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Abstract

UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Centre for Autonomous Systems

Doctor of Philosophy

by Teng Zhang

We are living in an era that are being changed by mobile robots such as unmanned aerial

vehicles and self-driving cars. State estimation for navigation is one of the fundamental

problems in mobile robot’s applications. This work entirely focuses on two problems of

state estimation for robot navigation, i.e., simultaneous localization and mapping (SLAM),

and visual-inertial navigation systems (VINS).

The SLAM problem asks whether it is possible for a robot to build a map of an unknown

environment and simultaneously work out its own location within the map. The VINS

problem aims at the estimates of a robot’s pose and velocity by the on-board sensor funsion

of a camera and an inertial measurement unit (IMU). After data association, both SLAM

and VINS need a back-end solver to estimate the state of a robot and the environment,

which mainly includes two methods: extended Kalman filter and optimization.

The main contribution of this thesis is the invariance theory, which proposes the basic

principles for state estimation, i.e., the actual estimates should be invariant under un-

observable (deterministic or stochastic) transformations. The invariance theory does not

only provide compact, elegant, profound explanations and insights of extended Kalman

filter and optimization in SLAM and VINS, but also help to design new algorithms to

improve the existing methods.
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Chapter 1

Introduction

During the last decade, tremendous progress has been made on the development and

adoption of mobile robots, which involves a wide range of applications, e.g., service robots,

environment reconstruction, urban search and rescue, underground mining, underwater

surveillance and planetary exploration. These mobile robots including self-driving cars,

micro aerial vehicles and Mars rovers, are usually required to navigate and perform the

specific task in a partially known or unknown environment. When the external information

such as a global positioning system (GPS) is unavailable or not enough, a mobile robot

needs to constantly estimate its state such as pose and velocity.

1.1 Background

Obviously, robust and accurate state estimation is a prerequisite for robot navigation in

the unknown or GPS-denied environment. The typical examples are autonomous ground

vehicles and unmanned aerial vehicles (UAV) (Fig. 1.1). To estimate the state using mea-

surements from on-board sensors, a mobile robot needs to constantly estimate the robot

pose and simultaneously build a sparse or dense map of the environment. This fundamen-

tal problem in robotics is known as simultaneous localization and mapping (SLAM).

Moreover, cameras and IMUs are widely used as the on-board sensors of mobile robots

due to their small size, light weight and low power consumption. Besides the advantages

1



Chapter 1. Introduction 2

mentioned above, the sensors’ complementarity is another benefit. As well-known, monoc-

ular visual-SLAM allows a robot to estimate its trajectory and the locations of landmarks

in the map, up to an unknown metric scale. An IMU, as a complementary component

to the camera, can provide the metric information when fused with the camera measure-

ments. This sensor fusion problem is known as visual-inertial navigation system (VINS).

In addition, VINS is also used in the virtual reality application (e.g., Fig. 1.2).

Fig. 1.3 provides the flowcharts of SLAM and VINS. In this work, we mainly focus on the

back-end of SLAM and VINS from the viewpoint of two nonlinear estimation approaches:

the extended Kalman filter (EKF) based approach and the optimization-based approach.

Figure 1.1: Examples of robots that need solutions of SLAM and VINS:
the automated guided vehicle and the unmanned aerial vehicle

Figure 1.2: Applications related to SLAM and VINS beyond robot navigation:
virtual reality and augmented reality
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Figure 1.3: Left: the flow chart of SLAM. Right: the flow chart of VINS.

1.2 Motivation

The linear-model Gaussian-noise case allows exact inference by using simple algebraic

operation, such as Kalman filter of linear least squares. However, this can not be directly

applied to SLAM and VINS as they are nonlinear estimation problems. For SLAM and

VINS, two fundamental approaches are widely used.

EKF

EKF was one of the earliest solutions to the SLAM problem and played a historical role.

Due to its ease of implementation and relatively low processing requirements, EKF is still a

popular and primarily solution to VINS. One of the primary limitations of the EKF based

SLAM is the possible inconsistency, namely, the covariance matrix calculated by the EKF

estimator underestimates the actual uncertainty. Thus the mean estimate is unreliable,

which in turn affects the accuracy of the EKF estimator. Conventional view holds that

EKF marginalizes out the previous robot pose at the propagation stage and thus the

linearization errors involving previous states cannot be corrected. Thus the linearization

errors are thought as the main reason for the inconsistency of EKF. The inconsistency of
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EKF SLAM and EKF VINS algorithms has been analyzed for a decade. However, to the

best knowledge of the author, few has explained the inconsistency issue in the sense of

both probabilistic framework and control theory. Therefore, we are trying to find out the

fundamental reason of the inconsistency of EKF from the viewpoints of both probabilistic

framework and control theory.

Optimization

In contrast to EKF, the optimization-based methods for SLAM and VINS have attracted

more attention in the recent decade. The optimization-based methods estimate the histor-

ical states using all measurements. Relinearization is allowed in the optimization process

and it can reduce the linearization errors in general. In general, the optimization-based

methods can achieve more accurate estimates, compare to the EKF-based methods. How-

ever, nonlinear optimization always needs multiple iterations to converge. One of the

contributions in this thesis is the new algorithm with improved convergence in the SLAM

problem. For the VINS problem, we derive a more reasonable formulation that is able to

consider more correlation between the involved variables (pose, velocity and bias).

1.3 Contributions

The main contributions of the thesis are the proposed invariance concept and its applica-

tions in SLAM and VINS.

• Invariant EKF-SLAM

The conventional EKF-SLAM algorithm is known as an inconsistent estimator. The

linearization errors are often considered to be related to the change of the system’s

observability and thus it is regarded as the root reason for the inconsistency. In

Chapter 3, we clarify that the uncertainty representation (together with the retrac-

tion ⊕) used in the conventional EKF algorithm makes the filter not invariant under

the stochastic rigid body transformation, which is the root reason for the inconsis-

tency. Then we prove that the invariance property can be satisfied when using a
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novel uncertainty representation with the new manifold G(N). The proposed filter is

shown to outperform the first estimate Jacobian filter [1] and the robocentric filter

[2].

• Invariant EKF-VINS

The conventional EKF-VINS algorithm is also inconsistent because it is not invariant

under the stochastic unobservable transformation, associated with a translation and

a rotation about the gravitational direction. In Chapter 4, we provide the necessary

and sufficient conditions of the invariance under stochastic unobservable transforma-

tion for the general system. We also analytically derive a new filter RIEKF-VINS

that preserves the invariance property and does not need to enforce the Jacobians.

Considering the expensive cost of maintaining the covariance matrix for a number

of landmarks, we then integrate RIEKF-VINS into the well-known visual odometry

MSCKF framework [3] such that the modified algorithm has much better consis-

tency and linear complexity w.r.t. the number of landmarks. Both Monte Carlo

simulations and real-world experiments are used to validate the proposed method.

A video can be viewed at https : //www.youtube.com/watch?v = w8Zp hbAAto.

• Invariant IMU Factor

Motivated by the linear error-state propagation of RIEKF-VINS, in Chapter 6 we

analytically derive a new IMU factor under the Factor Graph framework, which is

different from the existing ones [4][5][6][7]. Firstly, the new IMU factor is born to

be a pre-integration method on manifold such that all Jacobians (even including

the Jacobians w.r.t. IMU biases) can be pre-integrated by any high-order numerical

integration method. Secondly, the IMU factor does not need the assumption that

the IMU biases are constant between two consecutive key-frames. In the new IMU

factor, the error (between actual and predicted IMU states) and the error (between

actual and predicted IMU biases) are fully coupled together, which is different from

the work in [4][6][7]. Therefore, this new IMU factor may be a better description for

the physical system. From the results of our tests, the advantage of the new IMU

factor is more obvious under the condition of the low-frequency IMU measurements

and the fast change of IMU biases, compared to [4][6][7]. Hence, we argue that the
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new IMU factor has potential to be applied to low-cost IMUs. We have also written a

VINS code package based on ORB-SLAM2, validated using the Euroc dataset. The

novelty of our code is the new IMU factor and the invariant vision factor. Under

this framework, our IMU factor slightly outperforms the factor [6]. A video can be

viewed at https : //www.youtube.com/watch?v = rhhzKwMfyQ.

1.4 Publications

Journal

• Convergence and Consistency Analysis for a 3D Invariant-EKF SLAM ;

Teng Zhang, Kanzhi Wu, Jingwei Song, Shoudong Huang and Gamini Dissanayake;

IEEE Robotics and Automation Letters (Volume: 2, Issue: 2, April 2017); also

presented in International Conference on Robotics and Automation (ICRA 2017);

Conference

• An Invariant-EKF VINS Algorithm for Improving Consistency ;

Kanzhi Wu∗, Teng Zhang∗, Daobilige Su, Shoudong Huang and Gamini Dissanayake;

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017);

The notation ∗ refers to the equal contribution.

• Constrained Sampling of 2.5D Probabilistic Maps for Augmented Inference;

Lei Shi, Jaime Valls Miro, Teng Zhang, Teresa Vidal Calleja, Liye Sun and Gamini

Dissanayake; IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2016);

• A Method of State Estimation for Underwater Vehicle Navigation Around A Cylin-

drical Structure;

Teng Zhang, Shoudong Huang, Dikai Liu, Chunlin Zhou and Rong Xiong; IEEE

Conference on Industrial Electronics and Applications (ICIEA 2016)

• Active Object Detection and Pose Estimation in General Belief Space;

Kanzhi Wu, Teng Zhang, Ravindra Ranasinghe, Shoudong Huang and Gamini
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Dissanayake; Robot-Environment Interaction for Perception and Manipulation: In-

teractive Perception Meets Reinforcement Learning and Optimal Control at Robotic

Science and Systems (RSS-Workshop 2016)

• Comparison of Two Strategies of Path Planning for Underwater Robot Navigation

Under Uncertainty ;

Teng Zhang, Shoudong Huang and Dikai Liu; International Conference on Control,

Automation, Robotics and Vision (ICARCV 2014)

1.5 Thesis Outline

• Chapter 2: We introduce some preliminary knowledge on Lie groups and their ap-

plications in optimization and filter, which are useful in the analysis in the following

chapters.

• Chapter 3: We investigate the inconsistency of EKF-SLAM and analyze the conver-

gence and consistency of the RIEKF-SLAM algorithm.

• Chapter 4: We investigate the inconsistency of EKF-VINS and propose the novel

RIEKF-VINS algorithm that can improve consistency. We also integrate RIEKF-

VINS into the MSCKF framework.

• Chapter 5: We propose the invariance concept in the optimization framework. Then

we propose a method satisfying this property and prove that the convergence can be

improved.

• Chapter 6: We derive a novel invariant IMU factor based on the idea of the RIEKF-

VINS algorithm, which can achieve high-accuracy.

• Chapter 7: We present conclusions and propose some future work.

• Appendix: We provide extended proofs for some theorems in this thesis.



Chapter 2

Preliminaries

Many problems in state estimation require operations in Lie groups (e.g., SO(3) (3-

dimension) and SE(3) (6-dimension)) [6] [8]. A traditional method first parameterizes

the Lie group (e.g., using Euler angles to represent SO(3)) as a column vector and then

perform operation in Euclidean space. However, a parameterization in a non-Euclidean

space may lead to representation singularity. Furthermore, parameterization makes the

gradient vector or Jacobian matrix very complicated. This chapter provides a simple tu-

torial of Lie groups and their applications in optimization and filter. More details of Lie

group can be found in [9] [10].

2.1 GL(n) and the skew symmetric operator S(·)

GL(n) consists of all n× n real matrices whose determinant are non-zero, defined as

Definition 2.1.

GL(n) = {A ∈ R
n×n| det(A) �= 0}. (2.1)

The skew symmetric operator S(·) is a linear transformation from R
3 to R

3×3, defined as

S(a) =

⎡
⎢⎢⎢⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎥⎥⎥⎦ (2.2)

8
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for a =

⎡
⎢⎢⎢⎣
a1

a2

a3

⎤
⎥⎥⎥⎦ ∈ R

3. Note that for a and b ∈ R
3:

S(a)b = a× b = −b×−a = S(b)a. (2.3)

In addition,

S(Ax) = det(A)(Aᵀ)−1S(x)A−1 (2.4)

for x ∈ R
3 and A ∈ GL(3). The derivation of (2.4) is given in Theorem 2.3.3 of [11].

2.2 Group and GL(n)

In this section, we first introduce the fundamental concepts of group.

A groupG is a set together with a group operation · that satisfy the following requirements

• Closure: For all a and b ∈ G, a · b ∈ G.

• Associativity: For all a, b and c ∈ G, (a · b) · c = a · (b · c).

• Identity element: There exists a unique element I ∈ G such that I · a = a · I = a

for all a ∈ G.

• Inverse element: For each a ∈ G, there exists an element a−1 such that a−1 · a =

a · a−1 = I.

Example 2.1. Obviously, GL(n) is a group together with the matrix multiplication as the

group operation. The identity element of GL(n) is In (the identity matrix).

In fact, an element a in group is usually represented as a

• state contained in G;

• transformation from G to G, if we define a(b) := a · b or a(b) := b · a, for each
b ∈ G.

Therefore, a group is a set of states and also a set of transformations.
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2.3 An abstract matrix Lie group G

Definition 2.2. A matrix Lie group G is a closed subgroup of GL(n) with the matrix

multiplication as group operation, which is also a dim(G) dimensional manifold. The Lie

algebra g of G is the tangent space at the identity element I.

The Lie algebra g is the tangent space of the manifold G at the identity I. There is an

open set U ⊆ G containing I and a one to one mapping f : g → U. In this thesis, we

do not provide all details of Lie algebra knowledge but point out there is an open set of

Uc ⊆ R
dim(G) containing 0 and a one to one mapping fc: g → Uc, namely

g ∼= R
dim(G). (2.5)

Therefore, we do not distinguish between g and R
dim(G). For more details, see [10].

Some Associated Operations

Lie group G and Lie algebra g are accompanied by some other operations. For simplicity,

the existences of the following operations are not discussed.

• The exponential mapping exp: g → G. Note that exp is subjective,

exp(0) = I

(exp(x))−1 = exp(−x)
(2.6)

for all x ∈ g. Also, there exists an open set U ⊆ G containing 0 such that exp |U is

a one to one mapping.

• The logarithm mapping log : G → g is the inverse transformation of exp: for all

x ∈ U

log(exp(x)) = x. (2.7)

• The operator Adg1 for each g1 ∈ G is a mapping from G to G: for all g2 ∈ G

Adg1g2 = g1g2g
−1
1 ∈ G (2.8)



Chapter 2. Mathematical Preliminaries 11

• The adjoint operator adg (g ∈ G) is a linear transformation from g to g such that

for all x ∈ g,

exp(adgx) = Adg exp(x). (2.9)

• The linear transformation adg (g ∈ G) can be also regarded as a square matrix.

Based on this concept, the right Jacobian Jr(x) and the left Jacobian Jl(x) (x ∈ g)

are two linear transformations from g to g, defined as

Jr(x) =

∫ 1

0
adexp(−xs)ds

Jl(x) =

∫ 1

0
adexp(xs)ds

(2.10)

for x ∈ g. Furthermore, Jr and Jl have the properties:

exp(Jr(x)) = exp(Jl(−x))

exp(x+ y) = exp(x) exp(Jr(x)y + o(‖y‖))

exp(x+ y) = exp(Jl(x)y + o(‖y‖)) exp(x)

(2.11)

for all x and y ∈ g.

Remark 2.3. Note that exp and log are bijection when the field of definitions are restricted

to U and {exp(x)|x ∈ U} ⊆ G, respectively. Therefore, exp and log are the opposite of

each other.

Remark 2.4. A linear transformation from R
n to R

m can be regarded as a m× n matrix.

Hence, adg and Jr(x) can be regarded as dim(G)× dim(G) matrices.

Uncertainty: The Gaussian Case

Different from the uncertainty representation in Euclidean space, the uncertainty for the

element g ∈ G can be defined in the tangent space as the following:

g = ĝ exp(ε) (2.12)
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or

g = exp(ε)ĝ (2.13)

where g ∈ G denotes the element (ground truth) to be estimated, ĝ ∈ G is the nominal

estimate, and ε ∈ g = R
dim(G) represents the uncertainty/error.

For a Gaussian case,

ε ∼ N (0,Σ). (2.14)

Note that (2.12) and (2.13) are two different uncertainty descriptions, which imply that

for g ∈ G,

p(g|(ĝ,Σ)) ∝ e−eᵀ1Σ
−1e1 (2.15)

and

p(g|(ĝ,Σ)) ∝ e−eᵀ2Σ
−1e2 , (2.16)

respectively, where e1 = log(ĝ−1g), e2 = log(gĝ−1) and (ĝ,Σ) represents the probabilistic

knowledge.

2.4 Lie Group: some instances

Based on the fundamental knowledge of an abstract Lie group provided in last section,

this section introduce some instances of matrix Lie group that will be used in the later

chapters.

The Special Orthogonal Group SO(3)

The special orthogonal group SO(3) as a 3-dimensional manifold is also called rotation

matrix group, defined as

Definition 2.5.

SO(3) = {R ∈ R
3×3|RᵀR = I3, det(R) > 0}. (2.17)

In robotics, an element in SO(3) is usually used to represent the
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• orientation of a camera/robot/IMU/coordinate system, etc;

• transformation of rotation.

Traditionally, orientation is represented by the minimal parameterization such as ZYX-

Euler angles (yaw-pitch-roll) or axis-angle. However, it is a fundamental topological fact

that singularities can never be eliminated in any minimal parameterization for orientation.

Similarly, it is impossible to find a global two-dimensional coordinate chart on a sphere

[12]. The possibility of singularity may affect the process of state estimation, resulting

in numerical instability even failure. Therefore, a switch strategy using several minimal

parameterizations with different singularities is required. Obviously, this switch method

makes problem more complicated. The other commonly used parameterization for ori-

entation is unit quaternion. Although unit quaternion does not have a singularity issue,

a normalization constraint must be maintained, which is not intrinsically and naturally

satisfied by the standard addition.

The Lie algebra of SO(3) is so(3) ∼= R
3. In the following, we directly provide the functions

exp(·), log(·), Ad, Jr related to SO(3) and so(3).

• The exponential mapping: for x( �= 0) ∈ R
3

exp(x) = I3 +
sin(‖x‖)

‖x‖ S(x) +
1− cos(‖x‖)

‖x‖2 S2(x),

exp(0) = I3

(2.18)

The first-order approximation of exp(x) is

exp(x) ≈ I3 + S(x) + o(‖x‖). (2.19)

• The logarithm mapping: for R ∈ SO(3)

log(R) = S−1(
θ(R−Rᵀ)

2 sin θ
) (2.20)

where θ = arccos( tr(R)−1
2 ). Note that if θ = π, the logarithm mapping is not well-

defined.
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• The right Jaocbian: for x( �= 0) ∈ R
3

Jr(x) = I3 −
1− cos(‖x‖)

‖x‖2 S(x) +
‖x‖ − sin(‖x‖)

‖x‖3 S2(x),

Jr(0) = I3

(2.21)

and the inverse of right Jacobian is

J−1
r (x) = I3 +

1

2
S(x) + (

1

‖x‖2 − 1 + cos(‖x‖)
2‖x‖ sin(‖x‖))S

2(x),

J−1
r (0) = I3,

(2.22)

• The adjoint ad: for R ∈ SO(3)

adR = R (2.23)

In addition, the right Jacobian has the following properties: for x ∈ R
3,

S(x) = J−1
r (x)(I3 − exp(−x)) (2.24)

and

det(Jr(x)) =
2(1− cos(‖x‖))

‖x‖2 . (2.25)

The Special Euclidean Group SE(3)

The special Euclidean group SE(3) is a 6-dimensional manifold, defined as

Definition 2.6.

SE(3) := {(R,p)|R ∈ SO(3),p ∈ R
3}. (2.26)

The associated group operation is

(R1,p1) · (R2,p2) = (R1R2,R1p2 + p1) (2.27)

for (R1,p1) and (R2,p2) ∈ SE(3).

In robotics, an element in SE(3) is usually used to represent the
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• pose of a camera/robot/IMU or a coordinate system, etc;

• rigid body transformation.

The Lie algebra of SE(3) is se(3) ∼= R
6. In the following, we directly provide the functions

exp(·), log(·), ad, Jr of SE(3) and se(3), based on the overloading functions from SO(3)

and so(3).

• The exponential mapping: for x =

⎡
⎣x1

x2

⎤
⎦ ∈ R

6 (x1 and x2 ∈ R
3 )

exp(x) = (exp(x1), Jl(x1)x2). (2.28)

The first-order approximation of exp(x) is

exp(x) = (I3 + S(x1) + o(‖x‖),x2 + o(‖x‖)). (2.29)

• The logarithm mapping: for g = (R,p) ∈ SE(3)

log(g) =

⎡
⎣ log(R)

J−1
l (log(R))p

⎤
⎦ . (2.30)

• The right Jaocbian: for x ∈ R
6

Jr(x) =

⎡
⎣ Jr(x1) 0

Kr(x1,x2) Jr(x1)

⎤
⎦ (2.31)

and

J−1
r (x) =

⎡
⎣ J−1

r (x1) 0

−J−1
r (x1)Kr(x1,x2)J

−1
r (x1) J−1

r (x1)

⎤
⎦ , (2.32)
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where Kr(x1,x2) = Kl(−x1,−x2) and

Kl(x1,x2) =
1

2
S(x2) +

θ − sin(θ)

θ3
(S(x1)S(x2) + S(x2)S(x1) + S(x1)S(x2)S(x1))

− 1− θ2/2− cos(θ)

θ4
(S(x1)S(x1)S(x2) + S(x2)S(x1)S(x1)− 3S(x1)S(x2)S(x1))

− 1

2
(
1− θ2/2− cos(θ)

θ4
− 3

θ − sin(θ)− θ3/6

θ5
)(S(x1)S(x2)S(x1)S(x1)

+ S(x1)S(x1)S(x2)S(x1))

(2.33)

and θ = ‖x1‖.

• The adjoint ad: for g = (R,p) ∈ SE(3)

adg =

⎡
⎣ R 0

S(p)R R

⎤
⎦ (2.34)

The Lie Group G(N)

In the later chapters, the element in G(N) is used to represent the pose and the location of

landmarks (expressed in the global frame). Specifically, the Lie group G(N) is a 6 + 3N -

dimensional manifold, defined as

Definition 2.7.

G(N) = {
(
R,p, f1, · · · , fN

)
|R ∈ SO(3),p and f i ∈ R

3} (2.35)

with the group operation:

X1 ·X2 =
(
R1R2,R1p2 + p1,R1f

1
2 + f11 , · · · ,R1f

N
2 + fN1

)
, (2.36)

where Xi =
(
Ri,pi, f

1
i , · · · , fNi

)
∈ G(N) for i = 1, 2.

The associated Lie algebra of G(N) is homomorphic to R
3N+6. In the following, we also

provide some functions of G(N) based on the overloading functions from SO(3).
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• The exponential mapping:

exp(x) =
(
exp(xθ), Jl(xθ)xp, Jl(xθ)x

1, · · · , Jl(xθ)x
N
)

(2.37)

for x =
[
xθ xp x1 · · · xN

]
∈ R

3N+6, where xθ, xp and xi ∈ R
3 (i =

1, · · · , N). The first-order approximation of exp(x) is

exp(x) = (I3 + S(xθ) + o(‖x‖),xp + o(‖x‖),x1 + o(‖x‖), · · · ,xN + o(‖x‖)).
(2.38)

• The logarithm mapping: for X =
(
R,p, f1, · · · , fN

)
∈ G(N)

log(X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log(R)

J−1
l (log(R))p

J−1
l (log(R))f1

...

J−1
l (log(R))fN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.39)

• The right Jacobian: for x =
[
xθ xp x1 · · · xN

]
∈ R

3+6N

Jr(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jr(xθ)

Kr(xθ,xp) Jr(xθ)

Kr(xθ,x
1) Jr(xθ)

...
. . .

Kr(xθ,x
N ) Jr(xθ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.40)

and

J−1
r (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J−1
r (xθ)

J−1
r (xθ)Kr(xr,xp)J

−1
r (xθ) J−1

r (xθ)

J−1
r (xθ)Kr(xθ,x

1)J−1
r (xθ) J−1

r (xθ)
...

. . .

J−1
r (xθ)Kr(xθ,x

N )J−1
r (xθ) J−1

r (xθ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.41)
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• The adjoint operation: for X =
(
R,p, f1, · · · , fN

)
∈ G(N),

adX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R 0 · · · · · · 0

S(p)R R
. . .

...

S(f1)R 0 R
. . .

...
...

...
. . .

. . . 0

S(fN )R 0 · · · 0 R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.42)

2.5 Optimization on Lie group

This section firstly recalls the optimization on Euclidean space and then introduces the

optimization on Lie group.

Review: Optimization on Euclidean Space R
n

Consider the optimization problem:

min
X∈Rn

f(X), (2.43)

where f(·) : Rn → R is a function on Euclidean space. If a new function hX∗(·) on R
n is

defined as

hX∗(x) := f(X∗ + x) (2.44)

for arbitrary X∗ ∈ R
n, the problem above can be rewritten

min
x∈Rn

hX∗(x) = min
x∈Rn

f(X∗ + x). (2.45)

Based on the rewritten equation (2.45), Alg. 1 presents a method for this optimization

problem. Note that different algorithms, e.g., Gauss-Newton, Levenberg-Marquardt and

Powell’s Dogleg, can be used in Alg. 1 to compute the incremental vector Δx ∈ R
n in

which ∂hX∗(0) = ∂hX∗ (x)
∂x |x=0 and hX∗(0) are needed.

Remark 2.8. In Alg. 1, the function hX∗ changes in every loop due to the change of X∗.
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Algorithm 1: Optimization on Euclidean Space

Input: the objective function f(·) and the initial guess X0 ∈ R
n

Output: the local minimum X∗ for f(·)
Process:
X∗ ← X0;
while X∗ does not converge do

determine the incremental vector Δx ∈ R
n for hX∗(x) at x = 0 by using gradient

descent method (GN, LM,..., etc) ;
X∗ ← X∗ +Δx;

end

Optimization on Lie Group G

Consider the optimization problem on Lie group G. The optimization process in Alg. 1 has

to be adjusted for Lie group structure. If there exists ⊕: for each X ∈ G, X⊕(·) : Rn → G

is bijective in a neighborhood of 0 ∈ R
n. For Lie group G, we usually choose g(·) as

X⊕ x = X exp(x) (2.46)

or

X⊕ x = exp(x)X (2.47)

The optimization problem can be rewritten via re-parametrization (called lifting)

min
X∈G

f(x) ⇔ min
x∈Rdim(G)

hX∗(x) = min
x∈Rdim(G)

f(X∗ ⊕ x) (2.48)

where X∗ ∈ G is user-selected and hX∗(·) is a transformation from R
dim(G) to G, defined

as

hX∗(x) := f(X∗ ⊕ x). (2.49)

Note that the re-parametrization makes optimization back to Euclidean space. Based on

the reformulation (2.48), the optimization process is presented in Alg. 2.

The main idea in Alg. 2 is that the state X∗ is represented by the element in the Lie group

while the incremental vector (small change) Δx is represented by the element in the Lie

algebra (homeomorphic to Euclidean space) of the Lie group.



Chapter 2. Mathematical Preliminaries 20

Algorithm 2: Optimization on Lie group

Input: the objective function f(·) and the initial guess X0 ∈ G

Output: the local minimum X∗ ∈ G for f(·)
Process:
X∗ ← X0;
while X∗ does not converge do

determine the incremental vector Δx ∈ R
dim(G) for hX∗(x) at x = 0 by using gradient

descent method (GN, LM,..., etc) ;
X∗ ← X∗ ⊕Δx;

end

Example: Optimization on SO(3)

We use the optimization problem in [13] to illustrate the idea in this section, which is

min
R∈SO(3)

f(R) = min
R∈SO(3)

N∑
i=1

‖Rpi − qi‖2, (2.50)

where pi ∈ R
3 and qi ∈ R

3 (i = 1, 2, 3..., N) are known.

Gradient descent method

According to the previous discussion, we choose g(x) = exp(x) ∈ SO(3) such that

hR∗(x) =

N∑
i=1

‖R∗ exp(x)pi − qi‖2 (2.51)

and

∂hR∗(0) = (∂x

N∑
i=1

‖R∗(I3 + S(x) + o(‖x‖))pi − qi‖2)|x=0

= (−2∂x

N∑
i=1

qT
i R

∗(S(x) + o(‖x‖))pi)|x=0

= (−2∂x

N∑
i=1

qT
i R

∗S(x)pi)|x=0

= 2(∂x

N∑
i=1

qT
i R

∗S(pi)x)|x=0

= 2

N∑
i=1

qT
i R

∗S(pi)

(2.52)
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Alg. 3 provides the gradient descent method for the optimization problem (Eq. 2.50).

Algorithm 3: Solving Eq. 2.50 by using gradient descent method on SO(3)

Input: the objective function f(·) in Eq. 2.50, the initial guess R0 ∈ SO(3) and the step
size d ∈ R

+

Output: the local minimum R∗ ∈ SO(3) for f(·)
Process:
R∗ ← R0 ;
while R∗ does not converge do

n ← ∂hᵀR∗(0) via (2.52) ;
n ← n

‖n‖ ;

determine the incremental vector Δx ∈ R
3: Δx ← −dn;

R∗ ← R∗ exp(Δx);

end

2.6 Factor graph and optimization

Definition 2.9. A factor graph G = (F ,X ) is a bipartite graph, consisting of factor nodes

in F = {fi} and variable nodes X = {xi}. The explanations of notations of factor graph

are given in the following:

• X denotes the set of variables to be estimated;

• Xi ⊆ X denotes the set of variable nodes connected by fi ∈ F ;

• F denotes the set of all functions fi(·);

The inference in the factor graph G refers to the optimization problem below

X ∗ = argmax
X

∏
i

fi(Xi). (2.53)

MAP and NLS

When

fi(Xi) := p(Zi|Xi) (2.54)
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Figure 2.1: An example of factor graph

represents the probability density function of the measurement Zi given Xi, X ∗ becomes

the maximum a posteriori (MAP) estimate, i.e.,

X ∗ = argmax
X

p(X|Z), (2.55)

where Z = {Zi} denotes the set of all measurements.

For the Gaussian case,

fi(Xi) ∝ exp(−1

2
‖hi(Xi, Zi)‖2Σ−1

i
) (2.56)

where

hi(Xi, Zi) ∼ N (0,Σi). (2.57)

is called the error function of the factor fi. Under this condition, the solution of (2.53)

can be computed from the nonlinear least squares optimization problem

X ∗ = argmin
X

∑
i

‖hi(Xi)‖2Σ−1
i
. (2.58)

Therefore, the MAP estimate is the global minimum of the nonlinear least squares (NLS)

optimization problem (2.58).
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Variable Node and Factor Node

Variable Node

A variable node xi ∈ X is regarded as a structure, not required to be a column vector.

Hence, we specify xi a VariableType that is associated with a retraction ⊕:

x ← x⊕ dx (2.59)

where dx ∈ Rm and m = dim(VariableType). The retraction ⊕ will be used in updating

and computing the Jacobians.

Factor Node

As presentation in Section 2.6, for the Gaussian case, a factor node fi ∈ F corresponds to

an error function hi(·, ·). Here we stress that hi(Xi, Zi) ∈ Rdim(hi) is a column vector but

the associated measurement Zi is regarded as a structure. For performing optimization for

(2.58), we need to calculate the following Jacobians:

Hi,i1 =
∂hi(xi1 ⊕ e1,xi2 , · · · ,xiK , Zi)

∂e1
|e1=0

...

Hi,iK =
∂hi(xi1 ,xi2 , · · · ,xiK ⊕ eK , Zi)

∂eK
|eK=0

(2.60)

where Xi = (xi1 ,xi2 , · · · ,xiK ). Note that the retraction ⊕ depends on the VariableType

of xi.
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2.7 The optimization algorithms

Gauss-Newton

Alg. 4 summarizes the Gauss-Newton algorithm for solving the nonlinear least squares

problem

X ∗ = argmin
X

∑
i

‖hi(Xi)‖2Σ−1
i

= argmin
X

‖f(X )‖2
(2.61)

Algorithm 4: Solving Eq. 2.61 by using the Gauss-Newton algorithm.

Input: the initial guess X (0) and the retraction ⊕
Output: the local minimum X ∗

Process:
X ∗ ← X (0) ;
while X ∗ does not converge do

solving the normal equation
HΔxgn = −Fᵀf(X ∗) (2.62)

where F := ∂f(X ∗⊕x)
∂x |x=0 and H = FᵀF.;

Update: X ∗ ← X ∗ ⊕Δxgn;

end

Levenberg-Marquardt and Powell’s Dogleg

The Gauss-Newton algorithm can not guarantee the convengence to the local minimum

even when the initial guess is close to the global minimum [14]. Therefore, Levenberg-

Marquardt (LM) and Powell’s Dogleg (Dogleg) are usually employed in SLAM and VINS.

In LM and Dogleg algorithms, a damping factor and backup actions to Gauss-Newton are

used to control the convergence.

LM solved a damped normal equation

(H+ λI)Δx = −Fᵀf(X ∗) (2.63)
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In Dogleg, the incremental vector Δx is the linear combination of that from Gaussian-

Newton and that of the deepest descend method:

Δx = (1− λ)Δxgn + λΔxdp (2.64)

In LM and Dogleg, λ is a dynamic damping factor. At each iteration, λ would be changed:

if the new error is lower than the previous one, λ would be decreased for the next iteration.

Otherwise, the solution would be reverted and λ would be increased. For more details of

LM and Dogleg, see [15].

2.8 Invariant system and invariant filter

This section introduce the concepts of invariant system and invariant filter, which will be

used in the next Chapter.

Consider a nonlinear system

xn+1 = fn(xn)

zn+1 = h(xn+1)
(2.65)

where xn ∈ S represents the system state at the time step n, zn+1 represents the measure-

ment at the time step n+1 and S is a non-Euclidean space in general. The function fn(·)
is the state transformation function at the time step n, i.e., a mapping from S to S. The

function h(·) is the observation function, i.e., a mapping from S to S′ where S′ is another

non-Euclidean space in general.

Definition 2.10. The system (2.65) is called invariant under the state transformation

T : S → S if zxk = h(xk) is equal to zyk = h(yk) for any k > 0, where y0 = T (x0)

and both {xi} and {yi} follows the dynamics of the system (2.65) i.e., xi+1 = fi(xi),

yi+1 = fi(yi) for i = 1, 2, 3, · · · . Meanwhile, T is called an unobservable transformation

to the system (2.65).

An invariant system is always born with a serious of unobservable transformation {T },
which implies that some information about system state cannot be inferred by the dynam-

ics rule and the historical measurements.
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Definition 2.11. For an invariant system (2.65) with the unobservable transformations

{T }, a filter is called invariant under the unobservable transformations {T } if h(x̂n) =

h(ŷn) where x̂n is the filter’s estimate at the time step n from the initial estimate x̂0, ŷn

is the filter’s estimate at the time step n from the initial estimate ŷ0 for any ŷ0 and x̂0:

ŷ0 = T (x̂0).

The invariance property of a filter can be understood as that the filter can smartly prevent

spurious information. Therefore, a filter with invariance property is expected to have better

performance than a filter without this property. The basic concepts above are based on

deterministic systems. In the next chapter, we will generalize the concepts to a stochastic

system, i.e., the SLAM system.



Chapter 3

Extended Kalman Filter in SLAM

The conventional EKF-SLAM algorithm suffers from inconsistency. Traditionally, the

linearization errors are regarded as the main reason for this phenomenon. In this chapter,

we deeply analyze the inconsistency and find that the absence of invariance to stochastic

rigid body transformation for the conventional algorithm is the fundamental reason. We

also prove that the RI-EKF algorithm can deal with the problem.

3.1 Introduction

The SLAM problem asks whether it is possible for a robot to build a map of an un-

known environment and simultaneously work out its own location within the map, using

information gathered from sensors mounted on the robot. Reliable solutions to SLAM

underpin successful robot deployment in many application domains especially when an

external location reference such as a global positioning system (GPS) is not available. In

EKF-SLAM, the map is represented by a sparse set of point features, and the solution to

SLAM is an estimate of the observed point feature positions and the latest robot pose,

together with the associated uncertainty. EKF has been used extensively in solving the

SLAM problem in the past. The state in EKF-SLAM consists of the current robot pose

and all landmark locations, in contrast to optimization based algorithms where all the pre-

vious robot poses are included in the state vector. However, a limitation of the traditional

27
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EKF based point feature SLAM is the possible estimator inconsistency. Inconsistency

here refers to the fact that the algorithm underestimates the uncertainty of the estimate

leading to an overconfident result. This issue was recognized as early as in 2001 [16] and

then discussed in detail later in [17][18]. This is clearly a limitation of EKF SLAM and

the optimization based algorithms in recent implementations have been widely used due

to their good performance and the efficiency of the modern sparse solvers [19][8]. Some

research to enhance the consistency of EKF SLAM is reported in the literature. Robo-

centric EKF SLAM [2] estimates the location of landmarks in the robot local coordinate

frame. As a result landmark positions to be estimated keep changing although landmarks

are stationary in a fixed global coordinate frame. It has been shown that this robot-centric

formulations lead to better performance in terms of estimator consistency. Guerreiro et

al. [20] also reported a Kalman filter for the SLAM problem formulated in a robocentric

coordinate frame. Besides, it was shown in [1] that the inconsistency in EKF SLAM is

closely related to the partial observability of SLAM problem [21][22]. This insight resulted

in a number of EKF SLAM algorithms which significantly improve consistency, such as the

“First Estimates Jacobian” EKF SLAM [1] or the observability-constrained EKF SLAM

[23][24].

A number of authors have addressed the behaviour of EKF SLAM to examine the con-

vergence properties and derive bounds for the uncertainty of the estimate. In 2001, Dis-

sanayake et al. [25] proved three essential convergence properties of the algorithm under

the assumption of linear motion and observation models, with theoretical achievable lower

bounds on the resulting covariance matrix. In 2006, Mourikis and Roumeliotis [26] pro-

vided an analytical upper bound of the map uncertainty based on the observation noise

level, the process noise level, and the size of the map. In 2007, Huang and Dissanayake

[17] extended the proof of the convergence properties and the achievable lower bounds on

covariance matrix in [25] to the nonlinear case, but under a restrictive assumption that

the Jacobians are evaluated at the ground truth.

Recently, Lie group representation for three-dimensional orientation/pose has become pop-

ular in SLAM (e.g., [6][9]), which can achieve better convergence and accuracy for both

filter based algorithms (e.g., [27][28]) and optimization based algorithms (e.g., [29][30]).
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Moreover, the use of symmetry and Lie groups for observer design has gradually been rec-

ognized (e.g., [31]). The combination of the symmetry-preserving theory and EKF gives

birth to the Invariant-EKF (I-EKF), which makes the traditional EKF possess the same

invariance as the original system by using a geometrically adapted correction term. In [32],

the I-EKF methodology is firstly applied to EKF-SLAM. And then the Right Invariant

Error EKF (called “RI-EKF” in this thesis) for 2D SLAM is proposed in [33], which also

intrinsically uses the Lie group representation, and the improved consistency is proven

based on the linearized error-state model.

Remark 3.1. The extension of RI-EKF to 3D cases is also given in [33]. In this thesis, the

adopted motion model is a bit different from that in [33].

In this chapter, we analyze the convergence and consistency properties of RI-EKF for 3D

case. A convergence analysis for RI-EKF is presented without the unrealistic assumption

“Jacobians evaluated at the ground truth”. Furthermore, it is proven that the output of

the filter is invariant under any stochastic rigid body transformation in contrast to SO(3)

based EKF SLAM algorithm (SO(3)-EKF) that is only invariant under deterministic rigid

body transformation. Implications of these invariance properties on the consistency of the

estimator are also discussed. We also discuss the relationship between these invariance

properties and consistency and show that these properties have significant effect on the

performance of the estimator via theoretical analysis and Monte Carlo simulations.

3.2 Problem statement

The EKF SLAM algorithms focus on estimating the current robot pose and the positions

of all the observed landmarks with the given motion model and the observation model. In

this work, the SLAM problem in 3D scenarios is investigated and the state to be estimated

is denoted by

X =
(
R,p, f1, · · · , fN

)
, (3.1)

where R ∈ SO(3) and p ∈ R
3 are the robot orientation and robot position, f i ∈ R

3 (i =

1, · · · , N) is the coordinate of the landmark i, all described in the fixed world coordinate

frame.
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A general propagation model for a moving robot and static landmarks in 3D scenarios can

be represented by

Xn+1 = f(Xn,un, εεεn)

=
(
Rn exp(wn + εεεwn ),pn +Rn(vn + εεεvn), f

1
n, · · · , fNn

)
,

(3.2)

where un =
[
wᵀ

n vᵀ
n

]ᵀ
∈ R

6 is the odometry, being wn ∈ R
3 and vn ∈ R

3 the angular

increment and linear translation from time n to time n + 1, exp(·) is the exponential

mapping of SO(3) and εεεn =
[
(εεεwn )

ᵀ (εεεvn)
ᵀ
]ᵀ

∼ N (0,ΦΦΦn) is the odometry noise at time

n.

As the robot is likely to observe different sets of landmarks in each time step, the notation

On+1 is used to represent the set that indicates the landmarks observed at time n + 1.

Also by assuming a 3D sensor which provides the coordinate of landmark i in the n+1-th

robot frame, the observation model is given as follows

zn+1 = hn+1(Xn+1, ξξξn+1), (3.3)

where hn+1(Xn+1, ξξξn+1) is a column vector obtained by stacking all entries hi(Xn+1, ξξξ
i
n+1) =

Rᵀ
n+1(f

i
n+1 − pn+1) + ξξξin+1 ∈ R

3 for all i ∈ On+1, ξξξn+1 ∼ N (0,ΨΨΨn+1) is the observation

noise vector obtained by stacking all entries ξξξin+1 ∼ N (0,ΨΨΨi
n+1) (i ∈ On+1). The covari-

ance matrix ΨΨΨn+1 of observation noise is a block diagonal matrix consisting of all ΨΨΨi
n+1

(i ∈ On+1).

3.3 The invariant EKF SLAM algorithm

In this section, RI-EKF based on the general EKF framework is briefly introduced. In

the general EKF framework, the uncertainty of X is described by X = X̂ ⊕ e, where

e ∼ N (0,P) is a white Gaussian noise vector and X̂ is the mean estimate of X. The

notation ⊕ is commonly called retraction in differentiable geometry [34] and it is designed

as a smooth mapping such that X = X⊕ 0 and there exists the inverse mapping  of ⊕:

e = X X̂. The process of propagation and update based on the general EKF framework
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Algorithm 5: The general EKF framework (RI-EKF)

Input: X̂n, Pn, un, zn+1;
Output: X̂n+1, Pn+1;
Propagation:
X̂n+1|n ← f(Xn,un,0), Pn+1|n ← FnPnF

ᵀ
n +GnΦnG

ᵀ
n ;

Update:
S ← Hn+1Pn+1|nH

ᵀ
n+1 +ΨΨΨn+1, K ← Pn+1|nH

ᵀ
n+1S

−1;

y ← hn+1(X̂n+1|n,0)− zn+1;

X̂n+1 ← X̂n+1|n ⊕Ky, Pn+1 ← (I−KHn+1)Pn+1|n;

has been summarized in Alg. 5, which is very similar to the standard EKF. Due to

different uncertainty representation (compared to the standard EKF), the Jacobians of

the general EKF framework in Alg. 5 are obtained by: Fn = ∂f(X̂n⊕e,un,0)�f(X̂n,un,0)
∂e |e=0,

Gn = ∂f(X̂n,un,ε)�f(X̂n,un,0)
∂ε |ε=0, Hn+1 =

∂hn+1(X̂n+1|n⊕e,0)

∂e |e=0.

Technically, we have Xn+1 ≈ X̂n+1|n⊕ e, where e ∼ N (Ky,Pn+1) after the update stage,

which results in Xn+1 ≈ (X̂n+1|n⊕Ky)⊕er and er ∼ N (0,Jn+1Pn+1J
ᵀ
n+1), where Jn+1 =

∂((X̂n+1|n⊕Ky)�(X̂n+1|n⊕e))

∂e |e=Ky. Hence, we should have one step Pn+1 ← Jn+1Pn+1J
ᵀ
n+1.

However, we find out that the use of the step Pn+1 ← Jn+1Pn+1J
ᵀ
n+1 affects the stochastic

invariance property (Section 3.5) and have negative contributions to the performance in

terms of both accuracy and consistency. Thus this step is turned off.

Remark 3.2. In the conventional EKF, J is identity matrix due to the adopted error (in

the Euclidean space).

RI-EKF

RI-EKF follows the general EKF framework summarized in Alg. 5. The state space of

RI-EKF is modeled as a Lie group G(N). The background knowledge about Lie group

G(N) is provided in Chapter 2.
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The choice of ⊕

The retraction ⊕ of RI-EKF [35] is chosen such that

X = X̂⊕ e := exp(e)X̂

= (exp(eθ)R, exp(eθ)p+ Jl(eθ)ep,

exp(eθ)f1 + Jl(eθ)e
1, · · · , exp(eθ)fN + Jl(eθ)e

N )

(3.4)

where exp is the exponential mapping on the Lie group G(N). More details and the

Matlab code of the algorithms are available at https : //github.com/RomaTeng/EKF −
SLAM − on−Manifold. X ∈ G(N) is the actual pose and landmarks, X̂ ∈ G(N) is the

mean estimate and the uncertainty vector e =
[
eᵀθ eᵀp (e1)ᵀ · · · (eN )ᵀ

]ᵀ
∈ R3N+6

follows the Gaussian distribution N (0,P).

Remark 3.3. In contrast to RIEKF-SLAM in [33], we use the uncertainty representation

instead of the error-form to present the new filter’ differences from the conventional EKF.

In this way, the retraction ⊕ will be naturally employed in the update stage.

Jacobian matrices

The Jacobians of the propagation step of RI-EKF are

Fn = I3N+6, Gn = adX̂n
Bn, (3.5)

where Bn =

⎡
⎢⎢⎢⎣

−Jr(−wn) 03,3

−S(vn)Jr(−wn) I3

03N,3 03N,3

⎤
⎥⎥⎥⎦. The adjoint operation ad and the right Ja-

cobian Jr(·) are given in Chapter 1. The Jacobian matrix Hn+1 of the update step is

obtained by stacking all matrices Hi
n+1 for all i ∈ On+1, where

Hi
n+1 =

[
03,3 R̂ᵀ

n+1|n · · · −R̂ᵀ
n+1|n 03,3(N−i)

]
. (3.6)

For a general observation model that is a function of the relative position of the landmark,

the Jacobian matrix Hn+1 can be calculated by the chain rule.
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Landmark initialization

Here we provide the method to augment the state X ∈ G(N) and adjust the covariance

matrix P when the robot observes a new landmark with the observation z ∈ R3. For

brevity, the mathematical derivation is ignored here and the process to augment the state

is summarized in Alg. 6, where MN :=
[
03,3 I3 03,3N

]ᵀ
and Ψ is the covariance

matrix representing the noise level in the new landmark observation.

Algorithm 6: Landmark Initialization of RI-EKF

Input: X̂, P, z;
Output: X̂new, Pnew;
Process:
f̂N+1 = p̂+ R̂z ∈ R

3

X̂new ← (X̂, f̂N+1) ∈ G(N + 1);

Pnew ←
[

P PMN

Mᵀ
NP R̂ΨR̂ᵀ +Mᵀ

NPMN

]
.

Discussion

The general EKF framework proposed in [33] allows more flexible uncertainty represen-

tation, compared to the standard EKF. From Alg. 6, one can see that a general EKF

framework based filter can be designed via a choice of retraction ⊕. For exam-

ple, the retraction ⊕ used in the 2D traditional EKF SLAM algorithm is the standard

addition. A natural extension of the 2D traditional EKF SLAM algorithm is SO(3)-

EKF, in which the state space is modeled as SO(3) × R
3+3N and the retraction ⊕ is

X = X̂ ⊕ e = (exp(eθ)R̂, ep + p̂, e1 + f̂1, · · · , eN + f̂N ). Similarly, SE(3)-EKF can be

obtained by modeling the state space as SE(3)× R
3N .

Another noticeable point is that two general EKF framework based filters with different

choice of ⊕ may have the same Jacobians (Fn,Gn,Hn). For example, if the retraction

⊕ of RI-EKF is changed such that X̂ ⊕ e = (exp(eθ)R̂, exp(eθ)p̂ + ep, · · · , exp(eθ)f̂N +

eN ), the resulting filter (Pseudo-RI-EKF) has the same Jacobians as that of RI-EKF but

their performances are significantly different, showing that the choice of retraction ⊕ has

significant effect on the behavior of the general EKF framework based filter. In the next
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section, we will compare the behavior of RI-EKF with SO(3)-EKF via the theoretical

proofs for the convergence property of RI-EKF and two simple examples.

3.4 Convergence analysis of RI-EKF SLAM algorithm

The general expression for the covariance matrices evolution of RI-EKF cannot be easily

obtained. Therefore, two representative scenarios are considered: (i) the robot is station-

ary, and (ii) the robot then moves one step. The convergence results of RI-EKF SLAM

algorithm in the two scenarios are presented and proven, under the condition that Jaco-

bians are evaluated at the latest estimate. Hence the results are significant extension to

similar theorems in [17] where Jacobians evaluated at the true state are assumed to be

available.

The general setting analyzed in the following subsections is as follows. The robot starts

at point A with the initial condition (X̂0,P), where P is covariance matrix and X̂0 =

(R̂, p̂, f̂1, · · · , f̂N ) (N landmarks have been observed). The covariance matrix of odometry

noise is ΦΦΦ and the covariance matrix of one landmark observation noise is Ψ. In the

following subsections, MN :=
[
03,3 I3 03,3N

]ᵀ
, L := PMN and W := Mᵀ

NPMN .

The odometry and the covariance of odometry noise are 06,1 and 06,6, respectively when

robot remains stationary.

Scenario A: Robot remains stationary

Theorem 3.4. If the robot remains stationary at point A and does not observe any of the

previously seen landmarks but observes a new landmark for k times, the mean estimate

of robot pose and the N landmarks and their related uncertainty remain unchanged (via k

times process of propagation and update of RI-EKF). The covariance matrix of the state

when the new landmark is integrated becomes Pk =

⎡
⎣ P L

Lᵀ R̂ΨΨΨR̂ᵀ
k +W

⎤
⎦. When k → ∞,

the covariance matrix becomes

PA
∞ =

⎡
⎣ P L

Lᵀ W

⎤
⎦ . (3.7)
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Proof. See Appendix A.1.
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Figure 3.1: Illustration of Theorem 3.4. In this case, robot is stationary and always
only observes the “new” landmark. Left: The error (unit: degree) in robot orientation
w.r.t. the ground truth as estimated by RI-EKF and SO(3)-EKF. Right: det(Pθ) esti-

mated by RI-EKF and SO(3)-EKF.

Theorem 3.1 can be interpreted as that the covariance matrix (w.r.t. robot pose) in RI-

EKF will not be reduced by observing the “new” landmark when robot keeps stationary,

which corresponds to a fact that the observations to previously unseen landmark do not

convey any new information on the location of the robot. However, SO(3)-EKF does not

have this good convergence property.

We illustrate the results of Theorem 3.1 using the following scenario. The simulated robot

remains stationary and always observes the “new” landmark (the covariance of observation

noise is not zero ). The “new” landmark is observed multiple times (a small loop closure)

and the standard deviation of observation noise is set as 5% of robot-to-landmark distance

along each axis. The initial covariance matrix Pθ ∈ R
3×3 of robot orientation is set as

1
2I3. Fig. 3.1 presents results of a simulation of this scenario. The rotation angle relative

to the initial orientation and det(Pθ) from RI-EKF correctly infers that the robot remains

stationary and the orientation uncertainty remains unchanged. In contrast, SO(3)-EKF

updates the robot orientation and furthermore predicts that the orientation uncertainty

decreases as observations continue to be made, both of which are clearly erroneous and

therefore leads to estimator inconsistency.

Theorem 3.1 can be easily extended to a multiple landmarks scenario.
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Corollary 3.5. If the robot is stationary at point A and only observes m new landmark k

times, the estimate of pose from RI-EKF does not change while the covariance matrix of

the estimate becomes Pk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P L L · · · L

Lᵀ Qk W · · · W

Lᵀ W Qk
. . .

...
...

...
. . .

. . . W

Lᵀ W · · · W Qk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, where Qk = R̂ΨΨΨR̂ᵀ

k +W. When

k → ∞, the covariance matrix becomes

PA
∞ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P L L · · · L

Lᵀ W W · · · W

Lᵀ W W
. . .

...
...

...
. . .

. . . W

Lᵀ W · · · W W

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.8)

Scenario B: Robot takes a step after a stationary period

Consider the condition that the robot moves one step after being stationary for a long

period of time while observing new landmarks.

Theorem 3.6. Assume Ψ = φI3 (φ ∈ R
+). If the robot remains stationary at point

A, does not observe any of the previously seen landmarks but observes m new landmarks

for k = ∞ times and then takes a step to B using control action u =
[
wᵀ vᵀ

]ᵀ
and

observes the same set of landmarks l times, then the covariance matrix from RI-EKF

becomes PB
l = PA

∞ + P̄B
l , where PA

∞ is given in (3.8), Ψ̄ΨΨ = φI3m and

P̄B
l = adX̂A

E(Φ̃ΦΦ
−1

+ lH̃ᵀΨ̄ΨΨ
−1

H̃)−1Eᵀadᵀ
X̂A

, (3.9)
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where Ψ̄ΨΨ = φI3m and the covariance matrix of the odometry noise is ΦΦΦ. In (3.9), X̂A is

the estimated state at the point A, Φ̃ΦΦ = BΦΦΦBᵀ is a positive definite matrix and

B =

⎡
⎣ −Jr(−w) 03,3

−S(v)Jr(−w) I3

⎤
⎦ ,

E =

⎡
⎣ I6

03(N+m),6

⎤
⎦ , H̃ = HadX̂A

E,

(3.10)

where H is obtained by stacking all matrices Hi =
[
03,3 I3 03,3(N+i−1) −I3 03,3(m−i)

]
.

When l tends to infinity, the covariance matrix becomes PB
∞ = PA

∞ under the condition

that there are three landmarks non-coplanar with the robot position.

Proof. See Appendix A.2.

From Theorem 3.3, one can see that the estimate of RI-EKF follows the expectation that

“the only effect of the observations made at point B is to reduce the additional robot

uncertainty generated from the odometry noise. The observations made at point B cannot

reduce the uncertainty of the landmark further if the robot had already observed the

landmark many times at point A.” [17]

We illustrate the results of Theorem 3.3 using the following scenario. Initially the robot is

stationary at point A and continually observes ten previously unseen landmarks. It moves

one step to point B after 200 such observations and then remains stationary for 200 more

time steps while observing the same set of landmarks. The initial covariance matrix of

robot pose is set as non-zero. In Fig. 3.2, we adopt log(det(Pr)) as the extent of the

uncertainty w.r.t. robot pose, where Pr ∈ R
6×6 is the covariance matrix of the robot pose.

In Fig. 3.2, the pose uncertainty from RI-EKF remains unchanged and increases at time

200 when robot moves one step due to odometry noise as expected. Further landmark

observations at point B while remaining stationary gradually reduce the pose uncertainty.

In contrast, the pose uncertainty from SO(3)-EKF falls below the initial value indicating

incorrect injection of information, leading to an overconfident estimate of uncertainty.
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Figure 3.2: Illustration of Theorem 3.6. The y-axis is log(det(Pr)) that represents
the pose uncertainty. Pr is the covariance matrix of robot pose. Robot remains stationary

from time 1 to time 200, moves one step at time 200 and then remains stationary.

3.5 Consistency analysis

As seen in the previous section, RI-EKF SLAM algorithm meets the expectation that

observing new landmarks should not help in reducing the robot pose uncertainty [18][20],

while SO(3)-EKF contradicts this. This section further investigates the reason for the

phenomenon above.

Unobservability and invariance property

This subsection first reviews the unobservability of SLAM formulation (3.1)–(3.3), which

is strongly related to the consistency issues of various SLAM estimation algorithms. The

earliest concept of observability for nonlinear systems is proposed in [36]. From the view-

point of nonlinear systems, the SLAM formulation (as a system for the actual state X) is

not locally observable [36], as understood in [23][37]. In the following, we will mathemati-

cally describe the unobservability of SLAM formulation (3.1)–(3.3) in terms of stochastic

rigid body transformation.
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Definition 3.7. For SLAM problem formulation (3.1)–(3.3), a stochastic rigid body trans-

formation Tg is

Tg(X) = (exp(Θ1)R̄R, exp(Θ1)R̄p+ T̄+Θ2,

exp(Θ1)R̄f1 + T̄+Θ2, · · · , exp(Θ1)R̄fN + T̄+Θ2),
(3.11)

where X is given in (3.1), g = (R̄, T̄,Θ), R̄ ∈ SO(3), T̄ ∈ R
3 and Θ =

[
Θᵀ

1 Θᵀ
2

]ᵀ
∈ R

6

is white Gaussian noise with covariance Σ̄ΣΣ. When the covariance Σ̄ΣΣ = 06,6, this trans-

formation degenerates into a deterministic rigid body transformation. When g =

(I3,03,1,Θ), this transformation degenerates into a stochastic identity transformation.

It can be easily verified that the output (observations) of the system (3.1)–(3.3)

is invariant to any stochastic rigid body transformation Tg: for any two initial condi-

tions, X0 and Y0 := Tg(X0), we have hn(Xn, ξξξn) = hn(Yn, ξξξn) for all n ≥ 0, where

Xk = f(Xk−1,uk−1, εεεk−1) and Yk = f(Yk−1,uk−1, εεεk−1) (k = 1, · · · , n − 1). Therefore,

SLAM formulation (3.1)–(3.3) is unobservable in terms of stochastic rigid body transfor-

mation. In the following, the invariance to stochastic rigid body transformation for the

EKF framework based filter of the SLAM formulation will be mathematically described.

Definition 3.8. The output (estimated observations) of a general EKF framework

based filter is invariant under any stochastic rigid body transformation Tg if for any two

initial estimates (X̂0,P0) and (Ŷ0,Py0), where Ŷ0 = Tg(X̂0) and Py0 = Q̄1P0Q̄
ᵀ
1 +

Q̄2Σ̄ΣΣQ̄
ᵀ
2 in which

Q̄1 =
∂Tĝ(X̂0 ⊕ e) Tĝ(X̂0)

∂e

∣∣∣∣∣
e=0

,

Q̄2 =
∂Tg(X̂0) Tĝ(X̂0)

∂Θ

∣∣∣∣∣
Θ=0

,

(3.12)

and ĝ = (R̄, T̄,0), we have hn(X̂n,0) = hn(Ŷn,0) for all n > 0. The notations X̂n and

Ŷn above represent the mean estimate of this filter at time n by using the same input

(odometry and observations) from time 0 to n, from the initial conditions (X̂0,P0) and

(Ŷ0,Py0), respectively.

As shown in Def. 3.4 and Def. 3.5, the invariance to stochastic rigid body transformation

can be divided into two properties: 1) the invariance to deterministic rigid body



Chapter 3. Extended Kalman Filter in SLAM 40

transformation and 2) the invariance to stochastic identity transformation. The

results about the invariance of some general EKF framework based filters are summarized

in Theorem 3.6 and TABLE 3.1.

Theorem 3.9. The output of RI-EKF is invariant under stochastic rigid body trans-

formation. The output of SO(3)-EKF is only invariant under deterministic rigid body

transformation. The output of Pseudo-RI-EKF is only invariant under stochastic identity

transformation.

Proof. See Appendix A.3.

Remark 3.10. From the proof of Theorem 3.6, one can see that the uncertainty repre-

sentation of RI-EKF can be linearly (seamlessly) transformed under a deterministic rigid

body transformation, which makes RI-EKF invariant under deterministic rigid body trans-

formation. In addition, we also show that the invariance property to stochastic identity

transformation directly depends on the Jacobians Fn and Hn.

Table 3.1: The invariance property of the general EKF framework based
filters. DRBT/SRBT is short for “deterministic/stochastic rigid body transformation”

and SIT is short for “stochastic identity transformation”.

Filters DRBT SIT SRBT

RI-EKF Yes Yes Yes
Pseudo-RI-EKF No Yes No
SO(3)-EKF Yes No No

Consistency and invariance

The unobservability in terms of stochastic rigid body transformation is a fundamental

property of SLAM formulation. Therefore a consistent filter (as a system for the es-

timated state X̂) should maintain this unobservability, i.e., the (estimated) output

of the estimator is invariant under any stochastic rigid body transformation.

Essentially speaking, the invariance to deterministic rigid body transformation can be

interpreted that the estimate does not depend on the selection of the global frame and

the invariance to stochastic identity transformation can be understood that the uncer-

tainty w.r.t the global frame does not affect the estimate. Hence, consistency for the

general EKF framework based filter is tightly coupled with the invariance to



Chapter 3. Extended Kalman Filter in SLAM 41

stochastic rigid body transformation. If a filter does not have this property, then

unexpected information will be generated by the selection of the global frame or the un-

certainty w.r.t. the global frame, which results in inconsistency (overconfidence). One can

see that SO(3)-EKF, not invariant to stochastic identity transformation, produces clearly

illogical estimate (the pose uncertainty is reduced by the new landmarks) in the two cases

of Section 3.4 while RI-EKF, invariant to stochastic rigid body transformation, produces

the expected estimate.

Remark 3.11. In [1] [23], a framework for designing an observability constrained filter is

proposed. The keypoint of the observability constrained filter is evaluating the Jacobians

Fi and Hi (i ≥ 0) at some selected points (instead of the latest estimate). such that the

right nullspace of the local observability matrix M0:∞ := [Hᵀ
0 (H1F0)

ᵀ (H2F1)
ᵀ . . . ]

ᵀ

is of rank 3, corresponding to 3 DOFs of the rigid body transformation in 2D. In this way,

the output of the filter would be invariant under the stochastic identity transformation

(interested readers can see a similar proof in Theorem 4.8). On the other hand, this

filter models the state space as SO(2) × R
2+2N and hence the output is invariant under

deterministic rigid body transformation (see the property of SO(3)-EKF shown in Theorem

3.6). Finally, the resulting filter indeed has the invariance property to stochastic rigid body

transformation. However, FEJ-EKF and OC-EKF does not evaluate the Jacobians at the

latest estimates and thus their convergence property may be not comparable to that of

RI-EKF.

Remark 3.12. In [33] the observability analysis is performed on the linearized error-state

model from the viewpoint of information matrix. Our insight is in a different viewpoint

that an estimator should mimic the unobservability (to stochastic rigid transformation) of

the original system, which makes our analysis more intuitive and general. In addition, our

analysis also links probabilistic framework and control theory, which is missed in [35] and

[23].

3.6 Simulation results

In order to validate the theoretical results, we perform Monte Carlo simulations and com-

pare RI-EKF to SO(3)-EKF, Robotcentric-EKF, the First Estimates Jacobian EKF SLAM
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algorithm (FEJ-EKF), Pseudo-RI-EKF and SE(3)-EKF under conditions of different noise

levels. The original Robocentric-EKF and FEJ-EKF are proposed in 2D SLAM. For com-

parison, we extend these into 3D.

• SO(3)-EKF uses the retraction

X = X̂⊕ e = (exp(eθ)R̂, ep + p̂, e1 + f̂1, · · · , eN + f̂N ) (3.13)

• Presenting Robotcentric-EKF in the world frame, the used retraction in Robotcentric-

EKF is equivalent to

X = X̂⊕ e = (exp(eθ)R̂, ep + p̂, R̂e1 + f̂1, · · · , R̂eN + f̂N ) (3.14)

• Pseudo-RI-EKF uses the retraction

X = X̂⊕e = (exp(eθ)R, exp(eθ)p+ep, exp(eθ)f1+e1, · · · , exp(eθ)fN +eN ) (3.15)

Note that Pseudo-RI-EKF has the same Jacobians of RI-EKF when their Jacobians

are evaluated at the same point.

• SE(3)-EKF uses the retraction

X = X̂⊕ e = (exp(eθ)R̂, ep + Jl(eθ)p̂, e
1 + f̂1, · · · , eN + f̂N ) (3.16)

Settings

Consider that a robot moves in a trajectory (contained in a 50m × 40m × 20m cubic)

which allows sufficient 6-DOFs motion. In this environment, 300 landmarks are randomly

generated around the specified robot trajectory. The observations and odometry with

noises are randomly generated by this specific trajectory and the simulated robot always

observes the landmarks in the sensor range (less than 20m and 120◦FoV). In every simu-

lation, the number of steps is 500 (about 8 loops), the landmarks are incrementally added

into the state vector and the initial covariance of robot is set as zero matrix. For each
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condition (different noise level), 100 Monte Carlo simulations are performed. The sim-

ulation results are summarized in Table 3.2, where σod is the odometry noise level and

σob is the observation noise level such that the covariance matrices of odometry and ob-

servation and is ΦΦΦn = σ2
oddiag(|un,1|2, · · · , |un,6|2) and ΨΨΨi

n = σ2
obdiag(|Zi

n,1|2, · · · , |Zi
n,3|2),

where Zi
n = [Zi

n,1,Z
i
n,2,Z

i
n,3]

ᵀ = Rᵀ
n(f i − pn) is the ground truth of the coordinates of

landmark i relative to the robot pose n. The root mean square (RMS) error and the

average normalized estimation error squared (NEES) are used to evaluate accuracy and

consistency, respectively.

Results and analysis

As shown in Table 3.2, the performance of Pseudo-RI-EKF is also poor performing. These

results can be understood that Pseudo-RI-EKF is not invariant under deterministic rigid

body transformation, which are proven in Theorem 3.6. SO(3)-EKF, not invariant to

stochastic identity transformation, is also not good performing in terms of consistency.

An interesting point in Table 3.2 is the performance of Robocentric-EKF. The uncertainty

representation w.r.t landmarks in Robocentric-EKF refers to the uncertainty of the co-

ordinates of landmarks relative to robot frame. In this way, Robocentric-EKF has the

invariance property to stochastic rigid body transformation. However, Robocentric-EKF

does not perform well under the condition of high noise (σod = 5%, σob = 5%) because it

incurs greater linearization errors in the propagation step due to the coordinate transfor-

mation applied to the landmarks, as compared to SO(3)-EKF, FEJ-EKF and RI-EKF.

RI-EKF, invariant to stochastic rigid body transformation, is the best performing filter

as shown in Table 3.2. Similar results for 2D cases have been reported in [33]. On the

other hand, it is discussed in Remark 3.11 that FEJ-EKF also has the invariance property

to stochastic rigid body transformation but it performs less well than RI-EKF. It can be

explained that FEJ-EKF uses a less accurate estimate as linearization point for evaluating

the Jacobians while RI-EKF can always safely employ the latest estimate in Jacobians.
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Table 3.2: Performance evaluation

σod = 1%, σob = 1% RI-EKF FEJ-EKF SO(3)-EKF Robocentric-EKF Pseudo-RI-EKF
RMS of position(m) 0.25 0.29 0.32 0.31 0.65

RMS of orientation(rad) 0.0058 0.0071 0.0065 0.0060 0.0081
NEES of orientation 1.02 1.12 1.34 1.04 2.91

NEES of pose 1.01 1.14 1.35 1.15 10
σod = 5%, σob = 5% RI-EKF FEJ-EKF SO(3)-EKF Robocentric-EKF Pseudo-RI-EKF
RMS of position(m) 1.16 1.24 2.0 2.4 3.90

RMS of orientation(rad) 0.027 0.029 0.043 0.041 0.041
NEES of orientation 1.0 1.05 3.7 3.0 1.77

NEES of pose 1.01 1.13 3.1 7.5 92

Discussion: RI-EKF vs. FEJ-EKF

From TABLE 3.2, we have known that RI-EKF and FEJ-EKF outperforms other filters

because both RI-EKF and FEJ-EKF are invariant to stochastic rigid body transformation

and have the accurate Jacobian w.r.t feature uncertainty. In order to invest the superiority

of RI-EKF relative to FEJ-EKF, we conduct another simulations in which unexpected

consequences are included.

In order to invest the superiority of RI-EKF over FEJ-EKF, we conduct another Monte-

Carlo simulations with the same settings in Section 3.6. Then we enforcedly set the

mean estimate of robot position (for RI-EKF and FEJ-EKF) as
[
1 −4 5

]
and keep

the covariance unchanged at the 50-th time step such that the estimates of two filters

are erroneous at the 50-th time step. Note that the robot has observed more than 50%

landmarks at the 50-th time step.

It is observed in Fig. 3.3 that FEJ-EKF cannot work well from the 50-th time step in which

the covariance does not reflect the actual uncertainty. In contrast, RI-EKF can quickly

recover estimates and shows much better convergence. The fact can be understood that

the invariance of FEJ-EKF will be affected by some unexpected consequences. Once the

invariance of FEJ-EKF has been polluted, the filter suffers from the convergence issue

because the Jacobians are evaluated at the artificial points instead of the latest points.

Note that RI-EKF can always keep invariance property without the need of using historical

records to compute the Jacobian, which makes the filter have better convergence and

consistency properties.
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Figure 3.3: Average RMS of robot position and orientation by RI-EKF and
FEJ-EKF from 50 Monte Carlo results. The mean estimates of the two filters are

modified at the 50-th step. Noise level: σod = 1%, σob = 1%.

Remark 3.13. Without the availability of 3D OC-EKF, we have also tested the 2D OC-

EKF under the condition that the covariance matrix is artificially modified. It is observed

that the 2D OC-EKF still suffers from the similar issue as FEJ-EKF in these cases. In

all, both OC-EKF and FEJ-EKF requires a good initial estimate and their invariance is

fragile to unexpected cases while the invariance RI-EKF automatically keeps unchanged

and the filter is more robust under the condition.

3.7 Summary

In this chapter, the convergence properties and consistency of a Lie group based invariant-

EKF SLAM algorithm (RI-EKF) were analyzed. For convergence, several theorems with

proofs were provided for two fundamental cases. For consistency, we proposed that con-

sistency of a filter is tightly coupled with the invariance property. We also prove that the
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output of RI-EKF is invariant under stochastic rigid body transformation. Monte Carlo

simulation results demonstrate that the invariance property has an important impact on

the consistency and accuracy of the estimator. In the next chapter, we will focus on the

consistency issue of the EKF-VINS algorithm from the invariance viewpoint.



Chapter 4

Extended Kalman Filter in VINS

Like the conventional EKF-SLAM algorithm, the conventional EKF-VINS algorithm is

also inconsistent. In this chapter, we first investigate the inconsistency of the conventional

EKF-VINS algorithm and then we propose the RIEKF-VINS algorithm to alleviate the

inconsistency.

4.1 Introduction

VINS has been of significant interest to the robotics community in the past decade, as

the fusion of information from a camera and an IMU provides an effective and affordable

solution for navigation in GPS-denied environment. VINS algorithms can be classified

into two categories, namely, filter based and optimization based. Although there has been

recent progress in the development of optimization based algorithms [6][5], the EKF based

solutions are still extensively used (e.g., [3][38][39][40]) mainly as a result of their efficiency

and simplicity.

It is well known that conventional EKF based SLAM algorithms [16][17] suffer from in-

consistency. Similarly it has been shown that the conventional EKF VINS algorithm

(ConEKF-VINS) using point features in the environment is also inconsistent resulting in

the under-estimation of the state uncertainty. This is closely related to the partial observ-

ability of these systems because conventional EKF algorithms do not necessarily maintain

47
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the partial observability [17][41] due to the linearization errors, which is the main rea-

son for the overconfident estimates. This insight has been a catalyst for a number of

observability-constrained algorithms (e.g., [42][37][43]), that explicitly enforces the unob-

servability of the system along specific directions via the modifications to the Jacobian

matrices. Although the observability-constraint algorithms improve the consistency and

accuracy of the estimator to some extent [44], extra computations in the update stage

are required. Bloesch et al. in [39] propose a robot-centric formulation to alleviate the

inconsistency. Under the robot-centric formulation, the filter estimates the locations of

landmarks in the local frame instead of that in the global frame. As a result, the system

becomes fully observable so that this issue is inherently avoided. However, this formula-

tion can result in larger uncertainty and extra computations in the propagation stage, as

discussed in [23][45].

Recently, the manifold and Lie group representations for three-dimensional orientation/-

pose have been utilized for solving SLAM and VINS. Both filter based algorithms (e.g.,

[45][27][28]) and optimization based algorithms (e.g., [6][29]) can benefit from the manifold

representation and better accuracy can be achieved. The use of manifold does not only

allow much easier algebraic computations (e.g., the computation of the Jacobian matrices)

and avoid the representation singularity [12], but also have inspired a number of researchers

to rethink the difference between the state representation and the state error/uncertainty

representation, which is highlighted in [6][45]. In fact, this insight is also intrinsically

understood in the well-known preintegration visual-inertial algorithm [4] although the al-

gorithm does not use the manifold representation. From the viewpoint of control theory,

Aghannan and Rouchon in [31] propose a framework for designing symmetry-preserving

observers on manifolds by using a subtle geometrically adapted correction term. The fusion

of the symmetry-preserving theory and EKF has resulted in the invariant-EKF (I-EKF),

which possesses the theoretical local convergence property [46] and preserves the same

invariance property of the original system. I-EKF based observers have been used in the

inertial navigation [47] and the 2D EKF-SLAM [32][33]. Our recent work [45] presented

in Chapter 3 also proves convergence and improved consistency of a 3D I-EKF SLAM

algorithm.
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In this chapter, we argue that the absence of the invariance affects the consistency of

ConEKF-VINS estimates. There is a correspondence between this and the observability

analysis reported in the previous literatures (e.g., [40][37]). The invariance here refers to

“the output of the filter is invariant under any stochastic unobservable transformation”.

For the VINS system, the unobservable transformation is translation and rotation about

the gravitational direction. Adopting the I-EKF framework, we propose the Right In-

variant error EKF VINS algorithm (RIEKF-VINS) and prove that it has this invariance

property. We then integrate RIEKF-VINS into the well-known visual-inertial odometry

framework, i.e., the multi-state constraint Kalman filter (MSCKF) and remedy the in-

consistency of the MSCKF algorithm. We show using extensive Monte Carlo simulations

the proposed method outperforms the original MSCKF, especially in terms of the consis-

tency. A preliminary real-world experiment also demonstrates the improved accuracy of

the proposed method.

This chapter is organized as follows. Section 4.2 recalls the VINS system and gives an

introduction of the ConEKF-VINS under the general continuous-discrete EKF. Section 4.3

introduces the concept invariance, analyzes the consistency of the general EKF algorithm

from the invariance theory and proves the absence of the invariance of ConEKF-VINS.

Section 4.4 proposes RIEKF-VINS, proves its invariance and extends it to the MSCKF

framework. Section 4.5 reports both the simulation and experiment results. Finally,

Section 4.6 summaries this chapter. Appendix B provides some necessary formulas used

in the proposed algorithms and the proofs of the theorems.

Notations: To simplify the presentation, the vector transpose operators are omitted for

the case A =
[
aᵀ,bᵀ, · · · , cᵀ

]ᵀ
.

4.2 Background knowledge

In this section, we first provide an overview of the VINS system and then describe the

ConEKF-VINS algorithm based on the framework of the general continuous-discrete EKF.
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The system state

The VINS system is used to estimate the state denoted as the tuple below

X = (R,v,p,bg,ba, f) (4.1)

where R ∈ SO(3) and p ∈ R
3 are the orientation and position of the IMU sensor, respec-

tively, v ∈ R
3 is the IMU velocity expressed in the global frame, bg ∈ R

3 is the gyroscope

bias, ba ∈ R
3 is the accelerometer bias and f ∈ R

3 is the coordinates of the landmark in

the global frame. Note that only one landmark is included in the system state (4.1) for a

more concise notation.

The continuous-time motion model

The IMU measurements are usually used for state evolution due to its high frequency.

The continuous-time motion model of the VINS system is given by the following ordinary

differential equations (ODEs):

Ẋ = f(X,u,n)

= (RS(w − bg − ng),R(a− ba − na) + g,v,nbg,nba,0)
(4.2)

where w ∈ R
3 is the gyroscope reading, a ∈ R

3 is the accelerometer reading, g ∈ R3 is the

global gravity vector (constant), and n =
[
ng,nbg,na,nba

]
is the system noise modeled as

a white Gaussian noise with the covariance matrix Q: E(n(t)n(τ)ᵀ) = Qδ(t − τ). Note

that u = (w,a,g) is the time-varying system input and the IMU noise covariance Q is a

constant matrix as prior knowledge.

The discrete-time measurement model

The visual measurement as the system output is discrete due to the low frequency of

camera. After data association and rectification, the visual measurement of the landmark
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at time-step k ∈ N is available and given by

zk = h(Xk,nz) = h(Rᵀ
k(f − pk)) + nz (4.3)

where nz ∼ N (0,Vk) is the measurement noise. Note that h(·) := π ◦ TCI , where π

denotes the projection function and TCI is the transformation from the IMU frame to the

camera frame.

The general continuous-discrete EKF

Being a natural extension of the standard continuous-discrete EKF, the general continuous-

discrete EKF allows more flexible uncertainty representation by the following:

X = X̂⊕ e and e ∼ N (0,P) (4.4)

where (X̂,P) can be regarded as the mean estimate and the covariance matrix, e is a

white Gaussian noise vector and the notation ⊕ is the retraction.

Once determining the retraction ⊕, the process of the general continuous-discrete EKF

is similar to conventional continuous-discrete EKF, as summarized in Alg. 7. For prop-

agation, we first calculate the time-varying Jacobians matrices F(t) and G(t) from the

linearized error-state propagation model:

ė = F(t)e+G(t)n+ o(‖e‖‖n‖). (4.5)

We then compute the state transition matrix ΦΦΦn := ΦΦΦ(tn+1, tn) that is the solution at time

tn+1 of the following ODE:
d

dt
ΦΦΦ(t, tn) = F(t)ΦΦΦ(t, tn) (4.6)

with the condition ΦΦΦ(tn, tn) = I at time tn. The matrix Qd,n can be computed as

Qd,n =

∫ tn+1

tn

ΦΦΦ(tn+1, τ)G(τ)QGᵀ(τ)ΦΦΦᵀ(tn+1, τ)dτ. (4.7)
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Algorithm 7: The general continuous-discrete EKF

Input: X̂n, Pn, utn:tn+1 , zn+1;

Output: X̂n+1, Pn+1;
Propagation:
Turn off the system noise and compute X̂n+1|n with X̂n and the ODEs (4.2);
Pn+1|n ← ΦΦΦnPnΦΦΦ

ᵀ
n +Qd,n;

Update:

Hn+1 =
∂h(X̂n+1|n⊕e,0)

∂e |e=0;
S ← Hn+1Pn+1|nH

ᵀ
n+1 +Vn+1, K ← Pn+1|nH

ᵀ
n+1S

−1;

z̃ ← h(X̂n+1|n,0)− zn+1;

X̂n+1 ← X̂n+1|n ⊕Kz̃, Pn+1 ← (I−KHn+1)Pn+1|n;

ConEKF-VINS

ConEKF-VINS [41] can be regarded as an instance of the general EKF algorithm (Alg.

7). In ConEKF-VINS, the uncertainty representation is defined as

X = X̂⊕ e

=
(
R̂ exp(eθ), v̂ + ev, p̂+ ep, b̂g + ebg, b̂a + eba, f̂ + ef

) (4.8)

where e =
[
eθ, ev, ep, ebg, eba, ef

]
∼ N (0,P). The calculation of matrices ΦΦΦn, Qd,n and

Hn+1 are omitted here, which can be straightforwardly calculated in the sense of the

uncertainty representation (4.8). Please refer to [41] for more details.

4.3 Invariance and consistency

In this section, we first introduce the concepts of observability, unobservable transforma-

tion and invariance. We then perform the consistency analysis for the general EKF filter

and prove that ConEKF-VINS does not have the expected invariance property. Moreover,

we also discuss the relationship between invariance and consistency.
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Invariance of the VINS system

The concept observability of nonlinear systems can be traced to the early literature [36].

As discussed in the literatures [40][48][49], the state of the VINS system is not locally

observable. To make it more intuitive, we introduce the unobservability of the VINS system

based on the unobservable transformation rather than the observability rank criterion

reported in [36].

Recall the invariance concept introduced in Section 2.8. A state transformation T is

called an unobservable transformation for a system if the output of the system is

invariant under T . The system is called to be unobservable if there exists a non-trivial

unobservable transformation.

Definition 4.1. For the VINS system (4.1)-(4.3), a state transformation T is an unobserv-

able transformation if for arbitrary ti, we have h(X(tn),0) = h(Y(tn),0) for all tn ≥ ti,

where X(·) and Y(·) denote the two state trajectories that follow the ODEs (4.2) (fed

by the same system input) with the conditions X(ti) and Y(ti) = T (X(ti)) at time ti,

respectively.

Remark 4.2. One can see that an unobservable system is always accompanied by an unob-

servable transformation. And the invariance to the unobservable transformation is another

description of the system unobservability.

Definition 4.3. For the system state (4.1), a stochastic transformation of transla-

tion and rotation (about the gravitational direction) TS is a mapping:

TS(X) = (exp(g(ε1 + θ1))R, exp(g(ε1 + θ1))v,

exp(g(ε1 + θ1))p+ θθθ2 + εεε2,

bg,ba, exp(g(ε1 + θ1))f + θθθ2 + εεε2)

(4.9)

where S = (θθθ, εεε), θ1 ∈ R, θθθ2 ∈ R
3, θθθ =

[
θ1, θθθ2

]
∈ R

4, ε1 ∈ R, εεε2 ∈ R
3 and εεε =

[
ε1, εεε2

]
∈ R

4

is a white Gaussian noise with the covariance ΣΣΣ. TS degenerates into the deterministic

transformation TD (D = (θθθ,0)) under the condition ΣΣΣ = 0. TS degenerates into a

stochastic identity transformation under the condition θθθ = 0, .
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Theorem 4.4. The stochastic transformation TS is an unobservable transformation to the

VINS system (4.1)–(4.3).

Proof. Denote xn as the system state at the time step n, propagated from the initial state

x0. Denote yn as the system state at the time step n, propagated from the initial state

y0. It is easily to verify that yn = TS(xn) if y0 = TS(x0). Obviously, h(yn,0) = h(xn,0)

if y0 = TS(x0).

Remark 4.5. Theorem 4.4 corresponds to the conclusion in [40][50] that the IMU yaw angle

and the IMU position are (locally) unobservable.

The invariance of the general EKF based filter

The general EKF based filter is not a linear system for the estimated state X̂ and hence

we argue that the observability analysis for linear systems cannot be directly applied.

However, the invariance of the filter can be naturally described as the following.

Definition 4.6. The output of a general EKF framework based filter (Alg. 7) for the VINS

system is invariant under a stochastic unobservable transformation TS if the following

condition is satisfied: for any two estimates (X̂i,Pi) and (Ŷi,Pyi) = (TS(X̂i),MiPiM
ᵀ
i +

NiΣΣΣN
ᵀ
i ) at time-step i, we have h(X̂n,0) = h(Ŷn,0) for all n ≥ i, where X̂n and Ŷn

represent the mean estimate of this filter at time-step n by using the same input u from

time ti to tn, from the conditions (X̂i,Pi) and (Ŷi,Pyi) at time-step i, respectively. Note

that here

Mi :=
∂TD(X̂i ⊕ e) TD(X̂i)

∂e

∣∣∣∣∣
e=0

(4.10)

and

Ni :=
∂TS(X̂i) TD(X̂i)

∂εεε

∣∣∣∣∣
εεε=0

. (4.11)

As shown in Def. 4.3 and Def. 4.6, the invariance to any stochastic transformation TS
can be divided into two properties: 1) the invariance to any deterministic transfor-

mation TD and 2) the invariance to any stochastic identity transformation. The

following two theorems analytically provide the methods to determine whether a general

EKF based filter has the two invariances properties above.
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Theorem 4.7. The output of the general EKF based filter for the VINS system is invariant

under any deterministic unobservable transformation if and only if for each deterministic

unobservable transformation TD, there exists an invertible matrix WD (unrelated to X)

such that

TD(X⊕ e) = TD(X)⊕WDe. (4.12)

Proof. See Appendix B.1.

Theorem 4.8. The output of the general EKF based filter for the VINS system is invariant

under any stochastic identity transformation if and only if

Hn+i+1ΦΦΦn+iΦΦΦn+i−1 · · ·ΦΦΦiNi = 0, ∀ n, i ≥ 0. (4.13)

Proof. See Appendix B.2.

By using the theorems above, we can easily determine the invariance properties of ConEKF-

VINS.

Theorem 4.9. ConEKF-VINS satisfies (4.12) but does not satisfies (4.13). Hence, ConEKF-

VINS has the invariance to any deterministic unobservable transformation TD but not the

invariance to stochastic identity transformations. In all, the output of ConEKF-VINS is

not invariant under stochastic unobservable transformation TS.

Proof. For ConEKF-VINS, the invariance to the deterministic unobservable transforma-

tion TD can be verified by using Theorem 4.7. The absence of invariance of ConEKF-VINS

to stochastic identity transformations can be verified by using Theorem 4.8.

Remark 4.10. The previous literatures [41][42][37][43] directly perform the observability

analysis of the filter on the linearized error-state model. Theorem 4.7 and Theorem 4.8

elegantly clarify the relationship between the filter invariance and the linearized error-

state model and prove that the observability analysis in previous literatures refers to the

invariance to stochastic identity transformation in stead of the invarance to stochastic

unobservable transformation.
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Consistency and invariance

The unobservability in terms of stochastic unobservable transformation TS is a funda-

mental property of the VINS system. Therefore a consistent filter (as a system for the

estimated state X̂) is expected to mimic this property, i.e., the output of a consistent

estimator should be invariant under any stochastic unobservable transforma-

tion. The invariance to any deterministic transformation TD essentially implies that the

estimates from the filter do not depend on the selection of the (initial) mean estimate of

the unobservable variables, i.e., the IMU yaw angle and the IMU position. Similarly, the

invariance to any stochastic identity transformation essentially implies that the uncertainty

w.r.t these unobservable variables does not affect the subsequent mean estimates. We can

conclude that the consistency of a filter is tightly coupled with the invariance

to stochastic unobservable transformations. A filter lack of the invariance property

will gain spurious information and produce inconsistent (overconfident) estimates. Note

that ConEKF-VINS is a typical example due to the absence of the invariance property.

4.4 The proposed method: RIEKF-VINS

In this section, we propose RIEKF-VINS by using a new uncertainty representation and

prove that it has the expected invariance properties. We then apply RIEKF-VINS to the

MSCKF framework.

The uncertainty representation and Jacobians

RIEKF-VINS also follows the framework presented in Alg. 7. The uncertainty represen-

tation of RIEKF-VINS is defined as below

X =X̂⊕ e

=(exp(eθ)R̂, exp(eθ)v̂ + Jr(−eθ)ev,

exp(eθ)p̂+ Jr(−eθ)ep, b̂g + ebg, b̂a + eba,

exp(eθ)f̂ + Jr(−eθ)ef )

(4.14)



Chapter 4. Extended Kalman Filter in VINS 57

where e =
[
eθ, ev, ep, ebg, eba, ef

]
∼ N (0,P) and the right Jacobian operator Jr(·) is given

in (2.21).

Remark 4.11. The design of the retraction (4.14) is motivated by RIEKF-SLAM in which

the retraction of the landmarks location is coupled with the incremental vector of the

orientation.

Note that this uncertainty representation intrinsically employs the Lie group so that the

recent result (Theorem 2 of [46]) can be used to easily compute the Jacobians F and G of

the propagation

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03,3 03,3 03,3 −R̂ 03,3 03,3

S(g) 03,3 03,3 −S(v̂)R̂ −R̂ 03,3

03,3 I3 03,3 −S(p̂)R̂ 03,3 03,3

03,3 03,3 03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3 03,3 03,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.15)

and

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R̂ 03,3 03,3 03,3

S(v̂)R̂ 03,3 R̂ 03,3

S(p̂)R̂ 03,3 03,3 03,3

03,3 I3 03,3 03,3

03,3 03,3 03,3 I3

S(f̂)R̂ 03,3 03,3 03,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.16)

The measurement Jacobian is

Hn+1 = ∂h(f̂n+1,I)
[
03,6 −R̂ᵀ

n+1|n 03,6 R̂ᵀ
n+1|n

]
(4.17)

where f̂n+1,I = R̂ᵀ
n+1|n(f̂n+1|n − p̂n+1|n) ∈ R

3.

Invariance property

Theorem 4.12. The output of RIEKF-VINS is invariant under any stochastic unobserv-

able transformation TS defined in (4.9).
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Proof. For the retraction defined in (4.14), we have TD(X⊕ e) = TD(X)⊕WDe for all X

and e, where

WD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δR 03,3 03,3 03,3 03,3 03,3

03,3 δR 03,3 03,3 03,3 03,3

S(θθθ2)δR 03,3 δR 03,3 03,3 03,3

03,3 03,3 03,3 I3 03,3 03,3

03,3 03,3 03,3 03,3 I3 03,3

S(θθθ2)δR 03,3 03,3 03,3 03,3 δR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.18)

and δR := exp(gθ1). According to Theorem 4.7, the output of RIEKF-VINS is invariant

under any deterministic transformation TD. On the other hand, for all i, we have

ΦΦΦi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3 ∗ 03,3 ∗ ∗ 03,3

ΔtiS(g) ∗ 03,3 ∗ ∗ 03,3
Δt2i
2 S(g) ∗ I3 ∗ ∗ 03,3

03,3 ∗ 03,3 ∗ ∗ 03,3

03,3 ∗ 03,3 ∗ ∗ 03,3

03,3 ∗ 03,3 ∗ ∗ I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.19)

and

Ni =
∂TS(X̂i) TD(X̂i)

∂εεε

∣∣∣∣∣
εεε=0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g 03,3

03,1 03,3

03,1 I3

03,1 03,3

03,1 03,3

03,1 I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.20)

where Δti := ti+1−ti and the elements denoted by the notation ∗ are omitted here because

these do not have any contribution to the computation of ΦΦΦiNi. Note that ΦΦΦiNi = Ni+1

andHi+1Ni+1 = 0 for all i and then we can easily verify that RIEKF-VINS satisfies (4.13).

According to Theorem 4.8, the output of RIEKF-VINS is invariant under any stochastic

identity transformation.

Remark 4.13. The observability-constrained filters proposed in [41][42][37][43] artificially
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modify the transition matrix ΦΦΦn and the measurement Jacobian Hn+1 to meet the con-

dition (4.13) such that they have the invariance to stochastic identity transformation. As

a comparison, our proposed RIEKF-VINS employs the novel uncertainty representation

(4.14) such that the resulting matrices ΦΦΦn and Hn+1 can naturally and elegantly meet the

condition (4.13).

Application to MSCKF

A drawback of ConEKF-VINS and RIEKF-VINS is the expensive cost of maintaining the

covariance matrix for a number of landmarks. Especially, RIEKF-VINS suffers from the

complexity quadratic to the number of landmarks in the propagation stage. On the other

hand, the well known MSCKF [3] that has the complexity linear to the number of land-

marks inherits the inconsistency of ConEKF-VINS. One can see that the uncertainty w.r.t

the global yaw has effects on the mean estimates in the MSCKF algorithm, which is a

drawback. Due to the reasons above, we integrate RIEKF-VINS into the MSCKF frame-

work such that the modified algorithm has the linear complexity and better consistency.

For convenience, we call the modified filter as RI-MSCKF. In this subsection, we do not

state all details of RI-MSCKF but point out the main modifications on top of MSCKF.

System state and retraction

The system state Xn at time-step n in RI-MSCKF is

Xn = (X̄n,Ct1 , · · · ,Ctj , · · · ,Ctk , · · · ,Ctm) (4.21)

where X̄n = (Rn,vn,pn,bg,n,ba,n) denotes the IMU state at time-step n,Cti = (Rc
ti ,p

c
ti) ∈

SE(3) denotes the camera pose at the time ti (ti < tn). According to the IMU state un-

certainty in RIEKF-VINS, the uncertainty representation of Xn are defined as below

Xn = X̂n ⊕ e

= ( ˆ̄Xn ⊕imu eI , Ĉt1 ⊕pose e
1
c , · · · , Ĉtm ⊕pose e

m
c )

(4.22)
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where e =
[
eI , ec

]
∈ R

15+6m ∼ N (0,Pn), eI ∈ R
15 and ec =

[
e1c , · · · , emc

]
∈ R

6m. Note

that ⊕imu and ⊕pose are given in Appendix B.

Propagation

The mean propagation Xn+1|n of RI-MSCKF also follows that of MSCKF while the co-

variance Pn+1|n is calculated by

Pn+1|n = Φ̄ΦΦ
ᵀ
nPnΦ̄ΦΦn + Q̄d,n (4.23)

where Φ̄ΦΦn = blkdiag(ΦΦΦI
n, I6m), Q̄d,n = blkdiag(QI

d,n,06m,6m). Note that ΦΦΦI
n and QI

d,n are

the matrices from the first 15 rows and 15 columns of ΦΦΦn and Qd,n, respectively, where

ΦΦΦn and Qd,n are the matrices of RIEKF-VINS.

State augment

Once a new image is captured at time-step n + 1, we augment the system state and the

covariance matrix as the following:

X̂n+1|n ← (X̂n+1|n, Ĉtn+1) (4.24)

Pn+1|n ←

⎡
⎣I15+6m

J

⎤
⎦Pn+1|n

⎡
⎣I15+6m

J

⎤
⎦
ᵀ

(4.25)

where Ĉtn+1 = (R̂n+1|nΔR, R̂n+1|nΔp+ p̂n+1|n) ∈ SE(3) is the mean estimate of camera

pose at the time tn+1, (ΔR,Δp) ∈ SE(3) denotes the transformation from the camera to

the IMU. Due to the new uncertainty representation (4.22), the Jacobian J needs to be

changed as below

J =

⎡
⎣ I3 03,3 03,3 03,6 03,6m

03,3 03,3 I3 03,6 03,6m

⎤
⎦ . (4.26)
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Update

Note that the landmark uncertainty is coupled with the IMU pose in RIEKF-VINS. In

RI-MSCKF, we describe the landmark uncertainty coupled with the camera pose Ctj that

first captures the landmark within the current system state Xn as below

(Ĉtj , f̂)⊕ ējc = (Ĉtj ⊕pose e
j
c, e

j
θ f̂ + Jr(−ejθ)ef ) (4.27)

where ējc = [ejc, ef ] = [ejθ, e
j
p, ef ] ∈ R9. From the uncertainty representations (4.22) and

(4.27), we can compute the linearized measurement model for the visual measurement at

time-step k (t1 ≤ tk ≤ tn). With a slight abuse of notations, the linearized measurement

model can be represented as below

π(R̂cᵀ
tk
(f̂ − p̂c

tk
))− zk ≈ ∂πkH

∗
xken+1|n + ∂πkH

∗
fkef +Vk

z̃k ≈ ∂πkH
∗
xken+1|n + ∂πkH

∗
fkef +Vk

z̃k ≈ Hxken+1|n +Hfkef +Vk

(4.28)

where ∂πk := ∂π(R̂cᵀ
tk
(f̂ − pc

tk
)), zk is the measurement captured at the time tk. Here the

matrices H∗
fk and H∗

xk are given by

H∗
fk = R̂cᵀ

tk
(4.29)

and

H∗
xk =

[
· · · · · · · · · A · · · B · · · · · ·

]
(4.30)

where A =
[
−R̂cᵀ

tk
S(f̂),03,3

]
and B =

[
R̂cᵀ

tk
S(f̂),−R̂cᵀ

tk

]
. Due to the absence of the covari-

ance of landmark, RI-MSCKF also uses the null-space trick on (4.28) and the resulting

residual equation

H⊥
fkz̃k ≈ H⊥

fkHxken+1|n +H⊥
fkVk

z̃′k ≈ H′
xken+1|n +V′

k

(4.31)

is employed for update.

Remark 4.14. RI-MSCKF does not need any extra computation to maintain the expected
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invariance while the observability-constraint algorithms need to explicitly project the mea-

surement Jacobians onto the observable subspace.

4.5 Simulation and experiment

Simulation Result

In order to validate the theoretical contributions in this chapter, we perform 50 Monte

Carlo simulations and compare RI-MSCKF with MSCKF for a Visual-Inertial Odometry

(VIO) scenario without loop closure.

Figure 4.1: The simulated trajectory (blue circles) and landmarks (green circles).

Consider that a robot equipped with an IMU and a camera moves in a specific trajectory

(average speed is 3m/s) with the sufficient 6-DOFs motion, shown as the blue circles

in Fig. 4.1. In this environment, 675 landmarks are distributed on the surface of a

cylinder with radius 6.5m and height 4m shown as the green circles in Fig. 4.1. Under the

simulated environment, the camera is able to observe sufficiently overlapped landmarks
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Figure 4.2: 50 Monte Carlo simulation results. The proposed RI-MSCKF outperforms
the original MSCKF, both in terms of accuracy (RMS) and consistency (NEES).

between consecutive frames. The standard deviation of camera measurement is set as 1.5

pixels. The IMU noise covariance Q is set as diag(0.0082I3, 0.0004
2I3, 0.019

2I3, 0.05
2I3)

(the International System of Units). In each round of Monte Carlo simulation, the initial

estimate is set as the ground truth. And the measurements from IMU and camera are

generated from the same trajectory with random noises. The maximal number of camera

poses in the system state of RI-MSCKF and MSCKF is set as 10. For robust estimation,

we use the landmarks for the update step only when the landmarks are captured more

than 5 times by the cameras within the current system state.

The results of 50 Monte Carlo simulations are plotted in Fig. 4.2. We use the root

mean square error (RMS) and the average normalized estimation error squared (NEES)

to evaluate both accuracy and consistency, respectively. Note that the ideal NEES of

orientation is 3 and that of pose is 6. As shown in Fig. 4.2, RI-MSCKF clearly outperforms

MSCKF especially for the consistency. This phenomenon can be explained as RI-MSCKF

has the invariance property to stochastic translation and rotation about the gravitational

direction and thus it can prevent the unexpected information gain when compared to

MSCKF. In addition, the RMS of orientation and position of both filters increase with the

time because the loop closure in this simulation is turned off.
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Preliminary Experiment

In order to validate the performance of the proposed RI-MSCKF algorithm under practical

environments, we evaluate the algorithm on Euroc dataset [51] which is collected on-board

a macro aerial vehicle in the indoor environments. Without a delicately designed front-

end which handles the feature extraction and tracking perfectly, we selected sequence

V2 01 easy in this section to demonstrate the performance of the RI-MSCKF algorithm

where the features can be tracked relatively easily and thus making it useful to compare

our algorithm against the MSCKF algorithm.

In this preliminary experiment, we designed a front-end based on ORB-SLAM [52] while

only keeping the feature tracking sub-module. Without knowing the map points, new

keyframe is inserted once nframes = 5 frames have passed since the insertion of the last

keyframe. One sample image with the tracked landmarks is shown in Fig. 4.4. The

uncertainty of the IMU sensor is set as instructed in the dataset. The maximal number of

the camera poses in the system state is set as 10.

2
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Figure 4.3: The estimated trajectories from MSCKF and RI-MSCKF using the Euroc
dataset sequence V2 01 easy.

Fig. 4.3 shows the estimated trajectories using MSCKF and RI-MSCKF. As shown in

Fig. 4.3 and indicated in Fig. 4.5, RI-MSCKF shows the similar accuracy of position
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Figure 4.4: A sample image with landmarks in the experiment. The green dots represent
the tracked key points and the red dots represents the new key points.

compared with MSCKF but also avoids the drift in the last few frames of the sequence,

however, RI-MSCKF shows significant better results in terms of orientation estimation

accuracy compared with the original MSCKF algorithm. Even without a robust front-end

to handle feature tracking perfectly, this preliminary experiment is able to demonstrate

the superiority of RI-MSCKF compared with MSCKF algorithm in terms of the estimation

accuracy.

4.6 Summary

In this chapter, we proposed the RIEKF-VINS algorithm and stressed that the consistency

of a filter is tightly coupled with the invariance property. We proved that RIEKF-VINS

has the expected invariance property while ConEKF-VINS does not satisfy this property.

We also provided the methods to check whether a general EKF based filter for the un-

observable system has the invariance properties. After theoretical analysis, we integrated

RIEKF-VINS into the MSCKF framework such that the resulting RI-MSCKF algorithm

can achieve better consistency relative to the original MSCKF. Monte Carlo simulations

illustrated the significantly improved performance of RI-MSCKF, especially for the con-

sistency. The real-world experiments also validated its improved accuracy.
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Figure 4.5: The RMS of orientation and position estimate fromMSCKF and RI-MSCKF
using the Euroc dataset sequence V2 01 easy.



Chapter 5

Optimization in SLAM

Our goal in this chapter is to investigate this overlooked invariance property of the op-

timization based SLAM algorithm. The invariance property refers to the value of the

cost function of the SLAM formulation is invariant under the rigid body transformation.

Exploiting this invariance property can help to speed up the optimization process by

reducing the number of iterations needed for converging to a locally optimal solution. Un-

fortunately, the conventional method using the naive retraction does not use the property.

In this chapter, we propose a method that the estimate after each iteration is invariant

under the rigid body transformation.

5.1 Introduction

The conventional EKF-SLAM algorithm has two major drawbacks. The first one is the

possible inconsistency estimates due to the absence of invariance to stochastic rigid body

transformation, which can be alleviated by using the novel retraction (e.g., RIEKF-SLAM)

or enforcing the Jacobians (e.g., first estimates Jacobian EKF). However, the second draw-

back cannot be easily avoided–the covariance matrix or information matrix is increasingly

dense due to marginalization, which leads to high computational cost.

The current de-facto approach formulates the back-end of SLAM as a nonlinear least

squares form, also being a MAP estimation problem, in which factor graph is used to

67
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inference the interdependence among node variables (robot poses and features). Further-

more, the appearance of the modern sparse solvers, such as g2o, Ceres and GTSAM is also

a catalyst for the popularity of the nonlinear least squares form.

In this chapter, we point out an overlooked property of SLAM that distinguishes it from a

generic nonlinear least squares problem. The cost function value of SLAM is invariant un-

der stochastic rigid body transformation, which corresponds to the invariance of the SLAM

system in Chapter 3. On the other hand, the Newton-based method (e.g., Gauss-Newton,

Levenberg-Marquart and Powell’s Dogleg) for solving the nonlinear least squares always

require multiple iterations to obtain the global/local minimum. Therefore, we propose

a simple algorithm that exploits the invariance property of SLAM by designing a novel

retraction while maintaining the same computational complexity compared to the stan-

dard method. Our algorithm can be used together with two Newton-based iterative solver,

Gauss-Newton and Powell’s Dogleg. Our results suggest that using the novel retraction

leads to a fast and reliable convergence as compared to the standard method.

5.2 SLAM Formulation

The EKF-SLAM sequentially estimate the system state by using the motion model to

predict and the observation model to update. As comparison, Graph SLAM processes all

measurements taken during a trajectory simultaneously to obtain an estimate.

State

Technically, the state X in Graph SLAM refers to all robot poses and the locations of all

landmarks, expressed in the global frame:

X = (x1, · · · ,xN , f1, · · · , fL)

= (xi, fl)
(5.1)

where xi = (R,p) ∈ SE(3) denotes the robot pose at time-step i and fj denotes the

location of the landmark l.
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Factors

Graph SLAM usually includes two types of factors: the odometry factor and the general

landmark factor.

• Odometry factor The odometry factor describes the relative pose between two

consequent robot poses, which corresponds to the motion model in EKF-SLAM.

The error function of odometry factor for robot pose i and robot pose i+ 1 is

g(xi,xi+1) = log(xiuix
−1
i+1) (5.2)

with the information matrix IMi, where ui ∈ SE(3) is the measured relative pose.

• General landmark factor The general landmark factor provides the relationship

between robot pose and landmark, which corresponds to the observation model in

EKF-SLAM. The error function of visual factor for robot pose i and landmark l is

h(xi, fl) = h̃(Rᵀ
i (fl − pi), zil) (5.3)

with the information matrix IMil. Note that the function h(·, ·) represents a general

case. For example, if we use the camera, h̃(Rᵀ
i (fl − pi), zil) = π(Rᵀ

i (fl − pi))− zil.

Nonlinear least squares form

With odometry factors and general landmark factors, the MAP estimate of SLAM can be

given by

X∗ = argmin
X

‖f(X)‖2 = argmin
X

∑
i

‖g(xi,xi+1)‖2IMi
+

∑
i,l

‖h(xi, fl)‖2IMil (5.4)

The Newton-based methods are used to solve the nonlinear least squares problem (Eq. 5.4),

which need to linearize f(X) ≈ f(X(n)) + Fe(n) where X(n) denotes the estimate after n

iterations. Note that the Jacobian matrix F depends on the user-defined retraction ⊕,
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namely,

F =
∂f(X(n) ⊕ e)

∂e
|e=0 (5.5)

The Gauss-Newton method for solving the optimization problem (5.4) is summarized in

Alg. 8.

Algorithm 8: Solving Eq. 5.4 by using the Gauss-Newton Method

Input: the initial guess X(0)

Output: the local minimum X∗

Process:
n ← 0;
while X(n) does not converge do

H ← FᵀF;
solving the normal equation He(n) = −Fᵀf(X(n));
retract: X(n+1) ← X(n) ⊕ e(n);
n ← n+ 1;

end

X∗ ← X(n);

Definition 5.1. For SLAM problem (5.4), a rigid body transformation Tg, associated

with g ∈ SE(3), is a mapping

Tg(X) = (gxi,gfl). (5.6)

5.3 Discussion for invariance

For the SLAM problem, all measurement from sensors can only provide relative informa-

tion instead of global information. This property encodes the invariance to rigid body

transformation.

Theorem 5.2. The cost function of the SLAM problem (5.4) is invariant under any rigid

body transformation Tg. And we have

f(X) = f(Tg(X)). (5.7)
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Proof.

f(Tg(X)) = ‖g(Tg(xi), Tg(xi+1))‖2IMi
+

∑
i,l

‖h(Tg(xi), Tg(fl))‖2IMil

=
∑
i

‖g(xi,xi+1)‖2IMi
+

∑
i,l

‖h(xi, fl)‖2IMil

= f(X)

(5.8)

The theorem above mathematically describes a fact that the SLAM problem (5.4) is up to

a rigid body transformation, i.e., there are infinite global minima for the nonlinear least

squares (5.4): if X∗ is one global minima, Tg(X∗) would also be a global minimum for any

arbitrary g ∈ SE(3). Therefore, we usually choose a pose as an anchor and then perform

optimization by using Gauss-Newton (Levenberg-Marquardt/Powell’s Dogleg).

Naturally there is a question: is the estimate in each iteration also invariant under rigid

body transformation when using Newton-based method to optimize? Let us strictly de-

scribe this question. Given two initial guesses X(0) and Y(0) = Tg(X(0)), the estimates

after n iterations of a Newton-based method will be X(n) and Y(n). Can we verify

Y(n) = Tg(X(n)) or Y(n) �= Tg(X(n))? Before providing the answer for this question,

let us highlight the significance of this invariance property. An intuition is that solving

a nonlinear least squares for SLAM problem is like finding a path from the foot of the

mountain (initial guess) to the top of the mountain (global minimum). Obviously, we hope

that a method for determining the optimal path is geometric and physical and does not

necessarily depend on the parameterization. In the SLAM problem, the measurements do

not contain any global information that is only passed from the fixed value of x1. There-

fore we also expect that the choice of the fixed value of x1 also should have no any actual

impact on the inference in each iteration when using Newton-based method. Otherwise

the meaningless and spurious information will be introduced such that optimization needs

more iterations or is easier to get stuck in a local minimum.

We know the degree of freedom of SLAM problem is 6, corresponding to an unobservable

transformation–rigid body transformation. Another question is: can we fully decouple
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the unobservable transformation Tg when performing retraction step? If not, the conver-

gence of the estimation process would be affected by this spurious information when using

Newton-based methods. In fact, the unobservable transformation can be decoupled when

the null space of the Jacobian matrix F := ∂f(X⊕x)
∂x |x=0 is invariant.

One can see that the Newton-based methods always need to calculate the Jacobian F that

is related to the user-defined retraction ⊕. Thus the chosen ⊕ is indeed related to the

invariance property. The following is the related theorem.

Theorem 5.3. For the SLAM problem (5.4), given two initial guess X(0) and Y(0) =

Tg(X(0)), the estimates X(n) and Y(n) from Gauss-Newton are invariant under rigid body

transformation, namely, Y(n) = Tg(X(n)) for arbitrary g ∈ SE(3) if and only if there is a

matrix Qg such that

Tg(X⊕ e) = Tg(X)⊕Qge. (5.9)

If the estimates are from Levenberg-Marquart, we have Y(n) �= Tg(X(n)) in general. In

addition, the estimates from Dogleg and the null space of the Jacobian matrix FX :=

∂f(X⊕x)
∂x |x=0 are invariant if and only if

N :=
∂Tεεε(X)X

∂εεε

∣∣∣∣
εεε=0

(5.10)

does not depend on X, where Tεεε = (exp(εεε1), εεε2) ∈ SE(3) represents a small rigid body

transformation.

Proof. Here we just need to check X(1) and Y(1). Consider the case (5.9) is satisfied.

When using Gauss-Newton,

Y(1) = Y(0) ⊕ e(0)y

= Y(0) ⊕ (−(Fᵀ
Y(0)FY(0))−1Fᵀ

Y(0)f(Y
(0)))

= Y(0) ⊕ (−(Q−ᵀ
g Fᵀ

X(0)FX(0)Q−1
g )−1Q−ᵀ

g Fᵀ
X(0)f(X

(0)))

= Tg(X(0))⊕ (Qge
(0)
x )

= Tg(X(0) ⊕ e(0)x )

= Tg(X(1))

(5.11)
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Similarly, the invariance under Dogleg can be proved. However, the invariance when using

LM cannot be guaranteed in general. When using LM,

Y(1) = Y(0) ⊕ e(0)y

= Y(0) ⊕ (λI+HY(0))−1Fᵀ
Y(0)f(Y

(0))

= Tg(X(0))⊕ (λI+Q−ᵀ
g HX(0)Q−1

g )−1Q−ᵀ
g Fᵀ

X(0)f(X
(0))

�= Tg(X(0))⊕ (Qge
(0)
x )

�= Tg(X(1))

(5.12)

From the theorem above, one can see the invariance property can be held only when using

Gauss-Newton or Powell’s Dogleg and the retraction ⊕ satisfying (5.9).

Let us recall the conventional retraction ⊕c as below

X⊕c e = (exp(ei)xi, fl + el), (5.13)

Note that the update of the landmark is independent of that of robot pose. Based on

Theorem 5.9, it is easy to verify that for the SLAM problem (5.4), the whole process of

estimate is not invariant under any rigid body transformation when using the retraction

⊕c and Levenberg-Marquart/Dogleg.

5.4 An invariant retraction

To achieve the invariance property, we propose “Gauss-Newton/Dogleg + the retrac-

tion ⊕p ”. In the proposed retraction, each landmark is coupled with a robot pose. If

landmark l is first seen by the robot i, we choose the robot pose i as the “anchor” of the

landmark l. our proposed retraction is defined as below

X⊕p e = (exp(ei)xi, exp(e
r
i )fl + Jr(−eri )el), (5.14)
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where ei =

⎡
⎣eri
epi

⎤
⎦ ∈ R

6.

Theorem 5.4. For the SLAM problem (5.4), the whole process of estimate is invariant

under rigid body transformation when using the retraction ⊕p and Gauss-Newton/Dogleg.

5.5 Simulation results

In this section we report the performance of the proposed method on a synthetic case under

different noise levels. To show the importance of the invariance property, we perform some

simulations and compare our proposed invariant solver “ GN/DL + ⊕p ” to the solver

“LM+⊕p ” and the solver “LM/DL+⊕c ”.

100 Monte Carlo simulations are performed using the configuration as in Section 3.6. All

solvers are initialized using odometry data.

Table 5.1 summarizes the results obtained under different noise levels. As expected, all

solvers tend to converge to local minima when the noise increases; a good initial guess is

still important for the convergence. Nevertheless, according to Table 5.1 one can see

• The proposed invariant solver “DL+⊕p” significantly outperforms the solver “LM+⊕p”

that is not invariant under rigid body transformation.

• The proposed invariant solver “GN/DL+⊕p” significantly outperforms the solver

“LM/DL+⊕c” that is not invariant under rigid body transformation.

The proposed back-end, namely, “GN/DL+⊕p” leads to a faster and more reliable con-

vergence than others.

5.6 Summary

In this chapter, we extended the concept of invariance into the optimization framework for

the SLAM problem. We also investigated on the lack of invariance of the algorithm using
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Noise Level Solver iterglobal nlocal

σ = 5%

LM+⊕c 19 18
DL+⊕c 15 10
GN+⊕p 7 12
DL+⊕p 8 0
LM+⊕p 20 18

σ = 10%

LM+⊕c 43 47
DL+⊕c 35 37
GN+⊕p 15 6
DL+⊕p 10 1
LM+⊕p 25 24

Table 5.1: Results from solvers under different noise levels. iterglobal denotes
the average iterations to converge to the global minimum; nlocal is the number of diverge

or converging to a local minima from a total of 100 simulation runs.

the commonly used retraction and proved that the invariance property can be held when

using a novel retraction and Gauss-Newton/Dogleg. Monte Carlo simulations showed the

convergence can be improved when using this method. In the next chapter, we will focus

on the formulation of the VINS problem under the optimization framework.



Chapter 6

Optimization in VINS

While RIEKF-VINS can improve the performance of the conventional EKF-VINS, the

(Factor Graph) optimization based algorithms for SLAM and VINS in recent implemen-

tations have been widely used due to their good performance and the efficiency of the

modern sparse solvers. In this chapter, we analytically derive a novel invariant IMU factor

motivated by the linearity of the error-state propagation of RI-EKF.

6.1 Introduction

In this chapter, we derive an invariant IMU factor for the VINS problem. Firstly, we formu-

late the vehicle state (orientation, position, linear velocity) in Lie group G(1) (introduced
in Section 2.4) and describe the uncertainty in the tangent space. Then we derive that

given IMU biases, the dynamics of the error vector between actual states and estimated

states, in a short time interval can be safely approximated by a time-varing linear system

with white Gaussian noise. In the optimization process, the time-varing IMU biases are

also considered and we provide a unifying method to analytically calculate the Jacobians

with respect to the vehicle state and IMU biases.

The main contribution is that we elegantly transform the VINS estimation problem from a

highly nonlinear system into a time-varying linear system in the viewpoint of optimization

while we also carefully deal with the IMU noises and IMU biases. In this way, our method

76
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does not require a specific integration method (e.g., Euler integration), which allows more

flexible operations. On the other hand, the linear dynamics avoids repeating integration

after updating the state, which improves the computational efficiency.

6.2 Problem Formulation

IMU Measurement Model

Graph optimization allows repeated linearization while the EKF based filter methods only

allows once linearization in the update stage. Thus, graph optimization typically outputs

more accurate estimates than the EKF based filter method by iteratively considering all

measurements at each step.

The IMU state can be represented by a tuple, i.e.,

X = (R,p,v,bg,ba) (6.1)

where (R,p) ∈ SE(3) denotes the IMU pose,

v := Rᵀṗ ∈ R
3 (6.2)

denotes the IMU velocity expressed in the local frame, bg(t) ∈ R
3 and bg(t) ∈ R

3 are the

time-varying IMU biases following the random walk model:

ḃg = nbg

ḃa = nba

(6.3)

where nbg and nba denote white Gaussian noises.

The IMU measurements at time t are

w(t) = S−1(Rᵀ(t)Ṙ(t)) + bg(t) + ng,

a(t) = Rᵀ(t)(p̈(t)− g) + ba(t) + na

(6.4)
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where w(t) ∈ R
3 and a(t) ∈ R

3 are the gyroscpoe reading and acclerometer reading,

respectively, ng ∈ R
3 and na ∈ R

3 are white Gaussian noises and g ∈ R
3 denotes the

gravity vector in the global frame.

According to (6.1)–(6.4) , the dynamics of the IMU state X has a more concise form:

Ẋ =F (X,u,n)

= (RS(w − bg − ng),R(a− ba − na) + g,v,nbg,nba)
(6.5)

where u :=

⎡
⎣w
a

⎤
⎦ are the IMU measurements and n :=

⎡
⎢⎢⎢⎢⎢⎢⎣

ng

na

nbg

nba

⎤
⎥⎥⎥⎥⎥⎥⎦

are white Gaussian noise

with the known covariance Σ ∈ R
12×12.

Monocular Camera Measurement Model

In this section, we introduce a new monocular camera measurement model instead of the

conventional one (4.3), which is

πnew(zk,l,Rk,pk, fl) = N(Rᵀ
k(fl − pk))−N(K−1zk,l) ∼ N (0, σk,lI3) (6.6)

where fl denotes the location of the landmark l in the global frame and zk,l denotes the

uv measurement of the landmark l at the time step k.

Later, we will analyze the advantages and differences between the new measurement model

and the conventional one.

VINS MAP estimate

Unlike the EKF based methods, the graph optimization method computes the MAP esti-

mate of the states (the IMU states and the locations of landmarks) given all measurements

over a period of time. More specifically, the factor graph of VINS typically includes three

sorts of factors: prior factor, IMU factor and monucular camera measurement factor.
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The MAP estimate of the VINS problem is

X ∗ = argmax
X

p(X|z,u)

= argmax
X

p(X0)(
∏
k

p(Xk|Xk−1,uk−1:k))(
∏
k,l

p(Xk, fl|zk,l))
(6.7)

where X = {Xk, fl} includes the observed landmarks and the IMU states from time step

0 to N , u and z denotes all IMU measurements and camera measurements, respectively.

The concept of prior factor and monucular camera measurement factor is very clear and

their probabilistic density functions follow Gaussian distributions. If we can derive that

the IMU factor’s probabilistic density function also follows a Gaussian distribution, as dis-

cussed in Section 2.6, the MAP estimate inference can be transformed into a corresponding

nonlinear least sqaures problem:

X ∗ = argmin
X

‖r0‖2P−1
0

+
∑
k

‖rk‖2P−1
k

+
∑
k,l

‖rk,l‖2σ−1I3
, (6.8)

In the next section, we will show that the IMU factor’s probabilistic density function

indeed can be approximated by a Gaussian distribution.

6.3 Invariant IMU factor

In this section, we will prove that the probabilistic density function p(Xk|Xk−1,uk−1:k)

of the IMU factor can be approximated by a Gaussian distribution. More specifically, we

will derive a novel invariant IMU factor and its covariance. The Jacobians of the error

function will also be given.

Error-state definition and the error-state propagation

Recall the dynamic equation (6.5) of the IMU state:

Ẋ =F (X,u,n). (6.9)
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VINS Graph

Vision Factor at time k for landmark l

The IMU state at time-step k

The landmark l

vision measurement

IMU Factor for the time interval (tk−1, tk)

the IMU state at time-step k − 1

the IMU state at time-step k

Preintergration result: zk−1,k

IMU Intergration Thread

IMU measurements

Figure 6.1: The VINS optimization framework. The red blocks represent the variables
to be optimized.

Ignoring the IMU noises, we have the nominal dynamic model as below

˙̂
X =F (X̂,u,0). (6.10)

Note that the IMU state X = (R,V,p,bg,ba) can be regarded as an element in G(1)×R
6,

i.e.,

x : = (R,V,p) ∈ G(1)

b : = (bg,ba) ∈ R
6

(6.11)

Therefore, we can define a difference term E ∈ G(1)×R
6 between the actual state X and

the nominal state X̂:

E = (E1,Δb) = (x−1x̂,b− b̂) (6.12)

From (6.9) and (6.11) and the first-order approximation, we can obtain the dynamics of

the error term E:

Ė1 ≈ g(Ė,ng,na)

Δḃ = (nbg,nba)
(6.13)
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where

g(Ė,ng,na) =

⎛
⎜⎜⎜⎝

RᵀR̂S(ŵ)− S(ŵ)RᵀR̂− S(ng +Δbg)R
ᵀR̂

RᵀR̂â− â+ S(ŵ)Rᵀ(V̂ −V)− S(ng +Δbg)R
ᵀ(V̂ −V)− (na +Δba)

Rᵀ(V̂ −V)− S(ŵ)Rᵀ(P̂−P)− S(ng)R
ᵀ(P̂−P)

⎞
⎟⎟⎟⎠

(6.14)

and

ŵ : = w − b̂g

â : = a− b̂a

(6.15)

Note that without the IMU biases, the dynamics (6.13) of the error term E is au-

tonomous, i.e., the dynamics equation only depends on the current inputs, neither the

estimated states nor the history of inputs. Let us define an error-state e in Euclidean

space between the actual state X and the nominal state X̂:

e =

⎡
⎣log(E1)

Δb

⎤
⎦ =

⎡
⎣ e1

Δb

⎤
⎦ ∈ R

15 (6.16)

Therefore, we can employ the retraction of the IMU state as

X = X̂⊕ e = (exp(e1)x̂,b+Δb) (6.17)

According to (6.13), (6.14) and the theorem from Lie algebra, we can easily compute the

dynamics of the error-state e ∈ R
15:

ė ≈ Ae+Bn (6.18)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−S(ŵ) 0 0 −I3 0

−S(â) −S(ŵ) 0 0 −I3

0 I3 −S(ŵ) 0 0

0 0 0 I3 0

0 0 0 0 I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.19)



Chapter 6. Optimization in VINS 82

and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I3 0 0 0

0 −I3 0 0

0 0 0 0

0 0 I3 0

0 0 0 I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.20)

The covariance P of e can be computed as

Ṗ = AP+PAᵀ +Bcov(n)Bᵀ (6.21)

From the derivation above, we can see the dynamics of the error-state e ∈ R
15 is a

time-varying linear system in the sense of the first-order approximation. The error-state

propagation (6.18) implies that the probabilistic density function of the IMU factor follows

a Gaussian distribution, i.e.,

− log(p(Xk|Xk−1,uk−1:k)) ∝ ‖ek‖2P−1
k

(6.22)

where

ek = Xk  X̂k

=

⎡
⎣log(x−1

k x̂k)

bk − b̂k

⎤
⎦ ∈ R

15
(6.23)

refers to the error between the actual Xk and the nominal propagation state X̂k. Note that

the nominal propagation state X̂k can be computed by using the nominal state propagation

(6.10) and the start point X̂k−1. Similarly, the covariance Pk ∈ R
15×15 can be computed

by using the covariance propagation (6.21) and the start point P = 0.

Pre-integration method

This subsection introduces a pre-integration method to analytically derive the error func-

tion ek of the IMU factor and the corresponding Jacobians.
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Considering ek = XkX̂k, we need to quickly compute the nominal propagation state x̂k.

Given the measurement uk−1:k, we denote the propagation as a mapping f(·) and thus we

have

X̂k = f(X̂k−1) (6.24)

In the following, we will gradually provide the expression of f(·).

• On the one hand, we have

f(x, b̂) = (RJ1,V +RJ2 + gΔtk,p+
Δt2k
2

g +ΔtkV +RJ3, b̂) (6.25)

where Δtk denotes the time interval between time-step k − 1 and k, b̂ denotes the

nominal IMU biases used in propagation, (J1,J2,J3) ∈ G(1) can be pre-integrated

by using the following differential equations

J̇1 = J1S(w − b̂g)

J̇2 = J1S(a− b̂a)

J̇3 = J2

(6.26)

with the start point (J1,J2,J3)|tk = (I3,0,0). For more accuracy, a Runge-Kutta

4-th order method on the Lie group can be used to perform this pre-integration.

• Note that the error-state propagation (6.18) is a time-varying linear system. The

linear property allows some simple calculations to compute f(X):

f(X) = f(x,b)

= f(x, b̂) exp(A

⎡
⎣ 0

b− b̂

⎤
⎦) (6.27)

where A can be computed from the following differential equation

Ȧ = AA (6.28)
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with the start point A|tk−1
= I15. More specifically,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jᵀ
1 0 0 J4 0

−Jᵀ
1S(J2) Jᵀ

1 0 J5 J4

−Jᵀ
1S(J3) −ΔtkJ

ᵀ
1 Jᵀ

1 J6 J7

0 0 0 I3 0

0 0 0 0 I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎣A11 A12

A21 A22

⎤
⎦ (6.29)

where (J4, · · · ,J7) can be pre-integrated using the following differential equation

J̇4 = −S(ŵt)J4 − I3

J̇5 = −S(â)J4 − S(ŵ)J5

J̇6 = J5 − S(ŵ)J6

J̇7 = J4 − S(ŵ)J7

(6.30)

with the start point (J4, · · · ,J7)|tk−1
= (0, · · · ,0).

Now we have analytically derived the propagation function f(·) and the continuous IMU

measurements uk−1:k have been embedded into the pre-integration (J1, · · · ,J7) and co-

variance matrix Pk. Therefore, the IMU factor does not need to keep the huge uk−1:k but

only keep the concise pre-integration (J1, · · · ,J7).

According to (6.23), the error function of the IMU factor between time-step k − 1 and k

can be given by

h(Xk−1,Xk, zk−1,k) =

⎡
⎣ervp

eb

⎤
⎦ =

⎡
⎣log(x−1

k f1(xk−1))

bk − bk−1

⎤
⎦ (6.31)

where f1 denotes the propagation mapping of IMU pose and velocity. Due to the linear

error-state propagation, the Jacobians of the error function can be elegantly computed.
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•
HXk−1

=
∂Xk  f(Xk−1 ⊕ dx)

∂dx
|dx=0

=

⎡
⎣Hxk−1

Hbk−1

⎤
⎦ ∈ R

15×15
(6.32)

where Hxk−1
=

[
J−1
r (−ervp)A11ad(x

−1
k−1) J−1

r (−ervp)A12

]
and Hbk−1

=
[
0 −I6

]
.

•
HXk

=
∂(Xk ⊕ dx) f(Xk−1)

∂dx
|dx=0

=

⎡
⎣Hxk

I6

⎤
⎦ ∈ R

15×15
(6.33)

where Hxk
=

[
J−1
r (−ervp)ad(f

−1
1 (xk−1)) 0

]
and Hbk

=
[
0 I6

]
.

Remark 6.1. A11 referes to the first 9 rows of A and A12 referes to the last 6 rows of A.

6.4 A concise form of the IMU factor

This section summarizes the IMU factor derived in last section.

Pre-processing

The pre-processing is to mainly integrate the high frequent IMU measurements between

time-steps k − 1 and k into a concise form zk−1,k, which is summarized in Alg. 9.

Algorithm 9: The pre-processing

Input: the IMU measurements uk−1:k, the nominal IMU biases b̂k at time step k, the

covariance matrix cov(n) of the IMU noise

Output: The general measurements zk−1,k = (J1, · · · ,J7, b̂k) for the IMU factor and

the covariance matrix P for the IMU factor

In Alg. 9, (J1,J2, · · · ,J7) and P are pre-integrated by using the differential equations

(6.26), (6.30) and (6.21) with the start point (J1,J2, · · · ,J7)|tk−1
= (I3,0, · · · ,0) and

P|tk−1
= 0.
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IMU factor in factor graph

Here we present the IMU factor in a factor graph form. The information of the IMU factor

for the time interval (tk−1, tk) is provided below

• Dimension of the error function: 15.

• The involved variable nodes: Xk−1 and Xk ∈ G(1)×R
6 (the retraction ⊕ is defined

in 6.17).

• The involved measurement: zk−1,k from Alg. 9.

• The covariance matrix: Pk−1,k from Alg. 9.

• The error function: h(Xk−1,Xk, zk−1,k) as defined in (6.31).

• The Jacobians: HXk−1
and HXk

are given in (6.32) and (6.33).

Invariance of the proposed IMU factor

Here we highlight that the proposed IMU factor is invariant under the translation and the

rotation about the gravitational direction. Therefore, the proposed IMU factor successfully

captures the observability of the VINS system such that the unobservable transformation

(i.e., the translation and the rotation about the gravitational direction) does not have any

unexpected effect on the estimation.

Definition 6.2. The translation and the rotation about the gravitational direction can

be expressed as a mapping Tgt

Tgt(X) = (RgR,Rgv,Rgp+ t,b) (6.34)

where Rg = exp(gθ) ∈ SO(3), θ ∈ R
3 and t ∈ R

3.

Theorem 6.3. The null space of the Jacobian of the error function in the proposed IMU

factor is invariant under Tgt. The error function value of the proposed IMU factor is
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invariant under Tgt:

h(Tgt(Xk−1), Tgt(Xk), zk−1,k) = h(Xk−1,Xk, zk−1,k) (6.35)

where h(·, ·, ·) is the error function of the proposed IMU factor, given by (6.31).

Proof.

h(Tgt(Xk−1), Tgt(Xk), zk−1,k) =

⎡
⎣log((Tgtx−1

k )f1((Tgt(xk−1)))

bk − bk−1

⎤
⎦

=

⎡
⎣log(x−1

k T −1
gt Tgtf1((xk−1))

bk − bk−1

⎤
⎦

=

⎡
⎣log(x−1

k f1(xk−1)

bk − bk−1

⎤
⎦

=h(Xk−1,Xk, zk−1,k)

(6.36)

6.5 Vision factor

Pure inertial measurements are not enough to infer the state without the initial prior

knowledge and also results in drift even when the initial prior knowledge is provided, which

is caused by the numerical issue on the integration and the IMU noises. In the EKF-based

method, the visual measurements are used in the update stage. For the optimization-based

method, all visual measurement are integrated into the estimation as the visual factors.

When the sensor platform goes around well-structured and well-textured environments,

images can be taken from the mounted camera and features are extracted and tracked

as landmarks. This front-end (the image process including data association) traditionally

employs a descriptor based method (such as SIFT [53], SURF [54], BRIEF [55] orORB)

[56], an optical flow based method (e.g., KLT [57]) or the combination of them.

After data association, the visual measurements are put into the optimization process as

the vision factor. A visual factor includes:
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• Dimension of the error function: 2.

• The involved variable nodes: Xk ∈ G(1) and fl ∈ R3 × R
3.

• The involved measurement: zk,l =

⎡
⎣u
v

⎤
⎦ from the front-end.

• The covariance matrix: typically using I2.

• The error function:

h(Xk, fl) = h(Rᵀ
k(fl − pk)) (6.37)

where h = π ◦TCI , π denotes the projection function and TCI is the transformation

from the IMU frame to the camera frame.

6.6 Compared to other IMU factors

To see the qualitative difference between our proposed IMU factor and other IMU factors,

in this section we provide a simple numerical example to investigate the advantages of our

proposed method.

We compare the following three pre-integration IMU factos:

• our proposed invariant IMU factor;

• the Euler angle based IMU factor (Euler) [4];

• the SO(3) based IMU factor (SO3) [6];

• the quaternion based IMU factor (Quaternion) [7];

Let us consider the case of

• The time-varing IMU state (ground truth) is

X(t) = (exp(w(t)),p(t),b(t)) (6.38)
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where w(t) =

⎡
⎢⎢⎢⎣
0.2 cos(t)

0.3 sin(t)

mt

⎤
⎥⎥⎥⎦, p(t) =

⎡
⎢⎢⎢⎣

5 cos(mt)

4 sin(mt)

0.4 sin(mt)

⎤
⎥⎥⎥⎦, m = 3

20π and b(0) = 0 ∈ R
6

follows the dynamic equation d
dtb =

⎡
⎣nbg

nba

⎤
⎦.

• The IMU noise covariance Q is set as αdiag(0.0082I3, 0.0004
2I3, 0.019

2I3, 0.05
2I3).

• The IMU measurements are generated by using the ground truth of the trajectory

corrupted with the noises. The IMU noises are randomly generated according to the

IMU noise covariance Q.

For independently proving the superiority of our proposed IMU factor, we do pre-integration

by using all IMU measurements and get four pairs of (J,P) where J represents the pure

propagated part about the state and P denotes the pre-integrated covariance matrix. Note

that the values (J,P) of the different IMU factors are different because their preintegra-

tions are different. To show the consistency and verify if the error function follows the

pre-integrated covariance, we perform 50 Monte Carlo simulation and use NEES as the

performance indicator where

NEES =
∑ 1

15n
‖h(X(0),X(3),J)‖2P−1 (6.39)

where n is the number of simulation runs. Note that the corresponding IMU factor is

better when NEES is closer to 1. The 50 Monte Carlo simulation results for 4 different

IMU factors (under the condition of different noise levels) are summarized in Fig. 6.2.

From Fig. 6.2, we can see the proposed IMU factor is the best performing factor in terms

of the consistency, especially when the IMU noise is relatively high. This result reflects

that our IMU factor with the associated preintegation is a better description about the

physical system. To explain this reason, we state the advantages of the proposed IMU

factor as below:

• Non-singularity. Compared to the earliest preintegration (Euler angle based [4])

IMU factor, the proposed IMU factor does not have the singularity and does have

the invariance property.



Chapter 6. Optimization in VINS 90

Quaternion

SO3

Euler

Proposed

0.99

1.01

1.1

0.98

1.03

1.05

1.18

1.01

1.08

1.11

1.21

1.03 α = 1
α = 5
α = 10

Figure 6.2: The NEES of IMU factors under conditions of different noise levels.

• Autonomous. The linearized error-state propagation equation (6.18) of the proposed

IMU factor is autonomous; the matrices A(t) and B(t) only need to load the IMU

measurements at the time t without the estimated states.

• Continuous. The linearized error-state propagation equation of the proposed IMU

factor is a continuous form instead of the discrete form ([6]). Therefore, all preinte-

gation terms can be processed via the high-order method (such as the RungeKutta

4-th order method). A low-cost IMU may get benefits from this feature.

• No need the assumption that the IMU biases are constant between two frames.

Therefore, the proposed IMU factor has more accurate covariance matrix, compared

to [6] [7].

6.7 Experiment

Monte Carlo simulations

Consider that a platform, equipped with an IMU (frequency: 200 Hz) and a camera

(frequency: 10 Hz), moves along a specific trajectory (average speed is 2.5m/s) with the

sufficient 6-DOFs motion, shown as in Fig. 6.5. In this environment, 675 landmarks are

distributed on the surface of a cylinder with radius 6.5m and height 4m shown as the green

circles in Fig. 6.5. To simulate a realistic feature tracker, the landmark measurements are



Chapter 6. Optimization in VINS 91

0 50 100 150 200 250 300

0

0.5

1

1.5

The proposed Invariant IMU factor+Vision factor
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Figure 6.3: The RMS of orientation. The X axis is the time (unit: seconds) and the y
axis is the RMS of orientation (unit: degree).

corrupted with isotropic Gaussian noise with standard deviation 1 pixel and the camera

is able to observe sufficiently overlapped landmarks between consecutive frames. The

loop closure is not included in this simulation. The IMU noise covariance Q is set as

diag(0.0082I3, 0.0004
2I3, 0.019

2I3, 0.05
2I3) (the International System of Units).

In each round of Monte Carlo simulation, the initial estimate is set as the ground truth.

And the measurements from IMU and camera are generated from the same trajectory with

random noises. We compute the MAP estimate using the proposed IMU factor and the

vision factor presented in this chapter. The optimization is implemented in Matlab using

the Graph-Optimization package https : //github.com/UTS − CAS/Matlab − Graph −
Optimization that we developed.

The 50 Monte Carlo simulation results from our proposed method (the invariant IMU

factor + Vision Factor) and the method (SO(3) based IMU factor [6]+ Vision Factor) are

summarized in Fig. 6.3 and Fig. 6.4. From Fig. 6.3 and Fig. 6.4, one can see that our

proposed method achieves better performance.
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Figure 6.4: The RMS of position. The X axis is the time (unit: seconds) and the y axis
is the RMS of position (unit: m).

Figure 6.5: The simulated trajectory (blue circles) and landmarks (green circles).
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Real-World Experiments

To further validate our proposed invariant IMU factor in the real system, we modify the

ORB-VINS system [58] in 11 sequences of the EuroC dataset.

The Euroc dataset

There are 11 sequences in the EuroC dataset that are collected from a micro aerial vehicle

(MAV), equipped with a global shutter WVGA stereo camera at 20 Hz and an IMU at

200 Hz. The environment of the V series is a laboratory of the area 30m2 and that of the

MH series is a industrial environment of the area 30m2. Each series has the easy, medium

and difficult sequences. Note that some challenging conditions such as strong illumination

changes, poorly textured areas, motion-blur and aggressive motions are included in the

difficult/medium sequences, as shown in Fig. 6.6. Besides, the trajectory ground-truth is

also included. Therefore, the Euroc dataset is ideal to preliminarily test the VINS system

and compare the algorithms.

ORB-VINS

The visual-inertial ORB-SLAM (ORB-VINS) [58] is a VINS system that simultaneously

maintains the two data structures Keyframe and Map Point using the multi-threads

Tracking, Local Mapping and Loop Closing.

• Keyframe and Map Points store the estimated IMU states and the estimated

landmarks, respectively.

• The Tracking thread is in charge of data association, initialization, the insertion

of keyframes, pre-integration and the motion-only optimization. The motion-only

optimization estimates the IMU state at the current frame by fixing the connected

variables.

• The Local Mapping thread is in charge of the creation/culling of Map Point, the

culling of Keyframe and the local bundle adjustment. Local Bundle Adjustment



Chapter 6. Optimization in VINS 94

Figure 6.6: Some sample images with keypoints in the experiment. The green dots
represent the tracked key points.
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(BA) optimizes the IMU states at a local window and all connected landmarks,

including the fixed IMU states at an outer window.

• The Loop Closing thread is in charge of detecting loop closure and performing

global bundle adjustment to reduce the drift caused by the unobservable transfor-

mation.

The optimization processes mentioned above consists of the IMU factor and the vision

factor.

Results

To validate the proposed IMU factor and the proposed vision factor in this chapter, we

have tested three methods:

• The original method: the ORB-VINS using the SO(3) based IMU factor + standard

Vision Factor.

• The proposed 1: the ORB-VINS using the proposed invariant IMU factor + standard

Vision Factor.

• The proposed 2: the ORB-VINS using the proposed invariant IMU factor + the

proposed Vision Factor.

Note that only left images are used. All experiments are processed in a computer with

Intel Core i7 cpu and 16 GB RAM. The number of the local window is set as 10. The

initialization time is set as 15s.

The estimated maps of V 1 02, V 2 02, MH 02 and MH 04 using the proposed method 2

are shown in Fig. 6.7 and Fig. 6.8. The estimated trajectories of MH 02 and MH 05

using the original method and the proposed method 2 are also presented in Fig. 6.9 and

Fig. 6.10. From Fig. 6.9 and Fig. 6.10, we can see that the estimated trajectories by our

proposed method 2 is more accurate than the original method and the method 1.
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The experimental results of position accuracy are summarized in Table 6.1. From Table

6.1, one can see that the proposed method 2 behaves better than others in general. The

experiments also show the advantages of our proposed factors in the real system. Note

that the VINS system does not work well in the sequence in V 1 03 due to the texture-less

environment and the too fast motion.

Table 6.1: Accuracy (RMS, unit: m) in Euro dataset.

Original Proposed 1 Proposed 2

V 1 01 easy 0.028 0.024 0.022
V 1 02 medium 0.032 0.027 0.024
V 1 03 difficult X X X

V 2 01 easy 0.052 0.048 0.042
V 2 02 medium 0.061 0.053 0.047
V 2 03 difficult 0.065 0.057 0.048

MH 01 easy 0.071 0.062 0.057
MH 02 easy 0.074 0.064 0.059
MH 03 medium 0.078 0.067 0.052
MH 04 difficult 0.081 0.072 0.060
MH 05 difficult 0.086 0.072 0.054

6.8 Summary

In this chapter, we derived an invariant IMU factor with the corresponding pre-integration

method. We also pointed out that the corresponding pre-integration method is related to

the linearity of the propagation equation. Simulations and experiments show that the

invariant IMU factor results in better estimate accuracy.
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Figure 6.7: V 1 02 medium V 2 02 medium
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Figure 6.8: The constructed maps of MH02 easy (top) and MH04 difficult (bottom)
using the proposed method 2
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Figure 6.9: The estimated trajectories of MH02 easy using the original method (top)
and the proposed method 2 (bottom)
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Figure 6.10: The estimated trajectories of MH05 difficult using the original method
(top) and the proposed method 2 (bottom)



Chapter 7

Conclusion and Future Work

In this thesis, we investigated overlooked aspect of SLAM and VINS, namely the invariance

property and proposed the corresponding methods to improve the existing solvers for both

the EKF based approach and the optimization based approach. In this chapter, we briefly

review our achievements and discuss future work.

7.1 The invariance in the EKF based approach

In Chapter 3, we investigate the convergence and consistency properties of an Invariant-

Extended Kalman Filter (RI-EKF) based SLAM algorithm. Basic convergence properties

of this algorithm are proven. These proofs do not require the restrictive assumption that

the Jacobians of the motion and observation models need to be evaluated at the ground

truth. It is also shown that the output of RI-EKF is invariant under any stochastic rigid

body transformation in contrast to SO(3) based EKF SLAM algorithm (SO(3)-EKF) that

is only invariant under deterministic rigid body transformation. Implications of these

invariance properties on the consistency of the estimator are also discussed. Monte Carlo

simulation results demonstrate that RI-EKF outperforms SO(3)-EKF, Robocentric-EKF

and the “First Estimates Jacobian” EKF, for 3D point feature based SLAM.

101
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The main contribution of Chapter 4 is an invariant EKF for VINS. It is demonstrated

that the conventional EKF based VINS is not invariant under the stochastic unobserv-

able transformation, associated with translations and a rotation about the gravitational

direction. This unavoidably leads to inconsistent state estimates as the estimator does

not obey a fundamental property of the physical system. To address this issue, we use a

novel uncertainty representation to derive a Right Invariant error extended Kalman filter

(RIEKF-VINS) that preserves this invariance property. RIEKF-VINS is then adapted to

the multistate constraint Kalman filter framework to obtain a consistent state estima-

tor. Both Monte Carlo simulations and real-world experiments are used to validate the

proposed method.

Concluding Remarks

• We find out that the root reason of the inconsistency for the conventional EKF based

approach is the absence of the invariance to the stochastic unobservable transforma-

tion.

• We also propose a practical and analytical method to check if the general EKF based

filter satisfies the invariance property or not.

• The proposed method can be applied into SLAM and VINS, which only require some

small modifications on the conventional methods and can achieve better performance

in terms of both accuracy and consistency.

Future Work

We plan to further improve the RI-MSCKF algorithm on the two aspects.

• Efficiency and robustness. The complexity of RI-MSCKF is cubic to the number

of camera poses and the efficiency is expected to be improved. The root square form

is a possible option. The advantage of the implementation using the root square

form has been investigated in [59].
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• Strategy. The original MSCKF does not have the invariance property to stochastic

yaw angle transformation and thus its covariance matrix cannot really reflect the

actual uncertainty, especially when hovering. RI-MSCKF has potential to deal with

this case without a tricky mechanism like the “two-ways marginalization” method

because its invariance prevent spurious information gain.

Remark 7.1. Another reason for MSCKF failing when hovering is the unstable tri-

angulation, which may be dealt with using a parallax parameterization.

7.2 The invariance in the optimization based approach

In Chapter 5, we successfully translate the concept of the invariance property from EKF

to optimization, which is usually ignored in the conventional viewpoint. The conventional

algorithm of the optimization-based SLAM uses the naive retraction such that the update

of landmarks is independent of that of the poses, which unexpectedly makes the estima-

tion related to the selection of the global frame. To solve this problem, we propose the

novel retraction without changing the cost function to obtain the invariance such that the

estimate by using the novel retraction and Gauss-Newton/Leverberg-Marquart after each

iteration is invariant under the rigid body transformation.

The main content of Chapter 6 is an invariant IMU factor for VINS and the corresponding

pre-integration method. The existing optimization based VINS algorithms are compro-

mised by the lack of rigorous IMU preintegration. Some methods are restricted to the

derivation such that it is difficult to apply the high-order integration. Some other methods

ignore the correlation between the change of the IMU biases and the IMU poses/velocity.

To address these issues, we analytically derive a novel continuous pre-integration method

and propose a novel IMU factor on the novel manifold.

Concluding Remarks

• We prove the invariance is also significant to the optimization based approach via

numerical simulations and real experiments. Exploiting the invariance is very helpful

such that the convergence can be improved.
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• Establishing a link between the EKF-VINS and the optimization based VINS is

another contribution. We point out that the keypoint of the so-called pre-integration

method is finding an error such that the dynamic equation of this error vector is

autonomous.

Future Work

We also plan to improve our current VINS in two aspects.

• Front-end. A reliable front-end is fundamental for the VINS system. Recently,

more efficient and robust feature matching algorithms have been proposed. For ex-

ample, the algorithm [60] is very promising to replace the standard feature matching

algorithm while it does not require more computational time.

• Novel Bundle Adjustment The conventional bundle adjustment is easy to fall

into the local minimum when the initial guess is poor. On the other hand, the

Hessian matrix is also easy to get singular such that LM is usually used instead of

Powell’s Dogleg, which may significantly affect the numerical calculation. A more

robust and elegant method with theoretical analysis is needed. The singularity are

mainly from two aspects:

– The zero error of re-projection only implies that the predicted feature is on the

measured line instead of the measured array because the projection function

π(x) = [x1
x3
, x2
x3
]′ (x = [x1, x2, x3]

′) is discontinuous when x3 = 0. For this issue,

we will derive a new projection function πnew(x), globally continuous for x. The

use of new projection function πnew(x) can reduce a number of local minimums.

Even when the initial guess of a point is at the back of the camera, the correct

estimate can be recovered by using πnew(x), which is very difficult or impossible

for π(x).

– The commonly used parameterization XYZ and the inverse depth have singu-

larity. This singularity happens when the information w.r.t. the used parame-

terization is not enough. For example, we cannot accurately estimate the XYZ

coordinates of the feature when the parallax angle is very small. On the other
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hand, the ill-conditioned Hessian matrix also affects the estimates of the other

“normal” variables. For this issue, we will extend our method on manifold for

both pose parameterization and feature parameterization based on our previous

work in [61].

We will prove that the Hessian matrix is non-singular when using the new projection

function π(x) and the new parameterization. Intuitively, the information w.r.t. the

new parameterization is always enough. The non-singular Hessian matrix implies

that we can safely choose the efficient Powell’s Dogleg method. From our recent tests,

the combination of “πnew(x)+ new parameterization+ Dogleg” is very promising:

robust (converging even when initial guess is very poor) and efficient (much less

iterations). We expect that the VINS system can also benefit from this novel bundle

adjustment method.



Appendix A

EKF-SLAM

A.1 Proof of Theorem 3.4

In the following, we use mathematical induction to prove this theorem. Note that at the

beginning, the estimate is (X̂,P) where X̂ =
(
R̂, p̂, f̂1, · · · , f̂N

)
. After the first observa-

tion, the mean estimate of state and covariance matrix are augmented as below via the

method shown in Alg. 6: X̂1 =
(
R̂, p̂, f̂1, · · · , f̂N , f̂N+1

)
and P1 =

⎡
⎣ P L

Lᵀ R̂ΨΨΨR̂ᵀ +W

⎤
⎦.

Obviously, after one observation, the mean estimate of robot pose and the previous “land-

marks” does not change and the covariance matrix follows the proposed form. We now as-

sume that after k times observations, the estimate becomes X̂k =
(
R̂, p̂, f̂1, · · · , f̂N , f̂N+1

k

)

and Pk =

⎡
⎣ P L

Lᵀ R̂ΨΨΨR̂ᵀ
k +W

⎤
⎦. Now we discuss the case after k times observations of

next propagation and update. Because the robot is always perfectly stationary, after

propagation at time k, the mean estimate is X̂k+1|k = X̂k and covariance matrix be-

comes Pk+1|k = Pk. According to Alg. 5, we have S = HPk+1|kH
ᵀ +ΨΨΨ = k+1

k ΨΨΨ and

K = Pk+1|kH
ᵀS−1 =

[
03,(3N+6) − 1

k+1R̂
ᵀ
]ᵀ

, where H =
[
03,3 R̂ᵀ 03,3N −R̂ᵀ

]
.

Then it is easy to see that all elements from the vector Ky are zero except the last 3

elements, and hence the estimate of robot pose and the old landmarks after k + 1 times

observations are the same as that in the time step k. The covariance matrix at time

106
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k + 1 is Pk+1 = (I −KH)Pk+1|k =

⎡
⎣ P L

Lᵀ R̂ΨΨΨR̂ᵀ
k+1 +W

⎤
⎦. When k converges to infinity,

we have (3.7).

A.2 Proof of Theorem 3.6

By using result in Theorem 1 and the Jacobian matrices in (3.5), we have

P0
B = P∞

A +ΔP, (A.1)

where P∞
A (given in (3.8)) is the covariance matrix before moving to the point B, ΔP =

adX̂A
EΦ̃ΦΦEᵀadᵀ

X̂A
can be regarded as the incremental uncertainty caused by the odometry

noise, and Φ̃ΦΦ = BΦΦΦBᵀ is a positive definite matrix.

After l observations at point B, the information matrix ΩΩΩB
l (the inverse of PB

l ) becomes

ΩΩΩB
l = ΩΩΩB

0 +
∑l

j=1H
ᵀ
jΨ̄ΨΨ

−1
Hj , where Hj is obtained by stacking all matrices Hi

j = R̂ᵀ
jH

i

(i = 1, · · · ,m), and R̂j is the estimated orientation after j times observations at point B.

Note that Ψ̄ΨΨ is isotropic, we have Hᵀ
jΨ̄ΨΨ

−1
Hj = HᵀΨ̄ΨΨ

−1
H (j = 1, · · · , l). Therefore, the

information matrix is ΩΩΩB
l = ΩΩΩB

0 + lHᵀΨ̄ΨΨ
−1

H. Via the matrix inversion lemma in [17], the

covariance matrix after l observations at point B is

Pl
B = (ΩΩΩB

l )
−1 = P0

B −P0
BH

ᵀ(
Ψ̄ΨΨ

l
+HP0

BH
ᵀ)−1HP0

B. (A.2)

Note that HP∞
A = 0, we substitute (A.1) into (A.2):

Pl
B = P∞

A +ΔP−ΔPHᵀ(
Ψ̄ΨΨ

l
+HΔPHᵀ)−1HΔP

= P∞
A + adX̂A

E(Φ̃ΦΦ
−1

+ lH̃ᵀΨ̄ΨΨ
−1

H̃)−1Eᵀadᵀ
X̂A

= P∞
A + P̄l

B.

(A.3)

Furthermore, H̃ᵀΨ̄ΨΨ
−1

H̃ =

⎡
⎣ S1 S2

Sᵀ
2 mΨΨΨ−1

⎤
⎦ where S1 =

∑m
i=1 S

ᵀ(f̃i)ΨΨΨ−1S(f̃i), S2 = (
∑m

i=1 S(f̃i))
ᵀΨΨΨ−1

and f̃i = R̂ᵀ(p̂− f̂i) (i = 1, · · · ,m). Generally speaking, H̃ᵀΨΨΨ−1H̃ is full rank when m > 3
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and there are three landmarks that are non-coplanar with the robot position. Under this

condition, it is easy to see that Pl
B → P∞

A when l → ∞.

A.3 Proof of Theorem 3.9

Here, we only prove that the invariance property of RI-EKF and SO(3)-EKF. The invari-

ance properties of the other algorithms can be easily proven in a similar way or through a

counter example.

First, we prove that the outputs of SO(3)-EKF and RI-EKF is invariant to determinis-

tic rigid body transformation. Assume the estimate at time 0 is (X̂0,P0) in terms of the

general EKF framework. After one step propagation via the odometry u0, the estimate be-

comes (X̂1|0,P1|0). Then after obtaining observations z1, the estimate becomes (X1,P1).

On the other hand, in SO(3)-EKF and RI-EKF, there exists a matrix QT for any rigid

body transformation T such that

T (X⊕Q−1
T e) = T (X)⊕ e ∀ X. (A.4)

Therefore, if a deterministic rigid body transformation T is applied at time 0, the estimate

becomes (Ŷ0,Py0), where Ŷ0 = T (X̂0) and Py0 = QT P0Q
ᵀ
T . Now we calculate the new

Jacobians Fy0 and Gy0 in propagation

Fy0 =
∂f(Ŷ0 ⊕ e,u0,0) f(Ŷ0,u0,0)

∂e

∣∣∣∣∣
0

=
∂f(T (X̂0)⊕ e,u0,0) f(T (X̂0),u0,0)

∂e

∣∣∣∣∣
0

(A.4)
=

∂f(T (X̂0 ⊕Q−1
T e),u0,0) f(T (X̂0),u0,0)

∂e

∣∣∣∣∣
0

=
∂T (f(X̂0 ⊕Q−1

T e,u0,0)) T (f(X̂0,u0,0))

∂e

∣∣∣∣∣
0

=
∂T (f(X̂0,u0,0)⊕ F0Q

−1
T e) T (f(X̂0,u0,0))

∂e

∣∣∣∣∣
0

(A.4)
= QT F0Q

−1
T .

(A.5)
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Similarly, we have Gy0 = QT G0. Hence, after one step propagation the estimate be-

comes (Ŷ1|0,Py1|0), where Ŷ1|0 = f(Ŷ0,u0,0) = T (X̂1|0) and Py1|0 = Fy0Py0Fy
ᵀ
0 +

Gy0ΦΦΦ0Gyᵀ0 = QT P1|0Q
ᵀ
T . The new Jacobians in update becomes Hy1 = H1Q

−1
T . Then it

is easy to obtainKy = QT K, resulting in Ŷ1 = Ŷ1|0⊕Kyy = T (X̂1|0)⊕QT Ky = T (X̂1|0⊕
Ky) = T (X̂1). The covariance matrix after update becomes Py1 = (I−KyHy1)Py1|0 =

QT P1Q
ᵀ
T . In all, Ŷ1 = T (X̂1) and Py1 = QT P1Q

ᵀ
T . By mathematical induction, we can

see the outputs of SO(3)-EKF (and RI-EKF) are invariant under deterministic rigid body

transformation.

Secondly, we prove the invariance property of RI-EKF under stochastic identity body

transformation Tg (g = (I3,0,Θ)) for all Σ̄ΣΣ where Σ̄ΣΣ is the covariance matrix of noise

Θ. Consider the estimate at time 0 is (X̂0,P0) in RI-EKF. If the stochastic rigid body

transformation Tg is applied, the estimate becomes (X̂0,P0 + ΔP) where ΔP = CΣ̄Cᵀ

and

C =
∂Tg(X̂0) X̂0

∂Θ
|0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

I3 03,3

03,3 I3
...

...

03,3 I3

⎤
⎥⎥⎥⎥⎥⎥⎦
. (A.6)

After propagation, the estimate becomes (X̂1|0,P1|0 +ΔP) due to Fn = I given in (3.5).

Note that H1ΔP = 0, it is easy to get the posterior estimate (X̂1,P1 +ΔP). By mathe-

matical induction, we can conclude that the output of RI-EKF is invariant under stochastic

identity transformation.



Appendix B

EKF-VINS

The notation ⊕imu is defined as

X̄⊕imu eI = (exp(eθ)R, exp(eθ)v + Jr(−eθ)ev,

exp(eθ)p+ Jr(−eθ)ep,bg + ebg,ba + eba)
(B.1)

where X̄ = (R,v,p,bg,ba) and eI =
[
eθ, ev, ep, ebg, eba

]
∈ R

15

The notation ⊕pose is defined as

C⊕pose e
i
c = (exp(eiθ)R, exp(eiθ)p+ Jr(−eiθ)e

i
p) (B.2)

where C = (R,p) ∈ SE(3) and eic =
[
eiθ, e

i
p

]
∈ R

6.

B.1 Proof of Theorem 4.7

Here we first prove the sufficiency. It is assumed that this filter satisfies: for each de-

terministic unobservable transformation TD there exists WD such that TD(X ⊕ e) =

TD(X) ⊕ WDe. For any estimate (X̂i,Pi) at time-step i, we have another estimate

(Ŷi,Pyi) = (TD(X̂i),WDPiW
ᵀ
D) after applying the deterministic transformation TD.

After one step propagation, we have (X̂i+1|i,Pi+1|i) and (Ŷi+1|i,Pyi+1|i) where Ŷi+1|i =

110
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TD(X̂i+1|i) and Pyi+1|i = WDPi+1|iW
ᵀ
D. Note that Hyi+1 = Hi+1W

−1
D and then it is

easy to obtain Ky = WDK, resulting in the mean estimate Ŷi+1 as below

Ŷi+1 = Ŷi+1|i ⊕Kyz̃

= TD(X̂i+1|i)⊕WDKz̃

= TD(X̂i+1|i ⊕Kz̃)

= TD(X̂i+1)

(B.3)

The covariance matrix after update becomesPyi+1 = (I−KyHyi+1)Pyi+1|i = WDPi+1W
ᵀ
D.

In all, Ŷi+1 = TD(X̂i+1) and Pyi+1 = WDPi+1W
ᵀ
D. By mathematical induction, we can

see Ŷn = TD(X̂n) for n ≥ i and hence the output of this filter is invariant under any

deterministic transformation TD. The proof of the necessity is similar.

B.2 Proof of Theorem 4.8

Here we first prove the sufficiency. It is assumed that this filter satisfies:

Hn+i+1ΦΦΦn+iΦΦΦn+i−1 · · ·ΦΦΦiNi = 0 ∀ n and i ≥ 0 (B.4)

For any estimate (X̂i,Pi) at time-step i, we have another estimate (Ŷi,Pyi) = (X̂i,Pi +

NiΣΣΣN
ᵀ
i ) after applying the stochastic identify transformation TS where S = (0, εεε) and

εεε ∼ N (0,ΣΣΣ). After one step propagation, we have (X̂i+1|i,Pi+1|i) and (Ŷi+1|i,Pyi+1|i) =

(X̂i+1|i,Pi+1|i+ΦΦΦiNiΣΣΣN
ᵀ
iΦΦΦ

ᵀ
i ). Note thatHi+1ΦΦΦiNi = 0, we can easily get (Ŷi+1,Pyi+1) =

(X̂i+1,Pi+1+ΦΦΦiNiΣΣΣN
ᵀ
iΦΦΦ

ᵀ
i ). By mathematical induction, we have (Ŷn,Pyn) = (X̂n,Pn+

ΦΦΦn · · ·ΦΦΦiNiΣΣΣN
ᵀ
iΦΦΦ

ᵀ
i · · ·ΦΦΦ

ᵀ
n). Therefore, the output of this filter is invariant under any

stochastic identify transformation. The proof of the necessity is similar and omitted here.
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