmussen and Williams (2006) and

the book section of Gaussian Processes by Quadrianto et al. (2010).
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3.3.1 Definition

Definition 3.11 (GP). A GP is a stochastic process in which all the finite-dimensional distributions

are MVNs for any finite choice of variables.

In general, GPs are used to define a probability distribution over functions f : X → R such that

the set of values of f evaluated at an arbitrary set of points {xi}Ni=1 ∈ X will have an N -variate

Gaussian distribution. The set X is usually a subset of Rd . When d = 2, a GP is also known as a

Gaussian Random Field (GRF).

A GP is completely specified by its mean function and covariance function. We define the mean

function m(x) and the covariance function k(x,x′) of a real process f (x) as

m(x) = E[f (x)] , (3.35)

k(x,x′) = C��[f (x), f (x′)] = E[(f (x)−m(x)(f (x′)−m(x′)] , (3.36)

and we will write the GP as

f (x) ∼ GP (m(x), k(x,x′)) . (3.37)

The zero mean function is usually taken, as we can always centre the observed outputs to have

a zero mean. The covariance matrix must be a positive definite function to ensure the existence

of all finite-dimensional distribution, i.e. to ensure the positive definiteness of all covariance

matrices of the finite-dimensional MVNs.

3.3.2 GP Regression and Model Selection

In the regression problem, we are interested in recovering a functional dependency

yi = f (xi ) + ε = ξi + ε , (3.38)

given a training datasetΨ1 = {(xi , yi )}ni=1, where yi ∈ Y is the noisy output observed at the input

xi ∈ X . Y is a subset of R, X is a subset of Rd . ξi = f (xi ) and f is the noise-free latent function.
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ε denotes the independent and identically distributed (iid) Gaussian noise, and εi ∼ N (0,σ2
ε ) .

For 2.5D data, X ∈ R2 and yi ∈ Y ∈ R, and we will use 2.5D data in the rest of this thesis.

Then the prior distribution on the noisy observations becomes

C��[yi ,yj ] = k(xi ,xj ) +σ2
ε δij , or C��[y] = K(X,X) +σ2

ε I , (3.39)

where δij is a Kronecker delta which is one iff i = j and zero otherwise. The training input matrix

X = [x1,x2, . . . ,xn]� and X ∈ Rn×2 . The training output is y = [y1;y2; . . . ;yn].

The final goal in regression is to predict the noise-free values ξ∗ = f (X∗) at the (unobserved)

query points X∗ = [x∗1,x∗2, . . . ,x∗n∗]�. When a zero-mean GP prior is placed over the latent func-

tion, (3.37) is

f ∼ GP (0, k(x,x′)) , (3.40)

and the joint distribution over the y and ξ∗ according to the prior is

⎡⎢⎢⎢⎢⎢⎢⎢⎣
y

ξ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼N
⎛⎜⎜⎜⎜⎜⎜⎜⎝0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣
K(X,X) +σ2

ε In K(X,X∗)

K(X,X∗)� K(X∗,X∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (3.41)

The n × n matrix K(X,X) is the covariance matrix1 of the training inputs, and it has the entries

of Kij = k(xi ,xj ). The n × n∗ matrix K(X,X∗) denotes the covariances evaluated at all pairs of

training and query inputs, and has the entries of k(xi ,x∗j ) The matrices K(X∗,X∗) are defined in

the similar way.

Then the predictive distribution is derived based on the conditioning property of MVNs:

ξ∗|X,y,X∗ ∼ N (μ∗,Σ∗) , where (3.42)

μ∗ = K(X∗,X)�[K(X,X) +σ2
ε In]

−1y , (3.43)

Σ∗ = K(X∗,X∗)−K(X∗,X)�[K(X,X) +σ2
ε In]

−1K(X,X∗) . (3.44)

1Given a set of input points {xi }ni=1, the Gram matrix K has the entries of Kij = k(xi ,xj ). If k is a covariance

function, K is called the covariance matrix (Rasmussen and Williams 2006, ch. 4).
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For each query input x∗, ξ∗i = f (x∗) and its predictive distribution is

ξ∗i |X,y,X∗ ∼ N (μ∗, (σ∗)2) , where (3.45)

μ∗ = k(x∗,X)�[K(X,X) +σ2
ε In]

−1y , (3.46)

(σ∗)2 = k(x∗,x∗)− k(x∗,X)�[K(X,X) +σ2
ε In]

−1k(X,x∗) . (3.47)

Such estimator at a query input is derived as the minimumMean Squared Error (MSE) linear pre-

dictor (see Schabenberger and Gotway (2004); Rasmussen and Williams (2006) for details). Note

that the matrix inversion in this thesis, such as K−1y = [K(X,X) +σ2
ε In]

−1 in (3.43), is computed

via solving the linear system Kyx = I using the Cholesky decomposition for superior efficiency

and numerical stability. The Cholesky factorisation or Cholesky decomposition is a fundamental

tool in matrix computations, and it is mainly used for the numerical solution of linear equations

Ax = b. If A is symmetric and positive definite, then we can solve Ax = b by first computing

the Cholesky decomposition A = LL�, then solving Ly = b for y by forward substitution, and

finally solving L�x = y for x by back substitution. The standard algorithm for its computation

dates from the early part of this century (Householder 1964, p.208) and it is one of the most

numerically stable of all matrix algorithms (Wilkinson 1968; Kielbasinski 1987).

As explained above, GPs provide an explicit probabilistic formulation of the problem, which

directly generates confidence intervals for regression. This cannot be achieved with other non-

Bayesian kernel approaches. Compared with the traditional Bayesian linear regression models,

which parametrise the latent function f by some parameters and defines a prior distribution over

the parameters, GP regression places a prior directly on the space of f without parametrising it.

Therefore, GPs can discover the f which requires infinitely many functional forms, i.e. infinite

number of parameters, whereas this cannot be solved by the traditional Bayesian linear models.

Model Selection

In many practical applications, the functional form of the covariance function needs to be cho-

sen, and any values of hyperparameters need to be optimally determined. This is called model

selection. The hyperparameters θ includes the free parameters in the mean, the covariance and

the likelihood function. For extensive discussions about the model selection problem and var-

ious methods to determine the hyperparameters from training data, please refer to Rasmussen
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and Williams (2006), ch. 5. One of the commonly used methods is the maximum likelihood. The

logarithm of the marginal likelihood for the hyperparameters θ is in the form of

logp(y|X,θ) = −1
2
y�K−1y y− 1

2
log |Ky| − n

2
log2π , (3.48)

where Ky = K(X,X) +σ2
ε In is the covariance matrix for y. The three terms of the log-likelihood

function have readily interpretable roles: the only term involving the observed targets is the data-

fit −y�K−1y y/2; log |Ky|/2 is the complexity penalty depending only on the covariance function

and the inputs and n log(2π)/2 is a normalisation constant. To set θ by maximising the marginal

likelihood, we compute the partial derivatives of (3.48) with respect to (w.r.t.) θ as

∂
∂θi

logp(y|X,θ) =
1
2
y�K−1y

∂Ky

∂θi
K−1y y− 1

2
tr(K−1y

∂Ky

∂θi
) (3.49)

= tr
(
(αα� −K−1y )

∂Ky

∂θ

)
, whereα = K−1y y .

The complexity of computing (3.48) is dominated by inverting Ky, which typically requires time

O(n3). Once K−1y is known, computing (3.49) requires only O(n2) per hyperparameter2, so using

a gradient based optimiser is advantageous (Boyd and Vandenberghe 2004; Ruder 2016).

Computational Complexity

As stated above, if there are no simplifying assumptions on the covariance matrix, GP training

takes O(n3) time and O(n2) memory due to computing K−1y . This means that with 1000 obser-

vations, the number of operations required is in the order of 109, and 106 allocation for memory

storage. In addition, such matrix inversion is required in each iteration of the gradient descent al-

gorithm for maximising the likelihood, rendering them infeasible for large spatial datasets, where

one might have more than 104 measurements. For the GP prediction, calculating the predictive

mean (see (3.43)) requires O(n3 +n∗n) time and O(n2 +n∗n)memory; and computing the covari-

ance (see (3.44)) takes O(n3 +n∗n2) time and O(n2 + (n∗)2) memory. Therefore, GP cannot scale

well with large training data nor query data.

2Note that matrix-by-matrix products in (3.49) should not be computed directly: in the first term, do the vector-

by-matrix multiplication first; in the trace term, compute only the diagonal terms of the product.
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3.3.3 Covariance Function

Covariance functions, or kernels, are the cornerstone of GP, as they encode information about the

correlations between measurements. The kernels are widely applicable models of an underlying

process and can be tailored to specific applications by the refinement of their hyperparameters. A

covariance function kθ : X ×X → R, with the set of hyperparameters θ, computes the covariance

k(x,x′) = C��[f (x), f (x′)] (3.50)

of the latent function f between the inputs x and x′ .

Covariance functions can be generally divided into two kinds: stationary and non-stationary. A

stationary function is a function of x − x′ , i.e. k(x,x′) = D(x,x′) for some distance function D.

Furthermore, if a covariance function is a function only of |x − x′ | then it is isotropic, otherwise

it is anisotropic. Some typical examples include the Squared Exponential (SE), rational quadratic

and Matérn family. The dot-product based function, such as the polynomial function, is one of

the most widely used non-stationary covariance functions. Table 3.1 compares some common co-

variance functions in their isotropic forms. For their anisotropic versions, please refer to Chapter

4 in Rasmussen and Williams (2006).

Table 3.1: Examples of some covariance functions k(x,x′).

Name k(x,x′) θ Remark

Squared exponential (SE) σ2
f exp(− r2

2l2 ) {σf , l} Strong smoothness assumption

Matérn family σ2
f
21−ν
Γ(ν)

(√
2νr
l

)ν
Kν

(√
2νr
l

)
{σf ,ν, l} Flexible to be smooth or not

Exponential σ2
f exp(− r

l ) {l} Matérn when ν = 1/2

Rational quadratic σ2
f

(
1+ r2

2αl2

)−α {σf ,α, l} An infinite sum of SE

Polynomial σ2
f (x · x′ +σ2

0 )
p {σf ,σ0} p is a positive integer

The distance r = ‖x− x′‖. σ2
f is the signal variance. l is the length scale. The · denotes the dot product. This table is

adapted from Table 1 in Quadrianto et al. (2010).

The Matérn family (Stein 1999) is very flexible and general, which can generalise many of the

most-used covariance functions. It has been argued by others, in particular Stein (1999), that

the Matérn class is the only class of covariance function needed for practical spatial statistics. A
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Matérn covariance function is given by

k(x,x′) = kν(r) = σ2
f
21−ν
Γ(ν)

(√
2νr
l

)ν
Kν

(√
2νr
l

)
, (3.51)

which depends on data only through the distance r = ‖x−x′‖. Γ(·) is the Gamma function. Kν(·)
is the modified Bessel function of the second kind, with the order of ν > 0. ν is a differentiability

parameter, which controls the smoothness of the underlying process: the larger ν is, the smoother

it is. l is the characteristic length scale, which is a range parameter. The correlation diminishes

to almost zero as the distance approaches l . σf is the signal variance. Kν(·) has a closed form

when ν = α +1/2 for α a non-negative integer (Hodges 2013; Rasmussen and Williams 2006):

kν=α+1/2(r) = exp(−
√
2νr
l

)
Γ(α +1)
Γ(2α +1)

α∑
i=0

(α + i)!
i!(α − i)! (

√
8νr
l

)α−i . (3.52)

For α = 0 and ν = 1/2, (3.52) is the exponential covariance function, which can model non-

smooth behaviours. When ν = 3/2 and ν = 5/2, the Matérn kernel becomes

kν=3/2(r) = σ2
f (1 +

√
3r
l

)exp(−
√
3r
l

) , and (3.53)

kν=5/2(r) = σ2
f (1 +

√
5r
l

+
5r2

3l2
)exp(−

√
5r
l

) , (3.54)

which are the most interesting cases for machine learning. As ν →∞, the Matérn kernel con-

verges to the SE kernel. The SE kernel is infinitely differentiable, thus it is very smooth. Roughly

speaking, a smooth kernel is suitable to model highly correlated data.

The sparse covariance methods, as mentioned in Section 2.4.1, can be applied to taper a true

covariance matrix k(x,x′) to zero beyond a certain range by multiplying it with some compactly

supported positive definite taper function kl(x,x′), which gives the tapered covariance

ktap(x,x
′) = kl(x,x

′)k(x,x′) , (3.55)

Compactly supported means the covariance between points becomes zero when their distance

exceeds the threshold. Using ktap(x,x′), the matrix Ky in the GP predictor is sparse, which may

lead to computational advantages. One important issue in designing the tapered covariance func-

tions is to guarantee their positive definiteness, yet they are usually positive definite for all input
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dimensions. For instance, the compactly-supported piecewise polynomial covariance functions are

positive definite in R
d , where d is the data dimension. An example of such kernel is

kpp,2(r) = σ2
f max(1− r,0)j+2

((
j2 + 4j +3

)
r2 + (3j +6)r +3

)
/3 , j =

⌊d
2

⌋
+3 , (3.56)

which is 2-times mean-square differentiable. The distance r = (‖x − x′‖)/l , l is the length scale

and σ2
f is the variance.

3.3.4 GP Software

Two of the best knownGP software packages areGaussian Processes for Machine Learning (GPML)

(Rasmussen and Nickisch 2010) and GPstuff (Vanhatalo et al. 2013). Both GPML and GPstuff

collect a versatile range of kernel models and computational methods, and they both have user-

friendly interfaces. GPML does not require other toolboxes. GPstuff requires Netlab (Nabney

2002) and SuitSparse (Davis 2005). GPstuff is better known in the statistics field. GPs libraries

are also available in R, e.g. GPfit (MacDonald et al. 2013), while pyGPs (Neumann et al. 2014)

is developed in Python. Overviews including some alternatives are provided by the Gaussian

Processes website (http://www. gaussianprocess.org/) and the R Archive Network (http://cran.r-

project.org/). This thesis uses GPML for the implementation.

3.4 Gaussian Markov Random Fields and the SPDE approach

This section presents a brief introduction of the GMRFs. The concepts and notation follow Gaus-

sian Markov random fields: theory and applications by Rue and Held (2005) and the original

paper for the GMRF-SPDE approach by Lindgren et al. (2011).

3.4.1 Definition

AGRF is one of a few appropriate multivariate models with an explicit and computable normalis-

ing constant and has excellent analytic properties. In Section 3.3, a GP considers the input domain

X to be continuous, typically a subset ofRd . When considering a discrete X , e.g. lattices (regular
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grids), one popular choice is to use GMRFs to analyse the measured data. A GMRF combines a

MVN with an additional conditional independence property, which enables computational gain.

Definition 3.12 (GMRF). A random vector, ξ = [ξ1,ξ2, . . . ,ξn]�, defined over a set of discretely

indexed sites i = 1, . . . ,n, i ∈ X is called a GMRF w.r.t. the graph G = (V = 1, . . . ,n,E) with mean μ

and information matrix Q, iff

ξ ∼N (μ,Q−1) , (3.57)

and its pdf has the form of

p(ξ) = (2π)−n/2|Q|1/2exp
(
−1
2
(ξ −μ)�Q(ξ −μ)

)
, (3.58)

and Qij � 0 ⇐⇒ i, j ∈ E for all i � j .

Here (3.58) can be regarded as a MVN written by the parameters of mean μ and information

matrix Q (see (3.13)). In a GMRF, Q encodes the CI property (see Definition 3.7), or Markov

property, which is depicted as

for some i � j , ξi⊥ξj |ξ−i,j ⇐⇒ Qij = 0 ⇐⇒ j �Ni , (3.59)

where ξ−i,j denotes all the elements in ξ except ξi and ξj , and Ni is the neighbourhood of i .

This means that the following properties are equivalent:


 ξi and ξj are conditionally independent;


 the associated entry in the information matrix, denoted as Qij , equals to zero; and


 location index i and j are not neighbours.

The zeros entries in Q are called structural zeros, since they represent the absent edges in the

GM. The neighbourhood of i typically consists of all points that, in some sense, are close to i . In

theory, there are no restrictions on the size of the neighbourhood, and one could, for example,

haveNi include all elements in ξ except ξi . However, the advantages of the Markov assumption

naturally occurs when the neighbourhood is small. In fact, since Qij � 0 only if i and j are

neighbours, usually only O(n) of the n2 entries of Q are non-zero, therefore, Q has a very low
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density3 and is a sparse matrix. This facilitates the usage of the efficient techniques for sparse

matrix operations when working with GMRFs, as will be discussed in Section 5.2.3.

3.4.2 GMRF Regression and the SPDE approach

Traditionally, Markov models have been mostly confined to discretely indexed spatial domain X .
In the case when the measurements were observed at irregularly-spaced locations, one often in-

terpolates the locations to a regular grid first before applying the GMRFmodel, as in Section 2.4.5.

Such interpolation inevitably loses information. Besides, the resolution of the grid has a signifi-

cant impact on the inference. Particularly, the traditional GMRF models cannot learn the spatial

correlations of non-regularly located data.

On the other hand, Whittle (1963) and Lindgren et al. (2011) advocate that one can view a large

class of random field models, including a GRF with a Matérn kernel, as a solution to the contin-

uous domain SPDE. Lindgren et al. (2011) has derived a method for explicit and efficient Markov

representations of the Gaussian Matérn fields. The method is based on the fact that a random

process on R
d with a Matérn kernel is a solution to the SPDE. Therefore the Markov represen-

tation is obtained by considering an approximate stochastic weak solution to the SPDE, without

defining a Matérn field through a covariance function.

When dealing with Bayesian inference for GMRF regression, the Integrated Nested Laplace Ap-

proximation (INLA) algorithm (Rue et al. 2009) is an alternative to the Markov chain Monte Carlo

(MCMC) method, while having additional computational advantages (Rue et al. 2017). The INLA

algorithm was implemented in an R package named INLA (Martino and Rue 2010). Later, INLA

was combined with the SPDE approach in order to account for point-reference data, which has

been implemented in the R-INLA package (Lindgren and Rue 2015). Therefore, the GMRF-SPDE

approach can be implemented efficiently to solve regression problems.

Considering the same regression problem as in Section 3.3.2, the MVN distribution of the latent

function can be written as

ξ ∼N (0,Q−1(X,X)) , where Q−1(X,X) = K(X,X) . (3.60)

3The total number of elements is called the density of a matrix.
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Since a zero mean function is used, ξ is specified by Q. R-INLA approximates ξ with piecewise

linear basis functions that are defined on a triangular domain, and then gets the the hyperpa-

rameters, including the noise variance σ2
ε , of the GMRF by solving the SPDE using finite element

methods (see Lindgren et al. (2011) and Krainski et al. (2017) for details). With the learned hy-

perparameters, Q can be computed using the methods described in Appendix E.

The predictive distribution at input X∗ has the following information matrix and mean vector:

Q∗ =Q(X∗,X∗) +Qε , (3.61)

μ∗ = (Q∗)−1Q(X∗,X)y . (3.62)

HereQε is a diagonal matrix that represents the precision of data, i.e. the inverse of the variance

of data noise. The information vector η∗ that corresponds to μ∗ becomes

η∗ =Q∗μ =Q(X∗,X)y . (3.63)

The comparison between (3.62) and (3.63) shows that maintaining η∗ is cheaper than estimating

its dual. When μ∗ is needed, the expensive calculation of (Q∗)−1Q(X∗,X)y in (3.62) can be done

by applying the Cholesky factorisation, which was briefly introduced in Section 3.3.2. We first

compute Q∗ = LL� and then solve Q∗x =Q(X∗,X)y using forward and backward substitutions.

The practical significance of this GMRF-SPDE approach is that classical GRFs can be merged with

methods based on the Markov property, providing continuous domain models that are compu-

tationally efficient, and where the parameters can be specified locally without having to worry

about positive definiteness of covariance functions. Additionally, Lindgren and Rue (2015) proved

that the GMRF-SPDE approach can generalise to a large class of covariance functions, including

oscillating and non-stationary, without needing explicitly to derive a covariance function.

3.4.3 GMRF Software

The R-library R-INLA (refer to http://www.r-inla.org/ and Lindgren and Rue (2015)) is the only

implementation interface for the GMRF-SPDE approach. It covers stationary spatial models, non-

stationary spatial models, and also spatiotemporal models. R-INLA is user-friendly, and has been
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successfully applied in epidemiology, ecology, environmental risk assessment, as well as general

geostatistics. Rue et al. (2017) points out that "R-INLA has turned out to be very popular in applied

science and applied statistics, and has become a versatile tool for quick and reliable Bayesian

inference". There are some other packages for the GMRF with Bayesian inference, without the

SPDE approach. For example, LatticeKrig package in CRAN (Nychka et al. 2013) and GMRFLib in

C (Rue and Follestad 2001). This thesis uses R-INLA for GMRF regression.

3.5 Bayesian Data Fusion for Linear Gaussian Systems

Bayesian Fusion provides a direct method of combining the observed information with prior

beliefs about the state of random variables.

3.5.1 Covariance-form Bayesian Fusion

This section considers Bayesian fusion of two sets of noisy measurements. Assume two sets

of noisy observations y = {yi}nyi=1 and z = {zj }nzj=1 have been taken from two different sensing

sources. Let x = {xi}nyi=1 denote the noise-free latent variables to be estimated. Define the obser-

vation models to be

yi = f (xi ) + εi , εi ∼N (0,σi ) , (3.64)

z =Hx+ δ , δ ∼N (0,R) . (3.65)

In (3.64), f (·) denotes a latent process (can be linear or non-linear) which projects from the esti-

mated state variable xi to the noisy observation yi when a Gaussian white noise εi is added. A

linear observation model with Gaussian relationships is defined in (3.65), where H denotes the

observation matrix of size nz × ny ; the observed variable z is in the same space as the estimated

state x with H = Inz×ny . The measurement noise δ can be assumed to be a zero-mean Gaussian

with covariance R. If no correlation is included, R is a diagonal matrix which contains noise vari-

ances. Measurement noise are often known in advance in reality. In (3.64), standard regression

methods can be applied to discover the latent variables x from the observations y, thus we can
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define

p(x|y)�N (μx,Σx) . (3.66)

According to the linear model in (3.65), the likelihood function p(z|x) is given by

p(z|x) =N (Hx,R) . (3.67)

In Bayesian fusion, the aim is to estimate p(x|y,z)�N (μ+,Σ+). Using Bayes rule, we have

p(x|y,z) ∝ p(z|y,x)p(x|y)
= p(z|x)p(x|y) ,

(3.68)

where the second equality is based on the fact that the two different sets of measurements y and

z are conditionally independent given x. Then, based on the derivation in Appendix A, we can

get the updated estimates (posterior) of x as follows:

μ+ = μx +ΣxH
�(HΣxH

� +R)−1(z−Hμx) , (3.69)

Σ+ = Σx −ΣxH
�(HΣxH

� +R)−1HΣx . (3.70)

Here μ+ and Σ+ are the MAP estimates. This is because p(x|z) is a Gaussian which achieves at

its maximum its mean, and the MAP estimator finds the estimates which maximise the posterior

distribution.

As (3.69) and (3.70) show, Bayesian fusion requires matrix inversion, which typically costs cubic

time and square memory. They have a similar form to that of the update step in the EKF SLAM

algorithm, as discussed in Section 2.1. This is because the Kalman filter is a particular case of the

Bayes filter with an exact analytic solution due to it simplifying the system dynamics to be linear

Gaussian (Mahler 2007).

3.5.2 Naïve Bayesian Fusion

Naïve Bayesian fusion refers to the situation when no cross-covariances are included, i.e. both

R and Σx in Section 3.5.1 are diagonal matrices. Therefore, Naïve Bayesian fusion is a point-to-

point fusion method. For each point, given the prior xi ∼ N (μx,σ2
x ) and the observation model
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that zi = xi + δi , δi ∼N (0,σ2
z ), the posterior mean and variance are

(σ+)2 =
1

1
σ2
x
+ 1

σ2
z

=
σ2
x σ

2
z

σ2
x +σ2

z
, (3.71)

μ+ = (σ+)2
(
zi
σ2
z
+
μx
σ2
x

)
=

σ2
x zi

σ2
x +σ2

z
+

σ2
z μx

σ2
x +σ2

z
. (3.72)

3.5.3 Information-form Bayesian Fusion

Bayesian fusion with canonical parameters, i.e. information vector and information matrix, and

moment parameters, mean vector and covariance matrix, are functionally equivalent. They are

dual to each other. However, as can be seen from Theorem 3.1 to 3.4, different parametrisation

makes what is computationally complex in one to be simple in the other (and vice versa).

To explain the information-form Bayesian fusion, we first denote the canonical parameters cor-

responding to those in Section 3.5.1, to be

Qx = Σ−1x , ηx = Σ−1x μx , QR = R−1 . (3.73)

Then, by substituting the canonical parameters in (3.33) and (3.34), we can obtain the posterior

with the updated information vector η+ and information matrix Q+ as follows:

p(x|y,z) =Nc(x|η+,Q+) , where (3.74)

Q+ =Qx +H�QRH , (3.75)

η+ = ηx +H�QRz . (3.76)

The derivation can be found in Appendix A.

Specifically, when H is an identity matrix, (3.75) and (3.76) have even simpler forms, which are

Q+ =Qx +QR , (3.77)

η+ = ηx +QRz . (3.78)

As shown in (3.77), it only requires the addition operation to update the information matrix;

while its dual form, as in (3.70), needs inverting the covariance matrix.
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The mean and variance can be recovered from η+ and Q+ using

μ+ = (Q+)−1η+ , (3.79)

Σ+ = (Q+)−1 . (3.80)

As shown in (3.79) and (3.80), mean and variance recovery are expensive for big data and dense

Q+. Therefore, the result of information-form Bayesian fusion, when running as constant time

approach, may degrade as the map size increases. However, when Q+ is sparse and has cer-

tain sparse structures, e.g. a band or a tridiagonal matrix, mean and variance recovery can be

accelerated, as will later be discussed in Section 5.2.3 and Section 6.2.5.

3.6 GPBF: GP and Bayesian Fusion for 2.5D Mapping

GPBF is a fully correlated mapping approach which uses GP regression and correlated Bayesian

fusion. The final result is an global optimal map as it includes all the self-correlations and cross-

correlations amongst all measurements. The spatial correlation is learned using GP regression.

The initial idea comes from Vidal-Calleja et al. (2013), which proposes to insert spatial correla-

tion in thickness mapping within the standard Bayesian fusion, thus improving the estimation

accuracy. By including spatial correlation, one point can update the estimated map values for all

the neighbours.

3.6.1 Problem Statement

Given two datasets to be fused for building a 2.5D probabilistic map as an example. DefineΨ1 =

{(xi , yi )}ni=1 contains n point-referenced noisy measurements yi ∈ Y taken at the 2D location

xi ∈ X . Assume the underlying noise-free quantity that is associated with yi is ξi , as in (3.38).

The set X is a subset of R2, and Y is a subset of R. Define Ψ2 =
{
(x∗j , zj )

}n∗
j=1

, with n∗ sensor

readings zj ∈ Z ∈ R measured from x∗j ∈ X ∗ ∈ R
2 locations. X and X ∗ are considered to be

different. Assume measurements locations are known and accurate. Assume the measurements

inΨ1 are at a lower resolution than those inΨ2. In the same regression problem as in (3.38), Ψ1
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is treated as the training set; and the training input X , the training output y and the query input

X∗ are defined accordingly. Denote z = [z1;z2; . . . ;zn∗].

3.6.2 Approach

Bayesian fusion

Figure 3.2: Flowchart of the GPBF framework.

As shown by the flowchart of GPBF in Figure 3.2, a GP is applied to learn fromΨ1 to predict the

high-resolution map p(ξ|X∗) =N (μ,Σ) at the test locations X∗, which is used as the prior map

for fusion. In Bayesian fusion of these two datasets, define the likelihood p(z|ξ,X∗) following
that in Section 3.5.1. Then the prior map is updated with data from Ψ2 by Bayesian fusion via

MAP. Based on (3.69) and (3.70), the mean and covariance for the posterior map are given by

μ+ = μ+ΣH�(HΣH� +R)−1(z−Hμ) , (3.81)

Σ+ = Σ−ΣH�(HΣH� +R)−1HΣ . (3.82)

GPBF is globally optimal in the sense that it includes all the auto- and cross-covariances of data

points. Therefore, GPBF can cover the long-length correlations although with many fill-ins in the

covariance matrix. These fill-ins, which represent the very weak correlation between faraway

points, do not help much in improving the estimation accuracy while incurring much more com-

putation than justified. Therefore, GPBF will soon become intractable as X∗ grows big.
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3.7 Summary

This chapter has established the mathematical notation, preliminary and basic definitions and

techniques, includingMVNs, Bayes rule, GP andGMRF inference, that are applied throughout the

thesis. The mapping problem that will be tackled in Chapter 4, 5 and 6 was stated in Section 3.6.1.

In addition, the optimal global benchmark method, GPBF was introduced.



Chapter 4

Gaussian Processes for Bayesian

Fusion with Conditionally

Independent 2.5D Submapping

Traditional approaches for building large-scale 2.5D maps often assume that each cell

in a map is independent on others. This assumption is not valid as real environments

have an inherent structure. GPs is a straightforward and powerful tool for modelling data with

spatial correlations. However, building large-scale 2.5D maps with GPs is confronted with pro-

hibitive computation and memory consumption, as was explained in Section 3.3.2. To address

this problem, a general probabilistic framework named subGPBF is developed, at which core lies

an innovative CI submapping technique. Some of the principal ideas of subGPBF are:


 building CI submaps to address the scalability problem,


 fusing new incoming data incrementally while considering spatial correlations, and


 allowing information to be transmitted bi-directionally between CI submaps.

53
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4.1 Problem Statement and Approach Overview

Given two or multiple sources of sensor data are observed, each containing noisy measurements

covering the same 2D area. One dataset may comprise incomplete sparse measurements with

higher uncertainty, e.g. Figure 4.1a; while another dataset is also incomplete but with lower un-

certainty and denser sample locations, e.g. Figure 4.1b. To generate a high-resolution represen-

tation of the environment with lower uncertainty, it is often required to integrate multi-source

data from homogeneous or heterogeneous sensors (see Section 2.3 and 2.5 for more details). We

follow the problem statement in Section 3.6.1.

(a)Ψ1 data points in 3D view (b)Ψ2 data points in 3D view

Figure 4.1: Two synthetic terrain datasets. In 2.5D plots, elevation values are shown in colour,

and the vertical axis corresponds to the latitude and horizontal axis is the longitude.

In subGPBF, GP regression is applied to learn the noise-free latent process from Ψ1. Then the

trained GPmodel can predict the prior map at the query locationsX∗. WhenX∗ is large, we parti-

tion the full map into CI submaps, denoted as s1, s2, . . . , sr , where r is the total number of submaps

that cover the full map. The size of the submaps is chosen so as to minimise the correlation be-

tween every second submap. X∗ is divided into subsets, denoted as {X∗si }ri=1, X∗s1:sr ∈ X∗, where
each X∗si contains the points that lie within si . Note that X

∗
s1 ∩X∗s2 � 0, i.e. consecutive submaps

have an overlapping part. After the partitioning, the trained GPmodel is used to predict the prior

submap, whose pdf is denoted as s−i ∼ p
(
ξsi |X∗si

)
. The correlated Bayesian fusion is then applied

to fuse the observations from Ψ2 with the prior submap s−i , or the currently optimal1 submap

s+2 , . . . , s
+
r from the forward update process. The likelihood function p(zsi |ξsi ,X∗si ) is obtained via

marginalisation from the full map p(z|ξ). After building all submaps, the backward update al-

gorithm can propagate the influence of new information from the last submap backwards to all

1In this thesis, currently optimal, or up-to-date, means the estimates contain all the current information.
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former submaps, thus generating the nearly optimal global map, i.e. mean and variances. Note

that if the submaps are strictly conditionally independent, the global optimality of the algorithm

is preservedwith subGPBF. From now onwewill consider that the CI assumption holds, although

this might be an approximation in certain cases, for example, loop closure.

The flowchart of subGPBF is shown in Figure 4.2 and the implementation is in Algorithm 1.

After the GP model is trained, CI submaps are built sequentially in the forward direction via

prior mapping, correlated fusion and forward update; then, after creating all the submaps, one

process of backward update will correct from the last to the first submap.

More intuitively, Figure 4.3 schematically shows how three submaps are built in the forward

process. In general, Figure 4.4a shows the graphical model for all submaps; Figure 4.4b shows

the elements of the full covariance matrix split into r submaps and the information flow for the

backward update. Figure 4.4b indicates that instead of building the dense, full covariance, sub-

GPBF maintains a block tridiagonal matrix. Note that the overlapping area between consecutive

submaps can be of arbitrary size.

4.2 SubGPBF: the Incremental CI Submapping Approach

4.2.1 The Graphical Model and CI Submaps

The relationship between submaps can be expressed either using a DGMor an Undirected Graph-

ical Model (UGM). Unlike some other domains for which being forced to choose a direction for

the edges is rather awkward, such as the GMs with circles, there is already a natural ordering

of the sets of variables - submaps will be built one after the other. In the Bayes network model

used in this thesis, as in Figure 4.4a, the nodes do not represent each variable but MVN vectors;

and each submap contains two nodes. In Figure 4.4a, node ξj represents a set of components j of

the state at some locations on the map and zj is the set of sensor measurements related to those

areas. By partitioning the input domain based on their spatial locations, such Bayes network is

ensured to be a Gaussian chain graph, with observations.

Without loss of generality, we will use a global map which contains two consecutive submaps for

explanation. Let the global map contain three components ξa,ξb,ξc . Define two MVN variables
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Dataset

GMRF Training

Updated

Global map ( and )

GP predicted Observation 

Updated 

Bayesian fusion

CI Submapping with correlation propagation 

Dataset

the 1st submap:

Forward updateBackward 
update

Updated

d

Observation 

the 2nd submap:

GP predicted 

Bayesian fusion

Updated 

Forward update

Updated Observation 

the rth submap:

GP predicted 

Bayesian fusion

Backward 
update

Figure 4.2: Flowchart of the proposed subGPBF framework.
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Figure 4.3: 2D demonstration of subGPBF, with an example of building three submaps. The

1st row: 2D map location. The 2nd row: the corresponding graphical model. The 3rd row: the

state vector of each submap to be estimated. b1, . . . , br−1 denote the shared elements between

submaps. The 4th row: the covariance matrix split into submaps.

(a)

part not used

part not used

(b)

Figure 4.4: Schematic representation of all CI submaps. (A) A Bayes network showing the prob-

abilistic dependencies between state ξ and measurements z. (B) The full covariance matrix split

into submaps in subGPBF, where bi represents the common elements shared between submaps.
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Algorithm 1 SubGPBF

Require:

1: Noisy dataset 1: Ψ1 = {X,y}
2: Noisy dataset 2: Ψ2 = {X∗,z} and the partitioned subsets {X∗si ,zsi }ri=1

Ensure: Optimal global map

1: procedure 1 GP Training

2: Training a GP using Ψ1
3: end procedure

4:

5: procedure 2 Forward process:prior mapping, correlated fusion and forward update

6: s−1 = GPprediction(X∗s1)
7: s+1 = correlatedFusion(s−1 ,zs1)
8: for i = 2 to r do
9: s−i = GPprediction(X∗si )
10: s+i = forwardUpdate(s+i−1, s

−
i ) � Refer to Algorithm 2

11: zsi = getObservations(Ψ2)

12: s++i = correlatedFusion(s+i ,zsi ) � s++i is currently optimal

13: end for

14: return {s+1 , s++i } where i = 2, . . . , r
15: end procedure

16:

17: procedure 3 Backward Update

18: s+++r � s++r � Because s++r is globally optimal given the CI condition is held

19: for i = r to 2 do � For notation simplicity, s++1 � s+1
20: s+++i−1 = backwardUpdate(s+++i , s++i−1) � Refer to Algorithm 3

21: end for

22: return {s+++i } where i = 1, . . . , r � Globally optimal given CI condition is held

23: end procedure

ξs1 and ξs2 , representing the two consecutive submaps, thus

ξs1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ξa

ξb

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , ξs2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ξb

ξc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (4.1)

As can be seen from Fig. 4.4a, the only connection between the set of nodes (ξa,za) and (ξc,zc) is

through node ξb , i.e. subgraph (ξa,za) and (ξc,zc) are d-separated given ξb (Koller and Friedman

2009). In other words, given ξb , submaps s1 and s2 do not carry any additional information about

each other. In Piniés and Tardós (2008), it is called the submap CI property, and submaps with

such CI property are called CI submaps.

A well-known approximation in SLAM is to ignore the correlation between submaps that do not

overlap. This thesis follows this approximation and chooses submaps that overlap to recover the
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correlations. The submaps are by construction overlapping and therefore conditional indepen-

dent. CI submaps can be seen as a trade-off between the fully correlated global map and the

independent submaps. Information can be passed between submaps that allows a distributed

and decentralised solution to be maintained, which is equivalent to a global map. In addition, the

map partitioning resulting from the conditionally independent formulation has the potential for

a reduction in the computational complexity since each submap is of smaller dimension than a

single map. Please refer to Section 3.2.3 and 3.2.4 for the related knowledge about the CI property

and Bayes network model.

The following sections will explain how to compute the optimal global map from CI submaps.

4.2.2 GP for Prior Mapping

The underlying noise-free process is learned from datasetΨ1 using GP regression, and then this

GP is used to predict the prior map at the desired resolution, as was described in Section 3.3.2.

The output is a correlated probabilistic map, including mean and covariance. When predicting

at the query points subset X∗s1 , the GP generates the prior submaps s−1 , which is defined as

s−1 ∼ p(ξs1) =N (μs1 ,Ps1) , (4.2)

where for the sake of notation simplicity, the query points locations X∗s1 and the training dataset

Ψ1 are ignored. Thus p(ξs1) is in short of p(ξs1 |X∗s1 ,Ψ1). Using GP prediction allows us to increase

or decrease map resolution (inferring more or fewer points) as required. Additionally, spatial

correlations are encoded in the covariance matrix.

4.2.3 Spatially Correlated Bayesian Fusion

The likelihood function, denoted as p(z|ξ), is obtained in the same way as in Section 3.5.1 and

3.6.2. For s1, the likelihood function p(za|ξs1) is obtained via marginalisation from p(z|ξ), where
za is the current observation for s1.

With the prior submap s−1 and the likelihood function p(za|ξs1), Bayesian fusion is performed to

update s−1 with new information, and MAP estimation is applied to obtain the posterior submap
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s+1 . Define the pdf of s+1 to be p(ξs1 |za) = N (μa
s1 ,P

a
s1) . The mean μa

s1 and covariance Pa
s1 are

computed using (3.69) and (3.70), respectively. For MVNs, μa
s1 and Pa

s1 can be partitioned as

s+1 ∼ p(ξs1 |za) =N (μa
s1 ,P

a
s1) =N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μa
a

μa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
a Pa

ab

Pa
ba Pa

b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (4.3)

where the superscript indicates the set of new observations fromΨ2 that have been incorporated

into the estimation of the submap, and the subscript denotes the set of variables to be estimated.

The Bayesian fusion approach used here is referred to as the correlated Bayesian fusion, to distin-

guish it from the naïve Bayesian fusion described in Section 3.5.2. As noted above, the correlated

Bayesian fusion includes spatial correlations in Ps1 , which is produced by a GP. As a result, one

single measurement could update all its neighbours in the correlated Bayesian fusion, while in

naïve Bayesian fusion it only updates the corresponding point value since the diagonal matrix

Ps1 only contains the uncorrelated variances.

Note that in the general case of r submaps, except the last submap sr that is updated with both

the common and non-common observations, the other submaps si , i = 1, . . . , r −1 are only fused

with the non-common observations. Another thing to notice is that from the second submap s2

to sr , observations from Ψ2 are fused with the output of the forward update algorithm, not the

output of GP prediction. For example, instead of building s2 from scratch, the forward update

algorithm, as will be described in Section 4.2.4, is applied to transmit information from s+1 to the

GP predicted s−2 , thus producing the currently optimal submap s+2 . Then, s
+
2 is fused with zb and

zc , thus generating s++2 . The detailed procedures can be found in Figure 4.2 and Algorithm 1.

4.2.4 Forward Update

The prior estimate of the second submap, denoted as s−2 , can be computed by GP inference, and

we denote it as

s−2 ∼ p(ξs2) =N
(
μs2 ,Ps2

)
=N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μb

μc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pb Pbc

Pcb Pc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.4)
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The goal is to compute the currently optimal submap 2, denoted as s+2 , which contains the current

observation za. Define s+2 as

s+2 ∼ p(ξs2 |za) =N (μa
s2 ,P

a
s2) . (4.5)

Define the pdf of the currently optimal local map2 as

p(ξa,ξb,ξc |za) ∼N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μa
a

μa
b

μa
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pa
a Pa

ab Pa
ac

Pa
ba Pa

b Pa
bc

Pa
ca Pa

cb Pa
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.6)

Since s+1 has been updated with za while s−2 has not, s+1 in (4.3) coincides exactly with the first two

blocks of the posterior map in (4.6) based on the marginalisation property of MVNs. Therefore, to

get the currently optimal map, only the terms related to ξc need to be computed, which requires

information to be propagated forwards.

Before proposing the forward update algorithm, let us recall the submap CI property. It is ob-

served from Figure 4.4a that the set of nodes (ξa,za) and ξc are d-separated given ξb . This in turn

implies that the components of (ξa,za) and ξc are conditionally independent given ξb , namely

(ξa,za)⊥ξc |ξb . (4.7)

Then based on this submap CI property, we have the following proposition.

Proposition 4.1. The currently optimal map, described by p(ξa,ξb,ξc |za), can be recovered from

the currently optimal submap s+1 ∼ p(ξa,ξb |za) and the submap s−2 ∼ p(ξb,ξc).

Proof. Based on the chain rule and (4.7), we get

p(ξa,ξb,ξc |za) = p(ξc |ξa,ξb,za)p(ξa,ξb |za)
= p(ξc |ξb)p(ξa,ξb |za),

(4.8)

where the second equality comes from the CI property. We can observe in (4.8) that the first factor

comes from submap s−2 (see (4.4)) by conditioning; and the second factor comes from submap s+1
2In this thesis, a local map refers to a map than contains two consecutive submaps. In this example, the local map

is equal to the global map since only two submaps are considered.
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(see (4.3)). Therefore, all information needed to recover the optimal map can be obtained from

the information stored in each submap. �

Notice that in Proposition 4.1, no assumptions have been made about the particular distribution

of the probability densities. Moreover, the factorisation only depends on general probabilistic

theorems and the CI assumption.

Then we propose the forward update algorithm as follows.

Corollary 4.2 (Forward update). After submap s+1 and s−2 are built, the currently optimal submap

s+2 can be obtained using Algorithm 2. The mean and covariance of s+2 are obtained as

μa
s2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
μa
b

μc +PcbP
−1
b (μa

b −μb)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (4.9)

Pa
s2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
b Pa

b P
−1
b Pbc

PcbP
−1
b Pa

b Pc +PcbP
−1
b (Pa

b P
−1
b Pbc −Pbc)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (4.10)

Besides, the cross-correlation term Pa
ac in the currently optimal local map (see (4.6)) can also be

recovered.

Algorithm 2 Forward update

1: Kf � PcbP
−1
b ;

2: Pa
cb = Kf P

a
b ;

3: Pa
c = Pc +Kf (P

a
bc −Pbc) ;

4: μa
c = μc +Kf (μ

a
b −μb) ;

5: (optionally) Pa
ac = Pa

abP
−1
b Pbc .

Proof. See Appendix B. An alternative proof is in Appendix C, which follows Piniés and Tardós

(2008).

Algorithm 2 shows that the forward update algorithm takes advantage of the available estimation

of the state vectors that are in the border between both submaps. It also shows that all the terms

related with ξc can be computed, thus the joint density in (4.6) can be recovered if needed. More

importantly, the forward update algorithm allows submap 2 to add the observation za without

referring to the full map p(ξa,ξb,ξc |za). In fact, there is no need to recover the missing cross-

correlation between submaps, Pa
ac , since it is not needed to get the currently optimal mean and
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variances; yet Pa
ac = Pa

abP
−1
b Pbc can be computed if required. Therefore we can always build cur-

rently optimal submaps using the forward update algorithm one after the other, without having

to compute the correlations between submaps.

Having calculated s+2 using the forward update algorithm, we then update s+2 with the current

new observations [zb;zc] via the correlated Bayesian fusion. Since s2 is the last submap in the

example, both the common and non-common observations are incorporated. Define s++2 , which

is globally optimal, as

s++2 ∼ p(ξs2 |za,zb,zc) =N (μabc
s2 ,Pabc

s2 ) =N
⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μabc
b

μabc
c

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pabc
b Pabc

bc

Pabc
cb Pabc

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.11)

For more than two submaps, Algorithm 2 can be adopted to get the initial state estimate of the

third submap s+3 using s++2 (see (4.11)) and the GP predicted s−3 ; then the correlated Bayesian fu-

sion can be applied to update s+3 . In such a sequential manner, submaps are built consecutively in

the forward direction. After creating all submaps in the forward direction, by using GP predic-

tion, correlated Bayesian fusion and the forward update algorithm, the last submap sr is globally

optimal. This is because the last submap, denoted as s++r ∼ p(ξsr |zs1 , . . . ,zsr ), comprises all the

information from the former submaps. However, the other submaps s1, . . . , sr−1 still do not con-

tain information from the later submaps or more recent observations. Nonetheless, the optimal

global map can be obtained via the backward update algorithm.

4.2.5 Backward Update

Having built the two CI submaps s+1 ∼ p(ξa,ξb |za) (see (4.3)) and s++2 ∼ p(ξb,ξc |za,zb,zc) (see
(4.11)), we aim to compute the globally optimal submap 1, denoted as s++1 , and optionally the joint

distribution of the two submaps, both of which contain all the current observations [za,zb,zc].

The globally optimal submap s++1 is defined as

s++1 ∼ p(ξa,ξb |za,zb,zc) =N (μabc
s1 ,Pabc

s1 ) . (4.12)
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Define the globally optimal local map to be

p(ξa,ξb,ξc |za,zb,zc) =N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μabc
a

μabc
b

μabc
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pabc
a Pabc

ab Pabc
ac

Pabc
ba Pabc

b Pabc
bc

Pabc
ca Pabc

cb Pabc
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.13)

As was discussed in Section 4.2.4, to compute the joint density in (4.13), only the terms related

to ξa need to be computed. Therefore, information needs to be propagated backwards.

Given the submap CI property that

(ξa,za)⊥(ξc,zb,zc)|ξb , (4.14)

we propose the following proposition.

Proposition 4.3. The globally optimal map, described by p(ξa,ξb,ξc |za,zb,zc), can be recovered

from the globally optimal submap s++2 ∼ p(ξb,ξc |za,zb,zc) and the submap s+1 ∼ p(ξa,ξb |za).

Proof. Based on the chain rule and the submap CI property in (4.14), we get

p(ξa,ξb,ξc |za,zb,zc) = p(ξa|ξb,ξc,za,zb,zc)p(ξb,ξc |za,zb,zc)
= p(ξa|ξb,za)p(ξb,ξc |za,zb,zc) ,

(4.15)

where the second equality comes from (4.14). In (4.15), observe that the first factor comes from s+1

in (4.3) by conditioning; and the second factor comes from s++2 in (4.11). Therefore, the globally

optimal map can be recovered from the information stored in the two submaps. �

Similar to Proposition 4.1, Proposition 4.3 does not depend on the particular distribution of the

probability densities, but is based only on general probabilistic theorems and the CI assumption.

Then we propose the backward update algorithm in Corollary 4.4.
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Corollary 4.4 (Backward update). After submap s+1 and s++2 are built, the globally optimal submap

s++1 can be obtained using Algorithm 3

μabc
s1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
μa
a +Pa

ab(P
a
b )
−1(μabc

b −μa
b)

μabc
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (4.16)

Pabc
s1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
a +Pa

ab(P
a
b )
−1(Pabc

b (Pa
b )
−1Pa

ba −Pa
ba) Pa

ab(P
a
b )
−1Pabc

b

Pabc
b (Pa

b )
−1Pa

ba Pabc
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (4.17)

Besides, the cross-correlation term Pabc
ac in the globally optimal local map (see (4.13)) can also be

recovered.

Algorithm 3 Backward update

1: Kb � Pa
ab(P

a
b )
−1 ;

2: Pabc
ab = KbP

abc
b ;

3: Pabc
a = Pa

a +Kb(P
abc
ba −Pa

ba) ;
4: μabc

a = μa
a +Kb(μ

abc
b −μa

b) ;
5: (optionally) Pabc

ac = KbP
abc
bc .

Proof. See Appendix D.

Corollary 4.4 shows that backward update algorithm is also a data sharing technique as is the

forward update algorithm. It uses the difference in the estimation of the shared parts between

two submaps to update the previous submap. It also shows that all the terms related with ξa

can be computed, thus the full map in (4.13) can be recovered if needed. The backward update

algorithm allows submap 1 to add all the current observations [za,zb,zc] without referring to

the full map in (4.13). In fact, there is no need to recover the missing cross-correlation between

submaps, e.g. Pabc
ac , although it could potentially be recovered to get the full map if needed.

Notice that the forward update algorithm and the backward update algorithm can be used sepa-

rately or together. Here they are used together to ensure the optimality of subGPBF. By now, the

globally optimal mean i.e. μabc
a , μabc

b , μabc
c , and the variances, i.e. the diagonal entries of Pabc

a ,

Pabc
b , Pabc

c , have been obtained.
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4.3 Comparison

4.3.1 Forward Update and Backward Update

When the new observations come in, the estimation of the common part between two nearby

submaps will change. On account of this fact, both the forward and backward update algorithms

use the estimation difference in mutual components to correct the state, enforcing the cross-

correlation forwards or backwards to other submaps. The deduction of the two algorithms is

based on the CI assumption and general probability theorems.

The forward and backward update algorithms are used for different goals in subGPBF. The for-

ward update algorithm initialises the following submap to contain all the current observations,

thus being currently optimal. In addition, the forward update algorithm is used together with

Bayesian fusion, GP prediction to build submaps incrementally. The backward update algorithm

corrects from the last to the first submap in a single process, and finally generates the optimal

global mean and variances of the variables to be estimated.

4.3.2 Forward Update and Augmentation

The forward update algorithm resembles the Augmentation algorithm in EKF SLAM (see Sec-

tion 2.1), in the sense that the previous submap is used to build the following submap. One of

the differences is that EKF SLAM requires a known state transition model to propagate from

the current state and further augment the state using newly observed landmarks. The transition

model is required in EKF SLAM to predict the mean and covariance of the state in future steps.

In the forward update algorithm, locations are given, and it is just assumed that the previous and

following submap are next to each other in space. Therefore forward update algorithm does not

require a known transition model.

4.4 Variants and Applications

SubGPBF is flexible, and with some minor changes, it can be widely applicable to different prob-

lems. For instance, Section 4.4.1 shows the forward update algorithm can be used for prediction,
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and Section 4.4.2 illustrates how to adapt subGPBF for sequential mapping with one source of

big data. In addition, subGPBF can be readily used for mapping with multiple datasets, when the

last fusion result is regarded as the prior and the mapping process is repeated.

4.4.1 Adapting the Forward Update Algorithm to Prediction

This subsection illustrates that the forward update algorithm can be used to augment the state

vector, with function values inferred at a finite set of new input points at arbitrary locations.

Let f (x) be an unknown non-linear function over the input vector space x. Assume we obtain

some observations y at some inputs X . We use the same functional dependency model as in

(3.38), and assume the noise is iid Gaussian with the variance of σ2. Suppose we wish to infer

the function values at a set of inputsX∗. UnderMVNdistribution, given the prior joint probability

over f (X) and f (X∗), the function values at inputs X∗ can be inferred using the forward update

algorithm, as described below.

Define the prior joint distribution over y and f (X∗) to be

⎡⎢⎢⎢⎢⎢⎢⎢⎣
y

f0(X∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼N
⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μX

μX∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
PX +σ2I PX,X∗

PX∗,X PX∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.18)

Suppose y is updated with some new incoming information, and denote the posterior of y as

y+ ∼N (μ+
X,P

+
X ) , (4.19)

Once assuming the new information that updates y is conditionally independent of f (X∗) given

f (X), we can directly apply Algorithm 2 to get the posterior of f (X∗) as follows

f +(X∗) ∼N (μ+
X∗ ,P

+
X∗) , where (4.20)

μ+
X∗ = μX∗ +PX∗,X (PX +σ2I )−1(μ+

X −μX ) , (4.21)

P+
X∗ = PX∗ +PX∗,X (PX +σ2I )−1((P+

X )
−1P−1X PX,X∗ −PX,X∗) . (4.22)
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On the other hand, the problem in this section can be thought of as a special case in (4.1) that

ξs1 =
[
y

]
, ξs2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
y

f (X∗)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (4.23)

Furthermore, the results deduced above in turn indicate that the size of the overlapping part

between two consecutive CI submaps can be of any size, as was mentioned in Section 4.1.

Both the posterior mean (see (4.21)) and covariance ((4.22)) for any arbitrary individual query

points X∗ can be determined. Thus, the forward update algorithm allows us to interpolate values

at new inputs without the need to refer to the information that updated y.

4.4.2 Adapting SubGPBF to Sequential Mapping with One Data Source

SubGPBF can be adapted to building a large-scale map with one source of sensor data. It is

suitable for the online incremental submapping task. The whole process is shown in Algorithm

4. The mathematical proof and deduction are in Appendix H.

The main difference with subGPBF is that backward update algorithm alone can generate the

optimal global map. The forward update is not needed as the latest submap is already optimal;

therefore only GP inference, Bayesian fusion and the backward update are required. In addition,

to account for the arbitrarily big amount of sensor data, each local GP is trained for each submap

and optimisation of the hyperparameters is within each submap. To further save training time

and better scale for real-time scenario, the learned hyperparameters of the former submap are

used as the initial value in optimisation of the subsequent submap. Such hyperparameter learning

methods can also be used in subGPBF; although they are not used because we have assumedΨ1

has a limited amount of data.

4.5 Summary

This chapter proposed subGPBF - a general, probabilistic framework for large-scale mapping

with multiple sources of data. The main techniques used were GP regression, spatially corre-

lated Bayesian fusion, and the CI submapping strategies. The spatial correlations, learned via GP
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Algorithm 4 SubGPBF for one dataset

Require:

1: Training dataset subsets: {Xsi ,ysi }ri=1
2: Query points subsets: X∗si , i = 1, . . . , r

Ensure: Optimal global map

3: procedure 1 Forward mapping:prior mapping and correlated fusion

4: LGP1 = GPtraining(Xs1 ,ys1) � The local GP
5: s−1 = GPprediction(X∗s1)
6: for i = 2 to r do
7: LGPi=GPtraining(Xsi ,ysi ) � Hyperparameters of si are initialised using that of si−1.
8: s−i = GPprediction(X∗si )
9: zsi = getObservations � zsi = marginalisation(si−1)
10: s+i = correlatedFusion(s−i ,zsi )
11: end for

12: return {s−1 , s+i } where i = 1, . . . , r
13: end procedure

14:

15: procedure 2 Backward Update

16: s++r � s+r � Because s+r is already globally optimal

17: for i = r − 1 to 2 do � For notation simplicity, s+1 � s−1
18: s++i = backwardUpdate(s++i+1, s

+
i )

19: end for

20: s++1 = backwardUpdate(s++2 , s−1 )
21: return {s++i } where i = 1, . . . , r � Globally optimal given CI condition is held

22: end procedure

regression, were incorporated into Bayesian fusion to improve accuracy and consistency. The

CI submapping strategies were developed to address the scalability problem when using GP and

correlated Bayesian fusion for big data. The innovation lies in the two novel data sharing tech-

niques, the forward and backward update algorithms. By using them together, information can

be transmitted bi-directionally between CI submaps. Finally, after using the backward update

algorithm to correct all previous submaps, subGPBF is able to obtain the optimal global map,

with no other assumptions except the CI property of submaps.





Chapter 5

Gaussian Markov Random Fields for

Bayesian Fusion and 2.5D Mapping

While Chapter 4 used the submapping techniques to approximate the global mapping

method using GP and Bayesian fusion, this chapter develops a global approximation

approach in the information form. The main advantage of moving from the covariance form to

the information form stems from the better computational performance. The motivations are in

two aspects:


 GMRF-SPDEs closely approximate the Matérn GRFs regarding computational efficiency

and accuracy (Simpson et al. 2012; Bolin and Lindgren 2013), and


 the correlated Bayesian fusion is more efficient in the information form than in its dual.

Therefore the proposed approach is named as GMRF-BF. GMRF-SPDEs, as was described in

Section 3.4.2, are applied in this chapter and Chapter 6 to model the spatially correlated data

and infer high-resolution maps. The information-form Bayesian fusion, as was introduced in

Section 3.5.3, is then used to update the prior map predicted by the GMRF-SPDE.

The contributions are twofold. Although neither the continuously indexed GMRF-SPDE nor

the information-form Bayesian fusion is new, GMRF-BF firstly combines these two methods to

obtain a further computational gain when mapping in 2D. In addition, the direct link between

71
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the hyperparameters of a GMRF-SPDE and those of the information matrix Q has been found,

and the details are explained in Appendix E. This link is used to build the information matrix.

5.1 Problem Statement and Approach Overview

Following the problem statement and dataset definition in Section 4.1, GMRF-BF is developed in

consideration of the computational gain achieved by combining the GMRF representation and

the information-form Bayesian fusion. Firstly, a GMRF-SPDE is applied to learn the noise-free

latent process from dataset Ψ1, and then to predict the information-form prior map, denoted

as p(ξ|X∗). When dataset Ψ2 comes, the likelihood function p(z|ξ,X∗) can be obtained when a

linear Gaussian observation model is used. Then the information-form Bayesian fusion is used to

integrate the prior map with the observation likelihood to get the posterior map, which will be in

the information form. TheMAP estimator is applied to get the posterior distribution p(ξ|z,X∗)∝
p(ξ|X∗)p(z|ξ,X∗). Finally, the mean and uncertainty maps are recovered.

The flowchart of GMRF-BF is shown in Figure 5.1. As the flowchart shows, GMRF-BF has a

comparable and parallel structure with GPBF (see the flowchart in Figure 3.2). However, GMRF-

BF adapts all computations , except the map recovery, in the information form.

Bayesian fusion

recovery

Figure 5.1: Flowchart of the proposed GMRF-BF framework.
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5.2 GMRF-BF: the Information-form Global Mapping Approach

5.2.1 GMRF-SPDE for Prior Mapping

GMRF-SPDEs explicitly map the continuous latent field, thus no information will be lost due to

binning data locations to regular grid cells. In addition, GMRF-SPDEs can learn spatial correla-

tions and make inference concerning the correlations. Furthermore, a GMRF-SPDE is defined by

a sparse matrix, which allows for computationally effective numerical methods.

Here we consider the same regression problem as in Section 3.4.2 and use Ψ1 as the training

dataset. The noisy data are modelled using a zero-mean GP with the Matérn kernel, which is the

same as in subGPBF, yet the computation is done using the corresponding GMRF model. When

a zero mean function is used, the GMRF-SPDE model is specified by the hyperparameters in the

Matérn covariance function. The only hyperparameter that is chosen manually, in a similar way

as for the GPs, is the smoothness parameter ν , which decides the number of neighbours for each

single point. Then the other hyperparameters of theMatérn kernel and the data noise variance σ2
ε

are learned by solving the SPDE using finite element methods. This approach has been proven to

be the best linear approximation to the continuous solution to the SPDE by Lindgren et al. (2011).

Then the learned hyperparameters are used to build the spatially correlated prior map, which is

p(ξ) =Nc(η,Q) , where (5.1)

η =Q(X∗,X)y , (5.2)

Q =Q(X∗,X∗) +Qε . (5.3)

For the sake of notation simplicity, the query points locations X∗ and the training dataset Ψ1

are ignored. Therefore p(ξ) in (5.1) is short for p(ξ|X∗,Ψ1). The information matrices Q(X∗,X)

and Q(X∗,X∗) are calculated using the approach described in Appendix E, and note that in this

case they are sparse. y denotes the observations in Ψ1, Qε = σ−2ε In is a diagonal matrix that

represents the precision of data itself, i.e. the inverse of variances of data noise.

The mean state vector that corresponds to η in (5.2) is

μ =Q−1Q(X∗,X)y . (5.4)
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The comparison between (5.2) and (5.4) shows that maintaining η is cheaper than computing μ.

In the next section, η is used for Bayesian fusion. When μ is needed, we first compute the sparse

Cholesky factorisationQ = LL� and then solveQx =Q(X∗,X)y using the forward and backward

substitutions. Solving such a linear system is more efficient than calculating using (5.4). In the

GMRF model, the typical cost of factorising the M ×M matrix Q is O(M3/2) for 2D data and

O(M3) for 3D data.

5.2.2 Information-form Bayesian Fusion with Correlations

After the spatially correlated prior map p(ξ) ∼ Nc(η,Q) is built, it can be updated with the

observations z inΨ2 via the correlated Bayesian fusion. We define the likelihood function p(z|ξ)
in the same way as in Section 3.5.3, and define its information matrix Qz to be a diagonal matrix

with the entries being the inverse of constant or non-constant noise variance σ2
z,i . Given the prior

map and the likelihood function, we can use the MAP estimators in (3.75) and (3.76) to compute

the posterior map with the information matrix Q+ and information vector η+ as follows:

p(ξ|z) =Nc(η
+,Q+) , where (5.5)

η+ = η +H�Qzz , (5.6)

Q+ =Q +H�QzH . (5.7)

Here H is the observation matrix, which selects the part of state ξ that is observed by z. H

equals to In×n when the full state ξ is observed through z. The spatial correlations modelled in

the information matrix Q are used to update the neighbouring points of a single measurement.

A significant computation gain can be obtained since Bayesian fusion in the information form

has a linear computational time, whereas it requires cubic time in the covariance form due to

inverting the dense covariance matrix. In fact, even the most expensive computationH�QzH in

(5.7) is done in linear time, due to the sparsity of Qz and H . In addition, the addition operation

in (5.7) does not make Q+ become denser than Q. This is because the update acts to strengthen

the existing constraints between measurements.
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Note that there is no approximation in the fusion process described in this section since Bayesian

fusion using canonical parameters and moment parameters are equivalent. The only approxima-

tion in GMRF-BF is the amount of neighbours that is considered, which is similar to the approx-

imation done in subGPBF that considers some submaps should be conditionally independent.

5.2.3 Map Recovery

After the information-form posterior map is obtained, some proper techniques need to be chosen

to recover the mean and variances efficiently.

The sparse linear system Q+x = η+ is solved to recover the mean vector μ+. The factorisation

algorithms for solving linear systems are motivated by the computational inefficiency of ma-

trix inversion (Horn and Johnson 2012). The sparsity of Q+ can reduce the computational cost

of solving the linear system. When Cholesky factorisation Q+ = LLT is performed, only the

non-zero entries in the triangle Cholesky factor L are computed. Then μ+ can be obtained by

solving two triangular systems. The forward substitution is applied to solve Lb = η+, and the

back substitution is applied to solve L�x = b. In particular, Cholesky factorisation only costs

M(p2 + 3p) when the M ×M matrix Q+ is a band matrix with bandwidth p, with p �M , and

the forward/backward substitution costs 2Mp. For 2.5D grid mapping with regular grid cells, p

is decided by ν , as is shown in Appendix E. For general sparse matrices, some re-ordering ap-

proaches, e.g. nested dissection (George 1973), bandwidth reduction (Cuthill and McKee 1969)

and CAMD (Chen et al. 2008), can be used to reduce fill-ins in the Cholesky factor. However, for

2D data, it takes at least O(M3/2) to do re-ordering, and the re-ordered Cholesky factor has at

least O(M logM) fill-ins. Therefore for M > 106, iterative equation solvers (Saad 2003) can be

applied to obtain an approximate solution. On the other hand, the variances could be recovered

efficiently using the approach proposed by Golub and Plemmons (1980).

As discussed above in this section, the computational complexity for factorising the entire matrix

Q+ has constrained GMRF-BF from being used for large-scale data that are more than 106. To

overcome this limitation, subGMRF-BF is developed and will be explained in the next chapter.
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5.3 Summary

This chapter has proposed a generic framework, GMRF-BF, to fuse multiple sources of sensor

data into a spatially correlated, probabilistic 2.5D grid map in a computationally efficient way.

GMRF-BF represents a Matérn GP as a GMRF through the SPDE approach. The GMRF represen-

tation is built from one source of noisy data. The spatial correlations are modelled using a sparse

information matrix, which closely approximates the corresponding covariance matrix. The pre-

dicted high-resolution map, represented in the information form, is then used as the prior for

Bayesian fusion and is updated with another source of data. Bayesian fusion with the sparse

information matrix allows updating of the whole map with the sparse observations within linear

time. The mean and uncertainty maps are then recovered in O(M3/2), where M is the size of the

final map.

GMRF-BF resembles subGPBF in Chapter 4 in that it is also an approximation method to GPBF,

which takes all the spatial correlations into computation. Their primary difference is that GMRF-

BF considers the approximation from a new aspect. The use of sparse information matrices in

inference and Bayesian fusion in GMRF-BF provides a new perspective and some valuable in-

sights into efficient data fusion for large-scale mapping.



Chapter 6

Gaussian Markov Random Fields for

Bayesian Fusion with Conditionally

Independent 2.5D Submapping

Previously in this thesis, Chapter 4 and 5 have developed two different approximation meth-

ods to GPBF (see Section 3.6) for building large-scale 2.5D maps when considering spatial

correlations. SubGPBF in Chapter 4 has explored a globally optimal submapping strategy given

the submap CI assumption. GMRF-BF in Chapter 5 uses the efficient GMRF representation to

create the global map. Both the two methods indeed approximate the dense covariance matrix,

which encodes spatial correlations, to reduce the computational and memory cost.

Since GMRF-BF solves for the full map and considers all correlations within one sparse infor-

mation matrix, computational cost can be prohibitive for a sufficiently large amount of data. To

broaden GMRF-BF for any arbitrarily big amount of data, this chapter transfers the CI submap-

ping strategy in subGPBF into the information form by exploiting the CI property of information-

form submaps. This chapter proposes subGMRF-BF, a submapping approach to building a near-

optimal global map in almost linear time. The main contributions of this chapter are the closed-

form solutions to propagate information between CI submaps before and after fusion, all in the

information form. Therefore, there is a substantial reduction in computational and memory com-

plexity for scalability when compared with GPBF, subGPBF and GMRF-BF.

77
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6.1 Problem Statement and Approach Overview

The research problem remains the same as that of Chapter 4 and 5, namely, to fuse multiple

sources of sensor data to build correlated, large-scale 2.5D maps efficiently. We follow the same

problem statement and dataset definition in Section 4.1. In this chapter, an innovative CI mapping

strategy is developed to be used together with GMRF-BF, thus named subGMRF-BF; given that

there is a direct mapping between the sparsity of the information matrix and the CI elements

(see Section 3.4.1). The overview of the proposed subGMRF-BF approach is similar to that of

subGPBF in Section 4.1; thus it will not be repeated here. The flowchart of subGMRF-BF is shown

in Figure 6.1 and a simple implementation is in Algorithm 5.

Similarly to subGPBF, subGMRF-BF considers that the submap CI property holds, although, as

discussed previously, this might be an approximation in certain cases. Note that the submap CI

property is again the only assumption made in the forward and backward update algorithms. If

the submaps are strictly conditionally independent, the optimality of the algorithm is preserved

with subGMRF-BF. In the following, we will refer to subGMRF-BF as a globally optimal approach,

without repeating that the optimality is under the CI assumption.

Figure 6.2 schematically plots the elements of the full map information and covariance matrices

that are obtained with subGMRF-BF and subGPBF algorithms, respectively. In Figure 6.2a, the

blue areas are the elements that are obtained with subGMRF-BF. The yellow areas in Figure 6.2b

are the additional non-zero entries in subGPBF which may require to be calculated. Note that

the off-diagonal blocks in Figure 6.2a are strictly zero because the submaps are conditionally

independent, while the off-diagonal blocks in Figure 6.2b are not zero because the submaps are

not marginally independent (see Section 3.2.3). However, as was discussed in Chapter 4, it is not

required to compute the off-diagonal entries in Figure 6.2b to obtain the optimal global map. We

will later refer to this figure again in Section 6.2.3.
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Figure 6.1: Flowchart of the proposed subGMRF-BF framework.
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zeros

zeros

(a)

non-zeros

non-zeros

(b)

Figure 6.2: Schematic representation of the entries that are calculated in (A) the information
matrix in subGMRF-BF, and (B) the covariance matrix in subGPBF.

Algorithm 5 SubGMRF-BF

Require:

1: Noisy dataset 1: Ψ1 = {X,y}
2: Noisy dataset 2: Ψ2 = {X∗,z} and the partitioned subsets {X∗si ,zsi }ri=1

Ensure: Optimal global map

1: procedure 1 GMRF Training
2: Training a GMRF using Ψ1
3: end procedure

4:

5: procedure 2 Forward process:prior mapping, correlated fusion and forward update
6: s−1 = GMRFprediction(X∗s1)
7: s+1 = i-correlatedFusion(s−1 ,zs1) � Information-form correlated Bayesian fusion
8: for i = 2 to r do
9: s−i = GMRFprediction(X∗si )

10: s+i = i-forwardUpdate(s+i−1, s
−
i ) � Information-form forward update (see Algorithm 6)

11: s++i = i-correlatedFusion(s+i ,zsi ) � s++i is currently optimal
12: end for

13: return {s+1 , s++i } where i = 2, . . . , r
14: end procedure

15:

16: procedure 3 Backward Update
17: s+++r � s++r � Because s++r is globally optimal given CI condition is held
18: for i = r to 2 do � For notation simplcity, s++1 � s+1
19: s+++i−1 = i-backwardUpdate(s+++i , s++i−1) � Information-form backward Update (see

Algorithm 7)
20: μ,σ2 =meanRecovery(s+++i−1 ) � Recover mean and variance
21: end for

22: return {s+++i } where i = 1, . . . , r � Globally optimal given CI condition is held
23: end procedure



Chapter 6. Gaussian Markov Random Fields for Bayesian Fusion with CI 2.5D Submapping 81

6.2 SubGMRF-BF: the Incremental CI Submapping Approach

6.2.1 The Graphical Model and Sparsity of Information Matrix

Let us consider the same graphical model as it is in Figure 4.4a, and let each node represent a set

of Gaussian variables. It has been explained in Section 3.2.4 that the information matrix encodes

the conditional independence of variables, while the covariance matrix models the absolute in-

dependence. In Figure 4.4a, for i � j , submap si is correlated with submap sj ; accordingly, the

covariance matrix is dense. By contrast, for i � j , si and sj are conditionally independent given

the rest of submaps1; hence, Qsi ,sj = 0 in the information matrix Q. Consequently, Q has most

of the elements being zero. The only non-zero elements are j = i −1, i, i +1, namely Q is a block

tridiagonal matrix.

Without loss of generality, the reminder of this section uses two consecutive submaps s1 and s2

in the same way as in Section 4.2 to illustrate the proposed CI submapping method.

6.2.2 GMRFs for Prior Mapping and Correlated Bayesian Fusion

SubGMRF-BF first trains a GMRF model using the SPDE approach from datasetΨ1, and then uses

this model to make inference at the test points subsetX∗s1 to create the prior submap s−1 , where the

superscript denotes that the estimate is produced by the GMRF model. For details about applying

GMRF-SPDEs for building prior maps, please refer to Section 5.2.1. Denote the pdf of s−1 as

s−1 ∼ p(ξs1) . (6.1)

Then, s−1 can be updated with the new observation za fromΨ2 via the information-form Bayesian

fusion, as was described in Section 5.2.2. Therefore we can get the update-to-date submap s+1 ,

where the superscript denotes that the prior submap has been updated. Define the pdf of s+1 as

s+1 ∼ p(ξa,ξb |za) =Nc(β
a
s1 ,Λ

a
s1) =Nc

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
βaa

βab

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Λa

a Λa
ab

Λa
ba Λa

b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (6.2)

1This is precisely the same independence as the pairwise Markov independence (Koller and Friedman 2009).
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where the superscript represents the set of new information from Ψ2 that has been incorporated

into the fusion, and the subscript denotes the set of variables to be estimated.

As was explained in Section 4.2.3, the non-common observations from Ψ2 are fused into each

submap, except for the last submap where both the common and non-common observations are

incorporated.

Note that from the second to the last submap, the observations from Ψ2 will be fused with the

output of the forward update, not the output of the GMRF prediction. These details are also

shown in Figure 6.1 and Algorithm 5.

6.2.3 Information-form Forward Update

The pre-trained GMRF model is used to predict the prior submap s−2 , which is defined as

s−2 ∼ p(ξb,ξc) =Nc

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
ζb

ζc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Δb Δbc

Δcb Δb

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (6.3)

Then, the goal is to create the currently optimal submap 2, denoted as s+2 , which contains the

current observation za. Define s+2 as

s+2 ∼ p(ξb,ξc |za) =Nc

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
ζab

ζac

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Δa
b Δa

bc

Δa
cb Δa

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (6.4)

Define the currently optimal local map2 to be

p(ξa,ξb,ξc |za) =Nc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηa
a

ηa
b

ηa
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qa
a Qa

ab Qa
ac

Qa
ba Qa

b Qa
bc

Qa
ca Qa

cb Qa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.5)

where Qa
ac and Qa

ca are zero based on the submap CI property in (4.7). Different symbols are

used in (6.2) and (6.5), although the same symbols are used in (4.3) and (4.6). This is due to the

different marginalisation properties of the information-form and covariance-form MVNs, as was

2As was explained in Section 4.2.4, a local map refers to a map than contains two consecutive submaps. In this
example, the local map is equal to the global map since only two submaps are considered.
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explained in Section 3.2.2. In fact, the information vector and matrix in (6.2) are usually different

to the corresponding blocks in (6.5).

Proposition 4.1 also applies here since it is only based on the chain rule and the submap CI

property, regardless of the form of the distribution. Based on Proposition 4.1, all the information

that is needed to recover the local map in (6.5) is contained in the currently optimal submap s+1

(see (6.2)) and the prior submap s−2 (see (6.3)). We propose the following forward update algorithm

based on the submap CI property in (4.7). .

Corollary 6.1 (Information-form forward update). After submap s+1 and s−2 are built, the currently

optimal submap s+2 can be obtained using Part 1 of Algorithm 6. The information vector and matrix

of s+2 are obtained as

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ζab

ζac

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
βa
b +ΔbcΔ

−1
c ηc −Λa

ba(Λ
a
a)
−1βa

a

ζc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (6.6)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Δa
b Δa

bc

Δa
cb Δa

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Λa

b +ΔbcΔ
−1
c Δcb −Λa

ba(Λ
a
a)
−1Λa

ab Δbc

Δcb Δb

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (6.7)

The local map in (6.5) can also be recovered using Part 2 of Algorithm 6 if needed.

Algorithm 6 Information-form forward update

1: Part 1 Getting the currently optimal submap s+2
2: ζab = βa

b +ΔbcΔ
−1
c ηc −Λa

ba(Λ
a
a)
−1βa

a ;
3: Δa

b =Λa
b +ΔbcΔ

−1
c Δcb −Λa

ba(Λ
a
a)
−1Λa

ab;
4: (no need for computation) ζc = ηc , Δ

a
bc = Δbc , Δ

a
c = Δc .

1: Part 2 (optionally) Recovering the currently optimal local map
2: ηa

b = βab +ΔbcΔ
−1
b ζc;

3: Δa
b =Λa

b +ΔbcΔ
−1
b Δcb;

4: (no need for computation) ηa
a = βaa , η

a
c = ζc , Δa

a =Λa
a, Δ

a
ab =Λa

ab , Δ
a
bc = Δbc , Δ

a
b = Δb .

Proof. See Appendix F.

Note that it is not required to recover the local optimal maps during the CI submapping process.

However, should an application require the local optimal maps at any point, Part 2 of Algorithm

6 can be used.
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Algorithm 2 and 6 are equivalent, as they both update the latter submap based on the differ-

ence in estimates of the shared components between both submaps. Their difference lies on the

conditioning and marginalisation operations in information and covariance form (refer to Sec-

tion 3.2.2). In fact, as Figure 6.2 shows, Algorithm 6 only updates the common elements between

both submaps, while Algorithm 2 updates all the non-common components. In addition, when

the size of submaps is fixed, it is more efficient to keep the sparse information matrices in Fig-

ure 6.2a than the dense covariance matrices in Figure 6.2b. Due to the sparsity of the information

matrices, matrix multiplication and factorisation can be done very efficient in Algorithm 6. Fur-

ther computation gain is achieved if the size of the common elements is smaller than that of the

non-common elements, which can of course be done by design.

Submap s+2 is then fused with the new measurements [zb;zc] via the information-form Bayesian

fusion. Since s2 is the last submap in this example, both the common and non-common observa-

tions are incorporated. Thus the globally optimal submap s++2 is achieved. Define s++2 to be

s++2 ∼ p(ξs2 |za,zb,zc) =Nc

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
ζabcb

ζabcc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Δabc
b Δabc

bc

Δabc
cb Δabc

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (6.8)

In general, after building all submaps in the forward direction, the last submap sr is globally opti-

mal while the other submap s1, . . . , sr−1 still are not (see Section 4.2.4 for explanation). Therefore,

the backward update algorithm is developed, which can correct from sr to s1 at once to recover

the optimal global map, i.e. mean and variances.

6.2.4 Information-form Backward Update

Having built the two CI submaps s+1 ∼ p(ξs1 |za) (see (6.2)) and s++2 ∼ p(ξs2 |za,zb,zc) (see (6.8)),

the aim is to compute the globally optimal submap s++1 . Define the pdf of s++1 to be

s++1 ∼ p(ξa,ξb |za,zb,zc) =Nc

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
βabc
a

βabc
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Λabc

a Λabc
ab

Λabc
ba Λabc

b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (6.9)
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Define the globally optimal local map to be

p(ξa,ξb,ξc |za,zb,zc) =Nc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηabc
a

ηabc
b

ηabc
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qabc
a Qabc

ab Qabc
ac

Qabc
ba Qabc

b Qabc
bc

Qabc
ca Qabc

cb Qabc
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.10)

where Δabc
ac and Δabc

ca are zero based on submap CI property in (4.14).

Proposition 4.3 also applies here, since it has no limit on the density form. We then propose the

following backward update algorithm based on the submap CI property in (4.14).

Corollary 6.2 (Information-form backward update). After submap s+1 and s++2 are built, the glob-

ally optimal submap s++1 can be obtained using Part 1 in Algorithm 7. The information vector and

matrix of s++1 are obtained as

⎡⎢⎢⎢⎢⎢⎢⎢⎣
βabc
a

βabc
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

βa
a

ζabcb +Λa
ba(Λ

a
a)
−1βa

a −Δabc
bc (Δabc

c )−1ζabcc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (6.11)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Λabc

a Λabc
ab

Λabc
ba Λabc

b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Λa

a Λa
ab

Λa
ba Δabc

b +Λa
ba(Λ

a
a)
−1Λa

ab −Δabc
bc (Δabc

c )−1Δabc
cb

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (6.12)

The local map in (6.10) can also be recovered using Part 2 of Algorithm 7.

Algorithm 7 Information-form backward update

1: Part 1 Getting the globally optimal submap s++1
2: βabc

b = ζabcb +Λa
ba(Λ

a
a)
−1βa

a −Δabc
bc (Δabc

c )−1ζabcc ;

3: Λabc
b = Δabc

b +Λa
ba(Λ

a
a)
−1Λa

ab −Δabc
bc (Δabc

c )−1Δabc
cb ;

4: βabc
a = βa

a , Λabc
a =Λa

ab , Λabc
ab =Λa

ab .
5: Part 2 (optionally) Recovering the globally optimal local map
6: ηabc

b = ζabcb +Λa
ba(Λ

a
A)
−1βa

a ;
7: Qabc

b = Δabc
b +Λa

ba(Λ
a
A)
−1Λa

ab ;
8: ηabc

a = βa
a , η

abc
c = ζabcc , Qabc

a =Λa
a , Q

abc
ab =Λa

ab , Q
abc
bc = Δabc

bc , Qabc
c = Δabc

c .

Proof. See Appendix G.

Although Algorithm 7 can generate both the submaps and local map, in practice, we correct

submaps backwards one after the other, as explained in Section 6.2.3. Algorithm 3 is more efficient

than its dual in Algorithm 7. The reasons are the same as those in Section 6.2.3.
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The optimality of subGMRF-BF is ensured by using the forward and backward update algorithms

together. By now, the globally optimal submaps s++1 and s++1 have been obtained. Then the

optimal global mean and variances can be recovered from these two submaps.

6.2.5 Map Recovery

After correcting all submaps, one can recover the mean and variances. Thanks to the submap CI

property, the mean recovery takes place locally without solving for the total state vector of the

global map. This allows opportunities for parallel and distributed computation. For each submap,

its mean and variance are recovered using the method proposed in Golub and Plemmons (1980),

which requires Cholesky factorisation. The re-ordering methods and the linear system solver

described in Section 5.2.3 can be applied to each submap. The Cholesky factorisation typically

consumes the most memory and time. Nonetheless, the small and re-ordered information matri-

ces can be factorised in O(m3/2), where m is the size of submaps. For the bandwidth Cholesky

factor with a few non-zero entries far-off the diagonal, recovery is done in linear time using the

method presented by Golub and Van Loan (1996).

6.3 Summary

SubGMRF-BF is an efficient information-form CI submapping method, which can fuse a vast

amount of sensor data from different sources in a spatially correlated and statistically sound way.

In subGMRF-BF, a GMRF is first fitted to one source of sensor data; then CI submaps are inferred

using this model and updated individually with the new information. The new information from

either new sources of previous submaps can be propagated forward to all submaps without loss

of information by using the forward update algorithm. Finally, the backward update algorithm

propagates the information from the last to first submap to recover the fully updated map.

GMRF, when combined with submap CI property, significantly accelerates the submapping albeit

it closely approximates the optimal global solution. The primary contribution is the derivation

of the correlation propagation algorithms to optimally transmit information through CI submaps

by only correcting the shared parts between consecutive submaps, which is more efficient than

its dual in subGPBF. Therefore subGMRF-BF is appealing for fast, large-scale 2.5D mapping.



Chapter 7

Experimental Results

In this chapter, the three methods proposed in this thesis, together with the existing benchmark

methods, are evaluated on two different datasets. The aim is to compare the capabilities of

various methods to deal with incomplete, noisy and sparse data to generate complete and dense

2.5D maps with lower uncertainty. In addition, the computational efficiency is analysed. Both

quantitative and qualitative evaluations are presented in this chapter.

7.1 Experimental Procedure

7.1.1 Comparison Approaches

GPBF (globally optimal): discussed in Section 3.6.

subGPBF (the proposed): discussed in Chapter 4.

GMRF-BF (the proposed): discussed in Chapter 5.

subGMRF-BF (the proposed): discussed in Chapter 6.

GPBF-BCM: GPBF with BCM (Schwaighofer and Tresp 2003) for submapping. This is an in-

dependent submapping approach since the spatial correlations between submaps are ignored

during prediction, yet the correlations within each submap are considered during both inference

and fusion. We implemented the standard BCM with local GP experts (see Section 2.4.2) using

87
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the software provided by the author of BCM (Schwaighofer 2005). Local GPs are trained with in-

dependent subsets from Ψ1, then each submap is predicted by weighting the average on all local

GP predictions. Such BCM model is applied to create the prior submaps, which are then updated

with the non-common observations from Ψ2 using the correlated Bayesian fusion. GPBF-BCM

includes correlations within fusion while Jadidi et al. (2014) did naïve fusion to reduce computa-

tional cost. For building prior submaps, GPBF-BCM combines all local GP predictions, while Kim

and Kim (2013) considered only the local GPs whose training subsets overlapped; yet the latter

set overlapping submaps to avoid discontinuous boundaries. None of these three approaches

allows knowledge propagation between submaps.

CCIS: subGPBF without the forward update, thereby the global optimality cannot be guaranteed.

During submapping, it is always the submap inferred by GPs that is updated in Bayesian fusion.

CCIS was proposed in our previous work (Sun et al. 2015).

ICIS: subGMRF-BF without the forward update, thereby the global optimality cannot be guar-

anteed. During submapping, it is always the submap inferred by GMRF-SPDEs that is updated

in Bayesian fusion. ICIS was proposed in our previous work (Sun et al. 2017).

sparseGPBF: GPBF with a compactly supported piecewise polynomial kernelKpp,2(r) (see (3.56)).

Such kernel generates a sparse covariance matrix for the training data, thereby allowing the hy-

perparameters to be learned efficiently. However, GP prediction generates a dense covariance

matrix after conditioning, which makes Bayesian fusion expensive. The predicted map is then

updated with the observations in Ψ2. One measurement can update a local area by using the

correlations encoded in the covariance matrix. SparseGPBF is similar to GMRF-BF in the sense

that only correlations between adjacent points are kept. However, the sparse kernel cuts the cor-

relations in a hard way while GMRF-BF learns the best approximation. Therefore the GMRF-BF

captures the natural spatial correlations better than the static sparse covariance kernel.

naïveGPBF: GP and the naïve Bayesian fusion (see Section 3.5.2) for global mapping. The same

prior map in GPBF is used for fusion. The computational complexity of naïveGPBF is constant.

However, point measurements are not propagated to the neighbouring points since there are

no correlations between them. This comparison is mainly to show how the spatial correlations

improve the accuracy and smoothness of the fusion result.
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7.1.2 Datasets and Sensor Information

7.1.2.1 Terrain Dataset (Synthetic Noisy Data)

A challenging scenario is simulated considering data incompleteness, uncertainty and inconsis-

tency. Synthetic elevation data is generated from Canadian Digital Elevation Data (CDED) (Nat-

ural Resources Canada. Laval, Quebec 1995). CDED consists of the ground elevations at regularly

spaced grids. The data synthetic process follows that of Gerardo-Castro et al. (2015).

We randomly choose one map from CDED, which covers the area of [−116◦,−114◦] longitude

and [56◦,57◦] latitude. There are 9608×4804 grid cells in this map, and each cell is 23m×23m.

The elevation values range between [430m,850m]. To generate synthetic data, we randomly

sample 1476 points from the original map and set noise level to be σε = 50.4m (12% of the

elevation range) to get Ψ1, which is regarded as sparse measurement. We also randomly sample

5832 points from the original map and set the noise level to be σz = 12.6m (3% of the elevation

range) to obtain Ψ2, which contains dense data. Please notice that both Ψ1 and Ψ2 are incom-

plete. To get the groundtruth (GT), the original map is down-sampled into a 100×200 grid map.

Ψ1, Ψ2 and the groundtruth are shown in Figure 7.1. Note in the 3D plots of Figure 7.1a and Fig-

ure 7.1b, we enlarge the axis ratio of the third dimension to make the elevation change visible. In

the 2.5D plots of elevation data in this Chapter, the vertical axis corresponds to the latitude and

horizontal axis is the longitude, and the elevation values and uncertainty are shown in colour.

The colour axis range is [430m,850m] for elevation values, e.g. Figure 7.1e, and [0m,100m] for

uncertainty, e.g. Figure 7.3b and 7.3d.

7.1.2.2 Pipe Wall Thickness Dataset (Real Experimental Data)

Experiments have also been done to build complete, dense and high-resolution 2.5D remaining

wall thickness maps of water pipes, to aid the condition assessment of pipes. Such dataset con-

tains the remaining wall thickness values measured on pipes’ surfaces. Electromagnetic sensors

can be used to get the thickness values. In this experiment, two data sources of pipe’s remaining

wall thickness measurements are fused: (1) a pulsed-Eddy current sensor (Ulapane et al. 2014)

which collects complete measurements with higher uncertainty, and (2) a magnetic flux leakage

sensor (Wijerathna et al. 2013) which gives incomplete measurements with lower uncertainty.
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(a) Ψ1 data points in 3D view (b) Ψ2 data points in 3D view

(c) Ψ1 data points in 2D view (d) Ψ2 data points in 2D view

(e) Groundtruth (GT)

Figure 7.1: The synthetic terrain datasets and groundtruth.

We use pulsed-Eddy current sensor data as Ψ1 and magnetic flux leakage sensor data as Ψ2. Both

sensor data have iid noises. Please be aware thatΨ2 has some missing data, and only the available

data is used during fusion. The GT data comes from ray tracing high-accuracy laser data from

the internal and external surfaces (Skinner et al. 2014).

All sensor measurements were taken from a real cast-iron pipe section of 1000 mm length and

2073.5 mm circumference. The pulsed-Eddy current sensor measured the thickness values at all

the 42×20 grids, as is shown by Figure 7.2a. The magnetic flux leakage sensor only collected 1614
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meaningful measurements from the 192×100 grids, as Figure 7.2b shows that the measurements

are discontinuous as dots. The GT measurements covers the full circumference and the 0 to

891.8mm length, and size of each grid in the map is 1.2mm × 1.2mm. Therefore quantitative

comparisons with GT are done from 0 to 891.8mm length and the whole circumference. The GT

thickness map is shown in Figure 7.2c. In the 2.5D plots, thickness and uncertainty are shown in

colour. The colour axis range of the thickness map is from 0 to 30mm, and that of the uncertainty

is from 0mm to 8mm. The Cylindrical coordinates of the real pipe have been converted into

Cartesian coordinates, i.e. the vertical axis corresponds to the circumferential axis of the pipe,

and the horizontal axis is the longitudinal axis.

(a) data
Ψ1

(b) data
Ψ2

(c) GT

Figure 7.2: Pipes’ remaining wall thickness maps in 2D view.

7.1.3 Evaluation

This subsection describes the general methodology applied to the datasets. All the compared

approaches described in Section 7.1.1 have been tested on the datasets in Section 7.1.2. All tests

are done on a workstation with sixteen 3.10 Ghz Intel Xeon E5-2687W processors. A 5-run Monte-

Carlo simulation is performed on the terrain dataset during the evaluation.

Either Ψ1 or Ψ2 can be used to learn the hyperparameters and build the prior map. As was

mentioned in Section 3.3 and 3.4, aided by the power of GP, GPs or GMRF-SPDEs can increase or

decrease the grid resolution of maps by inference. They will fill the gaps in the sensor data with

probabilistic values that are correlated with neighbouring areas covered by the sensors. Here Ψ1

is used as training data to predict the same resolution map (192×100) asΨ2. Then, the correlated
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(a) Prior map: μ (predicted by GP)

(b) Prior map: 2σ (predicted by GP)

(c) Global fusion result: μ

(d) Global fusion result: 2σ

Figure 7.3: GPBF (elevation data)

(a) Prior map: μ (predicted by sparse GP)

(b) Prior map: 2σ (predicted by sparse GP)

(c) Global fusion result: μ

(d) Global fusion result: 2σ

Figure 7.4: SparseGPBF (elevation data)

fusion is performed at the high resolution, and vice-versa whenever it is computationally feasible.

Since we focus on how to handle a large amount of test data, we train the GP or GMRF-SPDE

using Ψ1. For training with a huge amount of data, the approximation methods described in

Section 2.4 can be used. Therefore the same global GP model is used for GPBF, subGPBF and

CCIS; the same GMRF-SPDE model is used for GMRF-BF, subGMRF-BF and ICIS.
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(a) Prior map: μ (predicted by GMRF-SPDE)

(b) Prior map: 2σ (predicted by GMRF-SPDE)

(c) Global fusion result: μ

(d) Global fusion result: 2σ

Figure 7.5: GMRF-BF (elevation data)

(a) Prior map: μ (predicted by GP-BCM)

(b) Prior map: 2σ (predicted by GP-BCM)

(c) Submap-level fusion result: μ

(d) Submap-level fusion result: 2σ

Figure 7.6: GPBF-BCM (elevation data)

For all the compared approaches that use a GP, we set a zero mean function and a Matérn covari-

ance function with ν = 3/2. The hyperparameters are learned via optimising the log-likelihood

function. GP is implemented using the GPML toolbox (Rasmussen and Nickisch 2010). For all

the compared approaches that use a GMRF-SPDE, we build the GMRF model that maps the GP

model previously mentioned. We also set ν = 3/2, and ν directly decides the neighbourhood size



94 Chapter 7. Experimental Results

(a) Submap-level fusion result: μ

(b) Submap-level fusion result: 2σ

(c) Backward update result: μ

(d) Backward update result: 2σ

Figure 7.7: CCIS (elevation data)

(a) Forward update result: μ

(b) Forward update result: 2σ

(c) Backward update result: μ

(d) Backward update result: 2σ

Figure 7.8: SubGPBF (elevation data)

in the GMRF model (see Appendix E for details). The prior mapping using the GMRF is imple-

mented using the R-INLA package (Lindgren and Rue 2015). As was mentioned in Section 3.4.2,

R-INLA approximates ξ with piecewise linear basis functions and then gets the GMRF by solving

the SPDE. The predictive mean is obtained by the sum of linear predictor components. There are

two ways to compute the predictive information matrix, as are explained in Appendix E. The first

approach only suits data at uniform grid cells while the second approach can also handle the data
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(a) Submap-level fusion result: μ

(b) Submap-level fusion result: 2σ

(c) Backward update result: μ

(d) Backward update: 2σ

Figure 7.9: ICIS (elevation data)

(a) Forward update result: μ

(b) Forward update result: 2σ

(c) Backward update result: μ

(d) Backward update result: 2σ

Figure 7.10: SubGMRF-BF (elevation data)

at irregular locations. Here we use the second approach. This approach directly generates the

information matrix of triangular basis functions, which is in the triangulation domain; therefore

we need to project the information matrix to the real domain, where query points are, to get the

predictive information matrix for the query points.

After the prior map is obtained at the desired resolution, the observations inΨ2 are used to update
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(a) Naïve Bayesian fusion result: μ (b) Naïve Bayesian fusion result: 2σ

Figure 7.11: NaïveGPBF (elevation data). The prior map is provided by GPBF.

(a) Prior map: μ
(predicted by GP)

(b) Prior map:
2σ (predicted by

GP)

(c) Global fusion
result: μ

(d) Global fusion
result: 2σ

Figure 7.12: GPBF (pipe wall thickness data)

it via Bayesian fusion. The observation matrix H is created to establish the relationship between

the data inΨ2 and the prior map. After fusion, different sources of data, which may be incomplete,

sparse and noisy, are integrated into a complete, dense and probabilistic map with lower uncer-

tainty. For the global mapping methods, i.e. GPBF, GMRF-BF, sparseGPBF, naïveGPBF, the final

maps are obtained after the global fusion. For GPBF-BCM, which builds independent submaps,

the final map is obtained after the submap-level Bayesian fusion. With the four CI submapping

methods, i.e. subGPBF, subGMRF-BF, CCIS and ICIS, all of them use the backward update and the

former two, subGPBF and subGMRF-BF use the forward update algorithims. As was explained

in Chapter 4 and 6, subGPBF and subGMRF-BF fuse the measurements in Ψ2 with the outputs

of the forward update algorithms; and the final map is obtained after the backward update pro-

cess. For CCIS and ICIS, measurements in Ψ2 are fused with the submaps predicted by a GP or a
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(a) Prior map:
μ (predicted by

sparse GP)

(b) Prior map:
2σ (predicted by

sparse GP)

(c) Global fusion
result: μ

(d) Global fusion
result: 2σ

Figure 7.13: SparseGPBF (pipe wall thickness data)

(a) Prior map:
μ (predicted by

GMRF-SPDE)

(b) Prior map:
2σ (predicted by

GMRF-SPDE)

(c) Global fusion
result: μ

(d) Global fusion
result: 2σ

Figure 7.14: GMRF-BF (pipe wall thickness data)
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(a) Prior map: μ
(predicted by GP-

BCM)

(b) Prior map: 2σ
(predicted by GP-

BCM)

(c) Submap-level
fusion result: μ

(d) Submap-level
fusion result: 2σ

Figure 7.15: GPBF-BCM (pipe wall thickness data)

(a) Submap-level
fusion result: μ

(b) Submap-level
fusion result: 2σ

(c) Backward up-
date result: μ

(d) Backward
update result:

2σ

Figure 7.16: CCIS (pipe wall thickness data)
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(a) Forward update
result: μ

(b) Forward up-
date result: 2σ

(c) Backward up-
date result: μ

(d) Backward up-
date result: 2σ

Figure 7.17: SubGPBF (pipe wall thickness data)

(a) Submap-level
fusion result: μ

(b) Submap-level
fusion result: 2σ

(c) Backward up-
date result: μ

(d) Backward
update result:

2σ

Figure 7.18: ICIS (pipe wall thickness data)

GMRF; and the final map is obtained after the backward update. The size of submaps is chosen

to be equal and can be decided by looking at the values of the cross-correlations. The main idea

is to minimise the cross-correlations that are left out by counting the number of columns until

they are close to zero, therefore minimising the approximation for the proposed algorithms. Fi-

nally, in the three information-form approaches, namely GMRF-BF, subGMRF-BF and ICIS, the

mean and the variances can be recovered efficiently using the methods described in Section 5.2.3
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(a) Forward update
result: μ

(b) Forward up-
date result: 2σ

(c) Backward up-
date result: μ

(d) Backward up-
date result: 2σ

Figure 7.19: SubGMRF-BF (pipe wall thickness data)

(a) Naïve
Bayesian fusion

result: μ

(b) Naïve
Bayesian fusion

result: 2σ

Figure 7.20: NaïveGPBF (pipe wall thickness data). The prior map is provided by GPBF.

and Section 6.2.5 after we obtain the information-form maps. In particular, we implement multi-

threaded parallel programs for submap recovery in subGMRF-BF and ICIS to greatly reduce the

computational cost.
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7.2 Results

Both qualitative and quantitative comparisons are done on the two datasets described above.

7.2.1 Qualitative Evaluation

Experimental results of the terrain data are plotted in Figure 7.3 - 7.11. The results on pipe wall

thickness dataset are shown in Figure 7.12 - 7.20.

For the prior mapping, both GP and GMRF regression is shown to be able to learn from a small

amount of incomplete data and predict complete, dense probabilistic maps, e.g. Figure 7.3a and

7.5a, Figure 7.12a and 7.14a. In addition, these prior maps correctly model the global trend, e.g.

Figure 7.3a and 7.5a clearly show the bottom-right peak and mid-left valley. However, as Fig-

ure 7.3a shows, the GP predicted map sometimes tends to be smoothed. This is because the

training data is of limited amount while covering a large area, and the standard GP considers far-

away cross-correlations. The predicted prior maps in subGPBF and subGMRF-BF are not shown

here because, based on the marginalisation property of MVNs, the value of each predicted submap

is equal to the value in the globally predicted prior map in GPBF and GMRF-BF. In GPBF-BCM,

the prior submaps (see Figure 7.6a and 7.15a) have discontinuous boundaries due to the hard

cut-off of training and test data in BCM. In fact, although the predicted values are based on all

training subsets, the correlations between the training and test subsets are lost during BCM pre-

diction and Bayesian fusion. BCM is an optimistic approach, therefore the uncertainty is smaller

than that of GPBF, as are shown in Figure 7.6b and 7.15b.

For the Bayesian fusion, Figure 7.3c, 7.5a, 7.12c and 7.14a show that the consistency has been

improved by considering spatial correlations during fusion in contrast to the naïveGPBF, which

generates scattered points result (see in Figure 7.11 and 7.20). SparseGPBF only includes the spa-

tial correlations within a local area, thereby one single measurement only updates a small number

of neighbours (see Figure 7.4 and 7.13). Independently of the comparison method, the uncertainty

is reduced after fusion. In the submap-based methods without forward update, namely GPBF-

BCM, CCIS and ICIS, the fusion results have some inconsistent boundary areas (see Figure 7.6c,

7.6d, 7.7a, 7.7b, 7.9a and 7.9b) since the non-overlapping observations from Ψ2 are fused within
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each submap. In contrast, the forward update algorithm enables the current submap to be al-

ways up-to-date, as in Figure 7.8a, 7.10a, 7.17a and 7.19a. There figures show that even without

the backward update algorithm, the mean maps produced by the forward update algorithm are

already very close to the final results. However, there are some clear boundary lines between

submaps in the uncertainty maps after the forward update, see Figure 7.8b, 7.10b, 7.17b and

7.19b. This is because we plot the uncertainty submaps obtained after both the forward update

and submap fusion; and it is natural that the boundary areas have higher uncertainty since they

contain less correlated observations compared with the central areas.

The final step in CCIS, subGPBF, ICIS and subGMRF-BF is backward update. The results on

elevation data (see Figure 7.7c, 7.8c, 7.9c, 7.10c) and thickness data (see 7.16c, 7.17c, 7.18c, 7.19c)

show that the backward update algorithm has improved accuracy of the mean estimates, which

closely approximate the globally optimal estimates produced by GPBF, as in Figure 7.3c and 7.12.

In addition, the backward update algorithm reduces uncertainty and improves consistency in

the boundaries between submaps, as shown in the elevation maps (see Figure 7.7d, 7.8d, 7.9d,

7.10d) and the thickness maps (see Figure 7.16d, 7.17d, 7.18d, 7.19d). These figures also show that

subGPBF and subGMRF-BF approximate very well GPBF and GMRF-BF, respectively.

Table 7.1: Computational complexity of all compared methods

Training Prediction Fusion Propagation Recovery

subGPBF O(N3) O(N3 +N2m) O(Mm2) O(Mm2) +O(Mm2) /

GMRF-BF O(N3/2) O(M) O(M) / O(M3/2)

subGMRF-

BF
O(N3/2) O(m) O(M) O(M√m)+O(M√m) O(m3/2)

GPBF O(N3) O(N3 +N2M) O(M3) / /

GPBF-BCM O(N3m
M2 )

O(N3m
M +N2m+
Mm2)

O(Mm2) / /

CCIS O(N3) O(N3 +N2m) O(Mm2) O(Mm2) /

ICIS O(N3/2) O(M) O(M) O(M√m) O(m3/2)

sparseGPBF O(N3) O(N3 +N2M) O(M3) / /

naïveGPBF / / O(1) / /

N , M and m are the size of training data, test data, and submaps, receptively. m�M . When building large-scale
maps from a limited amount of data, we have N � M . For fair comparisons, we set the number of submaps to be
equal to the number of local GPs in BCM.
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Table 7.2: Computational time of terrain data (in seconds)

Training Prediction
Bayesian
fusion

Submapping Recovery

subGPBF 43.21
included in
submapping

included in
submapping

10.43+3.26 /

GMRF-BF 11.17 0.45 0.14 / 13.27

subGMRF-BF 11.17
included in
submapping

included in
submapping

3.21+2.67 0.65

GPBF 43.21 1.30 80.33 / /

GPBF-BCM 22.53 125.44 2.47 / /

CCIS 43.21
included in
submapping

included in
submapping

5.59 /

ICIS 11.17
included in
submapping

included in
submapping

2.96 0.63

sparseGPBF 76.84 2.14 79.29 / /

naïveGPBF / / 0.007 / /

The time cost of submapping in subGPBF and subGMRF-BF includes the forward submapping (prediction, fusion,
forward update) and the backward update. Multi-threaded parallel computation is implmented for submap recovery.

7.2.2 Quantitative Evaluation

Table 7.1 presents computational complexity analysis for each of the evaluated methods. Table 7.2

and Table 7.3 summarise the real computation time, i.e. how long a portion of the program takes

to run on the elevation data and the pipe wall thickness data, respectively.

Generally, the global approaches including correlations, i.e. GPBF and GMRF-BF, are more ex-

pensive than submap-based approaches. This is because the most expensive computation, inter-

dependently of whether it is in the covariance or the information form, is to factorise the whole

M×M covariance or information matrix. M is often bigger than 104 for a large-scale map. GPBF

includes the entire spatial correlations, hereby it is the most time-consuming method. GMRF-BF

only models the local neighbourhood structure in the global information matrix, and thus be-

comes less expensive. When the sparsity of the information matrix (or the correlations between

points) is changed, the complexity shown in Table 7.1 remains the same for all columns except

for the cost of recovering the mean and variance, as it will increase when data is more correlated.

Another observation from the tables is that Bayesian fusion in sparseGPBF costs almost the same
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Table 7.3: Computational time of pipes’ wall thickness data (in seconds)

Training Prediction Bayesian fusion Submapping Recovery

subGPBF 8.39
included in
submapping

included in
submapping

4.19+1.74 /

GMRF-BF 4.08 0.21 0.08 / 5.25

subGMRF-BF 4.08
included in
submapping

included in
submapping

1.76+1.45 0.35

GPBF 8.39 0.35 12.54 / /

GPBF-BCM 8.01 39.09 1.42 / /

CCIS 8.39
included in
submapping

included in
submapping

3.17 /

ICIS 4.08
included in
submapping

included in
submapping

1.62 0.34

sparseGPBF 9.88 0.48 9.66 / /

naïveGPBF / / 0.006 / /

The time cost of submapping in subGPBF and subGMRF-BF includes the forward submapping (prediction, fusion,
forward update) and the backward update. Multithreaded parallel computation is implmented for submap recovery.

Table 7.4: RMSE± std of terrain data in the 5-run Monte-Carlo simulation (in metre)

Prediction Bayesian fusion Forward update Backward update

subGPBF 20.25±0.78 / 8.09±0.33 7.98±0.33
GMRF-BF 24.63±0.81 8.05±0.30 / /

subGMRF-BF 24.63±0.81 / 8.32±0.35 8.18±0.34
GPBF 20.25±0.78 7.95±0.28 / /

GPBF-BCM 25.77±0.96 11.84±0.57 / /

CCIS 20.25±0.78 10.35±0.44 / 8.43±0.32
ICIS 24.63±0.81 10.71±0.45 / 8.52±0.31

sparseGPBF 28.17±0.80 15.51±0.29 / /

naïveGPBF / 18.05±0.30 / /

Since there is a limited amount of trainig data, we train a GP model and use it in GPBF, subGPBF and CCIS; the same
GMRF model is also used in GMRF-BF, subGMRF-BF and ICIS.

time as GPBF. This is based on the fact that the GP inference is in fact a process of condition-

ing, therefore the sparsity of the covariance matrix will be lost. The naïveGPBF approach costs

the least time, yet point measurements are not propagated to the neighbouring points since the

correlations between them are not considered.



Chapter 7. Experimental Results 105

Table 7.5: RMSE of pipe wall thickness data (in mm)

Prediction Bayesian fusion
Forward

submapping
Final map

subGPBF 3.38 / 2.09 2.02

GMRF-BF 3.56 2.11 / /

subGMRF-BF 3.56 / 2.22 2.13

GPBF 3.38 2.02 / /

GPBF-BCM 3.77 2.75 / /

CCIS 3.38 2.54 / 2.24

ICIS 3.56 2.61 / 2.30

sparseGPBF 3.94 2.82 / /

naïveGPBF / 3.30 / /

Since there is a limited amount of trainig data, we train a GP model and use it in GPBF, subGPBF and CCIS; the same
GMRF model is also used in GMRF-BF, subGMRF-BF and ICIS.

In contrast, the submap based methods have a substantial gain in speed with the two global ap-

proaches previously mentioned. However, GPBF-BCM is extremely slow during prediction since

it computes the prediction on all local GP regressors before getting the weighted averaged out-

put. SubGPBF takes much less time than GPBF since all computations are done within submaps

and there is no need to factorising the dense, full covariance matrix. SubGMRF-BF speeds up

GMRF-BF by exploiting the GMRF properties and building CI submaps. The total computation

time of subGMRF-BF, including the submap recovery, is shorter than that of subGPBF. Even the

most expensive computation of recovering local submaps takes very little time when the parallel

programming is used. Similarly, ICIS is faster than CCIS.

Table 7.4 and Table 7.5 quantify the results concerning Root Mean Squared Error (RMSE) for all

methods. Table 7.4 summarises the average and standard deviation of the absolute RMSE of a

5-runs Monte Carlo Simulation of the terrain data. The three methods proposed in this thesis

demonstrate significant advantages over others and achieve comparable RMSE with GPBF. The

tables also show clearly that the proposed correlation propagation algorithms step significantly

improves the final results. In naïveGPBF, RMSE is computed using only the data that has been

updated during fusion.
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7.3 Summary

Experimental results on a synthetic elevation dataset and a real pipe wall thickness dataset show

that when compared with five benchmark approaches, the three approaches proposed as part

of this thesis exhibit different levels of considerable computational gain while maintaining com-

petitive accuracy, making them appealing for fast, large-scale 2.5D mapping. Depending on the

computational resources and the desired accuracy, one may select methods as follows: If the ma-

jor concern is speed, one is well advised to use subGMRF-BF. However, this method achieves a

slightly worse accuracy than subGPBF and GMRF-BF, and requires an additional step to recover

the mean and variance. On the other hand, if accurate predictions are the primary concern, one

may expect best results with subGPBF. For less than 106 points, one is well recommended to use

GMRF-BF.



Chapter 8

Conclusion

This thesis has developed three efficient algorithms for constructing spatially correlated,

high-resolution probabilistic 2.5D maps from multiple sources of noisy data. To overcome

the severe scalability limitations of GP prediction and Bayesian fusion with correlations, this

thesis has investigated how to efficiently and effectively approximate the full spatial correlations

with lower computational cost while maintaining accuracy. This chapter briefly reviews our

achievements, discusses limitations and draws future plans.

8.1 Final Remarks

� Unified frameworks: Three unified frameworks for large-scale probabilistic mapping

and data fusion have been developed. Instead of completely modelling the correlations, the

three frameworks use either local or global approximation instead of the full correlations,

thus reducing the memory and computational cost.

− SubGPBF integrates CI submapping and the novel forward and backward update al-

gorithms between CI submaps with GPBF. Spatial correlations are learned through

a GP to generate the prior submaps which later will be corrected using Bayesian fu-

sion or the forward update algorithm. After building all submaps, one step of the

backward update can recover the optimal global map.
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− GMRF-BF introduces the continuously indexed GMRF into robotic grid mapping and

combines it with the information-form Bayesian fusion. The GMRF representation

allows the speed-up sparse matrix calculation, and Bayesian fusion only requires a

simple addition operation. The combination of them makes GMRF-BF efficient.

− SubGMRF-BF combines GMRF-BF with CI submapping and the novel information-

form correlation propagation algorithms between CI submaps. Spatial correlations

are learned by a continuous GMRF model to generate the prior submaps which later

will be corrected using the information-form Bayesian fusion and the forward up-

date algorithm. After building all submaps, one step of the backward update can

recover the optimal global map in linear time. By exploiting the CI property between

information-form MVN submaps, the computational complexity is further reduced

compared with subGPBF and GMRF-BF.

− For the three frameworks, there is a trade-off between the speed and accuracy, as

shown in Table 7.2 to 7.5. Even so, all three methods maintain the high accuracy.

Generally speaking, GMRF-BF may be preferred for small datasets since it contains

less computational steps. However, for more than 106 points, subGMRF-BF and sub-

GPBF should be applied. Furthermore, subGMRF-BF is suitable when efficiency is the

major concern and subGPBF when accuracy is more important.

� Divide-and-conquer: This thesis takes the divide-and-conquer strategy and develops two

CI submapping methods, at the core of which are the correlation propagation algorithms.

The covariance-form and information-form propagation algorithms have some similarities,

yet the latter possesses several advantages over the former.

Similarities: they both (1) ensure the current submap to be update-to-date, i.e. to summarise

all information available; (2) recover the optimal global map given the submap CI property,

without referring to the full covariance or information matrix; and (3) allow information

to be transmitted and shared through CI submaps both forwards and backwards.

Differences: (1) the submap CI property is naturally depicted in the sparse information

matrix in the latter; (2) the latter enables each submap to integrate new information by

just adding the new information to the shared parts between CI submaps; while the former

need to update the non-common components, which consumes more memory and time.
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� Connections between subGPBF and subGMRF-BF

− Structure: SubGPBF and subGMRF-BF have a parallel structure, except for the ad-

ditional step of map recovery in the latter. They are equivalent in the correlated

Bayesian fusion and the information propagation algorithms.

− Computational and memory cost: Both subGPBF and subGMRF-BF only need to save

and compute submaps. subGMRF-BF is more efficient than subGPBF in prior map-

ping, correlated fusion and correlation propagation, while the map recovery is the

most expensive computation in subGMRF-BF. However, experimental results show

that subGMRF-BF, even including the recovery step, is faster than subGPBF for the

size of maps analysed.

� Explicit link: This thesis clarifies how the following methodologies relate to each other:

− GP, with the dense covariance matrix,

− GMRF, with the sparse information matrix,

− CI property for continuous mapping in robotics,

− Bayes network.

GP can be seen as a fully connected Bayes network in which each node represents one

realisation of the latent function, f (xi ), and this leads to a dense covariance matrix. Mean-

while, GMRF lets each node only depend on some nearby neighbours, which is equivalent

to imposing CI property. The missing edges in the Bayes network correspond to the zeros

entries in the information matrix in GMRF. Based on these facts, subGPBF and subGMRF-

BF make each node in the Bayes network represent the set of elements in each submap,

and the CI property between the nodes is imposed, which results in a sparse information

matrix, and the CI property between nodes is imposed. In addition, the direct connections

between the GMRF-SPDE model and Matérn GP have been investigated in GMRF-BF. We

believe this thesis is a single point reference to studying such relationships in the area of

robotic grid mapping, and the results can be applied to other problems.

� Generality: The three proposed frameworks, including the techniques such as the novel

continuous GMRF mapping and correlation propagation algorithms, are generic and appli-

cable as general fusion, mapping, prediction and interpolation methodologies in contexts
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where transition models cannot be used, data can be divided into blocks and these blocks

can be considered conditionally independent. For instance, we have proved that subGPBF

can be easily modified for online sequential submapping with one source of sensor data.

8.2 Limitations of the Research

As was summarised in Section 8.1, this thesis has developed global and local techniques for effi-

cient inference and learning of spatially correlated data applied to the problem of 2.5D mapping

from large-scale noisy data. However, due to the complexity of the research problems, there

remains some challenges as follows.

Currently, subGPBF and subGMRF-BF can only cope with sequences of submaps that form simple

Bayes network models, i.e. only two consecutive submaps share a common node. This limitation

underlines the difficulty of maintaining CI property when the Bayes network models have be-

come more complicated. For instance, when more than two submaps share one node, more edges

need to be added, and the CI property between submaps no longer holds.

This thesis focuses on managing a large amount of query inputs X∗ in GP regression, which is an

active research issue but previous studies have not attempted to do it for grid maps that contain

correlations. To handle a vast amount of training inputs {X,y}, the subset approximation methods

can be directly applied to subGPBF (see Section 4.4.2). As to GMRF-BF and subGMRF-BF, the

continuously indexed GMRF uses the finite element methods and thus can handle a relatively big

amount of training data.

In subGMRF-BF, updating the shared part between two submaps requires inverting two blocks of

information matrices, e.g. Δc and Λa
a in Algorithm 6. This is due to the fact that marginalisation

of MVNs is more complex in the information form. Nevertheless, factorising such sparse and

small dimensional matrices does not affect the efficiency of subGMRF-BF. Another limitation of

subGMRF-BF is that GMRF-SPDE directly outputs the information matrix of the basis functions,

which needs to be projected to get the information matrix for the submaps. However, due to the

sparsity of matrices, the multiplication is efficient.
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Finally, this thesis only considers MVNs and assumes that sensor measurements’ locations (inputs

to GPs) are known and accurate. The two assumptions may not be valid under real circumstances

yet are widely used. Another limitation is that experiments in this thesis use at most 20000 points

for evaluation. This is because the workstation cannot allocate enough memory for factorising

dense covariance matrices bigger than 20000×20000 in GPBF, the globally optimal benchmark

method for comparison. Experiments remain to be tested on larger scale of data (> 106).

8.3 Future Work

There are three vital questions to be answered in the future:

� How to perfect the proposed algorithms? What are their potential applications?

� How to extend the usage of GPs from mapping into the general state estimation problem?

� Can other research topics in the robotics field take advantages of the power of GPs?

A future line of this research lies on the correlation propagation algorithms that do not require

the CI property and are suitable for complex graphical models, e.g. submaps may have links with

other submaps that are not their neighbours. Piniés et al. (2010) have investigated the backward

propagation algorithm when loop closures are present in the map. In addition, how to incorpo-

rate the inputs (2D locations) uncertainty into the GP and GMRF inference is worth exploring.

The uncertain inputs may need to be modelled with a distribution, which often makes Bayesian

inferences more complicated and time-consuming. Some works have been developed in the lit-

erature (Kersting et al. 2007; O’Callaghan et al. 2010; Mchutchon and Rasmussen 2011; Jadidi

et al. 2017), and they can be incorporated with the research in this thesis. Another challenge

in inserting inputs uncertainty into subGPBF and subGMRF-BF is how to propagate the inputs

uncertainty between submaps, which, to our knowledge, has not been studied before.

It is straightforward to adapt the proposed methods to online scenarios for assisting robot ex-

ploration. SubGPBF and subGMRF-BF naturally suit the online task, as they can handle new

incoming data and use the data to update the previous estimates. A more efficient implementa-

tion of GMRF-BF is needed, since GMRF-BF factorises the information matrix of a global map.
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Some research has been done in this area using GPBF for small maps (Popovic et al. 2017), which

could be efficiently adapted for large-scale online mapping using the proposed work proposed.

Considering that 3D maps can better represent the environment, we are currently looking into

adapting subGPBF and subGMRF-BF for recovering continuous, high-resolution probabilistic 3D

surfaces and occupancy maps from a large amount of point clouds, inspired by the work of Gaus-

sian Process Implicit Surfaces (GPIS) (Williams and Fitzgibbon 2007) and Kim and Kim (2014).

Not only for mapping, GPs can be applied for solving the state estimation problems. These prob-

lems in mobile robotics are typically addressed by discretising the robot trajectory, and comput-

ing the optimal estimate of the robot pose as well as the coordinates of the landmarks in the

environments. Such discretisation assumption conflicts with the physical status of the robotic

system, in which the robot motion is continuous. To address this problem, Tong et al. (2013)

developed a batch estimation method by combining GPs with Gauss-Newton optimisation algo-

rithm. Barfoot et al. (2014) and Anderson et al. (2015) revisited the GP regression problem and the

trajectory is viewed as a One-Dimensional (1D) GP with time as the independent variable. By ex-

ploiting the Markov property of the prior and the sparsity of the inverse kernel matrix, inferring

the continuous trajectory can be achieved efficiently. The issues concerned in continuous state

estimation using GPs coincide with the focused problems in this thesis. Therefore, it is worth

investigating how to apply the algorithms proposed in the thesis to make the state estimation

problems more accurate and efficient.

Finally, GPs are promising for some other robotic applications and have already been successfully

used in motion planning and robot manipulation. For example, Mukadam et al. (2016) proposed

Gaussian Process Motion Planner (GPMP), which does not rely on a discrete state parametrisa-

tion. The continuous-time trajectory is represented as a sample from a GP generated by a Linear

Time Varying-Stochastic Differential Equation (LTV-SDE). Combined with gradient based opti-

misation method, GPMP can find the optimal trajectories given a limited number of states. The

methodologies in Dong et al.; Mukadam et al. (2016); Mukadam et al. share many similarities with

this thesis, thus exploiting the motion planning field will be one line of future work. In addition,

the continuous surface generated by the GPIS algorithm has been used for robot manipulation

and object grasping. Given a 3D model described by a GPIS, Mahler et al. (2015) proposed GP-

GPIS-OPT, an algorithm for computing grasps of parallel-jaw grippers using Sequential Convex

Programming (SCP). This is also one of the interesting fields to explore.



Appendix A

Bayesian Fusion for Linear Gaussian

Systems

This appendix derives the covariance-form Bayesian fusion (see (3.69) and (3.70)) and its dual

form (see (3.75) and (3.76)). The principle idea is to first derive the joint distribution, p(x,z|y) =
p(x|y)p(z|x,y), and then to use properties in Section 3.2.2 for computing p(x|y,z). More details

are as follows.

As (3.68) shows , in the covariance form, the aim is to obtain p(x|y,z) =N (x|μ+,Σ+) given the

prior p(x|y) =N (μx,Σx) and the likelihood function p(z|x) =N (Hx,R). Based on the fact that

y and z are conditionally independent given x, we have p(z|x) = p(z|x,y). Therefore, the log of

the joint distribution is as follows (dropping irrelevant constants):

logp(x,z|y) = −1
2
(x−μx)

�Σ−1x (x−μx)− 1
2
(z−Hx)�R−1(z−Hx) (A.1)

It is clear that (A.1) is a joint Gaussian distribution, since it is the exponential of a quadratic form.

Expanding out the quadratic terms involving x and z, and ignoring linear and constant terms,
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(A.1) becomes

− 1
2
x�Σ−1x x− 1

2
z�R−1z− 1

2
(Hx)�R−1(Hx) + z�R−1Hx (A.2)

= −1
2
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x

z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
� ⎛⎜⎜⎜⎜⎜⎜⎜⎝

Σ−1x +H�R−1H −H�R−1
−R−1H R−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝
x

z

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (A.3)

� −1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x

z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�

Σ−1
⎛⎜⎜⎜⎜⎜⎜⎜⎝
x

z

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (A.4)

where the information matrix of the joint distribution is (based on the definition of MVN in

Section 3.2.2)

Σ−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Σ−1x +H�R−1H −H�R−1
−R−1H R−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠�Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Λxx Λxz

Λzx Λzz

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (A.5)

Then we can derive Σ+ and μ+ based on the marginalisation property of MVN (see Theorem 3.1

and 3.3), the fact that μz =Hμx, and the Woodbury formula (Woodbury 1949):

(A+UCV )−1 = A−1 −A−1U(C−1 +VA−1U )−1VA−1 , (A.6)

where A, U , C and V all denote matrices ot the correct size. We get

Σ+ =Λ−1xx = (Σ−1x +H�R−1H)−1 (A.7)

= Σx −ΣxH
�(R+HΣxH

�)−1HΣx , (A.8)

μ+ = Σ+(Λxxμx −Λxz(z−μz)) (A.9)

= Σ+((Σ−1x +H�R−1H)μx +H�R−1(z−Hμx) (A.10)

= Σ+(Σ−1x μx +H�R−1z) . (A.11)
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When substituting (A.8) into (A.11), we obtain

μ+ = μx −ΣxH
�(R+HΣxH

�)−1Hμx +ΣxH
�R−1z−ΣxH

�(R+HΣxH
�)−1HΣxH

�R−1z

= μx −ΣxH
�(R+HΣxH

�)−1Hμx +ΣxH
�(R+HΣxH

�)−1((R+HΣxH
�)−HΣxH

�)R−1z

= μx −ΣxH
�(R+HΣxH

�)−1Hμx +ΣxH
�(R+HΣxH

�)−1(I +HΣxH
�R−1 −HΣxH

�R−1)z

= μx −ΣxH
�(R+HΣxH

�)−1Hμx +ΣxH
�(R+HΣxH

�)−1z

= μx −ΣxH
�(R+HΣxH

�)−1(z−Hμx) .
(A.12)

By now, (3.69) and (3.70) have been proven.

In the information form, we aim to derive p(x|y,z) = Nc(x|η+,Q+), given the Gaussian prior

p(x|y) = Nc(ηx,Qx) and the likelihood function p(z|x) = Nc(ηz|x,QR). In Section 3.5.3, the

canonical parameters are defined as

ηx = Σ−1x μx , Qx = Σ−1x , QR = R−1 . (A.13)

Based on the definition of information vectors, we get

η+ = (Σ+)−1μ+ (A.14)

= (Σ+)−1(Σ+(Σ−1x μx +H�R−1z)) (A.15)

= Σ−1x μx +H�R−1z . (A.16)

By substituting (A.13) into (A.16), η+ becomes

η+ = ηx +H�QRz . (A.17)

Based on the definition of information matrices and using (A.7) and (A.13), we have

Q+ = (Σ+)−1 =Qx +H�QRH . (A.18)

By now, (3.75) and (3.76) have been proven.





Appendix B

Proof of the Forward Update

Algorithm

This appendix proves Corollary 4.2. The goal is to prove that the currently optimal submap

s+2 ∼ p(ξb,ξc |za), and optionally the currently optimal local map p(ξa,ξb,ξc |za), can be computed

from the currently optimal submap s+1 ∼ p(ξa,ξb |za) and the prior submap s−2 ∼ p(ξb,ξc). The

only assumption is the submap CI property in (4.7).

Considering the chain rule and the submap CI property that za is conditionally independent of

ξc given ξb , we can write the currently optimal submap s+2 as

s+2 ∼ p(ξs2 |za) = p(ξs2 |ξb,za)p(ξb |za)
= p(ξs2 |ξb)p(ξb |za) .

(B.1)

Given the prior p(ξs2) in (4.4), the mean and covariance of p(ξs2 |ξb) is

μs2|ξb = μs2 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣
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. (B.3)
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When (B.2) is considered, the mean of p(ξs2 |za) in (B.1) becomes

μa
s2 = E

[
ξs2 |za

]
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(B.4)

which shows that the mean of ξb in s+2 is the same as that in the currently optimal submap s+1 ,

thus μa
b is no longer needed to be computed again while building s+2 .

On the other hand, for computing the covariance of s+2 , i.e. Pa
s2 , we first combine (B.2) and (B.4),

thus getting
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Thus, with reference to (B.3) and (B.6), we obtain
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Pb Pbc

Pcb Pc

⎤⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

Pa
b −Pb (Pa

b −Pb)P−1b Pbc

PcbP
−1
b (Pa

b −Pb) PcbP
−1
b (Pa

b −Pb)P−1b Pbc

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
b Pa

b P
−1
b Pbc

PcbP
−1
b Pa

b Pc +PcbP
−1
b (Pa

b P
−1
b Pbc −Pbc)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

(B.7)
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which shows that the covariance of ξb in s+2 is the same as that in s+1 , thus Pa
b is no longer needed

to be computed again while building s+2 .

The posterior distribution p(ξc |za) can be obtained by marginalising out ξb from p(ξs2 |za) =
N (μa

s2 ,P
a
s2). Based on Theorem 3.1, the posterior mean and the auto-covariance of ξc is

μa
c = μc +PcbP

−1
b (μa

b −μb) , and (B.8)

Pa
c = Pc +PcbP

−1
b (Pa

b P
−1
b Pbc −Pbc) . (B.9)

Furthermore, we can get the cross-covariance between ξb and ξc from (B.7) as

Pa
cb = PcbP

−1
b Pa

b . (B.10)

(B.8), (B.9) and (B.10) are used to update the terms related with ξc in the local map. We can also

define an additional variable Kf � PcbP
−1
b as in Algorithm 2 for simplicity. Thus Corollary 4.2

has been proven. �





Appendix C

Proof of the Forward Update

Algorithm: An Alternative Way

Alternatively, as described in Piniés and Tardós (2008), the forward update can also be proven in

the following way.

Based on the submap CI property, we have

p(ξc |ξb,za) = p(ξc |ξb) . (C.1)

The left term p(ξc |ξb,za) in (C.1) can be obtained by marginalising out ξa from p(ξa,ξb,ξc |za)
(see (4.6)) and then conditioning on ξb . The mean and covariance of p(ξc |ξb,za) are as follows:

μc|b = μa
c +Pa

cbP
−1
b (ξb −μa

b) , (C.2)

Pc|b = Pa
c −Pa

cbP
−1
b Pa

bc . (C.3)

Define

p(ξc |ξb) =N (μc|b,Pc|b) . (C.4)
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The right term p(ξc |ξb) in (C.1) can be obtained from the submap s−2 (see (4.4)) by conditional on

ξb . The mean and covariance of p(ξc |ξb) are as follows:

μc|b = μc +PcbP
−1
b (ξb −μb) (C.5)

Pc|b = Pc −PcbP−1b Pbc . (C.6)

Equating (C.2), (C.3) and (C.5), (C.6) for all ξb , and after some manipulations, we obtain the

following equations to update the terms related with ξc:

Pa
cb = PcbP

−1
b Pa

b , (C.7)

μa
c = μc +PcbP

−1
b (μa

b −μb) , (C.8)

Pa
c = Pc +PcbP

−1
b (Pa

b P
−1
b Pbc −Pbc) . (C.9)

Although unnecessary, the cross-correlation term Pa
ca can also be computed. To compute it, we

condition p(ξa,ξb,ξc |za) on ξb , thus getting the covariance of p(ξa,ξc |ξb,za) as

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
a −Pa

ab(P
a
b )
−1Pa

ba Pa
ac −Pa

ab(P
a
b )
−1Pbc

Pa
ca −Pa

cb(P
a
b )
−1Pa

ba Pa
c −Pa

cb(P
a
b )
−1Pa

bc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (C.10)

Then, since ξa and ξc are conditionally independent given ξb , the correlation term in (C.10) must

be zero, which gives the correlation term

Pa
ac = Pa

abP
−1
b Pbc . (C.11)

Based on the Marginalisation property in Theorem 3.1, the currently optimal submap s+2 coincides

exactly with the last two blocks of p(ξa,ξb,ξc |za). By now Corollary 4.2 has been proven. �



Appendix D

Proof of the Backward Update

Algorithm

This appendix proves Corollary 4.4. The goal is to prove that the globally optimal submap s++1 ∼
p(ξa,ξb |za,zb,zc) can be obtained, once given the globally optimal submap s++2 ∼ p(ξb,ξc |za,zb,zc)
and the prior submap s+1 ∼ p(ξa,ξb |za). The only assumption is the submap CI property in (4.14).

Using the chain rule and the submap CI property, we have

s++1 ∼ p(ξs1 |za,zb,zc) = p(ξs1 |ξb,za,zb,zc)p(ξb |za,zb,zc)
= p(ξs1 |ξb,za)p(ξb |za,zb,zc) ,

(D.1)

where the second equality is based on the CI property that the variable set (zb,zc) is conditionally

independent of ξa given the node ξb .

In (D.1), the term p(ξs1 |ξb,za) represents the pdf of ξa
s1 (see (4.3)) conditioned on ξb . Define

p(ξs1 |ξb,za) =N (μa
s1|ξb ,P

a
s1|ξb ) . (D.2)
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Furthermore, when using the Conditioning property in Theorem 3.2, we get the mean vector and

covariance in (D.2) as follows:

μa
s1|ξb = μa

s1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
ab

Pa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (Pa
b )
−1 (ξb −μa

b

)
, and (D.3)

Pa
s1|ξb = Pa

s1 −
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
ab

Pa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (Pa
b )
−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
ba

Pa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

. (D.4)

Considering (D.3), we can compute the mean of s++1 in (4.12), with reference to (D.3), as

μabc
s1 = E

[
ξs1 |za,zb,zc

]
=

∫
dξbμ

a
s1|ξbp(ξb |za,zb,zc)

= μa
s1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
ab

Pa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (Pa
b )
−1 (μabc

b −μa
b

)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
μa
a +Pa

ab(P
a
b )
−1(μabc

b −μa
b)

μabc
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

(D.5)

which shows that the mean of ξa in s++1 is updated, while the mean of ξb in s++1 is the same as

that in s++2 . Based on the Marginalisation property in Theorem 3.1, the posterior mean of ξa can

be obtained from (D.5) as

μabc
a = μa

a +Pa
ab(P

a
b )
−1(μabc

b −μa
b) . (D.6)

To compute the covariance s++1 in (4.12), i.e. Pabc
s1 , we first combine (D.3) and (D.5), thus getting

μa
s1|ξb −μabc

s1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
ab

Pa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (Pa
b )
−1 (ξb −μabc

b

)
, (D.7)

and therefore

∫
dξbp(ξb |za,zb,zc)

(
μa
s1|ξb −μabc

s1

)(
μa
s1|ξb −μabc

s1

)�
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
ab

Pa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (Pa
b )
−1Pabc

b (Pa
b )
−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
ba

Pa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

.

(D.8)
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Thus with reference to (D.4) and (D.8), we get

Pabc
s1 = C��[ξs1 |za,zb,zc] =

∫
dξbp(ξb |za,zb,zc)

[
Pa
s1|ξb +

(
μa
s1|ξb −μabc

s1

)(
μa
s1|ξb −μabc

s1

)�]

= Pa
s1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
ab

Pa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (Pa
b )
−1 (Pabc

b −Pa
b

)
(Pa

b )
−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
ba

Pa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
a Pa

ab

Pa
ba Pa

b

⎤⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
ab(P

a
b )
−1(Pabc

b −Pa
b )(P

a
b )
−1Pa

ba Pa
ab(P

a
b )
−1(Pabc

b −Pa
b )

(Pabc
b −Pa

b )(P
a
b )
−1Pa

ba Pabc
b −Pa

b

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa
a +Pa

ab(P
a
b )
−1(Pabc

b (Pa
b )
−1Pa

ba −Pa
ba) Pa

ab(P
a
b )
−1Pabc

b

Pabc
b (Pa

b )
−1Pba

a Pabc
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .
(D.9)

which shows that the covariance of ξa in s++1 is updated, while ξb in s++1 remains the same as

that in s++2 . Based on the Marginalisation property of MVN, the auto-covariance of ξa and the

cross-covariance between ξa and ξb are obtained by directly extracting the corresponding blocks

in (D.9), thus

Pabc
a = Pa

a +Pa
ab(P

a
b )
−1(Pabc

b (Pa
b )
−1Pa

ba −Pa
ba) , (D.10)

Pabc
ab = Pa

ab(P
a
b )
−1Pabc

b . (D.11)

When substituting (D.11) in (D.10) and defining Kb � Pa
ab(P

a
b )
−1, we get Pabc

a as it is in Algorithm

3. By now, Corollary 4.4 has been proven. �





Appendix E

The Explicit Link between

GMRF-SPDEs and Matérn GPs

This appendix introduces some details about the GMRF-SPDE model (Lindgren et al. 2011), and

presents the explicit expression for computing the information matrix.

Assuming f (x) is a realisation of GRF ξ situated at x ∈ RD . Considering that f (x) with Matérn

covariance is a solution to the linear fractional SPDE, the GMRF representation of ξ is obtained

by solving the SPDE

(κ2 −Δ)α/2[τf (x)] =W (x) , κ > 0 , τ > 0 . (E.1)

Here κ is the spatial scale. Δ is the Laplacian operator. α controls the smoothness of the reali-

sation. τ controls the variances. W is the Gaussian white noise. These parameters are explicitly

linked to the parameters of Matérn covariance function (see (3.51)) as

σ2
f = Γ(ν)(Γ(α)(4π)D/2κ2ντ2)−1 , (E.2)

ν = α −D/2 , (E.3)

l =
√
8ν/κ . (E.4)
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In 2.5D mapping, x ∈ R2, thus (E.2), (E.3) and (E.4) become

σ2
f = Γ(ν)(Γ(α)4πκ2ντ2)−1 , (E.5)

ν = α − 1 , (E.6)

l =
√
8ν/κ . (E.7)

ν is usually fixed; and for data located at 2D locations, ν must be a positive integral to ensure

that the Matérn field is Markovian (Lindgren et al. 2011). (E.4) is the empirical definition of l . The

range parameter l controls the distance at which the correlation decreases almost to zero (< 0.1)

and decreases fairly slowly despite of ν (Cressie 1992).

After getting the parameters, there are two ways to compute the information matrix.

Approach 1

This approach is only applicable to x located at uniform 2D grid cells. When ν = 0, the entries

in the information matrix for one single point is

−1
−1 a −1

−1
, (E.8)

where a = κ2+4. Lindgren et al. (2011) derived that the coefficients are computed by convolving

(E.8) ν times. For example, when ν = 1 , the information matrix for one single point becomes

1

2 −2a 2

1 −2a a2 + 4 −2a 1

2 −2a 2

1

. (E.9)

This result is intuitive since ν is the smoothness parameter, so if the process is smoother, the in-

formation matrix has values over a larger neighbourhood. However, it does not imply averaging

over larger neighbourhood to make it smoother.
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Approach 2

The second method can calculate the information matrix for the irregularly located points. The

finite element method is used, and the domain is divided into a set of non-intersecting triangles

(see Krainski et al. (2017) for details). The approximation is considered as

f (x) =
m∑
k=1

ψk(x)wk , (E.10)

where ψk ,k = 1, . . . ,m is a basis function, wk is a Gaussian distributed weight, and m is the

number of vertices (the three corners of a triangle) in the triangulation. ψk = 1 at vertex k and

ψk = 0 at all other vertices. wk is the value of the field at the vertex k. The finite element method

can interpolate for any point inside the triangulated domain. Define the matrices C , G and K

with entries

Ci,j = 〈ψi,ψj〉 , Gi,j = 〈∇ψi,∇ψj〉 , Ki,j = κ2Ci,j +Gi,j , (E.11)

to get the information matrix Q as a function of κ and ν:

Q = K , when ν = 0 (E.12)

Q = KC−1K , when ν = 1 (E.13)

Q = KC−1Qν−1C−1K, when ν = 2,3, ... . (E.14)

Again, increasing ν will make the information matrix denser. The information matrix Q can be

generalized for a fractional values of ν using the Taylor approximation, see the author’s discus-

sion in (Lindgren et al. 2011, pp. 493).





Appendix F

Proof of the Information-Form

Forward Update Algorithm

This appendix proves Corollary 6.1. The goal is to prove that the currently optimal submap s+2 ∼
p(ξb,ξc |za), as was defined in (6.4), and optionally the globally optimal local map p(ξa,ξb,ξc |za)
(see (6.5)), can be obtained using the forward update algorithm, once given two conditionally

independent submaps s+1 ∼ p(ξa,ξb |za) (see (6.2)) and s−2 ∼ p(ξb,ξc) (see (6.3)). The only as-

sumption is the submap CI property in (4.7).

Based on the submap CI property, we have

p(ξa|ξb,ξc, za) = p(ξa|ξb, za) (F.1)

p(ξc |ξb,ξa, za) = p(ξc |ξb) (F.2)

In (F.1), p(ξa|ξb,ξc, za) can be obtained from the local map p(ξa,ξb,ξc |za) by first marginalising

out ξc , and then conditioning on ξb . First, we marginalise out ξc and get p(ξa,ξb |za), which can

be denoted as

p(ξa,ξb |za) =Nc(β
G,a
ab ,ΛG,a

ab ) , (F.3)
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where the superscript G,a denotes the estimate comes from p(ξa,ξb,ξc |za). Furthermore, by using

Theorem 3.3, we get

βG,a
ab =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ηa
a

ηa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

Qa
bc

⎤⎥⎥⎥⎥⎥⎥⎥⎦(Qa
c )
−1ηa

c

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ηa
a

ηa
b −Qa

bc(Q
a
c )
−1ηa

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and (F.4)

ΛG,a
ab =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qa

a Qa
ab

Qa
ba Qa

b

⎤⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎣
0

Qa
bc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (Qa
c )
−1

[
0 Qa

cb

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qa

a Qa
ab

Qa
ba Qa

b −Qa
bc(Q

a
c )
−1Qa

cb

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .
(F.5)

Then, we condition (F.3) on ξb using Theorem 3.4, and get

p(ξa|ξb, za) =Nc(η
a
a −Qa

abξb,Q
a
a) . (F.6)

On the In (F.1), p(ξa|ξb, za) can be obtained from submap s+1 by conditioning on ξb , thus

p(ξa|ξb, za) =Nc(β
a
a −Λa

abξb,Λ
a
a) , (F.7)

Since (F.6) equals to (F.7) according to (F.1), we have

ηa
a −Qa

abξb = βa
a −Λa

abξb , (F.8)

Qa
a =Λa

a , (F.9)

thus

Qa
ab =Λa

ab , (F.10)

ηa
a = βa

a . (F.11)
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On the other hand, the left and right term in (F.2) can be computed in a similar way as above.

To compute the left term in (F.2), we first calculate p(ξb,ξc |za) by marginalising out ξa from

p(ξa,ξb,ξc |za), thus we get

p(ξb,ξc |za) =Nc(ζ
G,a
bc ,ΔG,a

bc ) , where (F.12)

ζG,a
bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ηa
b

ηa
c

⎤⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qa

ba

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦(Qa
a)
−1ηa

a

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ηa
b −Qa

ba(Q
a
a)
−1ηa

a

ηa
c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (F.13)

ΔG,a
bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qa

b Qa
bc

Qa
cb Qa

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qa

ba

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (Qa
a)
−1

[
Qa

ab 0
]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qa

b −Qa
ba(Q

a
a)
−1Qa

ab Qa
bc

Qa
cb Qa

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (F.14)

Then, we condition (F.12) on ξb , and get

p(ξc |ξb, za) =Nc(η
a
c −Qa

cbξb,Q
a
c ) . (F.15)

As to the right term in (F.2), we can get p(ξc |ξb) by conditioning s−2 on ξb , thus we get

p(ξc |ξb) =Nc(ζc −Δcbξb,Δc) . (F.16)

Since (F.15) is equal to (F.16) based on (F.2), we obtain

ηa
c −Qa

cbξb = ζc −Δcbξb , (F.17)

Qa
c = Δc . (F.18)

Therefore

ηa
c = ζc , (F.19)

Qa
cb = Δcb . (F.20)
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Since both (6.2) and (F.3) represent s+1 , we obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎣
βa
a

βa
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ηa
a

ηa
b −Qa

bc(Q
a
c )
−1ηa

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , and (F.21)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Λa

a Λa
ab

Λa
ba Λa

b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qa

a Qa
ab

Qa
ba Qa

b −Qa
bc(Q

a
c )
−1Qa

cb

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (F.22)

Thus by comparing each entry in (F.21) and (F.22), we get

ηa
b = βa

b +Qa
bc(Q

a
c )
−1ηa

c , (F.23)

Qa
b =Λa

b +Qa
bc(Q

a
c )
−1Qa

cb , (F.24)

and by substituting (F.18), (F.19) and (F.20) in (F.23) and (F.24), we get:

ηa
b = βa

b +ΔbcΔ
−1
c ζc , (F.25)

Qa
b =Λa

b +ΔbcΔ
−1
c Δcb . (F.26)

Based on the above deduction, each term in (6.5) can be obtained using the following equations:

ηa
a = βa

a , (F.27)

ηa
b = βa

b +ΔbcΔ
−1
c ζc , (F.28)

ηa
c = ζc , (F.29)

Qa
a =Λa

a , (F.30)

Qa
ab =Λa

ab , (F.31)

Qa
b =Λa

b +ΔbcΔ
−1
c Δcb , (F.32)

Qa
bc = Δbc , (F.33)

Qa
c = Δc . (F.34)
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Therefore the currently optimal local map can be represented as

p(ξa,ξb,ξc |za) =Nc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βa
a

βa
b +ΔbcΔ

−1
c ζc

ζc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λa
a Λa

ab 0

Λa
ba Λa

b +ΔbcΔ
−1
c Δcb Δbc

0 Δcb Δc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (F.35)

The currently optimal second submap s+2 ∼ p(ξb,ξc |za) can be obtained by marginalising out ξa

from the local map in (F.35) using Theorem 3.3. Thus we get

s+2 ∼Nc

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
βa
b +ΔbcΔ

−1
c ηc −Λa

ba(Λ
a
a)
−1βa

a

ζc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Λa

b +ΔbcΔ
−1
c Δcb −Λa

ba(Λ
a
a)
−1Λa

ab Δbc

Δcb Δc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (F.36)

(F.36) indicates that only the information vector and matrix of ξb in s−2 need to be corrected

during the forward update; and these estimates will include the knowledge from both s+1 and s−2
after the forward update.

Finally, Corollary 6.1 has been proven. �





Appendix G

Proof of the Information-Form

Backward Update Algorithm

This appendix proves Corollary 6.2. The goal is to prove that the globally optimal submap s++1 , as

was defined in (6.9), and optionally the globally optimal local map p(ξa,ξb,ξc |za,zb,zc) (defined

(6.10)), can be obtained using the backward update algorithm, once given the two conditionally

independent submaps s+1 ∼ p(ξa,ξb |za) (see (6.2)) and s++2 ∼ p(ξb,ξc |za,zb,zc) (see (6.8)). The

only assumption is the CI property in (4.14).

Based on submap CI property, we get

p(ξa|ξb,ξc,za,zb,zc) = p(ξa|ξb,za) , (G.1)

p(ξc |ξa,ξb,za,zb,zc) = p(ξc |ξb,zb,zc) . (G.2)

In (G.1), the left term can be obtained from the local map p(ξaξb,ξc |za,zb,zc) by first marginal-

ising out ξc and then conditioning on ξb . First, we marginalise out ξc and get p(ξa,ξb |za,zb,zc),
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which can be denoted as

p(ξa,ξb |za,zb,zc) =Nc(β
G,abc
ab ,ΛG,abc

ab ) , where (G.3)

βG,abc
ab =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ηabc
a

ηabc
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

Qabc
bc

⎤⎥⎥⎥⎥⎥⎥⎥⎦(Qabc
c )−1ηabc

c

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ηabc
a

ηabc
b −Qabc

bc (Qabc
c )−1ηabc

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (G.4)

ΛG,abc
ab =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qabc

a Qabc
ab

Qabc
ba Qabc

b

⎤⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

Qabc
bc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (Qabc
c )−1

[
0 Qabc

cb

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qabc

a Qabc
ab

Qabc
ba Qabc

b −Qabc
bc (Qabc

c )−1Qabc
cb

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .
(G.5)

Then, we condition (G.3) on ξb and get

p(ξa|ξb,za,zb,zc) =Nc(η
abc
a −Qabc

ab ξb,Q
abc
a ) . (G.6)

Meanwhile, the right term p(ξa|ξb,za) in (G.1) can be obtained from the first submap (6.2) by

conditioning on ξb

p(ξa|ξb,za) =Nc(β
a
a −Λa

abξb,Λ
a
a) . (G.7)

According to CI property (G.1), (G.6) equals to (G.7), thus

ηabc
a −Qabc

ab ξb = βa
a −Λa

abξb , (G.8)

Qabc
a =Λa

a . (G.9)

Meanwhile, since ξa and zb,zc are conditionally independent, we have

ηabc
a = βa

a . (G.10)

By substituting (G.10) into (G.8), we get:

Qabc
ab =Λa

ab . (G.11)
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In (G.2), the left term can be obtained from the local map by first marginalising out ξa and then

conditioning on ξb . We first marginalise out ξa and get p(ξb,ξc |za,zb,zc), which can be repre-

sented as

p(ξb,ξc |za,zb,zc) =Nc(ζ
G,abc
bc ,ΔG,abc

bc ) , where (G.12)

ζG,abc
bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ηabc
b

ηabc
c

⎤⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qabc

ba

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦(Qabc
a )−1ηabc

a

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ηabc
b −Qabc

ba (Qabc
a )−1ηabc

a

ηabc
c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (G.13)

ΔG,abc
bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qabc

b Qabc
bc

Qabc
cb Qabc

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qabc

ba

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (Qabc
a )−1

[
Qabc

ab 0
]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qabc

b −Qabc
ba (Qabc

a )−1Qabc
ab Qabc

bc

Qabc
cb Qabc

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (G.14)

When (G.12) is conditioned on ξb ,

p(ξc |ξb,za,zb,zc) =Nc(η
abc
c −Qabc

cb ξb,Q
abc
c ). (G.15)

Meanwhile, the right term in (G.2) could be computed from s++2 in (6.8) by conditioning on ξb

that

p(ξc |ξb,zb,zc) =Nc(ζ
abc
c −Δabc

cb ξb,Δ
abc
c ) . (G.16)

According to CI property (G.2), (G.15) is equal to (G.16), thus

ηabc
c −Qabc

cb ξb = ζabcc −Δabc
cb ξb , (G.17)

Qabc
c = Δabc

c . (G.18)
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Since both (G.12) and (6.8) represent the globally optimal second submap, we obtain

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ζabcb

ζabcc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
ηabc
b −Qabc

ba (Qabc
a )−1ηabc

a

ηabc
c

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (G.19)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Δabc
b Δabc

bc

Δabc
cb Δabc

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Qabc

b −Qabc
ba (Qabc

a )−1Qabc
ab Qabc

bc

Qabc
cb Qabc

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (G.20)

Then by comparing each entries in (G.19) and (G.20), we get

ηabc
b = ζabcb +Qabc

ba (Qabc
a )−1ηabc

a , (G.21)

Qabc
b = Δabc

b +Qabc
ba (Qabc

a )−1Qabc
ab . (G.22)

When substituting (G.9), (G.10) and (G.11) into (G.21) and (G.22), we get

ηabc
b = ζabcb +Λa

ba(Λ
a
a)
−1βa

a , (G.23)

Qabc
b = Δabc

b +Λa
ba(Λ

a
a)
−1Λa

ab . (G.24)

In conclusion, given two conditionally independent submaps, i.e. the previous submap and its

following submap that is optimal in the sense that it contains all the currently available observa-

tions, the optimal global map, represented with canonical parameters, can be computed as

ηabc
a = βa

a , (G.25)

ηabc
b = ζabcb +Λa

ba(Λ
a
a)
−1βa

a , (G.26)

ηabc
c = ζabcc , (G.27)

Qabc
a =Λa

a , (G.28)

Qabc
ab =Λa

ab , (G.29)

Qabc
b = Δabc

b +Λa
ba(Λ

a
a)
−1Λa

ab , (G.30)

Qabc
bc = Δabc

bc , (G.31)

Qabc
c = Δabc

c . (G.32)
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Therefore the currently optimal local map can be represented as

p(ξa,ξb,ξc |za,zb,zc) =Nc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βa
a

ζabcb +Λa
ba(Λ

a
a)
−1βa

a

ζabcc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λa
a Λa

ab 0

Λa
ba Δabc

b +Λa
ba(Λ

a
a)
−1Λa

ab Δabc
bc

0 Δabc
cb Δabc

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(G.33)

The currently optimal submap s++1 ∼ p(ξa,ξb |za,zb,zc) can be obtained by marginalising out ξc

from the globally optimal local map in (G.33) using Theorem 3.3. Thus we get its information

vector βabc
s1 and information matrix Λabc

s1 as follows:

βabc
s1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
βa
a

ζabcb +Λa
ba(Λ

a
a)
−1βa

a −Δabc
bc (Δabc

c )−1ζabcc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (G.34)

Λabc
s1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Λa

a Λa
ab

Λa
ba Δabc

b +Λa
ba(Λ

a
a)
−1Λa

ab −Δabc
bc (Δabc

c )−1Δabc
cb

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (G.35)

The proof of Corollary 6.2 is done. �





Appendix H

Application of SubGPBF to Mapping

with One Large Data Set

This appendix deduces Algorithm 4, which adapts subGPBF to sequential mapping with one

sensing modality, and proves that the optimal global map can be obtained with only the backward

update algorithm. We use three submaps s1, s2 and s3 from the graphical model in Figure 4.4a

to explain Algorithm 4. For better understanding, three submaps are used instead of two. The

components in each submap are defined as

ξs1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ξa

ξb

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , ξs2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ξb

ξc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , ξs3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ξc

ξd

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (H.1)

First consider the forward mapping procedure in Algorithm 4.

Procedure 1 Forward Process

Denote the GP predicted submap s1 and s2 as

s−1 ∼ p(ξs1) =N
⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μa

μb

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pa Pab

Pba Pb

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (H.2)

s−2 ∼ p(ξs2) =N
⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μs2
b

μc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ps2
b Pbc

Pcb Pc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (H.3)
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where the superscript s2 represents the estimate of ξb in s−2 . Note that from now on the superscript

denotes which submap has the component been marginalised from.

Then, define the new observation for the prior submap s−2 to be ξ
s−1
b1

� ξ
s−1
b , where the subscript of

b1 denotes the first common element between submaps, and the superscript of s−1 represents the

value obtained via marginalisation from s−1 . Similar notation is used throughout this appendix

and will not be explained for brevity. When fusing ξ
s−1
b1

with s−2 via the correlated Bayesian fusion,

we get s+2 :

s+2 ∼ p(ξs2 |ξ
s−1
b1
) = p(ξs2

b ,ξc |ξs−1
b1
) =N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μs2,+
b

μ+
c

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ps2,+
b P+

bc

P+
cb P+

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (H.4)

In (H.4), the mean vector and the covariance matrix is computed using the Bayesian fusion equa-

tions in (3.69) and (3.70), respectively.

Next, define the new information for updating GP predicted prior submap s−3 (see (H.5)) to be

ξ
s+2
b2

� ξ
s+2
c , where ξ

s+2
c is computed via marginalisation from s+2 .

s−3 ∼ p(ξs3) = p(ξs3
c ,ξd ) =N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μs3
c

μd

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ps3
c Pcd

Pdc Pd

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (H.5)

When fusing the new information ξ
s+2
b2

with s−3 , we get s+3 :

s+3 ∼ p(ξs3 |ξ
s−1
b1
,ξ

s+2
b2
) = p(ξs3

c ,ξd |ξs−1
b1
,ξ

s+2
b2
) =N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μs3,+
c

μ+
d

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ps3,+
c P+

cd

P+
dc P+

d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (H.6)

Now the forward submapping procedure has ended and we obtain the submap s−1 , s+2 and s+3 . s+3

is globally optimal since it contains all the current information.

Note that in (H.4) and (H.6), the new observation, which is used for submap fusion, is different

with that in subGPBF. In subGPBF, the new observations are from another dataset Ψ2, and they

can be transmitted to the next submap via the forward update algorithm. However, with only one

dataset, it is the GP prediction of the common elements that is regarded as the new observation.

For instance, since the local training subset is used to train the local GP for each submap, the pdf
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of ξ
s−1
b and s−2 (see (H.3)) can be written as:

ξ
s−1
b ∼ p(ξb |Xs1 ,ys1 ,X

∗
s1) , (H.7)

s−2 ∼ p(ξs2 |Xs2 ,ys2 ,X
∗
s2) , (H.8)

where Xs1 and ys1 denote the training data and X∗s1 the query points of the local GP for s1,

respectively; and Xs2 , ys2 , X
∗
s1 are defined in the similar way. It shows in (H.7) and (H.8) that

there is no information that is used twice in ξ
s−1
b and s−2 , thus fusing ξ

s−1
b and s−2 is reasonable. And

the information contained in s−1 is transmitted to s−2 after fusion.

Procedure 2 Backward Update

After the forward submapping, s+3 is optimal while others not. To get the globally optimal submap

s+1 and s++2 , we now use the backward update algorithm.

Denote s++2 as

s++2 ∼ p(ξs2 |ξ
s−1
b1
,ξ

s+2
b2
) = p(ξs2

b ,ξc |ξs−1
b1
,ξ

s+2
b2
) =N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μs2,++
b

μ++
c

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Ps2,++
b P++

bc

P++
cb P++

c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (H.9)

Based on Corollary 4.4, computing the globally optimal s++2 equals to recovering the globally

optimal local map, defined as (H.10); and only the terms related with ξb need to be updated.

p(ξb,ξc,ξd |ξs−1
b1
,ξ

s+2
b2
) =N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μs2,++
b

μ++
c

μ++
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ps2,++
b P++

bc P++
bd

P++
cb P++

c P++
cd

P++
db P++

dc P++
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (H.10)

Furthermore, (H.10) can be written as

p(ξb,ξc,ξd |ξs−1
b1
,ξ

s+2
b2
) = p(ξb |ξc,ξd ,ξs−1

b1
,ξ

s+2
b2
)p(ξc,ξd |ξs−1

b1
,ξ

s+2
b2
)

= p(ξb |ξc,ξs−1
b1
,ξ

s+2
b2
)p(ξc,ξd |ξs−1

b1
,ξ

s+2
b2
)

= p(ξb |ξc,ξs−1
b1
)p(ξc,ξd |ξs−1

b1
,ξ

s+2
b2
) ,

(H.11)

where the first equality is based on the chain rule, and the second equality comes from the submap

CI property that ξb is conditionally independent of ξd given ξc . The third equality is due to that
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ξ
s+2
b2

is already contained in s+2 and thus there is no need to use it to update s+2 .

Then, the mean and covariance of s++2 (see (H.9)) can be computed by directly applying the results

of backward update algorithm (see Algorithm 3); and with reference to (H.4) and (H.6), we can

get

μs2,++
b = μs2,+

b +P+
bc(P

+
c )
−1(μs3,+

c −μ+
c ) , (H.12)

P++
bc = P+

bc(P
+
c )
−1Ps3,+

c , (H.13)

μ++
c = μs3,+

c , (H.14)

Ps2,++
b = Ps2,+

b +P+
bc(P

+
c )
−1(P++

cb −P+
cb) , (H.15)

P++
c = Ps3,+

c , (H.16)

(optionally)P++
bd = P+

bc(P
+
c )
−1P+

cd . (H.17)

Next, we correct the first submap s−1 to get the globally optimal submap s+1 , which is denoted as

s+1 ∼ p(ξs1 |ξ
s−1
b1
,ξ

s+2
b2
) = p(ξa,ξb |ξs−1

b1
,ξ

s+2
b2
) =N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎢⎢⎣
μ+
a

μ+
b

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎣
P+
a P+

ab

P+
ba P+

b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (H.18)

Based on Corollary 4.4, computing s+1 equals to recovering the globally optimal local map:

p(ξa,ξb,ξc |ξs−1
b1
,ξ

s+2
b2
) =N
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ+
a

μ+
b

μ++
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,
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a P+

ab P+
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P+
ba P++

b P++
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cb P++
c
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (H.19)

in which only the terms related with ξa need to be updated. Furthermore, based on the chain

rule, (H.19) can be written as

p(ξa,ξb,ξc |ξs−1
b1
,ξ

s+2
b2
) = p(ξa|ξb,ξc,ξs−1

b1
,ξ

s+2
b2
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b1
,ξ
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b2
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b1
,ξ

s+2
b2
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= p(ξa|ξb)p(ξb,ξc |ξs−1
b1
,ξ

s+2
b2
) .

(H.20)

The second equality in (H.20) comes from the submap CI property that ξa is conditionally inde-

pendent of ξc given ξb . The third equality is based on the fact that ξ
s−1
b1

comes from s−1 thus there
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is no need to use it to correct s−1 .

Then we can directly apply backward update algorithm, and with reference to (H.2) and (H.9),

the globally optimal submap s+1 in (H.18) can be obtained as

μ+
a = μa +P+

abP
+,−1
b (μs2,++

b −μb) , (H.21)

P+
ab = PabP

−1
b Ps2,++

b , (H.22)

μ+
b = μs2,++

b , (H.23)

P+
a = Pb +PabP

−1
b (P+

ba −Pba) , (H.24)

P+
b = Ps2,+

b , (H.25)

(optionally)P+
ac = PabP

−1
b P++

bc . (H.26)

By now, the three submaps are globally optimal.

In general, Algorithm 4 can be used to build a sequential of submaps and the optimal global map

can be obtained after the backward update. �
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