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ABSTRACT

Stimulated Brillouin scattering in nanophotonic waveguides and

resonators

by

Sayyed Reza Mirnaziry

Dissertation directed by Associate Professor Christopher G. Poulton

School of Mathematical and Physical Sciences

In this work, we theoretically and numerically study Stimulated Brillouin Scat-

tering (SBS) in integrated waveguides and resonators. We review SBS process by

using coupled equations and determine a broad range of SBS parameters including

SBS gain, opto-acoustic overlap, optical forces and power conversion between pump

and Stokes waves. For numeric analysis, in addition to performing simulations we

write appropriate codes and employ different iterative techniques as well as root

finding methods to analyze SBS in interested configurations.

We study silicon-chalcogenide slot waveguides as a robust candidate to enhance

SBS. We explain how constructive contribution of radiation pressure and electrostric-

tion can increase the SBS gain in this structure. We also optimize the waveguide

geometry and determine the optimum pump power as well as waveguide length as a

function of SBS figure of merit, using our analytic expressions. We also show that

putting a silica layer on top of the waveguide lead to a significant increase in the

opto-acoustic overlaps and therefore, rise the SBS gain while reducing the impact

of nonlinear losses in this structure.

We explore SBS in integrated racetrack ring resonators in both regimes of am-

plifying and lasing. We use analytic and numeric approaches to demonstrate pump

and Stokes evolution in designed rings and through the output. In addition we an-



iv

alyze the impact of nonlinear dispersion as well as thermal effects on SBS in rings.

Finally, we determine the pump power to achieve Stokes amplification, the threshold

pump power for lasing and the output Stokes power in the presence of linear and

nonlinear optical losses.
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Abbreviation

CW - Continuous Wave

SBS - Stimulated Brillouin Scattering

BSBS - Backward Stimulated Brillouin Scattering

SSA - Small Signal Approximation

TPA - Two Photon Absorption

FCA - Free Carrier Absorption

FCD - Free Carrier Dispersion

FSR - Free Spectral Range

SMF - Single Mode Fiber

Mid-IR - Mid- Infrared

WGR - Whispering Gallery Resonator
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