

The Invariance of State Estimation for Robot Navigation

by

Teng Zhang

A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy

at the Centre for Autonomous Systems Faculty of Engineering and Information Technology **University of Technology Sydney**

February 2018

Declaration of Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note:Signed:Signature removed prior to publication.

Date: Teb 22 2018

Abstract

UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology Centre for Autonomous Systems

Doctor of Philosophy

by Teng Zhang

We are living in an era that are being changed by mobile robots such as unmanned aerial vehicles and self-driving cars. State estimation for navigation is one of the fundamental problems in mobile robot's applications. This work entirely focuses on two problems of state estimation for robot navigation, i.e., simultaneous localization and mapping (SLAM), and visual-inertial navigation systems (VINS).

The SLAM problem asks whether it is possible for a robot to build a map of an unknown environment and simultaneously work out its own location within the map. The VINS problem aims at the estimates of a robot's pose and velocity by the on-board sensor funsion of a camera and an inertial measurement unit (IMU). After data association, both SLAM and VINS need a back-end solver to estimate the state of a robot and the environment, which mainly includes two methods: extended Kalman filter and optimization.

The main contribution of this thesis is the invariance theory, which proposes the basic principles for state estimation, i.e., the actual estimates should be invariant under unobservable (deterministic or stochastic) transformations. The invariance theory does not only provide compact, elegant, profound explanations and insights of extended Kalman filter and optimization in SLAM and VINS, but also help to design new algorithms to improve the existing methods.

A cknowledgements

This thesis would not have been possible without the help and support of many people. I would like to thank my supervisors A/Prof. Shoudong Huang, Prof. Dikai Liu and Prof. Gamini Dissanayake for their guidance and support over the last four years. Thanks also go to Kanzhi Wu and Liyang Liu for their constant help in programming instructions. Thanks to Leo, Mahdi and Dinuka for help in the early days when I was still trying to get my head around inertial SLAM. And also to Daobilige Su for insightful discussions on inertial implementations and help in talking through my ideas in the later stages. I would also like to thank everyone at the Centre for Autonomous Systems, University of Technology Sydney.

Contents

Declaration of Authorship i						
Abst	Abstract ii					
Ackn	Acknowledgements iii					
List o	of Figures	vii				
List o	of Tables	/ iii				
Nom	enclature	x				
 Inn 1.1 1.2 1.4 1.4 1.4 1.4 1.4 1.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.5 2.5	troduction 1 Background 2 Motivation 3 Contributions 4 Publications 5 Thesis Outline 6 Thesis Outline 7 Group and GL(n) 8 Invariant system and invariant filter	1 3 4 6 7 8 8 9 10 12 18 21 24 25				
3 E 2 3.1 3.2 3.3	xtended Kalman Filter in SLAM 1 Introduction	27 27 29 30 34				

	$3.5 \\ 3.6 \\ 3.7$	Consistency analysis .	$38 \\ 41 \\ 45$
4	\mathbf{Ext}	ended Kalman Filter in VINS	17
	4.1	Introduction	47
	4.2	Background knowledge	49
	4.3	Invariance and consistency	52
	4.4	The proposed method: RIEKF-VINS	56
	4.5	Simulation and experiment	62
	4.6	Summary	65
5	Opt	imization in SLAM	37
	5.1	Introduction	67
	5.2	SLAM Formulation	68
	5.3	Discussion for invariance	70
	5.4	An invariant retraction	73
	5.5	Simulation results	74
	5.6	Summary	74
6	Opt	imization in VINS	76
	6.1	Introduction	76
	6.2	Problem Formulation	77
	6.3	Invariant IMU factor	79
	6.4	A concise form of the IMU factor	85
	6.5	Vision factor	87
	6.6	Compared to other IMU factors	88
	6.7	Experiment	90
	6.8	Summary	96
7	Con	clusion and Future Work 10)1
	7.1	The invariance in the EKF based approach	01
	7.2	The invariance in the optimization based approach	03
۸.		diag	06
A	ppen		0
Α	EKI	F-SLAM 10)6
	A.1	Proof of Theorem 3.4	06
	A.2	Proof of Theorem 3.6	07
	A.3	Proof of Theorem 3.9	08
в	EKI	F-VINS 11	10
	B.1	Proof of Theorem 4.7	10
	B.2	Proof of Theorem 4.8	11

Bibliography

112

List of Figures

1.1	Examples of robots that need solutions of SLAM and VINS: the automated guided vehicle and the unmanned aerial vehicle	2
1.2	Applications related to SLAM and VINS beyond robot navigation: virtual	
	reality and augmented reality	2
1.3	Left: the flow chart of SLAM. Right: the flow chart of VINS	3
2.1	An example of factor graph	22
3.1	Illustration of Theorem 3.4.	35
3.2 3 3	Illustration of Theorem 3.6	38
0.0	Monte Carlo results.	45
4.1	The simulated trajectory (blue circles) and landmarks (green circles).	62
4.2	50 Monte Carlo simulation results	63
4.3	The estimated trajectories from MSCKF and RI-MSCKF using the Euroc dataset sequence $V^{0,01}$ each	64
1.1	$ \begin{array}{c} \text{dataset sequence } v_{2} o_{1} easy. \\ \text{A sample image with landmarks in the experiment} \end{array} $	65
4.5	The RMS of orientation and position estimate from MSCKF and RI-MSCKF using the Euroc dataset sequence $V2.01$ easy	66
		00
6.1	The VINS graph	80
6.2	The <i>NEES</i> of IMU factors under conditions of different noise levels	90
6.3	The RMS of orientation.	91
6.4	The RMS of position.	92
6.5	The simulated trajectory (blue circles) and landmarks (green circles)	92
6.6	Some sample images with keypoints in the experiment. The green dots	
	represent the tracked key points	94
6.7	$V1_02_medium V2_02_medium \dots \dots$	97
6.8	The constructed maps of $MH02_easy$ (top) and $MH04_difficult$ (bottom)	
	using the proposed method 2	98
6.9	The estimated trajectories of $MH02_easy$ using the original method (top)	
	and the proposed method 2 (bottom)	99
6.10	The estimated trajectories of $MH05_difficult$ using the original method	
	(top) and the proposed method 2 (bottom)	100

List of Tables

3.1	The invariance property of some filters.	40
3.2	Performance evaluation	44
5.1	Results from solvers under different noise levels.	75
6.1	Accuracy (RMS, unit: m) in Euro dataset.	96

Acronyms & Abbreviations

1D	One-Dimensional
2D	Two-Dimensional
3D	Three-Dimensional
CAS	Centre for Autonomous Systems
UTS	University of Technology Sydney
SLAM	Simultaneous localization and mapping
VINS	Visual-Inertial navigation system
EKF	Extended Kalman filter
\mathbf{GN}	Gauss-Newton
$\mathbf{L}\mathbf{M}$	Levenberg-Marquart
Dogleg	Powell's Dogleg
IMU	Inertial measurement unit
MAV	Micro aerial vehicle

Nomenclature

General Notations

$\mathbb{GL}(n)$	the general linear group of degree \boldsymbol{n}
\mathbb{R}^3	The 3-dimensional Euclidean space
\mathbb{R}^n	The n -dimensional Euclidean space
$\mathbb{SO}(3)$	The special orthogonal group
$\mathbb{SE}(3)$	The special Euclidean group
$\mathbf{R}\in\mathbb{SO}(3)$	the orientation or the rotation
$\mathbf{p} \in \mathbb{R}^3$	the position