University of Technology Sydney

MASTER'S THESIS

Sensing and Human Pose Estimation in Extreme Industrial Environments for Physical Human Robot Interaction

Author: Supervisor:

Christian Reeks Dr. Liang Zhao

Co-Supervisors:

Dr. Marc CARMICHAEL

Prof. Dikai LIU

A thesis submitted in fulfillment of the requirements for the degree of Master of Engineering (Research)

in the

Centre for Autonomous Systems
Faculty of Engineering and Information Technology

Certificate of Original Authorship

I, Christian REEKS, declare that this thesis titled *Sensing and Human Pose Estimation in Extreme Industrial Environments for Physical Human Robot Interaction* and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I
 have made clear exactly what was done by others and what I have contributed myself.

Signed:	Production Note: Signature removed prior to publication.
Date:	23rd Feb 2018

Acknowledgements

This work would not have been possible without the encouragement and support of many others around me.

I would firstly like to thank my supervisor Dr. Liang Zhao for his patience and help. Being able to work on such an interesting topic with you was great.

A big thanks to Prof. Dikai Liu for always looking out for students best interest even when you get stretched for time. Working with you on the ANBOT was a truly awesome time.

To Dr. Marc Carmichael for teaching me the majority of my robotics skills.

Thanks to Jingwei for helping me get up to speed on embedded deformation on short notice.

A massive thanks to CAS for being a community and making it fun to come in to the office everyday.

Finally I wish to acknowledge all my friends and family for supporting me during my studies.

This research was supported by the Australian Research Council Linkage Project (LP140100950), Burwell Technologies, and the Centre for Autonomous Systems at the University of Technology Sydney.

This research was supported by the Australian Government Research Training Program Scholarship.

Contents

C	ertificate of Original Authorship		
A	Acknowledgements		
A l	bstrac	t	xi
1	Intr	oduction	1
	1.1	Background and Motivation	1
	1.2	Research Questions	2
	1.3	Contributions	3
	1.4	Thesis Structure	4
2	Rela	ated Work	6
	2.1	Collaborative Robots	7
		2.1.1 Medical	7
		2.1.2 Military	8
		2.1.3 Industrial	9
		2.1.4 ANBOT	10
	2.2	Computer Vision	12
		2.2.1 Depth Sensor Technology	13
		2.2.2 Human Skeleton Tracking	17
	2.3	Embedded Deformation	18
	2.4	C	20

3	Sen	sing in	Dusty Environments	21
	3.1	Exper	imental Set up	22
		3.1.1	Industrial Grit Blasting Chamber	22
		3.1.2	Types of Grit	23
		3.1.3	Material Board	24
		3.1.4	Grit Blaster in PPE	25
		3.1.5	Sensor Hardware	26
			Stereo Vision	26
			Structured Light	26
			Active Stereo	26
			Time-of-Flight	27
	3.2	Exper	iment One:	
		Envir	onment Sensing during Blasting	27
		3.2.1	Data collection	27
		3.2.2	Results	28
		3.2.3	Conclusion	30
	3.3	Exper	iment Two: Human Detection during Blasting	30
		3.3.1	Results	30
		3.3.2	Conclusion	33
	3.4	Sumn	nary	33
4	Sen	sor Inte	egration	35
	4.1	Senso	r Placement	35
		4.1.1	Sensor model	36
		4.1.2	Workspace	37
		4.1.3	Constraints	37
		4.1.4	Objective Function	38
		115	Roculto	38

		4.1.6	Summary	40
	4.2	Fabric	cation	40
		4.2.1	R200 Sensor Enclosure	41
		4.2.2	Kinect Sensor Enclosure	42
	4.3	Conne	ectivity issues and insights	43
		4.3.1	Communication Ports	43
		4.3.2	Camera Drivers	44
		4.3.3	Powering Cameras	44
	4.4	Summ	nary	45
5	Hur	nan De	etection and Pose Estimation during pHRI	46
	5.1	Segme	entation	46
		5.1.1	Environment and Robot Segmentation	47
		5.1.2	Naive Approach to User Segmentation	47
		5.1.3	Heuristic Approach to User Segmentation	48
	5.2	Pose I	Detection	48
		5.2.1	Marker-less Pose Detection	49
		5.2.2	Marker-Based Pose Detection	50
	5.3	Pose I	Estimation - Embedded deformation	51
		5.3.1	Deformation Graph	51
		5.3.2	Optimisation Energy Function	52
			Objective Function	52
			Rotation	52
			Regularisation	53
			Key Points	53
		5.3.3	Initialisation Stage	54
		5.3.4	Main Stage	55
		5.3.5	Experiment Results	57

T 7	•
v	ı
•	-

	5.4	Imple	Implementation on the ANBOT			
	5.5	Summ	Summary			
6	Con	clusion	1	62		
	6.1	Summ	nary of Contributions	63		
	0.1					
		6.1.1	Performance Evaluation of Current Sensing Technology .	63		
		6.1.2	Optimisation Model for Sensor Placement	63		
		6.1.3	Embedded Deformation for Pose Estimation on Occluded			
			Limbs	63		
	6.2	Discus	ssion and Limitations	64		
		6.2.1	Sensing	64		
		6.2.2	Pose Detection and Estimation	64		
		6.2.3	Real-Time Operation	64		
	6.3	Future	e Work	65		
		6.3.1	Improve Vision Sensors	65		
		6.3.2	Improve segmentation and pose detection	65		
		6.3.3	Extensive Trials	66		
A	App	endix		67		
	A.1	Struct	ured Light Sensors	67		
	A.2	Time-o	of-Flight Sensors	67		
	A.3	Stereo	Vision Sensors	67		
Bi	bliog	raphy		71		

List of Figures

2.1	Examples of medical cobots	7
2.2	Examples of military cobots	8
2.3	Example of an industrial cobot	9
2.4	Example scenario showing a cobot assisting a human operator	10
2.5	Robotic manipulator from UR10	11
2.6	The ANBOT system	12
2.7	ANBOT evaluated in field trials	13
2.8	Kinect version 2 Time-of-Flight camera	14
2.9	Kinect version 1 structured light camera	15
2.10	DUO3D stereo vision camera	15
2.11	Realsense R200 active stereo vision camera	16
3.1	Blast chamber and dust covered sensor	22
3.2	Example of common grit types	23
3.3	Material boards in blast chamber	24
3.4	Worker in PPE using ANBOT	25
3.5	R200 viewing reflective material	29
3.6	Depth and RGB images during garnet blasting	31
3.7	Depth and RGB images during steel grit blasting	32
4.1	Camera model co-ordinate system	37
4.2	Workspace unseen vs number of cameras	39

		viii
4.3	Visualisation of optimisation result	40
4.4	R200 enclosure	41
4.5	Kinect enclosure.	42
4.6	Kinect enclosure test	43
5.1	Example AR marker	50
5.2	Initialisation of human model in Matlab	55
5.3	Measured Sensor Accuracy	56
5.4	Pose Estimation Accuracy	57
5.5	Infra-red images of actual user poses	60
5.6	Embedded Deformation models of user pose	61

List of Tables

2.1	Kinect version 2 specifications	14
2.2	Kinect version 1 specifications	15
2.3	DUO3D specifications	16
2.4	Realsense R200 specifications	16
3.1	Sensor Accuracy at 2.5m in Various Conditions (mm)	30
A.1	Structured Light Sensors	68
A.2	Time-of-Flight Sensors	69
A 3	Stereo Vision Sensors	70

List of Abbreviations

ANBOT Assistance as Needed RoBOT

AR Augmented Reality

RGB Red Green Blue

Cobot Collaborative Robot

DF DynamicFusion

ED Embedded Deformation

F4D Fusion4D

KF KinectFusion

PCL Point Cloud Library

PCA Principle Component Analysis

pHRI physical Human Robot Interation

PPE Personal Protective Equipment

ROS Robot Operating System

STL STereoLithograph

ToF Time-of-Flight

VD VolumeDeform

Abstract

Sensing and Human Pose Estimation in Extreme Industrial Environments for Physical Human Robot Interaction

Collaborative robotic systems which physically interact with a user are gaining popularity in industry. Collaborative robots can combine the power, precision and repeatability of robots with the skill and cognitive ability of a human to complete a task with greater efficiency and reduced risk of injury. One such industrial application that would benefit from collaborative robots is abrasive blasting. Abrasive blasting produces a large reaction force on to the worker and creates enormous amounts of dust filling the workspace. While the robot can handle the reaction forces of blasting, the user's safety must be ensured. A non-invasive vision-based human detection system would be ideal to handle this. However, there are many challenges that need to be overcome when attempting human detection in such hazardous environments.

This thesis proposes a vision system for human pose estimation in hazardous environments. Four sensing technologies are evaluated during abrasive blasting and a suitable sensor is chosen. To determine the ideal placement and number of sensors, an optimisation model is developed. Sensor enclosures are fabricated and experiments conducted to validate the quality of the point cloud data. The point cloud specific to the human is identified and extracted from multiple point clouds. Marker-less and marker-based pose detection are implemented using the human point cloud. Occluded body parts are estimated by tailoring the embedded deformation algorithm to physical human robot interaction. This work is implemented on a custom assistive robotic platform. Additional methods to improve sensing and detection are discussed along with possible directions for future work.