Non-targeted analysis of new psychoactive substances using mass spectrometric techniques

by

Daniel J. Pasin, MRACI

A thesis submitted for the

Degree of Doctor of Philosophy (Science)

University of Technology Sydney

2018

Certificate of authorship and originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all the information sources and literature used are indicated in the thesis. This research is supported by an Australian Government Research Training Program Scholarship.

Production Note: Signature removed prior to publication.

Daniel J. Pasin, MRACI 26/02/2018

Acknowledgements

Firstly, I would like to extend my deepest thanks to my primary supervisor, Associate Professor Shanlin Fu. You have been my primary supervisor for both my honours and PhD degrees and over these last 5 years, you have been nothing but supportive, patient and encouraging. I could always rely on you to provide timely feedback and you were always happy to endorse me for post-PhD opportunities. It has been a great pleasure to complete my PhD research under your supervision.

I would also like to thank my co-supervisors, Dr. Adam Cawley and Dr. Sergei Bidny. Without your external collaboration, the success of this project could not be possible. Furthermore, I wish to acknowledge the staff at the Australian Racing Forensic Laboratory (ARFL) and Forensic Toxicology Laboratory at NSW FASS for your assistance in this project. Furthermore, I would like to thank them for the financial support throughout this project including the purchase of reference materials and providing an external scholarship top-up.

Thank you to all the UTS academic and professional staff for your assistance throughout my project even though I was not in the laboratory much - I know Ron Shimmon will miss me dearly. I would also like to thank the Centre of Forensic Science and Professor Claude Roux for allowing me so many opportunities to present my research at domestic and international conferences. This has subsequently provided me invaluable contacts that will be no doubt be beneficial in the future.

To the UTS friends that I have made over the last couple of years, thank you for making my time during my PhD and living in Sydney enjoyable - I always know that I have somewhere to stay if I am in Europe. I would also like to thank Morgan "Mo" Philp for being a great colleague putting up with me at conferences and my general nonsense. Lastly, I want to express my deepest gratitude to my family for supporting me throughout my PhD journey both emotionally and financially. You have always encouraged me to do my best and it has allowed me to achieve something that I never thought possible and love you all dearly.

Table of contents

Acknowledgementsi
List of figures x
List of tablesxiv
List of abbreviations xv
Publications and conference proceedingsxxii
Abstractxxvi
CHAPTER 1: INTRODUCTION 1
1.1 A brief overview of new psychoactive substances
1.1.1 Synthetic cathinones
1.1.2 Hallucinogenic phenethylamines
1.1.3 Synthetic cannabinoids
1.1.4 Other NPS derivatives
1.1.4.1 Psychedelic tryptamines
1.1.4.2 Piperazines
1.1.4.3 Synthetic opioids
1.1.5 References
1.2 PUBLICATION: Current applications of high-resolution mass spectrometry for
the analysis of new psychoactive substances: a critical review (doi:
10.1007/s00216-017-0441-4)
1.2.1 Foreword
1.2.2 Abstract
1.2.3 Keywords
1.2.4 Introduction
1.2.5 Analysis of NPS using HRMS
- 111 -

	1.2.6	Overvie	w of the role HRMS in different analytical contexts	20
	1.2.7	Sample	preparation	23
		1.2.7.1	Seized materials and purchased legal highs	23
		1.2.7.2	Biological matrices	23
	1.2.8	Instrum	ental analysis techniques	25
		1.2.8.1	Conventional separation techniques coupled to HRMS	25
		1.2.8.2	Direct sample analysis techniques coupled to HRMS	26
	1.2.9	Data acc	quisition	30
		1.2.9.1	Data-dependent MS/MS acquisition	30
		1.2.9.2	Data-independent MS/MS acquisition	33
		1.2.9.3	MS ⁿ acquisition	34
	1.2.10	Data pro	ocessing techniques	34
		1.2.10.1	Targeted screening	35
		1.2.10.2	Suspect screening	36
	1.2.11	Non-tar	geted/untargeted screening strategies	38
		1.2.11.1	Top-down non-targeted screening	40
		1.2.11.2	Bottom-up non-targeted screening	44
		1.2.11.3	Component identification	46
	1.2.12	Conclus	ions and perspectives	47
	1.2.13	Referen	ces	48
1.3	Aims o	of the pro	oject	55
СН	APTEI	R 2: T	OP-DOWN SCREENING STRATEGIES	56
2.1	Ration	ale		57
2.2	Mass c	lefect filt	ering (MDF)	58
	2.2.1	Introduc	stion	58

	2.2.2	Methods	s and materials	61
		2.2.2.1	Mass defect ranges of NPS	61
		2.2.2.2	Chemicals and reagents	61
		2.2.2.3	Specimen collection	61
		2.2.2.4	Preparation of stock solutions	62
		2.2.2.5	Preparation of working solutions	62
		2.2.2.6	Preparation of fortified biological samples	62
		2.2.2.7	Instrumental analysis	63
		2.2.2.8	Data processing	64
	2.2.3	Results	and discussion	64
	2.2.4	Conclus	ion	72
2.3	Kendr	ick mass	defect (KMD)	74
	2.3.1	Introduc	ction	74
	2.3.2	Methods	s and materials	75
		2.3.2.1	KMD values of NPS	75
		2.3.2.2	KMD analysis software	75
		2.3.2.3	Analysis of fortified samples	76
		2.3.2.4	Data analysis	76
	2.3.3	Results	and discussion	77
		2.3.3.1	KMD values of NPS classes	77
		2.3.3.2	KMD analysis program	78
	2.3.4	Conclus	ion	88
2.4	Refere	nces		88
2.5	PUBL	ICATIO	N: The potential for complementary targeted/non-tar	geted
	screen	ing of r	novel psychoactive substances in equine urine using I	liquid

Chron	natograpl	ny-High	Resolution	Accurate	Mass	spectrometry
(doi: 1	(doi: 10.1039/C6AY00156D)					
2.5.1	Forewo	rd				
2.5.2	Abstrac	:t				
2.5.3	Keywor	rds				
2.5.4	Introdu	ction				
2.5.5	Materia	ils and meth	ods			
	2.5.5.1	Reference	materials, cher	micals and rea	gents	
	2.5.5.2	Preparatio	n of standard s	olutions		
	2.5.5.3	Preparatio	n of blank equi	ine urine		
	2.5.5.4	Sample pr	reparation			
	2.5.5.5	LC-HRAN	A analysis			
	2.5.5.6	Method va	alidation			
	2.5.5.7	Non-targe	ted screening			
2.5.6	Results	and discuss	sion			
	2.5.6.1	Targeted 1	nethod validati	on		
2.5.7	Non-tar	geted analy	sis using differ	ential analysis	5	
	2.5.7.1	Chromato	graphic alignm	ent		
	2.5.7.2	Peak deter	ction			
	2.5.7.3	Statistical	analysis			
	2.5.7.4	Identificat	ion			
	2.5.7.5	Proposed	workflow			
	2.5.7.6	Verificatio	on			
2.5.8	Conclus	sion				
2.5.9	Referen	ices				114

CHAP	FER 3:	BO	TTOM-UP SC	REE	NING STRAT	TEGIES	•••••	117
3.1 Rat	ionale							118
3.2 PU	3.2 PUBLICATION: Characterisation of hallucinogenic phenethylamines using high-							
reso	olution	mass	spectrometry	for	non-targeted	screening	purposes	(doi:
10.	1002/dt	a.217	1)					119
3.2	1 For	eword	l					119
3.2	2 Abs	stract						121
3.2	.3 Key	yword	s					121
3.2	4 Intr	oduct	ion					122
3.2	5 Exp	perime	ental					124
	3.2.	.5.1	Chemicals and 1	eager	nts			124
	3.2.	.5.2	Sample preparat	tion				125
	3.2.	.5.3	Instrumental and	alysis				126
	3.2.	.5.4	Data analysis					127
3.2	6 Res	sults a	nd discussion					127
	3.2.	.6.1	Chromatograph	ic ana	lysis of selecte	d hallucinog	genic	
		1	ohenethylamine	s				127
	3.2.	.6.2	CID of hallucine	ogeni	c phenethylami	nes		128
	3.2.	.6.3	General CID of	2C-X	and DOX con	pounds		129
	3.2.	.6.4 (CID of NBOMe	deriv	vatives			134
	3.2.	.6.5	Non-targeted sc	reenir	ng approach			136
3.2	7 Cor	nclusio	on					142
3.2	8 Ack	knowl	edgements					142
3.2	9 Ref	erenc	es					142
3.3 CII) studie	s of sy	nthetic cathino	nes				146

	3.3.1	Method	s and materials	. 146
		3.3.1.1	Chemicals and reagents	146
		3.3.1.2	Sample preparation	. 148
		3.3.1.3	Instrumental analysis and data processing	148
	3.3.2	Results	and discussion	148
		3.3.2.1	Chromatographic analysis of selected synthetic cathinones	148
		3.3.2.2	CID of traditional cathinones	149
		3.3.2.3	CID of methylenedioxy-type cathinones	152
		3.3.2.4	CID of α-pyrrolidinophenone-type cathinones	. 153
		3.3.2.5	CID of methylenedioxypyrrolidino-type cathinones	155
	3.3.3	Summar	ry of key synthetic cathinone product ions for non-targeted	
	screen	ing		. 156
	3.3.4	Conclus	ion	. 159
	3.3.5	Referen	ces	159
3.4	CID st	udies of	synthetic cannabinoids	. 161
	3.4.1	Materia	ls and methods	162
		3.4.1.1	Chemicals and reagents	162
		3.4.1.2	Sample preparation	. 163
		3.4.1.3	Instrumental analysis	163
		3.4.1.4	Data processing	163
	3.4.2	Results	and discussion	. 164
		3.4.2.1	General CID pathways of synthetic cannabinoids	. 164
		3.4.2.2	Key linker-head cations	166
		3.4.2.3	Key linker-core-tail cations	167
		3.4.2.4	Key head-group cations	167

		3.4.2.5 Key core-linker cations	. 169
	3.4.3	Conclusion	. 169
	3.4.4	References	. 171
CH	[APTE]	R 4: APPLICATION TO FORENSIC CASEWORK	. 172
4.1	Ration	nale	. 173
4.2	Sampl	le preparation and instrumental analysis methods	. 173
	4.2.1	Analysis of human urine	. 173
		4.2.1.1 Sample preparation	. 173
		4.2.1.2 Instrumental analysis	. 173
	4.2.2	Analysis of human whole blood	. 174
		4.2.2.1 Sample preparation	. 174
		4.2.2.2 Instrumental analysis	. 175
	4.2.3	Data analysis	. 175
4.3	Result	ts and discussion	. 176
	4.3.1	Case 1: 2C-B in human urine	. 176
	4.3.2	Case 2: MDMC in human urine	. 181
	4.3.3	Case 3: MDPV in human whole blood	. 186
4.4	Concl	usion	. 189
4.5	Refere	ences	. 190
СН	APTE	R 5: CONCLUSIONS AND RECOMMENDATIONS	. 191
AP.	PENDI	ICES	. 197
	APPE	NDIX A	. 198
	APPE	NDIX B	. 200
	APPE	NDIX C	. 207
	APPE	NDIX D	. 211

List of figures

Figure 1.1	General structure for traditional (a), 3,4-methylenedioxy-type (b), α -
	pyrrolidinophenone-type (c) and methylenedioxy- α -pyrrolidinophenone-type (d)
	cathinones
Figure 1.2	General structure for 2C-X ($R^3 = H$) and DOX ($R^3 = CH_3$) hallucinogenic
	phenethylamines
Figure 1.3	General structure for 25X-NBOMe derivatives
Figure 1.4	General structures for naphthoylindole (a), benzoylindole (b), 2,2,3,3-
	tetramethylcyclopropylindole (c), phenacetylindole (d), quinolinylindole (e), 3-
	carboxamide-indole (f) and 3-carboxamide-indazole (g) synthetic cannabinoids 7
Figure 1.5	General structure of psychedelic tryptamine (a) and structures of serotonin (b),
	psilocybin (c) and psilocin (d)
Figure 1.6	General structures for benzylpiperazine (a) and phenylpiperazine (b) derivatives 10
Figure 1.7	Structures of fentanyl derivatives (a), carfentanil (b) and fentanyl (c) 10
Figure 1.8	Comparison of systematic workflows for (i) quantitative target analysis with reference
	standards, (ii) suspects screening without reference standards, and (iii) non-target
	screening of unknowns in environmental samples by using LC-high resolution
	(tandem) mass spectrometry.*Note that the m/z range of the extraction window for the
	exact mass filtering depends on the mass accuracy and the resolving power of the mass
	spectrometer used. Reproduced from [67] with permission of Springer
Figure 1.9	Comparison of top-down and bottom-up non-targeted screening workflows using
	HRMS. The * denotes that specialised software is required
Figure 1.10	Total ion chromatogram of "K2-Summit" with no filtering (A) and with a mass defect
	filter centered at 0.1859 with a window of $\pm 50 \text{ mDa}$ (B), $\pm 20 \text{ mDa}$ (C), and $\pm 10 \text{ mDa}$
	(D). Reprinted with permission from [74]. Copyright 2012 American Chemical Society.
Figure 1.11	SIEVE® total ion chromatogram (TIC) alignment showing the presence of 25B
	(annotated with \downarrow) spiked at 100 ng mL-1 in equine urine by comparison to a blank

Figure 1.12	Precursor neutral loss chromatograms (pNLCs) of 17.0265, 32.0500, 45.0576 and
	47.0735 Da for 2C–D and DOH at 20 eV. Reproduced from [84] with permission of
	Springer
Figure 2.1	Comparison of HRMS data (grey) when using (a) a mass range of 100-105 Da and (b)
	a MDF of 0.2000 ± 0.1000 Da
Figure 2.2	Summary of mass defects for selected synthetic cathinones (blue), hallucinogenic
	phenethylamines (red) and synthetic cannabinoids (green)
Figure 2.3	Comparison of mass defect ranges for NPS classes with and without halogen analogues.
	The box plot represents the range of mass defects for 50% and 80% of selected analytes.
	The whiskers represent the minimum and maximum mass defect values
Figure 2.4	TICs for blank equine plasma (a) and equine plasma fortified with 100 ng/mL MDPV
	(b) and 25H-NBOMe (c) and TCCs for blank plasma (d) and MDPV (e) and 25H-
	NBOMe (f) fortified plasma using a 0.1574 ± 0.0992 Da MDF with a <i>m/z</i> range 150-
	500
Figure 2.5	Authentic human urine TIC (a) and TCC (b) acquired using a Poroshell 120 C18 column
	with mobile phase composition A: 20 mM ammonium formate and B: acetonitrile
	containing 0.1% formic acid. Authentic human urine TIC (c) and TCC (d) acquired
	using a Phenomenex Gemini C18 column (50 \times 2 mm, 5 μ m) with mobile composition
	A: 10 mM ammonium acetate and B: acetonitrile containing 0.1% acetic acid.
	Chromatographic conditions for both samples involved a flow rate of 0.5 mL/min and

an initial mobile phase composition was 99% A which was held for 2 min, decreased

linearly to 20% A over 6.5 min then returned to the initial conditions over 2 min.....71

- Figure 2.7Main menu of the DefectDetect KMD analysis software.79Figure 2.8Schematic of the DefectDetect workflow.80Figure 2.9DefectDetect data processing parameters.81Figure 2.10KMD processing parameters.82Figure 2.11Filtering parameters including mass range, intensity, mass defect and even/odd m/z.83Figure 2.12Internal standard parameters.84

Figure 2.13	Results visualisation options
Figure 2.14	An example of the results sheet containing the specified data processing parameters and
	sequentially listed results from imported files
Figure 2.15	General NBOMe structure (R_1 : Br = 25B, Cl = 25C, CH ₃ = 25D, C ₂ H ₅ = 25E, H = 25H,
	I = 25I)
Figure 2.16	SIEVE® total ion chromatogram (TIC) alignment showing the presence of 25B
	(annotated with \downarrow) spiked at 100 ng mL-1 in equine urine by comparison to a blank
	equine urine sample
Figure 2.17	SIEVE® frame report for 25B spiked at 25 ng/mL in equine urine 105
Figure 2.18	Xcalibur® simulated isotope pattern for 25B spiked at 5 ng/mL in equine urine (with
	annotated D) and theoretical pattern for C ₁₈ H ₂₂ O ₃ NBr (right inset) 106
Figure 2.19	Proposed workflow for non-targeted screening of NBOMe compounds in equine urine.
Figure 3.1	CID pathways for 2C-X and DOX derivatives at 20 eV
Figure 3.2	CID pathways for 25X-NBOMe derivatives at 20 eV
Figure 3.3	pNLCs of 17.0265, 32.0500, 45.0576 and 47.0735 Da for 2C–D and DOH at 20 eV.
Figure 3.4	EICs for 2C-I and DOI at <i>m</i> / <i>z</i> 164.0837, 149.0603, 134.0732, 178.0994, 163.0804,
	147.0804 and 135.0810 at 20 eV
Figure 3.5	Proposed CID pathways for traditional cathinones at 20 eV
Figure 3.6	Proposed CID pathways of methylenedioxy-type cathinones at 20 eV 153
Figure 3.7	Proposed CID pathways of α-pyrrolidinophenone-type cathinones at 20 eV
Figure 3.8	Proposed CID pathways for methylenedioxy-α-pyrrolidinophenone-type cathinones at
	20 eV
Figure 3.9	An example of the four parts that make up the synthetic cannabinoid structure for JWH-
	018
Figure 3.10	General CID pathways of synthetic cannabinoids
Figure 3.11	Key linker-head product ions observed at a collision energy ramp of 10-40 eV 166
Figure 3.12	Key linker-core-tail product ions observed at a collision energy ramp of 10-40 eV. 168
Figure 3.13	Key head-group product ions observed at a collision energy ramp of 10-40 eV 170

Figure 3.14	Key linker-core product ions observed at a collision energy ramp of 10-40 eV 170
Figure 4.1	EICs of the top ten abundant m/z values from the KMD analysis of human urine
	containing 2C-B
Figure 4.2	EIC for m/z 260.0294 at 0 eV and EICs for common product ions of 2C-X derivatives
	at 20 eV (<i>m/z</i> 164.0637 and 149.0603) and 40 eV (<i>m/z</i> 134.0732)
Figure 4.3	Mass spectra for chromatographic peaks at 4.71 and 4.46 min at 20 eV 182
Figure 4.4	EICs of the top ten abundant m/z values from the KMD analysis of human urine
	containing MDMC
Figure 4.5	EICs for characteristic product ions of methylenedioxy-type cathinones at 20 eV 185
Figure 4.6	pNLCs corresponding to the characteristic NLs of methylenedioxy-type cathinones at
	20 eV
Figure 4.7	EICs for the KMD analysis results for human whole blood containing MDPV 188
Figure 4.8	EICs for common product ions for pyrrolidine-type cathinones at a collision energy
	ramp of 10-40 eV
Figure 4.9	EICs for common product ions for methylenedioxy- α -pyrrolidinophenone cathinones at
	a collision energy ramp of 10-40 eV

List of tables

Table 2.1	Exact masses and mass defect of common elements
Table 2.2	Mass and mass defect shifts for common NPS substitutions
Table 2.3	Median mass defect values, mass defect range and range widths for 50% and 80% of
	selected analytes including and excluding halogens
Table 2.4	Overall mass defect ranges for 50%, 80% and 100% of selected analogues including
	and excluding halogens
Table 2.5	KMD values for common NPS subclasses based on CH ₂ normalisation78
Table 2.6	Comparison of raw and averaged intensities for MDPV and 25H-NBOMe
Table 2.7	Specificity for six candidate NBOMe compounds using LC-HRAM 101
Table 2.8	Quantitative validation results for the six candidate NBOMe compound 102
Table 3.1	Potential core structures of hallucinogenic phenethylamines associated with the
	presence of common losses (Da) and product ions (m/z)
Table 3.2	Potential core structures of synthetic cathinones associated with the presence of product
	ions and NLs
Table 4.1	Summary of results from the KMD analysis for the human urine sample containing 2C-
	B
Table 4.2	Matched m/z values from the results of the KMD analysis for the human urine sample
	containing 2C-B
Table 4.3	Results of the KMD analysis for the human urine sample containing MDMC 183
Table 4.4	Results of the KMD analysis for human whole blood containing MDPV 187

List of abbreviations

.CSV	Comma-separated value file
$[M+H]^+$	Protonated precursor ion
[M-H] ⁻	Deprotonated precursor ion
ADBICA	<i>N</i> -(1-amino-3,3-dimethyl-1-oxo-2-butanyl)-1-pentyl- 1 <i>H</i> -indole-3-carboxamide
25B-NBOMe/25B	2-(4-bromo-2,5-dimethoxyphenyl)- <i>N</i> -[(2 methoxyphenyl)methyl]ethanamine
25C-NBOMe/25C	2-(4-chloro-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25D-NBOMe/25D	2-(4-methyl-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25E-NBOMe/25E	2-(4-ethyl-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25G-NBOMe	2-(3,4-dimethyl-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25H-NBOMe/25H	2-(2,5-dimethoxyphenyl)- <i>N</i> -[(2- methoxyphenyl)methyl]ethanamine
25I-NBF	<i>N</i> -(2-fluorobenzyl)-2-(4-iodo-2,5- dimethoxyphenyl)ethanamine
25I-NBMD	<i>N</i> -(2,3-methylenedioxybenzyl)-2-(4-iodo-2,5- dimethoxyphenyl)ethanamine
25I-NBOMe/25I	2-(4-iodo-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25N-NBOMe/25N	2-(4-nitro-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25P-NBOMe	2-(4-propyl-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25T2-NBOMe/25T2	2-(4-ethylthio-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25T4-NBOMe	2-(4-isoproprylthio-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25T7-NBOMe	2-(4-propylthio-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25T-NBOMe	2-(4-methylthio-2,5-dimethoxyphenyl)- <i>N</i> -[(2-methoxyphenyl)methyl]ethanamine
25X-NBOMe	2-(2,5-dimethoxyphenyl)- <i>N</i> -(2-methoxybenzyl) derivatives
2С-В	4-bromo-2,5-dimethoxyphenethylamine
2C-B-Fly	2-(4-bromo-2,3,6,7-tetrahydrofuro[2,3-f][1]benzofuran- 8-yl)ethanamine
2C-C	4-chloro-2,5-dimethoxyphenethylamine
2C-D	2,5-dimethoxy-4-methylphenethylamine
2С-Е	4-ethyl-2,5-dimethoxyphenethylamine

2C-G	2,5-dimethoxy-3,4-dimethylphenethylamine	
2С-Н	I 2,5-dimethoxyphenethylamine	
2C-I	4-iodo-2,5-dimethoxyphenethylamine	
2C-P	2,5-dimethoxy-4-propylphenethylamine	
2С-Т	2,5-dimethoxy-4-methylthiophenethylamine	
2C-T-2	2,5-dimethoxy-4-ethylthiophenethylamine	
2C-T-4	2,5-dimethoxy-4-isopropylthiophenethylamine	
2C-T-7	2,5-dimethoxy-4-propylthiophenethylamine	
2C-X	2,5-dimethoxyphenethylamines derivatives	
3,4-DMMC	3,4-dimethylmethcathinone	
4-EEC	4-ethylethcathinone	
4-EMC	4-ethylmethcathinone	
4-MEC	4-methylethcathinone	
4-MMC	4-methylmethcathinone	
5F-AB-PINACA	<i>N</i> -(1-amino-3-methyl-1-oxo-2-butanyl)-1-(5- fluoropentyl)-1 <i>H</i> -indazole-3-carboxamide	
5F-ADBICA	<i>N</i> -(1-amino-3,3-dimethyl-1-oxo-2-butanyl)-1-(5-fluoropentyl)-1 <i>H</i> -indole-3-carboxamide	
5F-APICA	<i>N</i> -(1-adamantanyl)-1-(5-fluoropentyl)-1 <i>H</i> -indole-3-carboxamide	
5F-CUMYL-	1-(5-fluoropentyl)-N-(2-phenyl-2-propanyl)-1H-	
PINACA	indazole-3-carboxamide	
5F-MMB-PICA	Methyl <i>N</i> -{[1-(5-fluoropentyl)-1 <i>H</i> -3- indolyl]carbonyl}valinate	
5F-MMB-PINACA	Methyl <i>N</i> -{[1-(5-fluoropentyl)-1 <i>H</i> -3- indazolyl]carbonyl}valinate	
5F-PB-22	8-quinolinyl 1-(5-fluoropentyl)-1H-indole-3-carboxylate	
5-HT	5-hydroxytryptamine	
AB-CHMINACA	<i>N</i> -(1-amino-3-methyl-1-oxo-2-butanyl)-1- (cyclohexylmethyl)-1 <i>H</i> -indazole-3-carboxamide	
AB-FUBINACA	<i>N</i> -(1-amino-3-methyl-1-oxo-2-butanyl)-1-(4-fluorobenzyl)-1 <i>H</i> -indazole-3-carboxamide	
AB-PINACA	<i>N</i> -(1-amino-3-methyl-1-oxo-2-butanyl)-1-pentyl-1 <i>H</i> -indazole-3-carboxamide	
ADB-CHMINACA	<i>N</i> -(1-amino-3,3-dimethyl-1-oxo-2-butanyl)-1- (cyclohexylmethyl)-1 <i>H</i> -indazole-3-carboxamide	
ADB-FUBINACA	<i>N</i> -(1-amino-3,3-dimethyl-1-oxo-2-butanyl)-1-(4-fluorobenzyl)-1 <i>H</i> -indazole-3-carboxamide	
AJS	Agilent Jet Stream	
AM-1241	(2-iodo-5-nitrophenyl){1-[(1-methyl-2- piperidinyl)methyl]-1 <i>H</i> -3-indolyl}methanone	
AM-1248	1-adamantanyl{1-[(1-methyl-2-piperidinyl)methyl]-1 <i>H</i> - 3-indolyl}methanone	

AM-2201	[1-(5-fluoropentyl)-1 <i>H</i> -3-indolyl](1- naphthyl)methanone
AM-2233	(2-iodophenyl){1-[(1-methyl-2-piperidinyl)methyl]-1 <i>H</i> - 3-indolyl}methanone
AM-694	[1-(5-fluoropentyl)-1 <i>H</i> -3-indolyl](2- iodophenyl)methanone
ANU	Australian National University
AORC	Association of official racing chemists
APCI	Atmospheric pressure chemical ionisation
APICA	N-(1-adamantanyl)-1-pentyl-1H-indole-3-carboxamide
AR	Analytical reagent
ARFL	Australian Racing Forensic Laboratory
BB-22	8-quinolinyl 1-(cyclohexylmethyl)-1 <i>H</i> -indole-3- carboxylate
bbCID	Broadband collision-induced dissociation
Bromo-DragonFly	1-(8-bromobenzo[1,2-b; 4,5-b']difuran-4-yl)-2-
	aminopropane
BZP	Benzylpiperazine
CA	California
CB	Cannabinoid receptor
CBD	Cannabidiol
сс	Cubic centimetres
CDC	Centre for Disease Control
CE	Capillary electrophoresis (separation technique)
CE	Collision energy (mass spectrometry)
CID	Collision-induced dissociation
cm	Centimetre
CMF	Charge-migration fragmentation
СО	Carbon monoxide
CRF	Charge-retention
CRM	Certified reference material
Da	Dalton
DART	Direct analysis in real time
DBE	Double bond equivalents
DDA	Data-dependent acquisition
DEA	Drug Enforcement Administration
DESI	Desorption electrospray ionisation
DIA	Data-independent acquisition
DOB	4-bromo-2,5-dimethoxyamphetamine
DOET	4-ethyl-2,5-dimethoxyamphetamine
DOH/2,5-DMA	2,5-dimethoxyamphetamine
DOI	4-iodo-2,5-dimethoxyamphetamine
DOM	2,5-dimethoxy-4-methylamphetamine

2,5-dimethoxy-4-methylthioamphetamine
2,5-dimethoxyamphetamines derivatives
Extracted compound chromatogram
Even electron
Electron ionisation
Extracted ion chromatogram
European Monitoring Centre for Drugs and Drug Addiction
Positive electrospray ionisation
European Union
Electron volt
Early Warning System
Find by Formula
Flow injection analysis
[1-(4-fluorobenzyl)-1 <i>H</i> -3-indolyl](2,2,3,3-tetramethylcyclopropyl)methanone
8-quinolinyl 1-(4-fluorobenzyl)-1 <i>H</i> -indazole-3- carboxylate
Full width at half maximum
Gas chromatography – mass spectrometry
Gigahertz
Graphical user interface
Water
Higher energy collision dissociation
Heated electrospray ionisation
High-performance liquid chromatography
High-resolution accurate mass
High-resolution mass spectrometry
Hertz
Information-dependent acquisition
Illinois
Internal standard
International Union of Pure and Applied Chemists
John William Huffman
(2-methyl-1-pentyl-1 <i>H</i> -3-indolyl)(1- naphthyl)methanone
(2-methyl-1-propyl-1 <i>H</i> -3-indolyl)(1- naphthyl)methanone
(1-butyl-2-methyl-1H-3-indolyl)(1-naphthyl)methanone
1-naphthyl(1-pentyl-1H-3-indolyl)methanone
(1-hexyl-1H-3-indolyl)(1-naphthyl)methanone
(1-heptyl-1H-3-indolyl)(1-naphthyl)methanone
1-naphthyl(1-pentyl-1H-3-pyrrolyl)methanone

JWH-073	(1-butyl-1H-3-indolyl)(1-naphthyl)methanone
JWH-081	(4-methoxy-1-naphthyl)(1-pentyl-1 <i>H</i> -3-indolyl)methanone
JWH-098	(4-methoxy-1-naphthyl)(2-methyl-1-pentyl-1 <i>H</i> -3-indolyl)methanone
JWH-122	(4-methyl-1-naphthyl)(1-pentyl-1 <i>H</i> -3- indolyl)methanone
JWH-200	$\{1-[2-(4-morpholinyl)ethyl]-1H-3-indolyl\}(1-naphthyl)methanone$
JWH-203	2-(2-chlorophenyl)-1-(1-pentyl-1 <i>H</i> -3-indolyl)ethanone
JWH-210	(4-ethyl-1-naphthyl)(1-pentyl-1 <i>H</i> -3-indolyl)methanone
JWH-250	2-(2-methoxyphenyl)-1-(1-pentyl-1 <i>H</i> -3- indolyl)ethanone
JWH-307	[5-(2-fluorophenyl)-1-pentyl-1 <i>H</i> -3-pyrrolyl](1-naphtyl)methanone
KMD	Kendrick mass defect
kV	Kilovolt
L	Litre
LC-MS	Liquid chromatography – mass spectrometry
LLE	Liquid-liquid extraction
LLOQ	Lower limit of quantification
LOD	Limit of detection
LRMS	Low-resolution mass spectrometry
М	Moles per litre; mol/L
m/z	Mass-to-charge ratio
$\mathrm{M}^{+ ullet}$	Radical cation
$\mathrm{M}^{+ \bullet \bullet}$	Diradical cation
MA	Massachusetts
MAE	Microwave-assisted extraction
MALDI	Matrix-assisted laser desorption ionisation
mDa	Millidalton
MDF	Mass defect filtering
MDMA	3,4-methylenedioxymethamphetamine
MDMB-CHMICA	Methyl <i>N</i> -{[1-(cyclohexylmethyl)-1 <i>H</i> -3- indolyl]carbonyl}-3-methylvalinate
MDMB-	Methyl N-{[1-(4-fluorobenzyl)-1H-3-
FUBINACA	indazolyl]carbonyl}-3-methylvalinate
MDMB-PINACA	Methyl <i>N</i> -[(1-pentyl-1 <i>H</i> -3-indazolyl)carbonyl]-3-methylvalinate
MDMC	2,3-methylenedioxymethcathinone
MDPBP	3,4-methylenedioxy-α-pyrrolidinobutiophenone
MDPPP	3,4-methylenedioxy-α-pyrrolidinopropiophenone
MDPV	3,4-methylenedioxypyrovalerone

MFE	Molecular feature extraction
MFG	Molecular formula generator
mg	Milligram
MI	Michigan
mL	Millilitre
mM	Millimoles per litre; mmol/L
mm	Millimetre
MMB-FUBINACA	Methyl <i>N</i> -{[1-(4-fluorobenzyl)-1 <i>H</i> -3- indazolyl]carbonyl}valinate
MO	Missouri
MPBP	4-methyl-α-pyrrodinobutiophenone
MS	Mass spectrometry
MS/MS or MS ²	Tandem mass spectrometry
MSC	Molecular Structure Correlator
MS^n	Multistage tandem-mass spectrometry
MΩ	Megaohm
N_2	Nitrogen gas
NaCl	Sodium chloride
ng	Nanogram
NH ₃	Ammonia
NJ	New Jersey
NL	Neutral loss
NLF	Neutral loss filtering
NMI	National Measurement Institute
NMR	Nuclear magnetic resonance
NPS	New psychoactive substances
NSW	New South Wales
OE	Odd electron
OH	Ohio
PA	Pennsylvania
PCA	Principal component analysis
PCDL	Personal compound database and library
PET	Positron emission tomography
PFAC	Perfluoroalkyl compounds
PiHKAL	Phenethylamines I have known and loved
PLE	Pressurised liquid extraction
pNLC	Precursor neutral loss chromatogram
ppm	Parts per million
PPP	Pyrrolidinopropiophenone
PTR	Proton transfer reaction
QLD	Queensland
QqQ	Triple quadrupole

QTOF	Quadrupole time-of-flight
\mathbb{R}^2	Coefficient of determination
rpm	Revolutions per minute
S	Seconds
S/N	Signal-to-noise ratio
SA	South Australia
SALLE	Salting-out assisted liquid-liquid extraction
SCX	Strong cation exchange
SIEVE®	Statistical Iterative Exploratory Visualization Environment
SPE	Solid-phase extraction
SRI	Selective reagent ionisation
STA	Systematic toxicological analysis
SWATH [®]	Sequential window acquisition of all theoretical spectra
SWGDRUG	Scientific Working Group for the Analysis of Seized Drugs
TCC	Total compound chromatogram
TCMP	Tetramethylcyclopropyl
THC	Δ^9 -tetrahydrocannabinol
TIC	Total ion chromatogram
TiHKAL	Tryptamines I have known and loved
TOF	Time-of-flight
TX	Texas
UK	United Kingdom
UNODC	United Nations Office of Drugs and Crime
UR-144	(1-pentyl-1 <i>H</i> -3-indolyl)(2,2,3,3- tetramethylcyclopropyl)methanone
USA	United States of America
V	Volt
VBA	Visual Basic for Applications
XLR-11	[1-(5-fluoropentyl)-1 <i>H</i> -3-indolyl](2,2,3,3- tetramethylcyclopropyl)methanone
α-PVP	α-pyrrolidinovalerophenone
Δ	Mass error
μg	Microgram
μL	Microlitre

Publications and conference proceedings

Refereed journal publications directly related to this project

- Pasin, D., Cawley, A., Bidny, S., Fu, S. (2017) Current applications of highresolution mass spectrometry for the analysis of new psychoactive substances: a critical review. Analytical and Bioanalytical Chemistry, doi: 10.1007/s00216-017-0441-4.
- Pasin, D., Cawley, A., Bidny, S., Fu, S. (2017) Characterisation of hallucinogenic phenethylamines using high-resolution mass spectrometry for non-targeted screening purposes. Drug Testing and Analysis, doi: 10.1002/dta.2171.
- Cawley, A., Pasin, D., Ganbat, N., Ennis, L., Smart, C., Greer, C., Keledjian, J., Fu, S., Chen, A. (2016) The potential for complementary targeted/non-targeted screening of novel psychoactive substances in equine urine using liquid chromatography-high resolution accurate mass spectrometry. Analytical Methods. 8(8): 1789-97, doi: 10.1039/C6ay00156d

Refereed journal publications from other related research activities

- Bidny, S., Gago, K., Chung, P., Albertyn, D., Pasin, D. (2017) Simultaneous screening and quantification of basic, neutral and acidic drugs in blood using UPLC-QTOF-MS. Journal of Analytical Toxicology. 41(3): 181-95, doi: 10.1093/jat/bkw118.
- Pasin, D., Bidny, S., Fu, S. (2015). Analysis of new designer drugs in postmortem blood using high-resolution mass spectrometry. Journal of Analytical Toxicology. 39(3): 163-71, doi: 10.1093/jat/bku144

Refereed conference proceedings (presenting author underlined)

- <u>Pasin, D.</u>, Cawley, A., Bidny, S., Fu, S. Evaluating the use of Kendrick Mass Defect Analysis for rapid discovery of new psychoactive substances in nontargeted screening approaches. 55th Meeting of The International Association of Forensic Toxicologists. Boca Raton, United States of America. Jan 6-11, 2018.
- Pasin, D., Cawley, A., Bidny, S., Fu, S. Characterization of Cannabinoids Using High-Resolution Mass Spectrometry for Non-Targeted Screening. 21st Triennial Meeting of the International Association of Forensic Science. Toronto, Canada. Aug 21-25, 2017.
- Pasin, D., <u>Cawley, A.</u>, Bidny, S., Fu, S. Non-targeted screening of new psychoactive substances using liquid chromatography-high resolution mass spectrometry. *Royal Australian Chemical Institute Centenary Congress*. Melbourne, Australia. July 23-28, 2017
- Pasin, D., Cawley, A., Bidny, S., Fu, S. The use of collision-induced fragmentation pathways of hallucinogenic phenethylamines for the detection and identification of novel analogues. Australian and New Zealand Forensic Science Society 23rd International Symposium on the Forensic Sciences. Auckland, New Zealand. Sept 18-22, 2016.
- Pasin, D., Cawley, A., Bidny, S., Fu, S. The application of mass defect filtering in data mining of high-resolution mass spectrometry data for non-targeted screening strategies of new psychoactive substances. 54th Meeting of The International Association of Forensic Toxicologists. Brisbane, Australia. Aug 28-Sept 1, 2015
- 6. <u>Pasin, D.</u>, Fu, S., Cawley, A. An investigation into the collision induced dissociation pathways of synthetic cathinones using high-resolution mass

spectrometry for non-targeted screening purposes. 7th European Academy of Forensic Science Conference. Prague, Czech Republic. Sept 6-11, 2015.

- Pasin, D., Fu, S., Cawley, A. Preliminary investigation into the use of mass defect filtering for data reduction and non-targeted screening strategies for new psychoactive substances (NPS) using high-resolution mass spectrometry. 7th European Academy of Forensic Science Conference. Prague, Czech Republic. Sept 6-11, 2015.
- Pasin, D., Fu, S., Cawley, A. Collision-induced dissociation pathways of hallucinogenic phenethylamines (2C-X) and their N-(2-methoxybenzyl) derivatives (NBOMe) using high-resolution mass spectrometry for non-targeted screening purposes. 53rd Meeting of The International Association of Forensic Toxicologists. Florence, Italy. Aug 30-Sept 4, 2015 (poster).
- <u>Cawley, A.</u>, Pasin, D., Ganbat, N., Ennis, L., Smart, C., Greer, C., Keledjian, J., Fu, S., Chen, A. Validation of non-targeted high-resolution accurate mass spectrometry analysis in forensic toxicology: A case study in NBOMe detection. 53rd Meeting of The International Association of Forensic Toxicologists. Florence, Italy. Aug 30-Sept 4, 2015.
- <u>Cawley, A.</u>, Ganbat, N., Ennis, L., Pasin, D., Smart, C., Keledjian, J., Fu, S., Chen, A., Mariani, M., Jones, D. The potential of complementary targeted/untargeted high-resolution accurate mass screening strategies for advanced sports anti-doping. Royal Australian Chemical Institute National Congress. Adelaide, Australia. Dec 7-12, 2014.
- Pasin, D., Bidny, S., Fu, S. Detection and quantification of 40 new designer drugs in post-mortem blood using high-resolution mass spectrometry. Australian and New Zealand Forensic Science Society 22nd International Symposium on the

Forensic Sciences. Adelaide, Australia. Aug 31-Sept 4, 2014.

- Pasin, D., Bidny, S., Fu, S. Analysis of new designer drugs in post-mortem blood using high resolution mass spectrometry. Forensic and Clinical Toxicology Association Inc. Meeting. Sydney, Australia. Dec 2-4, 2013.
- <u>Bidny, S.</u>, Kelly, G., Gago, K., David, M., Duong, T., Pasin, D. The application of high-resolution mass spectrometry and ultra-performance liquid chromatography in forensic toxicology for the simultaneous screening and quantification of basic, neutral and acidic drugs in blood. Forensic and Clinical Toxicology Association Inc. Meeting. Sydney, Australia. Dec 2-4, 2013.

Abstract

The proliferation of new psychoactive substances (NPS) has become problematic for forensic drug chemistry and analytical toxicology laboratories that rely on the use of targeted screening methods for the detection of analytes. In order to detect novel NPS derivatives, non-targeted or general unknown screening workflows need to be implemented. Recently, high-resolution mass spectrometry (HRMS) has become the workhorse for general drug screening due to its ability to collect full scan MS and MS/MS data, which can be retrospectively interrogated and has been identified as a potential tool for non-targeted screening.

Top-down screening approaches involving the selection of abundant precursor ions is difficult in toxicological analyses particular when analytes of interest exist at low concentrations. Mass defect-based top-down screening approaches were developed and evaluated for the detection of low concentration analogues. Application of mass defect filtering (MDF) on fortified and authentic samples revealed that the efficacy of this technique was dependent on sample complexity, chromatographic resolution and, more critically, software availability and/or capability. An in-house Microsoft Office Excel-based KMD analysis software was developed using the Visual Basic for Applications (VBA) programming language. Briefly, the software workflow involves the importation of single or multiple comma-separated value (.csv) files, followed by the calculation of KMD values for each mass-to-charge (m/z) entry normalized to – CH₂. The data can then be filtered by m/z range, intensity, mass defect and even/odd mass. KMD values which match the user-defined values (up to 8 different values can be monitored simultaneously) are highlighted and isolated for easy visualization.

software to observe the presence of distinct chromatographic peaks for the selected m/z values. The program was capable of rapidly interrogating numerical MS data from multiple files acquired by major HRMS platform vendors. In addition, differential analysis software was also evaluated for the detection of anomalous signals not present in control samples, however, this technique requires representative control matrices in addition to supplementary data processing software that is not always provided by HRMS vendors or requires separate purchase.

Bottom-up screening strategies involve the monitoring of common product ions and neutral losses (NLs) for particular subclasses, where aligning chromatographic peaks for multiple product ions or NLs may indicate the possible presence of a novel NPS analogue. Collision-induced dissociation (CID) studies were performed on synthetic cathinone, hallucinogenic phenethylamine and synthetic cannabinoid derivatives to determine key product ions and NLs. 2C-X and DOX derivatives had common losses of NH₃, CH₆N and C₂H₉N and common product ions at m/z 164.0837, 149.0603 and 134.0732 for 2C-X derivatives and m/z 178.0994, 163.0754, 147.0804 and 135.0810 for DOX derivatives. The 25X-NBOMe derivatives had characteristic product ion spectra with abundant ions at m/z 121.0654 and 91.0548, together with minor NLs corresponding to 2-methylanisole and 2-methoxybenzylamine and C₉H₁₄NO.

Product ion pairs m/z 117.0573/105.0699, 131.0730/105.0699, 145.0886/119.0855, 159.1043/133.1012 149.0635/123.0605 and 161.0835/135.0804 were indicative of different substituted traditional cathinone derivatives. Methylenedioxycathinone-type cathinones did not exhibit common product ions but instead exhibited NLs of 18.0106 (H₂O), 48.0211 (CH₄O₂) and 76.0160 Da (C₂H₄O₃). The presence of m/z 98.0964, 112.1121 or 126.1277 and a NL of 71.0735 Da was indicative of synthetic cathinones that contain a pyrrolidine ring such as the α -pyrrolidinophenone-type and

methylenedioxy- α -pyrrolidinophenone-type cathinones. Product ions *m/z* 105.0699 and 119.0855 were indicative of unsubstituted and methylphenyl α -pyrrolidinophenone-type cathinones, respectively. While *m/z* 149.0233 was indicative of methylenedioxy- α -pyrrolidinophenone-type cathinones.

Naphthoylindole derived synthetic cannabinoids exhibited major product ions at m/z 155.0491, 169.0648, 183.0804 and m/z 185.0597 while 2-iodobenzoylindole and TMCP derivatives exhibited the product ion m/z 230.9301 and m/z 125.0961, respectively. Product ions corresponding to the linker-core-tail were observed at m/z 214.1226 (PICA), 232.1132 (5F-PICA), 215.1179 (PINACA), 233.1085 (5F-PINACA), 240.1383 (CHMICA), 241.1335 (CHMINACA), 252.0819 (FUBICA) and 253.0772 (FUBINACA). Furthermore, the presence of m/z 144.0444, 158.0600 and 145.0402 were indicative of the indole, 2-methylindole and indazole acylium cations.

These strategies were applied retrospectively to authentic forensic casework samples that were confirmed to contain NPS analogues at relatively low concentrations. All analytes of interest were detected using a combination of top-down and bottom-up screening strategies. Overall, these strategies offer a vendor-agnostic approach for the detection of NPS analogues that can be implemented immediately for samples of interest.