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Abstract
UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Centre for Autonomous Systems

Doctor of Philosophy

by Teng Zhang

We are living in an era that are being changed by mobile robots such as unmanned aerial
vehicles and self-driving cars. State estimation for navigation is one of the fundamental
problems in mobile robot’s applications. This work entirely focuses on two problems of
state estimation for robot navigation, i.e., simultaneous localization and mapping (SLAM),

and visual-inertial navigation systems (VINS).

The SLAM problem asks whether it is possible for a robot to build a map of an unknown
environment and simultaneously work out its own location within the map. The VINS
problem aims at the estimates of a robot’s pose and velocity by the on-board sensor funsion
of a camera and an inertial measurement unit (IMU). After data association, both SLAM
and VINS need a back-end solver to estimate the state of a robot and the environment,

which mainly includes two methods: extended Kalman filter and optimization.

The main contribution of this thesis is the invariance theory, which proposes the basic
principles for state estimation, i.e., the actual estimates should be invariant under un-
observable (deterministic or stochastic) transformations. The invariance theory does not
only provide compact, elegant, profound explanations and insights of extended Kalman
filter and optimization in SLAM and VINS, but also help to design new algorithms to

improve the existing methods.
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