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Abstract: This study has investigated the feasibility of three different solar-assisted air conditioning
systems for typical medium-sized office buildings in all eight Australian capital cities using the whole
building energy simulation software EnergyPlus. The studied solar cooling systems include:
solar desiccant-evaporative cooling (SDEC) system, hybrid solar desiccant-compression cooling
(SDCC) system, and solar absorption cooling (SAC) system. A referenced conventional vapor
compression variable-air-volume (VAV) system has also been investigated for comparison purpose.
The technical, environmental, and economic performances of each solar cooling system have been
evaluated in terms of solar fraction (SF), system coefficient of performance (COP), annual HVAC
(heating, ventilation, and air conditioning) electricity consumption, annual CO2 emissions reduction,
payback period (PBP), and net present value (NPV). The results demonstrate that the SDEC system
consumes the least energy in Brisbane and Darwin, achieving 56.9% and 82.1% annual energy savings,
respectively, compared to the conventional VAV system, while for the other six cities, the SAC system
is the most energy efficient. However, from both energy and economic aspects, the SDEC system is
more feasible in Adelaide, Brisbane, Darwin, Melbourne, Perth, and Sydney because of high annual
SF and COP, low yearly energy consumption, short PBP and positive NPV, while for Canberra
and Hobart, although the SAC system achieves considerable energy savings, it is not economically
beneficial due to high initial cost. Therefore, the SDEC system is the most economically beneficial
for most of Australian cities, especially in hot and humid climates. The SAC system is also energy
efficient, but is not as economic as the SDEC system. However, for Canberra and Hobart, reducing
initial cost is the key point to achieve economic feasibility of solar cooling applications.

Keywords: solar energy; desiccant dehumidification; absorption cooling; building simulation;
EnergyPlus; economic feasibility; heating, ventilation, and air conditioning

1. Introduction

The increasing amount of energy consumption by buildings has caused widespread global attention
to the social, environmental, and economic implications associated with it. Research has shown that
the building sector is responsible for 32% of the world’s total primary energy consumption [1] and nearly
34% of direct greenhouse gas (GHG) emissions globally [2]. In Europe, 39% of the total primary
energy is consumed by buildings, among which 26% is for residential houses and 13% for commercial
architectures [3]. In China, the building industry accounts for 25–30% of the total national primary
energy [4], while in the USA buildings represent 40% of the total national energy consumption and 40%
of CO2 emissions [5]. A similar situation happens in Australia, where the building industry consumes
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40% of the national electric energy and contributes to 27% of the GHG emissions [6]. Commercial
buildings in particular consume approximately 61% total building energy consumption and contribute
one third of total building GHG emissions in Australia. Additionally, the heating, ventilation, and air
conditioning (HVAC) system installed in buildings is the largest energy consumption contributor,
accounting for 68%, followed by 19% for lighting and 13% for others [6].

Australia has a variety of climatic zones and is currently facing the challenge of dramatic peak
electricity demand due to the high penetration rate of residential and commercial HVAC systems.
Therefore, developing innovative HVAC technology towards sustainability is vitally crucial for
Australia to decrease the nation’s electricity energy consumption and GHG emissions. Fortunately,
the abundant solar energy resource in Australia makes solar cooling available [7]. Because peak
electricity demand due to wide use of air conditioning matches peak solar irradiance, it is feasible to
assume that solar air conditioning technology would be highly desirable in Australia as a means to
reduce peak demand, energy consumption and GHG emissions. In addition, solar air conditioning has
been widely believed as an appealing alternative for traditional HVAC systems in the world because
of its energy efficient, inexhaustible, and eco-friendly features [8].

Therefore, this study aims at investigating the energy savings potential of different solar-assisted
cooling systems for a typical office building in different Australian climates and assessing their
economic feasibility. Specifically, this paper will compare the performance of solar desiccant-evaporative
cooling (SDEC), combined solar desiccant-compression cooling (SDCC), and solar absorption cooling
(SAC), with a referenced conventional vapor compression variable-air-volume (VAV) system,
in terms of the technical, environmental, and economic aspects. This study will cover all Australian
capital cities, including Adelaide, Brisbane, Canberra, Darwin, Hobart, Melbourne, Perth, and Sydney.
The purpose of this investigation is to identify whether solar-assisted air conditioning systems are
technically, environmentally and economically feasible for Australian commercial buildings.

1.1. Solar Energy in Australia

The solar energy resource in Australia is abundant. It is reported that the average solar radiation
collected in Australia is about 58 million petajoules (PJ) per year, which is almost ten thousand times
the nation’s annual energy consumption [9]. Figure 1 shows the annual mean daily solar irradiation in
Australia [7]. It demonstrates that Western Australia, Northern Territory, and northern Queensland
areas have excellent solar energy resources, with more than 22 MJ/m2 per day. South Australia,
southeast Queensland, and New South Wales have good solar energy potentials with about 19 MJ/m2

per day, while Victoria, the Australian Capital Territory, and Tasmania have comparatively lower solar
energy resources, with just below 16 MJ/m2 per day.

There are three main methods to harness solar energy: active solar applications, passive solar
strategies, and electricity generation through solar engines [9]. Active solar technology uses solar
collectors to convert sunlight into useful thermal heat actively [10], which is normally used for domestic
water heating, space heating and cooling. This technology is quite prevalent across Australia due
to the merits of low running cost and government subsidies [9]. Passive solar technology is more
about improving the passive efficiency of buildings, such as optimizing the building design in terms of
building envelope, building systems and building orientation [10] in order to control the impact of
solar radiation on the internal temperature of the building. In relation to electricity generation, solar
thermal and solar photovoltaics (PV) are the technologies generally used for electricity production [9].

Although Australia has rich available solar energy resources, the solar energy utilisation in
Australia is still on a small scale. It was estimated that solar energy only accounted for 0.1% of
Australia’s total primary energy depletion during 2007–2008 [7] and 2.4% of all renewable energy
use [9]. However, solar energy has become increasingly popular in Australia recently for both electricity
production and direct-use applications. According to [6], there were 704,459 solar hot water systems
installed around Australia in 2011, as well as many other low-temperature solar thermal applications
such as solar ponds, solar air heating and solar air conditioning. The Australian PV Institute reported
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that since 2011, the solar PV installations in Australia have increased dramatically, reaching 1.7 million
PV installations with a combined capacity of 6.2 gigawatts in 2017 [11]. In addition, the Australian
Energy Statistics 2016 reported that for 2014–2015, solar PV accounted for 21.5 PJ energy consumption
compared with solar hot water of 14.8 PJ [12]. It is believed that with the development of solar panels
and thermal storage technologies, as well as government financial support, the cost of solar technology
will reduce significantly and thus, solar energy utilisation in Australia will become more advantageous
in the future.Energies 2017, 10, 1463  3 of 27 
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1.2. Solar Air Conditioning Technology Review

Due to its environmentally friendly and energy efficient benefits, solar cooling has been widely
recognised as a promising substitution for traditional air conditioning [8]. Solar air conditioning
is a technology which converts solar energy into useful cooling or air conditioning for buildings.
According to [13], solar cooling is divided into two broad groups: solar thermal cooling and solar
electric cooling. Solar thermal cooling uses solar collectors to provide heat to drive a cooling process,
which usually combines with thermally driven absorption or adsorption chillers. Solar electric cooling
uses photovoltaics to generate electricity to drive classical motor driven vapour compression chillers.
Nowadays, solar cooling applications have globally penetrated the world market in the USA, Europe,
Japan, and China, with approximately 1000 solar cooling system installations [14]. Baniyounes et al. [6]
indicates that solar absorption cooling systems are the most adopted solar thermal cooling technology
in the global market, accounting for 70% of total installed solar thermal cooling systems. This is
followed by solid solar desiccant cooling systems at 14%, solar adsorption cooling systems at 13%,
liquid solar desiccant cooling systems at 2%, and others at 1%, which makes up the total market share
percentage as is shown in Figure 2 below.

In the last several decades, solar-assisted cooling technology has widely been evaluated
worldwide, including solar electric cooling powered by PV [15–17], solar absorption cooling [18–23],
solar adsorption cooling [24,25], and solar desiccant cooling [26–35]. A theoretical modelling
with experimental validation studied by Nie et al. [36] demonstrated that the solid desiccant
cooling assisted by heat pump was more efficient than the conventional cooling system due to
high efficient dehumidification capacity. These research results have also indicated that based on
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different solar cooling technologies and different climates, the energy savings could be 25% to 90%
compared with the traditional HVAC system. In addition, there are also a number of comparative
studies on the performances within various solar cooling systems, which include the comparison
of solar absorption cooling with solar electric cooling [37–40], solar desiccant cooling with solar
absorption cooling [41], and hybrid solar desiccant cooling with other solar cooling systems [42–45].
Gagliano et al. [46] reported that the hybrid solar desiccant integrated vapour compression cooling
system could achieve 40% primary energy savings compared to the solar absorption cooling, and 150%
savings respect to the conventional vapour compression cooling system. Khan et al. [47] found out
that based on various collector areas, for Chennai city, the solar desiccant-assisted Dedicated Outdoor
Air System (DOAS) integrated radiant cooling system could achieve 7.4% to 28.6% energy savings in
comparison with the cooling coil-assisted DOAS radiant cooling system.Energies 2017, 10, 1463  4 of 27 
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The comparison results between different solar cooling systems have shown that overall
the PV-integrated solar cooling system has higher solar fraction and lower primary energy consumption
than the solar thermal absorption cooling system. If considering the excess electricity generation by PV,
the grid-connected solar PV cooling system outperforms the solar thermal absorption cooling system
from both energy and economic respects.

In Australia, the solar air conditioning technology research and development is still in the early
stage. Baniyounes et al. [48] used the TRNSYS software to study the potential of solar absorption
cooling for an office building under three subtropical climates in Australia. They indicated that by
implementing 50 m2 solar collectors and 1.8 m3 hot water storage tank, the energy consumption of
the solar absorption cooling system was only 20% of the conventional HVAC system. Alizadeh [49]
conducted a feasibility study of a solar liquid desiccant air-conditioner (LDAC) for a commercial
building in Queensland, Australia. The author found that by using LDAC, the operating costs
could be decreased significantly in comparison with the equivalent gas-fired conventional cooling
system, and the payback period was only five years. Goldsworthy and White [50] optimized a solar
desiccant cooling system in Newcastle, Australia. They found that the system electric coefficient of
performance (COP) could be above 20 if the desiccant wheel regeneration temperature was 70 ◦C with
the 0.67 process-to-regeneration air flow ratio and 0.3 indirect evaporative cooler secondary-to-primary
air flow ratio. In their another study [51], they found out that the frequency of high indoor
temperature hours in Melbourne and Sydney could be reduced by improving the effectiveness of
the indirect evaporative cooler, decreasing the regeneration temperature of the desiccant wheel,
and increasing the solar collector areas. However, because of the high temperature and humidity
ratio of the outdoor air, this effect was not dramatic in Darwin. Baniyounes et al. [41] compared
the performance of solar desiccant evaporative cooling with solar absorption cooling for a school
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building in Gladstone and Rockhampton based on a TRNSYS simulation. They indicated that
increasing solar collector areas would result in improved system COP and reduced energy consumption
for both solar cooling systems. In addition, the solar desiccant evaporative cooling system had
higher COP and solar fraction (SF) than the solar absorption cooling system. Kohlenbach and
Dennis [52] conducted a comparative study between a solar PV air conditioning system and a solar
thermal absorption cooling system with a referenced conventional vapor compression cooling system
from both economic and environmental aspects for a commercial building in Brisbane and Sydney.
The financial parameters were assumed as 2.5% inflation rate, 8% discount rate, 20 years system lifetime,
and 0.17 $/kWh electricity cost. They concluded that the solar absorption cooling system had a lower
lifetime cost than the solar PV cooling system though they were both higher than the conventional
cooling system. In addition, the solar thermal absorption cooling system was more economic until
the electricity price exceeded 0.50 $/kWh, while the PV-based cooling system was more economic
when the electricity price exceeded 0.55 $/kWh. In addition, the PV-based system resulted in the lowest
GHG emissions due to the excess power generation over the lifetime.

From the above survey, it can be seen that the solar desiccant cooling technology is an appealing
alternative to the conventional cooling system for the merits of low driving temperature, high COP and
relatively short payback period characteristics. Solar absorption cooling is another popular alternative,
with a relatively low driving temperature and the potential for large energy conservation. However,
the life cycle cost of the solar absorption cooling system is relatively high. In addition, the solar electric
cooling technology has the largest energy savings potential but at the same time has high life cycle cost.
Although there is some research about solar cooling in Australia, little studies have been evaluated on
the comparison between different solar-assisted cooling systems under all Australian capital cities.
Additionally, there is no comprehensive study on the feasibility of different solar-assisted cooling
systems from the technical, environmental and economic aspects. Therefore, this paper will lead to
the investigation and comparison of different solar-assisted cooling systems for all eight Australian
capital cities. The results from this study are expected to contribute to the fulfilment of the Australian
Government targets of 5% and 80% CO2 emissions reduction on 2000 levels by 2020 and 2050 [53].

2. Methodology

2.1. Weather Data

A whole year (8760 h) transient modelling by EnergyPlus is conducted for each Australian capital
city to investigate the performance of the proposed SDEC, SDCC, and SAC systems. Therefore,
the Australian Representative Meteorological Year (RMY) weather data is selected for EnergyPlus
simulation. The latest RMY data files (historical period from 1967–2012) can be downloaded from
Climate.OneBuilding website (http://climate.onebuilding.org/default.html), which were developed
in 2012 for the Australian National House Energy Rating Scheme (NatHERS) by the Australian Federal
Department of Industry. The available solar radiation for each city is illustrated in Figure 3, which is
derived from the RMY weather data files. It reveals that Darwin has the highest annual total solar
radiation due to its stable solar radiation during the year. The solar radiation in Darwin in summer is
not as high as in other cities (due to the tropical wet season) but it is much higher than others from
April to October (the tropical dry season). Perth has the second largest annual total solar radiation,
followed by Brisbane, Adelaide, Sydney, Canberra, Melbourne and Hobart.

Table 1 summarizes the climate indicators for each Australian capital city, which is also derived
from the RMY data files. The outdoor design conditions are based on design days developed
using 99.6% heating design temperatures and 0.4% dry-bulb (DB) and 0.4% wet-bulb (WB) cooling
design temperatures.

http://climate.onebuilding.org/default.html


Energies 2017, 10, 1463 6 of 27

Energies 2017, 10, 1463  6 of 27 

 

 
Figure 3. Solar irradiance for each capital city. 

It indicates that Darwin has the highest CDD18, followed by Brisbane, Perth, Adelaide and 
Sydney respectively. Canberra has the highest HDD18, followed by Hobart and Melbourne. This 
indicates that Darwin and Brisbane are cooling dominated climates, while Canberra, Hobart and 
Melbourne are heating dominated climates. Other cities, however, are balanced or temperate 
climates. It is apparent that Darwin and Brisbane have the highest wet-bulb temperature in a summer 
design day, which indicates more humid climates and therefore more potential for desiccant cooling. 
However, Adelaide and Perth have the highest dry-bulb temperature but moderate wet-bulb 
temperature in a summer design day. This means that the dehumidifying potential in these two cities 
is not as dramatic as in Darwin and Brisbane. 

Table 1. Climatic indicators for Australian capital cities. 

Location CDD18 1 HDD18 2 
Outdoor Design Conditions 

Summer Winter 
DBT (°C) WBT (°C) DBT (°C) 

Adelaide 630 1024 37.5 19.1 4.7 
Brisbane 1129 323 31.0 22.5 5.8 
Canberra 225 2119 33.6 17.8 −3.1 
Darwin 3386 0 34.1 23.5 17.1 
Hobart 61 2088 28.1 17.0 2.4 

Melbourne 340 1288 34.8 18.8 4.7 
Perth 764 782 37.2 19.2 4.0 

Sydney 610 641 31.1 19.8 7.2 
1 For any one day, when the mean temperature is more than 18 °C, there are as many degree-days as 
degrees Celsius temperature difference between the mean temperature for the day and 18 °C. Annual 
cooling degree-days (CDDs) are the sum of the degree-days over a calendar year [54]; 2 For any one 
day, when the mean temperature is less than 18 °C, there are as many degree-days as degrees Celsius 
temperature difference between the mean temperature for the day and 18 °C. Annual heating degree-
days (HDDs) are the sum of the degree-days over a calendar year [54]. 

2.2. Building Model Description 

The studied building is Building Type B (long axis East-West), which is defined by Australian 
Building Codes Board (ABCB) to represent an archetypal medium office building in Australia. The 
building has three storeys with a carpark. Each floor has five conditioned zones, and each floor has 
one core zone and four perimeter zones with 3.6 m depth. The total conditioned area is 2003.85 m2 
and conditioned window-to-wall ratio (WWR) is 0.4. The Building Type B geometry and the zone 
division are shown in Figure 4 below [55]. 

Figure 3. Solar irradiance for each capital city.

Table 1. Climatic indicators for Australian capital cities.

Location CDD18 1 HDD18 2

Outdoor Design Conditions

Summer Winter

DBT (◦C) WBT (◦C) DBT (◦C)

Adelaide 630 1024 37.5 19.1 4.7
Brisbane 1129 323 31.0 22.5 5.8
Canberra 225 2119 33.6 17.8 −3.1
Darwin 3386 0 34.1 23.5 17.1
Hobart 61 2088 28.1 17.0 2.4

Melbourne 340 1288 34.8 18.8 4.7
Perth 764 782 37.2 19.2 4.0

Sydney 610 641 31.1 19.8 7.2
1 For any one day, when the mean temperature is more than 18 ◦C, there are as many degree-days as degrees Celsius
temperature difference between the mean temperature for the day and 18 ◦C. Annual cooling degree-days (CDDs)
are the sum of the degree-days over a calendar year [54]; 2 For any one day, when the mean temperature is less than
18 ◦C, there are as many degree-days as degrees Celsius temperature difference between the mean temperature for
the day and 18 ◦C. Annual heating degree-days (HDDs) are the sum of the degree-days over a calendar year [54].

It indicates that Darwin has the highest CDD18, followed by Brisbane, Perth, Adelaide and
Sydney respectively. Canberra has the highest HDD18, followed by Hobart and Melbourne.
This indicates that Darwin and Brisbane are cooling dominated climates, while Canberra, Hobart and
Melbourne are heating dominated climates. Other cities, however, are balanced or temperate climates.
It is apparent that Darwin and Brisbane have the highest wet-bulb temperature in a summer design
day, which indicates more humid climates and therefore more potential for desiccant cooling. However,
Adelaide and Perth have the highest dry-bulb temperature but moderate wet-bulb temperature in
a summer design day. This means that the dehumidifying potential in these two cities is not as dramatic
as in Darwin and Brisbane.

2.2. Building Model Description

The studied building is Building Type B (long axis East-West), which is defined by Australian
Building Codes Board (ABCB) to represent an archetypal medium office building in Australia.
The building has three storeys with a carpark. Each floor has five conditioned zones, and each
floor has one core zone and four perimeter zones with 3.6 m depth. The total conditioned area is
2003.85 m2 and conditioned window-to-wall ratio (WWR) is 0.4. The Building Type B geometry and
the zone division are shown in Figure 4 below [55].
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Table 2. Building physical properties and general modelling assumptions [56].

Building Features Value

Footprint dimensions 36.5 m × 18.3 m
Gross conditioned floor area 2003.85 m2

Aspect ratio 2:1
Floor-to-ceiling height 2.7 m

Plenum wall height 0.9 m
Car park height 3 m

Roof Metal deck, air gap, foil, roof space, R2.0 batts, 13 mm acoustic tiles (U = 0.277 W/(m2·K))
Floor 175 mm concrete slab with carpet (U = 1.32 W/(m2·K))

Exterior wall 200 mm heavy weight concrete, R1.5 batts, 10 mm plasterboard (U = 0.554 W/(m2·K))
Window Single 6 mm clear glass, conditioned WWR = 0.4 (U = 5.89 W/(m2·K))

Lighting power density 15 W/m2

Equipment load density 15 W/m2

Occupant density 10 m2/person
Lighting schedule 91.5 h/week

Equipment schedule 97.45 h/week
Occupancy schedule 53.75 h/week

HVAC operation schedule 60 h/week, 06:00–18:00, Monday to Friday
Infiltration rate 1 air change per hour (ACH), no infiltration during HVAC operation
Outside air rate 10 L/s per person

HVAC set-points 24 ± 1 ◦C, 50% relative humidity for cooling with setback temperature of 38 ◦C; 20 ± 1 ◦C
for heating with setback temperature of 12 ◦C

Referenced HVAC system VAV with reheat, water-cooled chiller

2.3. System Design and Configuration

2.3.1. The Referenced Conventional VAV System

The conventional VAV system is constructed as a base case scenario for the building model
validation and as the reference for comparison with the solar-assisted cooling systems. The system
input parameters and system diagram are shown in Table 3 and Figure 5, respectively.

Table 3. Simulation input parameters of the referenced conventional VAV system [57].

Parameters Value Parameters Value

Chiller Boiler

Chiller type Reciprocating Boiler type Hot water
Chiller COP 3.5 Fuel type Electricity

Condenser type Water cooled Boiler efficiency 0.8
Chilled water design set-point 7/13 ◦C Hot water design set-point 82/71 ◦C

Condenser water design set-point 29.4/35 ◦C Hot water pump head 179,325 Pa

Supply & Return Air Fan Design Supply Air

Fan total efficiency 0.7 Design set-point temperature 12.8 ◦C
Fan delta pressure 500 Pa Design set-point humidity ratio 0.008 kg/kg
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2.3.2. SDEC System

A typical SDEC system usually consists of three parts: (1) solar thermal collectors, a hot
water storage tank, and a backup heater, which are collectively comprised of the solar subsystem;
(2) a desiccant wheel (DW), a sensible air-to-air heat exchanger (HX), and a regeneration air heater,
which together consist of the desiccant subsystem; and (3) evaporative coolers (EC). The SDEC system
schematic diagram is demonstrated in Figure 6 below [55].
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To reduce regeneration energy consumption, energy management control strategies have been
applied to the system so that the desiccant subsystem is operating only when the outdoor air humidity
ratio is greater than 0.008 kg/kg. The control strategies are accomplished through a sensor that
provides an on/off signal to solar subsystem water pumps. When the outside air humidity ratio
is under the control actuator set-point, the solar regenerative hot water pump will be off to disable
the solar hot water loop so that the desiccant wheel and regeneration air heater are not in operation.
This would significantly avoid unnecessary backup heater energy consumption while at the same time
achieve low unmet hours during occupied cooling [55].

2.3.3. SDCC System

In the SDCC system, the EC 1 in Figure 6 is replaced by a cooling coil connected with
a conventional vapor compression chiller, which is shown in Figure 7 below. This scenario is assumed
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to use the same equipment for the solar subsystem and the desiccant subsystem adopted in the SDEC
system. The outside air is firstly dehumidified by the desiccant wheel to deal with the latent load,
and then mixed with the recirculate air. The mixed supply air is then further cooled by the cooling coil.
As only sensible load is handled in the cooling coil, the chiller capacity is significantly reduced
compared to the referenced conventional VAV system. It assumes that the chiller COP, chilled
water design set-point, and condenser water design set-point are the same with the referenced
conventional VAV system. Thus, for the vapor compression chiller, fans and design supply air
conditions, the simulation parameters can be referenced from Table 3 in Section 2.3.1. The same
outdoor air humidity ratio control strategy with the SDEC system is applied to the SDCC system.
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2.3.4. SAC System

The SAC system uses a thermally driven absorption chiller to provide the cooling effect. Cooling
is achieved by an absorption cooling cycle. Solar thermal heat is supplied to the absorption chiller
generator through a solar collector loop subsystem. The SAC system schematic diagram is illustrated
in Figure 8. The input parameters for fans and design supply air conditions can also be referenced
from Table 3 in Section 2.3.1. The modelling and input parameters for the absorption chiller will be
discussed in Section 2.4.3.
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2.4. Main System Components Modelling and Input Parameters

2.4.1. Solar Thermal Collectors

Solar thermal collectors convert solar energy into usable thermal heat to drive thermally driven
cooling process. In this study, the flat plate solar thermal collectors are selected because they are
cost-effective for low temperature applications such solar heating and cooling [58]. In addition, the flat
plate solar thermal collectors are able to provide 100 ◦C hot water, which is sufficient for solar desiccant
cooling and single effect solar absorption cooling [59]. The governing equations for the modelling of
the solar thermal collectors are expressed as [60]:

QSolar = ηSolar × Ac × I, (1)

ηSolar = c0 + c1 ×
Tin − Ta

I
+ c2 ×

(Tin − Ta)

I

2

, (2)

where ηSolar is the solar thermal collector overall efficiency; Ac is the gross area of the solar thermal
collector in m2; I is the total incident solar radiation in W/m2; Tin is the collector inlet temperature of
the working fluid in ◦C; Ta is the ambient air temperature in ◦C; c0 is the collector optical efficiency;
c1 and c2 are the collector heat loss coefficients. The simulation input parameters for the solar collector
loop components are listed in Table 4.

Table 4. Input parameters for the solar collector loop components simulation [55].

Parameters Value Parameters Value

Solar Thermal Collector Backup Heater

Collector type Flat plate Backup heater fuel type Electricity
Collector tilt 25◦ Backup heater efficiency 1

Collector loop water flow rate 0.019 kg/(s·m2) Backup heater capacity 100 kW

Collector area 576 m2 Regenerative hot water loop

Collector optical efficiency c0 0.753 Storage tank volume 30 m3

Collector heat loss coefficient c1 −5.2917 W/(m2·K) Hot water design set-point 75 ◦C
Collector heat loss coefficient c2 0.00638 W/(m2·K2) Hot water loop flow rate 2.4 kg/s

Collector outlet water temperature 90 ◦C Regeneration air heater capacity 300 kW

According to the authors’ previous study [55], a storage capacity of 30 m3/576 m2 with 100 kW
backup heater capacity gives the lowest system life cycle cost. The regenerative hot water loop water
flow rate is set to 2.4 kg/s because it assumes 30 ◦C temperature difference between the regeneration
air heater water inlet and outlet. Other input parameters are also referenced from [55].

2.4.2. Desiccant Cooling Subsystem

The desiccant cooling subsystem includes a rotary desiccant wheel, a sensible air-to-air heat
exchanger, and the evaporative coolers. The desiccant wheel is the key component in the desiccant
cooling subsystem which deals with both sensible and latent heat transfer between the process and
regeneration air streams. In EnergyPlus this model is a balanced flow desiccant heat exchanger which
assumes the same air volume flow rate and face velocity through the regeneration and process air
stream sides. Its performance is specified through the performance data that predicts the outlet
temperature and humidity ratio of the regeneration air stream based on the entering regeneration
and process air stream conditions and face velocity. The governing equations for the modelling of
the desiccant wheel are [60]:

RTO = B1 + B2 × RWI + B3 × RTI + B4 ×
(

RWI
RTI

)
+ B5 × PWI + B6 × PTI + B7 ×

(
PWI
PTI

)
+ B8 × RFV, (3)

RWO = C1 + C2 × RWI + C3 × RTI + C4 ×
(

RWI
RTI

)
+ C5 × PWI + C6 × PTI + C7 ×

(
PWI
PTI

)
+ C8 × RFV, (4)
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where RTO is regeneration outlet air dry-bulb temperature in ◦C; RWI is regeneration inlet air humidity
ratio in kg/kg; RTI is regeneration inlet air dry-bulb temperature in ◦C; PWI is process inlet air
humidity ratio in kg/kg; PTI is process inlet air dry-bulb temperature in ◦C; RFV is regeneration
(and process) air face velocity in m/s; Bn is temperature equation coefficient; RWO is regeneration
outlet air humidity ratio in kg/kg; and Cn is humidity ratio equation coefficient.

The coefficients of Bn and Cn are referenced from the manufacturer’s data (EDC-3550-200) [61],
which are shown in Table 5. It has good dehumidification ability that could dehumidify the outdoor air
humidity ratio below 0.005 kg/kg, and it is able to deal with 69,753 m3/h nominal process air volume.
A humidity ratio control set-point of 0.005 kg/kg is applied on the desiccant wheel process air outlet
node for dehumidifying control purposes.

Table 5. Coefficients for desiccant wheel temperature and humidity ratio equations [61].

B1 B2 B3 B4 B5 B6 B7 B8

−27.18302 −184.97 1.00051 11603.3 −50.755 −0.0168467 58.2213 0.598863

C1 C2 C3 C4 C5 C6 C7 C8

0.01213878 1.09689 −0.000026 −6.3389 0.00938196 0.0000521186 0.0670354 −0.0001608

The sensible air-to-air heat exchanger is a flat plate heat exchanger that presents equal flow rate in
the process and regeneration air streams. It assumes no heat losses to the ambient environment. It is
modelled using the following equations [60]:

εHX =
t2 − t3

t2 − t6
, (5)

t2 − t3 = t7 − t6, (6)

where εHX is the heat exchanger effectiveness; t2 and t3 is heat exchanger process air inlet and outlet
dry-bulb temperature in ◦C; t6 and t7 is heat exchanger regeneration air inlet and outlet dry-bulb
temperature in ◦C.

For the evaporative coolers, they are modelled using Equation (7), which assumes a constant
effectiveness model and the wet-bulb temperature remains constant between the inlet and outlet of
the direct evaporative cooler [60].

Tdb,out = Tdb,in − ε(Tdb,in − Twb,in), (7)

where Tdb,out is the dry-bulb temperature of the air leaving the cooler in ◦C; Tdb,in is the dry-bulb
temperature of the air entering the cooler in ◦C; Twb,in is the wet-bulb temperature of the air entering
the cooler in ◦C; and ε is the evaporative cooler effectiveness.

The input parameters for the modelling of the desiccant wheel, heat exchanger and evaporative
coolers are listed in Table 6 [55], which are derived from the manufacturers’ data [61,62].

Table 6. Simulation input parameters for the desiccant cooling subsystem components [55].

Parameters Value Parameters Value

Desiccant Wheel (DW) Heat Exchanger (HX)

DW nominal air flow rate 19.4 m3/s HX type Flat Plate
DW nominal electric power 186 W HX nominal air flow rate 19.4 m3/s

DW nominal air face velocity 4 m/s Ratio of supply to secondary h·A value 1
Minimum regeneration temperature 50 ◦C Nominal electric power (W) 0

Direct evaporative cooler (EC) Nominal supply air inlet temperature 54 ◦C

Coil maximum efficiency 0.9 Nominal supply air outlet temperature 32.4 ◦C
Recirculating water pump power 50 W Nominal secondary air inlet temperature 20 ◦C
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2.4.3. Absorption Chiller

In the SAC system, a single-effect absorption chiller is selected. This is because the single-effect
absorption cooling cycle requires a relatively low temperature heat source of about 70 ◦C to 120 ◦C,
which can be provided by the flat plate solar collectors [57]. In EnergyPlus, the modelling of
the absorption chiller is based on performance curves: Generator Heat Input Part Load Ratio Curve
and Pump Electric Use Part Load Ratio Curve [60]. The Generator Heat Input Part Load Ratio Curve
determines the ratio of the generator thermal input (QGen) to the chiller evaporator cooling effect
(Qevap), which is expressed by:

GeneratorHeatInputRatio =
CA

PLR
+ CB + CC × PLR. (8)

The Pump Electric Use Part Load Ratio Curve determines the ratio of the actual absorber pumping
power to the nominal pumping power, which is given as:

PumpElectricInputRatio = CA + CB × PLR + CC × PLR2, (9)

where PLR is the absorption chiller part load ratio; and CA,B,C are the part load ratio curve coefficients
for the chiller generator and solution pump.

Then, the water temperature leaving the evaporator of the absorption chiller can be calculated
according to the chiller evaporator cooling effect and the evaporator entering water temperature.

Tevap,out = Tevap,in +
Qevap

Cp,evap ×mevap
, (10)

where Tevap,out is the absorption chiller evaporator outlet water temperature in ◦C; Teavp,in is the chiller
evaporator inlet water temperature in ◦C; Cp,evap is the specific heat of chiller evaporator inlet water in
J/kg/◦C; and mevap is the chiller evaporator water mass flow rate in kg/s.

The condenser heat transfer and condenser leaving water temperature are calculated using
the following equations:

Qcond = Qevap + QGen + Qpump, (11)

Tcond,out = Tcond,in +
Qcond

Cp,cond ×mcond
, (12)

where Qcond is the absorption chiller condenser heat transfer rate in kW; Tcond,out is the absorption chiller
condenser outlet water temperature in ◦C; Tcond,in is the chiller condenser inlet water temperature
in ◦C; Cp,cond is the specific heat of chiller condenser inlet water in J/kg/◦C; mcond is the absorption
chiller condenser water mass flow rate in kg/s; QGen is the absorption chiller generator heat input in
kW; and Qpump is the absorption chiller solution pump power rate in kW.

The input parameters for modelling the single-effect absorption chiller are summarised in Table 7,
which are referenced from EnergyPlus (U.S. Department of Energy, Washington DC, USA) dataset in
the software.

Table 7. Simulation input parameters for the absorption chiller.

Parameters Value Parameters Value

Chiller type Single-effect Minimum part load ratio 0.15
Chiller flow mode Not modulated Maximum part load ratio 1

Generator heat source type Hot water Optimum part load ratio 0.65
Design condenser outlet temperature 35 ◦C Design generator inlet temperature 75 ◦C
Design condenser inlet temperature 29.4 ◦C Design generator outlet temperature 60 ◦C

CA of hot water use part load ratio curve 0.03303 CA of pump electric use part load ratio curve 1
CB of hot water use part load ratio curve 0.6852 CB of pump electric use part load ratio curve 0
CC of hot water use part load ratio curve 0.2818 CC of pump electric use part load ratio curve 0
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2.5. Building Model Validation

The building model is validated based on a self-validation in terms of the building loads, building
energy consumption, and building indoor temperature using the referenced conventional VAV system.

Figure 9 demonstrates the annual building energy consumption of the referenced VAV system
for each city. Figures 10 and 11 illustrate the monthly building cooling and heating load, respectively.
From the figures it can be seen that comparing within all eight cities, the building cooling energy
consumption strongly corresponds with the building cooling load profile and the building heating
energy consumption strongly corresponds with the building heating load profile for each city. Darwin
has the highest annual total building cooling load, followed by Brisbane, resulting in the most annual
cooling energy consumption, followed by Brisbane, while Canberra has the largest building heating
load, followed by Hobart and Melbourne, leading to the highest annual heating energy consumption,
followed by Hobart and Melbourne as well. These results are also coincident with the climatic features
in each city discussed in Section 2.1.
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In addition, comparing Figures 10 and 11, in winter seasons there are both cooling and heating
requirements, but cooling is still dominant for this type of office building because of substantial
heat gains from interior lighting and equipment. Therefore, the total cooling energy consumption is
dramatically larger than the total heating energy consumption in each city as is shown in Figure 9.
This also provides confidence for the building model calibration.
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Figure 12 shows the monthly averaged building indoor temperature of the referenced VAV system
for all cities. It is clear that the building indoor temperature can meet the cooling design set-point
of 24 ± 1 ◦C in summer for all cities. However, in winter months from May to August, the average
building indoor temperature is around 22 ◦C for Canberra, Hobart, and Melbourne. This is because
although heating is required in these months, cooling is still dominant, especially at times such as
from 10 a.m. to 4 p.m. when the lighting and equipment utilization percentages reach the maximum
fraction, leading to the mixed heating and cooling mode of the HVAC system operation. This could
also be verified in the previous discussion.

Energies 2017, 10, 1463  14 of 27 

 

Figure 12 shows the monthly averaged building indoor temperature of the referenced VAV 
system for all cities. It is clear that the building indoor temperature can meet the cooling design set-
point of 24 ± 1 °C in summer for all cities. However, in winter months from May to August, the 
average building indoor temperature is around 22 °C for Canberra, Hobart, and Melbourne. This is 
because although heating is required in these months, cooling is still dominant, especially at times 
such as from 10 a.m. to 4 p.m. when the lighting and equipment utilization percentages reach the 
maximum fraction, leading to the mixed heating and cooling mode of the HVAC system operation. 
This could also be verified in the previous discussion. 

 
Figure 12. Monthly building indoor temperature of the conventional VAV system. 

3. Results and Discussion 

3.1. Technical Performance Analysis 

3.1.1. Solar Fraction 

Solar fraction refers to the solar energy contribution to the solar cooling system. It is defined as 
the percentage of usable solar contribution to the total solar cooling system energy input. Whenever 
the solar energy is inadequate to power the cooling system, a backup heater is generally in operation 
to provide supplementary heat. Therefore, the solar fraction can be defined in the following equation: = = , (13) 

where  is the available solar heat input in GJ (gigajoule);  is the total system energy input 
in GJ; and  is the system electrical-related consumptions in GJ, including fans, pumps, electric 
chiller, cooling tower, backup heater, evaporative coolers, and desiccant wheel motor, et al. 

As a pump controller is included to disable the solar subsystem pumps whenever the desiccant 
dehumidification is not needed for the SDEC and SDCC systems. The SF is only counted when the 
solar subsystem pumps are in operation. For comparison purpose, the annual  is used, which is 
expressed as: = ∑∑ , (14) 

where  is the number of time steps in a year for the solar hot water pump in operation. 
Figure 13 below shows the annual solar fraction results of different solar cooling systems for 

each city. It indicates that for all eight capital cities, the SDEC system has the highest annual SF. The 
SAC system has the second largest annual SF except Hobart, which the annual SF of the SAC system 
is the lowest among three solar cooling systems. Comparing the SF results between all cities, for the 
SDEC system, Darwin has the highest annual SF of 0.82, followed by Brisbane of 0.78, Perth of 0.76, 
Sydney of 0.71, Adelaide of 0.67, Melbourne of 0.61, Canberra of 0.54, and Hobart of 0.49. For the SAC 
system, the largest annual SF happens in Brisbane with about 0.71, followed by Darwin of 0.69, Perth 

Figure 12. Monthly building indoor temperature of the conventional VAV system.

3. Results and Discussion

3.1. Technical Performance Analysis

3.1.1. Solar Fraction

Solar fraction refers to the solar energy contribution to the solar cooling system. It is defined as
the percentage of usable solar contribution to the total solar cooling system energy input. Whenever
the solar energy is inadequate to power the cooling system, a backup heater is generally in operation
to provide supplementary heat. Therefore, the solar fraction can be defined in the following equation:

SF =
ESolar

Ein
=

ESolar
EHVAC + ESolar

, (13)
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where ESolar is the available solar heat input in GJ (gigajoule); Ein is the total system energy input in GJ;
and EHVAC is the system electrical-related consumptions in GJ, including fans, pumps, electric chiller,
cooling tower, backup heater, evaporative coolers, and desiccant wheel motor, et al.

As a pump controller is included to disable the solar subsystem pumps whenever the desiccant
dehumidification is not needed for the SDEC and SDCC systems. The SF is only counted when
the solar subsystem pumps are in operation. For comparison purpose, the annual SFy is used, which is
expressed as:

SFy =
∑

j
i=1 ESolari

∑
j
i=1 Eini

, (14)

where j is the number of time steps in a year for the solar hot water pump in operation.
Figure 13 below shows the annual solar fraction results of different solar cooling systems for each

city. It indicates that for all eight capital cities, the SDEC system has the highest annual SF. The SAC
system has the second largest annual SF except Hobart, which the annual SF of the SAC system is
the lowest among three solar cooling systems. Comparing the SF results between all cities, for the
SDEC system, Darwin has the highest annual SF of 0.82, followed by Brisbane of 0.78, Perth of 0.76,
Sydney of 0.71, Adelaide of 0.67, Melbourne of 0.61, Canberra of 0.54, and Hobart of 0.49. For the SAC
system, the largest annual SF happens in Brisbane with about 0.71, followed by Darwin of 0.69, Perth
of 0.65, Adelaide of 0.60, Sydney of 0.59, Melbourne of 0.48, Canberra of 0.44, and Hobart of 0.33.
While for the SDCC system, Brisbane has the largest annual SF of 0.63, followed by Perth of 0.62,
Darwin of 0.61, Sydney of 0.55, Adelaide of 0.46, Melbourne of 0.42, Canberra of 0.41, and Hobart
of 0.38. Overall, Darwin has the best annual SF performance, followed by Brisbane, Perth, Sydney,
Adelaide, Melbourne, Canberra, and Hobart.
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In order to generalize the climatic conditions with the system solar fraction performance,
a correlation between the annual average outdoor air humidity ratio and system annual SF for different
systems is demonstrated in Figure 14 below. It shows that the solar cooling system SF performance
increases with the increase of the outdoor humidity ratio. The more humid of the climate, the higher
the annual SF of the solar cooling systems. In addition, the SDEC system has the highest annual SF
value, followed by the SAC system and SDCC system, which is consistent with the results discussed
above. Based on the four-order polynomial correlation, the SDEC and SAC systems have a better
polynomial fit than the SDCC system.
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3.1.2. System Coefficient of Performance

In this study, system electric COP is evaluated, which refers to the ratio of the system cooling
demand to the total HVAC electricity consumption from the municipal electricity network. It can be
expressed in Equation (15) below:

COPel =
QC

WHVAC
, (15)

where QC is the system cooling effect in kW; and WHVAC is the HVAC system electricity power
consumption in kW, including fans, pumps, chillers, backup heater, desiccant wheel motor, and cooling
tower et al.

For the SDEC system using 100% outdoor air, the system COP is expressed as:

COPel,SDEC =
QC

WHVAC
=

mo × (ho − hs)

WHVAC
. (16)

For the SDCC system and SAC system using recirculation air mode, the system COP is expressed
as Equations (17) and (18), respectively:

COPel,SDCC =
QC

WHVAC
=

mo ×
(
ho − hp

)
+ Qevap,ch

WHVAC
, (17)

COPel,SAC =
QC

WHVAC
=

Qevap,Abs

WHVAC
, (18)

where mo is the outdoor air mass flow rate in kg/s; ho is the outside air enthalpy in kJ/kg;
hs is the enthalpy of supply air after the evaporative cooler 1 (point 4 in Figure 6) in kJ/kg;
hp is the enthalpy of process air after the air-to-air heat exchanger (point 3 in Figure 7) in kJ/kg;
Qevap,ch is the SDCC system vapor compression chiller evaporator cooling rate in kW; and Qevap,Abs is
the SAC system absorption chiller evaporator cooling rate in kW.

Also for comparison purposes, the system COP would be averaged on a yearly basis. The system
COP is counted only when the key cooling components (desiccant wheel or chillers) are in operation
for each time step and is expressed as:

COPel,y =
∑k

i=1 QCi

∑k
i=1 WHVACi

, (19)

where k is the number of time steps in a year for the desiccant wheel or chillers in operation.
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The annual system COP of different solar-assisted cooling systems are presented in Figure 15,
where it is obvious that the SDEC system has a higher annual system electric COP than the other
two solar cooling systems in all cities, while the SDCC system has the lowest annual system COP,
except in Darwin and Hobart, where the lowest system electric COP is the SAC system. Due to high
dehumidification effect, Darwin could achieve the highest annual system electric COP of 25.5 for
the SDEC system, 6.2 for the SDCC system, and 3.6 for the SAC system. This is followed by Brisbane
with 8.8 for the SDEC system, 2.98 for the SDCC system, and 3.4 for the SAC system. Perth could also
achieve a relatively high system electric COP of about 4.3 for the SDEC system, 2.22 for the SDCC
system, and 3.09 for the SAC system. This is then followed by Sydney, Adelaide, Melbourne, Canberra,
and Hobart. For Hobart, the annual system electric COP is only about 1.12 for the SDEC system,
0.97 for the SDCC system, and 0.92 for the SAC system.
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It should be noted that the annual system electric COP performance is strongly consistent with
the annual SF performance for each city. This is because the more solar energy utilisation, the less
onsite electricity consumption and hence, the more efficient of the system.

Figure 16 demonstrates the correlation between the outdoor air humidity ratio and the system
electric COP. The result indicates that the SDEC system has the highest system COP, followed by
the SAC system and the SDCC system in general. In addition, with the increase of the outdoor air
humidity ratio, the annual electric COP of the solar cooling systems improves gradually. The COP rises
dramatically when the outdoor air humidity ratio exceeds 8.8 g/kg, especially for the SDEC system.
This implies that the solar desiccant assisted cooling systems are more efficient for hot and humid
climates. A quartic polynomial correlation implies that the SDEC and SDCC systems have a better
polynomial fit than the SAC system.
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3.1.3. Annual HVAC Electricity Energy Consumption

For all systems, the annual lighting and equipment plug load electricity consumptions are the same
in all cities because of the same load intensity. Thus, only the HVAC system electricity consumption
in terms of fans, pumps, backup heater, cooling tower, desiccant wheel motor, evaporative coolers,
heating, and cooling is analyzed in the section.

Figure 17 demonstrates the annual HVAC electricity energy consumption of the proposed
solar-assisted cooling systems compared with the referenced conventional VAV system. It indicates
that for Brisbane and Darwin, the SDEC system consumes the least HVAC electricity energy annually.
In Brisbane, the SDEC system only consumes 265 GJ electricity annually, compared with the SAC
system of 353.3 GJ and the SDCC system of 589.3 GJ, which represents 56.9%, 42.5%, and 4.1% annual
energy savings respectively to the conventional VAV system. In Darwin, the energy savings potentials
for the solar-assisted cooling systems are even more apparent. The SDEC, SDCC and SAC system could
achieve 855.88 GJ, 384.34 GJ and 277.67 GJ annual energy savings respectively in comparison with
the referenced conventional VAV system, representing 82.1%, 36.9% and 26.6% corresponding savings.
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However, for the other six cities, the SAC system is the most energy efficient with the lowest annual
electricity energy consumption, followed by the SDEC system and SDCC system. The annual HVAC
electricity energy consumption for the SAC system is only 204.4 GJ in Adelaide, 179 GJ in Canberra,
146.6 GJ in Hobart, 168.3 GJ in Melbourne, 204.9 GJ in Perth, and 269 GJ in Sydney, which accounts
for 50.8%, 46.9%, 34.4%, 46.2%, 56.3% and 43.9% annual energy savings respectively. The SDEC
system energy performance is the second best with 47.4% savings for Adelaide, 42% for Canberra,
1.3% for Hobart, 35.4% for Melbourne, 49.5% for Perth and 31.1% for Sydney respectively. While for
the SDCC system, the energy savings potential for these cities is not quite obvious, and the annual
energy consumption of the SDCC system for Hobart and Sydney is even more than the conventional
VAV system.

3.2. Environmental Performance Analysis

The environmental performance analysis of the proposed solar-assisted cooling systems is based
on the evaluation of the amount of annual CO2 emissions reduction by saving electricity energy used
by air conditioning, which is given by the following formula:

MCO2 = CO2 f actor× Esaved × 0.278, (20)

where MCO2 is the total annual reduced CO2 emissions in ton; CO2 f actor is the emission factor for
electricity consumption in kg CO2-e/kWh; and ESaved is the annual electricity energy savings in GJ.
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The emission factor for each city is shown in Table 8 [63] and the annual HVAC energy savings of
the solar cooling systems for each city is demonstrated in Table 9.

Table 8. Emission factors for the consumption of electricity in Australian capital cities (kg CO2-e/kWh) [63].

Adelaide Brisbane Canberra Darwin Hobart Melbourne Perth Sydney

0.81 1.00 1.06 0.75 0.33 1.35 0.93 1.06

Table 9. Annual HVAC electricity savings for the solar-assisted cooling systems.

(GJ) ADL BNE CBR DRW HBA MEL PER SYD

SDEC 196.88 349.77 141.52 855.88 2.97 110.88 232.07 149.15
SDCC 34.14 25.51 11.77 384.34 −8.65 1.96 39.89 −114.13
SAC 211.22 261.5 158.03 277.64 76.86 144.5 263.71 210.92

Then, the annual CO2 emissions reduction for each proposed solar cooling system can be
summarized as in Table 10.

Table 10. Annual CO2 emissions reduction.

(Tonnes) ADL BNE CBR DRW HBA MEL PER SYD

SDEC 44.33 97.24 41.70 178.45 0.27 41.61 60.00 43.95
SDCC 7.69 7.09 3.47 80.13 −0.79 0.74 10.31 −33.63
SAC 47.56 72.70 46.57 57.89 7.05 54.23 68.18 62.15

Table 10 indicates that the annual CO2 emissions reduction is in accordance with the annual HVAC
electricity energy savings. Therefore, for Brisbane and Darwin, the SDEC system could avoid the most
annual CO2 emissions, which is about 97.24 tonnes and 178.45 tonnes, respectively. While for other
cities, the SAC system could achieve the largest annual CO2 emissions reduction of 47.56 tonnes for
Adelaide, 46.57 tonnes for Canberra, 7.05 tonnes for Hobart, 54.23 tonnes for Melbourne, 68.18 tonnes
for Perth, and 62.15 tonnes for Sydney.

3.3. Economic Performance Analysis

Renewable energy integrated air conditioning systems are characterised by high initial cost
(IC) and low operating cost (OC) [8]. Initial cost is usually comprised of the investment on the
purchase of the equipment and installation cost. Operating cost is the cost required to run the system,
which generally includes the fuel cost, materials and labor cost for maintenance. There are a number
of different methods that can be adopted to investigate the economic performance of the renewable
energy integrated HVAC systems. The payback period (PBP) method and net present value (NPV)
method are investigated in this study.

3.3.1. Payback Period

Payback period is the simplest method to assess the economic feasibility of solar-assisted cooling
systems. It is usually described as the number of years that it takes to recoup the funds expended in
an investment. The sooner the system recovers the value of its initial investment, the more desirable
it is. The PBP is given by Equation (21) [37]:

PBP =
∆IC
∆OC

, (21)

where PBP is the payback period in years; ∆IC is the initial cost differences between the proposed
solar-assisted cooling systems and the referenced VAV system; ∆OC is the operating cost differences
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between the referenced conventional VAV system and the proposed solar system alternatives.
The annual system operating cost OC is defined by the following equation [27]:

OC = EHVAC × Ce + Cm, (22)

where EHVAC is the system total annual energy consumption in kWh; Ce is the electricity price in $/kWh;
and Cm is the system labour operation and maintenance (O&M) cost, which is usually expressed by
the percent of the system total initial investment cost [64]. The electricity price Ce for each city and
the system components costs are listed in Tables 11 and 12 below. A currency conversion of 1.1 [65] is
used to convert € to $. The central plant equipment capacities are summarised in Appendix A from
the simulation results.

Table 11. Electricity fuel cost (c/kWh) [57].

Adelaide Brisbane Canberra Darwin Hobart Melbourne Perth Sydney

13.38 10.48 5.95 16.3 7.5 19.8 14.13 13.05

Table 12. Assumptions of system equipment costs and O&M costs.

Component Price/Unit Citation Component Price/Unit Citation

Solar water pump $2040 [66] Boiler $32,000 [66]
Central plant pump $6800 [66] Absorption chiller 400 €/kW [64]

Desiccant dehumidifier $46,000 [61] Compression chiller 300 €/kW [67]
Heat exchanger $10,000 [62] Cooling tower 35 €/kW [67]

Evaporative cooler $3300 [66] Cooling coil $9300 [66]

Solar thermal collector 385 €/m2 [68] Cm for conventional VAV system 7.7 $/m2

conditioned space
[67]

Storage tank 500 €/m3 [67] Cm for desiccant cooling subsystem 2% of total IC [67]
Backup heater 400 €/kW [67] Cm for solar collector loop 1% of total IC [67]

Supply and return fans $8600 [66] Cm for absorption chiller plant 5.688 $/kW [69]
Air terminal units $3300 [66] Cm for compression chiller plant 4% of total IC [64]

According to the above assumptions, the PBP of the proposed solar-assisted cooling systems for
each Australian capital city is illustrated in Table 13. This table illustrates that the SDEC system has
the shortest PBP and the SDCC system has the longest PBP for all eight capital cities generally except
Darwin. For Darwin, the SDEC system has the lowest PBP of only 3.9 years, followed by the SDCC
system of 10.5 years and the SAC system of 12.7 years. For Brisbane, Perth, Adelaide, Sydney and
Melbourne, the PBP for the SDEC system ranges from 9.6 years to 12.5 years, while for Hobart, it is as
long as 19.9 years. In addition, the SAC system has modest PBP ranging from 12.7 years in Darwin to
16.7 years in Brisbane, except that the PBP is over 20 years in Canberra and Hobart, while for the SDCC
system, apart from Darwin with a relatively low PBP of 10.5 years, all other cities have a long PBP of
more than 25 years.

Table 13. Payback period of different solar cooling systems.

PBP (Year) SDEC SDCC SAC

Adelaide 11.4 27.3 15.8
Brisbane 9.6 29.1 16.7
Canberra 16.2 29.8 21.8
Darwin 3.9 10.5 12.7
Hobart 19.9 30.5 23.3

Melbourne 12.5 30.1 15.7
Perth 10.4 26.4 14.1

Sydney 12.5 61.4 16.5
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3.3.2. Net Present Value

The NPV method determines whether a project will result in a net profile or a loss throughout
the life cycle period by calculating the present value of the total benefits and costs which is achieved
by discounting the future value of each cash flow [70]. A positive NPV is acceptable and indicates that
the benefits exceed the costs. To evaluate if the solar cooling system alternatives would result in a net
benefit during the lifespan in comparison with the referenced conventional HVAC system, the NPV is
defined using the following formulas by introducing a present worth factor (PWF) [70]:

PWF(N, i, d) = ∑N
j=1

(1 + i)j−1

(1 + d)j =

 1
d−i

[
1−

(
1+i
1+d

)N
]

, i f i 6= d
N

i+1 , i f i = d
, (23)

NPV = ∆OC× PWF− ∆IC, (24)

where PWF implies the present worth factor; i is the inflation rate; d is the discount rate; and N is
the lifetime of the system. The economic parameters used to calculate the PWF and NPV are given in
Table 14 below. The discount rate is taken to be 8% in Australia under the assumption that risk capitals
are not considered [71].

Table 14. Economic parameters used to calculate the PWF.

Component Value Unit Citation

System lifetime N 25 year [8]
Inflation rate i 2.5 % [8,52]
Discount rate d 8 % [52,71,72]

The NPV results of different solar-assisted cooling system alternatives are then summarised
in Table 15. It shows that for Darwin, all three solar-assisted cooling systems resulted in a net
benefit during their lifespan. The SDEC could achieve the highest NPV of $466,199, followed by
the SDCC system of $71,168 and the SAC system of $12,259. For Adelaide, Brisbane, Melbourne,
Perth, and Sydney, only the SDEC system resulted in a positive NPV of $34,995, $77,842, $13,660,
$57,663, and $11,850, respectively. However, for Canberra and Hobart, no solar cooling systems
could achieve a net benefit during their lifetime. This is because for Canberra and Hobart, the energy
savings advantages are not as dramatic as in other cities. It can be seen from the results that the SDEC
system is the most economically beneficial for Australian office building applications especially
in hot and humid areas such as Darwin and Brisbane. While in cold winter and mild summer
climates, for example Canberra and Hobart, solar cooling is not economically feasible compared to
the conventional VAV system.

Table 15. Net present value of different solar cooling systems.

NPV ($) SDEC SDCC SAC

Adelaide 34,995 −138,348 −47,334

Brisbane 77,842 −146,149 −63,270

Canberra −39,178 −150,498 −116,057

Darwin 466,199 71,168 12,259

Hobart −73,857 −153,174 −127,759

Melbourne 13,660 −150,406 −46,834

Perth 57,663 −134,400 −18,437

Sydney 11,850 −211,271 −59,069

A simple ranking of the proposed solar assisted cooling systems for each Australian capital city is
summarized in Table 16 according to different performance criteria discussed above.
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Table 16. Simple system ranking for each city.

System Ranking
Performance Criteria

SF COP Energy Economic

Adelaide SDEC > SAC > SDCC SDEC > SAC > SDCC SAC > SDEC > SDCC > VAV SDEC > VAV > SAC > SDCC
Brisbane SDEC > SAC > SDCC SDEC > SAC > SDCC SDEC > SAC > SDCC > VAV SDEC > VAV > SAC > SDCC
Canberra SDEC > SAC > SDCC SDEC > SAC > SDCC SAC > SDEC > SDCC > VAV VAV > SDEC > SAC > SDCC
Darwin SDEC > SAC > SDCC SDEC > SDCC > SAC SDEC > SDCC > SAC > VAV SDEC > SDCC > SAC > VAV
Hobart SDEC > SDCC > SAC SDEC > SDCC > SAC SAC > SDEC > VAV > SDCC VAV > SDEC > SAC > SDCC

Melbourne SDEC > SAC > SDCC SDEC > SAC > SDCC SAC > SDEC > SDCC > VAV SDEC > VAV > SAC > SDCC
Perth SDEC > SAC > SDCC SDEC > SAC > SDCC SAC > SDEC > SDCC > VAV SDEC > VAV > SAC > SDCC

Sydney SDEC > SAC > SDCC SDEC > SAC > SDCC SAC > SDEC > VAV > SDCC SDEC > VAV > SAC > SDCC

4. Conclusions

In this study, the feasibility of solar-assisted cooling technology for a typical office building has
been examined from technical, environmental, and economic viewpoints under a variety of Australian
climate conditions. Three different types of solar cooling systems, namely the SDEC system, SDCC
system, and SAC system, have been investigated using EnergyPlus simulation. The simulation results
have shown that solar-assisted cooling technology is technically feasible for Australian office buildings.
The SDEC system had the best performance among all systems on the whole in terms of the annual
SF and system COP. The annual SF of the SDEC system could achieve 0.82 in hot and humid climate
such as Darwin and 0.49 in cold winter mild summer zone such as Hobart. In addition, the annual
system electric COP could reach 25.5 in Darwin and 1.12 in Hobart. The SAC system SF and COP
performances were the second best, ranging from 0.33 to 0.71 for the annual SF and 0.92 to 3.61 for
the annual COP in different climates.

In related to the energy and environmental performances, all three solar cooling systems consumed
less annual HVAC electricity energy than the conventional VAV, system except the SDCC system in
Hobart and Sydney. Meanwhile, the SDEC system performed the best in Brisbane and Darwin because
of high dehumidification effect. The SDEC system could save about 56.9% and 82.1% annual electricity
energy in Brisbane and Darwin respectively compared to the conventional VAV system, together
with 97.24 tonnes and 178.45 tonnes annual CO2 emissions reduction, while for the other six cities,
the SAC system consumed the least electricity energy annually with the most amount of annual CO2

emissions reduction.
The economic analysis has indicated that all the solar-assisted cooling systems are economically

applicable in Darwin due to low PBP and positive NPV throughout the lifespan. The PBP in Darwin
was only 3.9 years for the SDEC system, 10.5 years for the SDCC system, and 12.7 years for the SAC
system, with the total NPV of $466,199, $71,168, and $12,259 respectively. For Adelaide, Brisbane,
Melbourne, Perth and Sydney, only the SDEC system achieved the positive NPV with moderate PBP
from 9.6 years to 12.5 years. However, for Canberra and Hobart, the solar-assisted cooling systems
were not economically comparable to the conventional VAV system because of high initial cost and
low energy savings potential. As the SAC system was still more energy efficient and environmentally
friendly than the conventional VAV system in Canberra and Hobart, reducing the initial cost is a key
approach to increase the economic benefits for solar-assisted cooling applications in these climates.
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Nomenclature

Ac Solar collector area (m2)
B1–8 Temperature equation coefficients for the desiccant wheel
C1–8 Humidity ratio equation coefficients for the desiccant wheel
COP Coefficient of performance
COPel System electric COP
CO2 f actor The emission factor for electricity consumption (kg CO2-e/kWh)
CA,B,C Part load ratio curve coefficients for the absorption chiller generator and solution pump
Cp Specific heat of water (kJ/kg/K)
Ce Electricity fuel price ($/kWh)
Cm System labour operation and maintenance (O&M) cost ($)
c0 Solar thermal collector optical efficiency
c1, c2 Solar thermal collector heat loss coefficients (W/m2·K and W/m2·K2)
d Discount rate (%)
ESolar Useful solar thermal energy input for regeneration (GJ)
Ein Total energy input for driving the solar desiccant cooling system (GJ)
EHVAC Energy input of the HVAC system (GJ)

Esaved
Annual electricity energy savings of the solar cooling systems compared with the
conventional VAV system (GJ)

ho Enthalpy of outside air (kJ/kg)
hp Enthalpy of process air after the air-to-air heat exchanger (kJ/kg)
hs Enthalpy of supply air (kJ/kg)

h·A The air-to-air heat exchanger surface convective heat transfer coefficient multiply by the
heat exchanger heat transfer area (W)

I Total incident solar radiation (W/m2)
i Inflation rate (%)
IC HVAC system total initial investment cost ($)
mcond Absorption chiller condenser water mass flow rate (kg/s)
mo Outside air mass flow rate (kg/s)
mevap Absorption chiller evaporator water mass flow rate (kg/s)
MCO2 Total annual reduced CO2 emissions (tonnes)
N Lifespan of the system (year)
NPV Net present value ($)
OC Annual HVAC system operating cost ($)
PBP Payback period (year)
PLR Absorption chiller part load ratio
PTI Process inlet air dry-bulb temperature (◦C)
PWI Process inlet air humidity ratio (kg/kg)
PWF Present worth factor
QC System cooling effect (kW)
QCond Absorption chiller condenser heat transfer rate (kW)
Qevap Chiller evaporator cooling rate (kW)
QGen Absorption chiller generator heat input (kW)
Qpump Absorption chiller solution pump power rate (kW)
QSolar Solar energy gains from solar thermal collectors (kW)
RFV Regeneration (and process) air face velocity (m/s)
RWI Regeneration inlet air humidity ratio (kg/kg)
RWO Regeneration outlet air humidity ratio (kg/kg)
RTI Regeneration inlet air dry-bulb temperature (◦C)
RTO Regeneration outlet air dry-bulb temperature (◦C)
SF Solar fraction
t1–9 Dry bulb temperature of the air at each point in Figure 1 (◦C)
w1–9 Humidity ratio of the air at each point in Figure 1 (kg/kg)
Ta Ambient air temperature (◦C)
Tcond,in Absorption chiller condenser inlet water temperature (◦C)
Tcond,out Absorption chiller condenser outlet water temperature (◦C)
Tevap,in Absorption chiller evaporator inlet water temperature (◦C)
Tevap,out Absorption chiller evaporator outlet water temperature (◦C)
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Tdb,in Evaporative cooler inlet air dry-bulb temperature (◦C)
Tdb,out Evaporative cooler outlet air dry-bulb temperature (◦C)
Twb,in Evaporative cooler inlet air wet-bulb temperature (◦C)
Win Total energy input for driving the HVAC system (kW)
WHVAC Electricity power input of all the HVAC electric components (kW)
ε Direct evaporative cooler effectiveness
εHX Air-to-air sensible heat exchanger effectiveness
ηSolar Solar thermal collector’s efficiency

∆IC
Initial cost differences between the proposed solar-assisted cooling systems and the
referenced conventional VAV system ($)

∆OC
Operating cost differences between the referenced conventional VAV system and the
proposed solar system alternatives ($)

Appendix

The central plant equipment capacity can be obtained from the simulation outputs as is shown in
Table A1 below.

Table A1. Central plant equipment capacity.

kW ADL BNE CBR DRW HBA MEL PER SYD

VAV
Compression chiller 248 261 226 286 214 234 245 254

Cooling tower 254 268 232 293 219 240 251 260

SDCC
Compression chiller 110 120 92 143 80 95 108 116

Cooling tower 113 123 94 146 82 97 111 119

SAC
Absorption chiller 248 280 232 279 221 239 252 268

Cooling tower 241 270 224 270 211 248 270 265

References

1. Wrobel, J.; Sanabria Walter, P.; Schmitz, G. Performance of a solar assisted air conditioning system at different
locations. Sol. Energy 2013, 92, 69–83. [CrossRef]

2. International Energy Agency. Energy Technology Perspectives 2010: Scenarios & Strategies to 2050; International
Energy Agency: Paris, France, 2010.

3. Boyano, A.; Hernandez, P.; Wolf, O. Energy demands and potential savings in European office buildings:
Case studies based on EnergyPlus simulations. Energy Build. 2013, 65, 19–28. [CrossRef]

4. Zhu, S.; Chen, J. A simulation study for a low carbon consumption HVAC project using EnergyPlus. Int. J.
Low-Carbon Technol. 2012, 7, 248–254. [CrossRef]

5. Agdas, D.; Srinivasan, R.S.; Frost, K.; Masters, F.J. Energy use assessment of educational buildings: Toward
a campus-wide sustainable energy policy. Sustain. Cities Soc. 2015, 17, 15–21. [CrossRef]

6. Baniyounes, A.M.; Ghadi, Y.Y.; Rasul, M.G.; Khan, M.M.K. An overview of solar assisted air conditioning in
Queensland’s subtropical regions, Australia. Renew. Sustain. Energy Rev. 2013, 26, 781–804. [CrossRef]

7. GeoscienceAustralia; Australian Bureau of Agricultural and Resource Economics and Sciences (ABARE).
Australian Energy Resource Assessment; Department of Resources, Energy and Tourism: Canberra,
Australia, 2010.

8. Baniyounes, A.M.; Liu, G.; Rasul, M.G.; Khan, M.M.K. Analysis of solar desiccant cooling system for an
institutional building in subtropical Queensland, Australia. Renew. Sustain. Energy Rev. 2012, 16, 6423–6431.
[CrossRef]

9. Bahadori, A.; Nwaoha, C. A review on solar energy utilisation in Australia. Renew. Sustain. Energy Rev. 2013,
18, 1–5. [CrossRef]

10. Chwieduk, D. Solar Energy in Buildings: Thermal Balance for Efficient Heating and Cooling; Elsevier Inc.:
Amsterdam, The Netherlands, 2014.

11. Australian Photovoltaic Institute (APVI). Australian PV Market since April 2001. Available online: pv-map.
apvi.org.au (accessed on 4 September 2017).

12. Department of Industry, Innovation and Science. Australian Energy Update 2016; Department of Industry,
Innovation and Science: Canberra, Australia, 2016.

http://dx.doi.org/10.1016/j.solener.2013.02.030
http://dx.doi.org/10.1016/j.enbuild.2013.05.039
http://dx.doi.org/10.1093/ijlct/cts036
http://dx.doi.org/10.1016/j.scs.2015.03.001
http://dx.doi.org/10.1016/j.rser.2013.05.053
http://dx.doi.org/10.1016/j.rser.2012.07.021
http://dx.doi.org/10.1016/j.rser.2012.10.003
pv-map.apvi.org.au
pv-map.apvi.org.au


Energies 2017, 10, 1463 25 of 27

13. Henning, H.-M. Solar assisted air conditioning of buildings—An overview. Appl. Therm. Eng. 2007, 27,
1734–1749. [CrossRef]

14. Eicker, U. Energy Efficient Buildings with Solar and Geothermal Resources; John Wiley & Sons Ltd.: Hoboken, NJ,
USA, 2014.

15. Kotak, Y.; Gago, E.; Mohanty, P.; Muneer, T. Installation of roof-top solar PV modules and their impact on
building cooling load. Build. Serv. Eng. Res. Technol. 2014, 35, 613–633. [CrossRef]

16. Arsalis, A.; Alexandrou, A.; Georghiou, G. Thermoeconomic Modeling and Parametric Study of
a Photovoltaic-Assisted 1 MWe Combined Cooling, Heating, and Power System. Energies 2016, 9, 663.
[CrossRef]

17. Moretti, E.; Bonamente, E.; Buratti, C.; Cotana, F. Development of Innovative Heating and Cooling Systems
Using Renewable Energy Sources for Non-Residential Buildings. Energies 2013, 6, 5114–5129. [CrossRef]

18. El May, S.; Sayadi, Z.; Bellagi, A. Feasibility of air-cooled solar air-conditioning in hot arid climate regions.
Int. J. Sustain. Energy 2009, 28, 183–193. [CrossRef]

19. Assilzadeh, F.; Kalogirou, S.A.; Ali, Y.; Sopian, K. Simulation and optimization of a LiBr solar absorption
cooling system with evacuated tube collectors. Renew. Energy 2005, 30, 1143–1159. [CrossRef]

20. Tsoutsos, T.; Aloumpi, E.; Gkouskos, Z.; Karagiorgas, M. Design of a solar absorption cooling system in
a Greek hospital. Energy Build. 2010, 42, 265–272. [CrossRef]

21. Eicker, U.; Pietruschka, D. Design and performance of solar powered absorption cooling systems in office
buildings. Energy Build. 2009, 41, 81–91. [CrossRef]

22. Mateus, T.; Oliveira, A.C. Energy and economic analysis of an integrated solar absorption cooling and
heating system in different building types and climates. Appl. Energy 2009, 86, 949–957. [CrossRef]

23. Stanciu, C.; Stanciu, D.; Gheorghian, A.-T. Thermal Analysis of a Solar Powered Absorption Cooling System
with Fully Mixed Thermal Storage at Startup. Energies 2017, 10, 72. [CrossRef]

24. Hassan, H. Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy
Using Silica Gel and Water as the Working Pair. Energies 2014, 7, 6382–6400. [CrossRef]

25. Umair, M.; Akisawa, A.; Ueda, Y. Performance Evaluation of a Solar Adsorption Refrigeration System with
a Wing Type Compound Parabolic Concentrator. Energies 2014, 7, 1448–1466. [CrossRef]

26. Li, Y.; Yang, H. Investigation on solar desiccant dehumidification process for energy conservation of central
air-conditioning systems. Appl. Therm. Eng. 2008, 28, 1118–1126. [CrossRef]

27. Li, Y.; Lu, L.; Yang, H. Energy and economic performance analysis of an open cycle solar desiccant
dehumidification air-conditioning system for application in Hong Kong. Sol. Energy 2010, 84, 2085–2095.
[CrossRef]

28. Abdel-Salam, A.H.; Ge, G.; Simonson, C.J. Thermo-economic performance of a solar membrane liquid
desiccant air conditioning system. Sol. Energy 2014, 102, 56–73. [CrossRef]

29. Dezfouli, M.M.S.; Mat, S.; Pirasteh, G.; Sahari, K.S.M.; Sopian, K.; Ruslan, M.H. Simulation Analysis of
the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather
in Malaysia. Int. J. Photoenergy 2014, 2014, 1–14. [CrossRef]

30. Li, H.; Dai, Y.J.; Li, Y.; La, D.; Wang, R.Z. Case study of a two-stage rotary desiccant cooling/heating system
driven by evacuated glass tube solar air collectors. Energy Build. 2012, 47, 107–112. [CrossRef]

31. Mazzei, P.; Minichiello, F.; Palma, D. Desiccant HVAC systems for commercial buildings. Appl. Therm. Eng.
2002, 22, 545–560. [CrossRef]

32. Ma, Y.; Guan, L. Performance Analysis of Solar Desiccant-Evaporative Cooling for a Commercial Building
under Different Australian Climates. Procedia Eng. 2015, 121, 528–535. [CrossRef]

33. Angrisani, G.; Roselli, C.; Sasso, M.; Tariello, F.; Vanoli, G. Performance Assessment of a Solar-Assisted
Desiccant-Based Air Handling Unit Considering Different Scenarios. Energies 2016, 9, 724. [CrossRef]

34. Rafique, M.; Rehman, S.; Alhems, L.; Lashin, A. Parametric Analysis of a Rotary Type Liquid Desiccant Air
Conditioning System. Energies 2016, 9, 305. [CrossRef]

35. Rafique, M.; Rehman, S.; Lashin, A.; Al Arifi, N. Analysis of a Solar Cooling System for Climatic Conditions
of Five Different Cities of Saudi Arabia. Energies 2016, 9, 75. [CrossRef]

36. Nie, J.; Li, Z.; Hu, W.; Fang, L.; Zhang, Q. Theoretical modelling and experimental study of air thermal
conditioning process of a heat pump assisted solid desiccant cooling system. Energy Build. 2017, 153, 31–40.
[CrossRef]

http://dx.doi.org/10.1016/j.applthermaleng.2006.07.021
http://dx.doi.org/10.1177/0143624414527098
http://dx.doi.org/10.3390/en9080663
http://dx.doi.org/10.3390/en6105114
http://dx.doi.org/10.1080/14786450903154746
http://dx.doi.org/10.1016/j.renene.2004.09.017
http://dx.doi.org/10.1016/j.enbuild.2009.09.002
http://dx.doi.org/10.1016/j.enbuild.2008.07.015
http://dx.doi.org/10.1016/j.apenergy.2008.09.005
http://dx.doi.org/10.3390/en10010072
http://dx.doi.org/10.3390/en7106382
http://dx.doi.org/10.3390/en7031448
http://dx.doi.org/10.1016/j.applthermaleng.2007.08.006
http://dx.doi.org/10.1016/j.solener.2010.09.006
http://dx.doi.org/10.1016/j.solener.2013.12.036
http://dx.doi.org/10.1155/2014/843617
http://dx.doi.org/10.1016/j.enbuild.2011.11.035
http://dx.doi.org/10.1016/S1359-4311(01)00096-5
http://dx.doi.org/10.1016/j.proeng.2015.08.1024
http://dx.doi.org/10.3390/en9090724
http://dx.doi.org/10.3390/en9040305
http://dx.doi.org/10.3390/en9020075
http://dx.doi.org/10.1016/j.enbuild.2017.07.075


Energies 2017, 10, 1463 26 of 27

37. Fong, K.F.; Lee, C.K.; Chow, T.T. Comparative study of solar cooling systems with building-integrated solar
collectors for use in sub-tropical regions like Hong Kong. Appl. Energy 2012, 90, 189–195. [CrossRef]

38. Hartmann, N.; Glueck, C.; Schmidt, F.P. Solar cooling for small office buildings: Comparison of solar thermal
and photovoltaic options for two different European climates. Renew. Energy 2011, 36, 1329–1338. [CrossRef]

39. Eicker, U.; Pietruschka, D.; Schmitt, A.; Haag, M. Comparison of photovoltaic and solar thermal cooling
systems for office buildings in different climates. Sol. Energy 2015, 118, 243–255. [CrossRef]

40. Beccali, M.; Cellura, M.; Finocchiaro, P.; Guarino, F.; Longo, S.; Nocke, B. Life cycle performance assessment
of small solar thermal cooling systems and conventional plants assisted with photovoltaics. Sol. Energy 2014,
104, 93–102. [CrossRef]

41. Baniyounes, A.M.; Liu, G.; Rasul, M.G.; Khan, M.M.K. Comparison study of solar cooling technologies for
an institutional building in subtropical Queensland, Australia. Renew. Sustain. Energy Rev. 2013, 23, 421–430.
[CrossRef]

42. Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S. Comparative study of different solar cooling systems for
buildings in subtropical city. Sol. Energy 2010, 84, 227–244. [CrossRef]

43. Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S. Advancement of solar desiccant cooling system for
building use in subtropical Hong Kong. Energy Build 2010, 42, 2386–2399. [CrossRef]

44. Fong, K.F.; Lee, C.K.; Chow, T.T.; Fong, A.M.L. Investigation on solar hybrid desiccant cooling system for
commercial premises with high latent cooling load in subtropical Hong Kong. Appl. Therm. Eng. 2011, 31,
3393–3401. [CrossRef]

45. Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S. Solar hybrid cooling system for high-tech offices
in subtropical climate—Radiant cooling by absorption refrigeration and desiccant dehumidification.
Energy Convers. Manag. 2011, 52, 2883–2894. [CrossRef]

46. Gagliano, A.; Patania, F.; Nocera, F.; Galesi, A. Performance assessment of a solar assisted desiccant cooling
system. Therm. Sci. 2014, 18, 563–576. [CrossRef]

47. Khan, Y.; Singh, G.; Mathur, J.; Bhandari, M.; Srivastava, P. Performance assessment of radiant cooling system
integrated with desiccant assisted DOAS with solar regeneration. Appl. Therm. Eng. 2017, 124, 1075–1082.
[CrossRef]

48. Baniyounes, A.M.; Rasul, M.G.; Khan, M.M.K. Assessment of solar assisted air conditioning in Central
Queensland’s subtropical climate, Australia. Renew. Energy 2013, 50, 334–341. [CrossRef]

49. Alizadeh, S. A Feasibility Study of Using Solar Liquid-Desiccant Air Conditioner in Queensland, Australia.
J. Sol. Energy Eng. 2008, 130, 021005. [CrossRef]

50. Goldsworthy, M.; White, S. Optimisation of a desiccant cooling system design with indirect evaporative
cooler. Int. J. Refrig. 2011, 34, 148–158. [CrossRef]

51. White, S.D.; Kohlenbach, P.; Bongs, C. Indoor temperature variations resulting from solar desiccant cooling
in a building without thermal backup. Int. J. Refrig. 2009, 32, 695–704. [CrossRef]

52. Kohlenbach, P.; Dennis, M. Solar Cooling in Australia: The Future of Air Conditioning? In Proceedings of
the 9th IIR Gustav Lorentzen Conference, Sydney, Australia, 12–14 April 2010.

53. Byrnes, L.; Brown, C.; Foster, J.; Wagner, L.D. Australian renewable energy policy: Barriers and challenges.
Renew. Energy 2013, 60, 711–721. [CrossRef]

54. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE). ANSI/ASHRAE/IES
Standard 90.1-2016, Energy Standard for Buildings Except Low-Rise Residential Buildings; American Society of Heating,
Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2016.

55. Ma, Y.; Saha, S.C.; Miller, W.; Guan, L. Parametric Analysis of Design Parameter Effects on the Performance
of a Solar Desiccant Evaporative Cooling System in Brisbane, Australia. Energies 2017, 10, 849. [CrossRef]

56. Australian Building Codes Board. ABCB Energy Modelling of Office Buildings For Climate Zoning (Class 5
Climate Zoning Consultancy) Stages 1, 2 & 3; Australian Building Codes Board: Glen Iris, Australia, 2002.

57. Ma, Y. Investigation of Advanced Solar-assisted Cooling for Australian Commercial Buildings. Master’s Thesis,
Queensland University of Technology, Brisbane, Australia, 2016.

58. SOLAVIS. Flat Plate Collectors v. Evacuated Tubes—A Brief Overview. Available online: www.solarvis.com.au
(accessed on 4 May 2017).

59. Selke, T.; Frein, A. Collection of Good Practices for DEC Design and Installation; IEA Solar Heating and Cooling
Program: 2015, Task 48—Activity B2 Final Report, November 2015; Daniel Mugnier: Perpignan, France, 2015;
Available online: http://task48.iea-shc.org/publications (accessed on 4 May 2017).

http://dx.doi.org/10.1016/j.apenergy.2011.06.013
http://dx.doi.org/10.1016/j.renene.2010.11.006
http://dx.doi.org/10.1016/j.solener.2015.05.018
http://dx.doi.org/10.1016/j.solener.2013.10.016
http://dx.doi.org/10.1016/j.rser.2013.02.044
http://dx.doi.org/10.1016/j.solener.2009.11.002
http://dx.doi.org/10.1016/j.enbuild.2010.08.008
http://dx.doi.org/10.1016/j.applthermaleng.2011.06.024
http://dx.doi.org/10.1016/j.enconman.2011.04.005
http://dx.doi.org/10.2298/TSCI120526067G
http://dx.doi.org/10.1016/j.applthermaleng.2017.06.052
http://dx.doi.org/10.1016/j.renene.2012.06.042
http://dx.doi.org/10.1115/1.2844426
http://dx.doi.org/10.1016/j.ijrefrig.2010.07.005
http://dx.doi.org/10.1016/j.ijrefrig.2009.01.019
http://dx.doi.org/10.1016/j.renene.2013.06.024
http://dx.doi.org/10.3390/en10070849
www.solarvis.com.au
http://task48.iea-shc.org/publications


Energies 2017, 10, 1463 27 of 27

60. U.S. Department of Energy. EnergyPlus Engineering Reference. Available online: https://energyplus.net/
documentation (accessed on 5 January 2016).

61. Desiccant Rotors International Pvt. Ltd. Technical Specification of ECO-DRY Desiccant Cassette. Available
online: http://www.drirotors.com/ (accessed on 17 September 2015).

62. Guangzhou Jiema Heat Exchange Equipment Co., Ltd. Air to Air Heat Exchanger. Available online:
www.jiema-heatexchangers.com (accessed on 5 January 2016).

63. Lecamwasam, L.; Wilson, J.; Chokolich, D. Guide to Best Practice Maintenance & Operation of HVAC Systems for
Energy Efficiency; Department of Climate Change and Energy Efficiency: Canberra, Australia, 2012.

64. Tsoutsos, T.; Anagnostou, J.; Pritchard, C.; Karagiorgas, M.; Agoris, D. Solar cooling technologies in Greece.
An economic viability analysis. Appl. Therm. Eng. 2003, 23, 1427–1439. [CrossRef]

65. OANDA Corporation. Available online: https://www.oanda.com/currency/converter/ (accessed on 23 August 2016).
66. Rawlinsons. Australian Construction Handbook; Rawlinsons: Perth, Australia, 2011.
67. Henning, H.-M. Solar-Assisted Air-Conditioning in Buildings, 2nd ed.; Springer Wien NewYork: Stefan,

Austria, 2007.
68. Bakker, M.; Zondag, H.A.; Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M. Performance and costs of a roof-sized

PV/thermal array combined with a ground coupled heat pump. Sol. Energy 2005, 78, 331–339. [CrossRef]
69. Ghadamian, H.; Hamidi, A.A.; Farzaneh, H.; Ozgoli, H.A. Thermo-economic analysis of absorption air

cooling system for pressurized solid oxide fuel cell/gas turbine cycle. J. Renew. Sustain. Energy 2012,
4, 043115. [CrossRef]

70. Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons, Inc.: Hoboken,
NJ, USA, 2013.

71. Wang, X.; Bierwirth, A.; Christ, A.; Whittaker, P.; Regenauer-Lieb, K.; Chua, H.T. Application of geothermal
absorption air-conditioning system: A case study. Appl. Therm. Eng. 2013, 50, 71–80. [CrossRef]

72. Donnelly, E. Economic Analysis of Energy Provisions for Base Building Fabric Elements of Air-Conditioned Office
Spaces; Australian Building Codes Board: Canberra, Australia, 2004.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://energyplus.net/documentation
https://energyplus.net/documentation
http://www.drirotors.com/
www.jiema-heatexchangers.com
http://dx.doi.org/10.1016/S1359-4311(03)00089-9
https://www.oanda.com/currency/converter/
http://dx.doi.org/10.1016/j.solener.2004.09.019
http://dx.doi.org/10.1063/1.4742336
http://dx.doi.org/10.1016/j.applthermaleng.2012.05.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Solar Energy in Australia 
	Solar Air Conditioning Technology Review 

	Methodology 
	Weather Data 
	Building Model Description 
	System Design and Configuration 
	The Referenced Conventional VAV System 
	SDEC System 
	SDCC System 
	SAC System 

	Main System Components Modelling and Input Parameters 
	Solar Thermal Collectors 
	Desiccant Cooling Subsystem 
	Absorption Chiller 

	Building Model Validation 

	Results and Discussion 
	Technical Performance Analysis 
	Solar Fraction 
	System Coefficient of Performance 
	Annual HVAC Electricity Energy Consumption 

	Environmental Performance Analysis 
	Economic Performance Analysis 
	Payback Period 
	Net Present Value 


	Conclusions 
	

