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Abstract MicroRNAs (miRNAs) represent a new class of 

diagnostic and prognostic biomarker as well as new therapeu- 

tic targets in cancer therapy. miRNAs are gaining significant 

interest due to extensive advancements in knowledge since 

their discovery and, more recently, their translational applica- 

tion as therapeutic moieties and targets in the management of 

disease. miRNAs used in the treatment of cancer would posi- 

tion them as a new class of emerging therapeutic agents. 

Indeed, numerous candidate miRNAs have been identified 

as having therapeutic application in the treatment of cancer, 

but there is still much to learn about how to transform these 

into effective, patient-compliant, and targeted drug delivery 

systems. In this mini review, we discuss the utility and poten- 

tial of nanotechnology in miRNA formulation and delivery 

with particular emphasis on cancer, including their role in 

conferring multidrug resistance and metastatic capacity. This 

review benefits both the formulation and biological scientists 

in understanding and exploring the new vistas of miRNA 

delivery using nanotechnology in the cancer clinically. 
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Introduction—role of miRNAs in regulating disease 
 

MicroRNAs (miRNAs) were initially identified in 

Caenorhabditis elegans in 1993, as small non-coding 

RNAs, which modulate eukaryotic gene expression at post- 

transcriptional levels. Lee et al. first reported that the lin-4 

gene was involved in larval development of Caenorhabditis 

elegans [1]. miRNAs play an important role in various phys- 

iological and pathological conditions including embryonic 

differentiation, viral infection, cardiac hypertrophy, hemato- 

poiesis, and oncogenesis. miRNAs control a wide variety of 

cellular processes, such as proliferation, cell death, differenti- 

ation, motility, and invasiveness. [2, 3]. 

Different biological and physicochemical factors govern 

the effective delivery of miRNAs (Fig. 1). Delivery can be 

improved through various approaches such as [4, 5] 

 
1. minimization of degradation and elimination of miRNAs 

by optimization of particle size, surface charge, and chem- 

ical modification; 

2. use of targeting ligands and cell-penetrating moieties to 

improve the tissue permeation; and 

3. use of fusogenic peptides to avoid intracellular disposition 

of the miRNAs. 

 

 
miRNA-based therapeutics represent one of the major 

commercial areas of interest in today’s biotechnology market 

[6]. miRNAs are well-identified and associated in various dis- 

ease pathologies such as is the case for miR-208 in heart 
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Fig. 1  Challenges (1) and solutions (2–4) for effective delivery of miRNAs 

 

failure [7], miR-15/195 in post-myocardial infarction remod- 

eling [8], miR-145 in vascular disease [9], miR-451 in mye- 

loproliferative disease [10], miR-29 in pathological fibrosis 

[11], miR34 and let-7 in cancer [12], and miR122 in liver 

transplant [13]. 

Roy and Sen [6] first demonstrated that miRNAs regulate 

the cellular redox environment via a NADPH oxidase- 

dependent mechanism in human microvascular endothelial 

cells. They demonstrated that the hypoxia-sensitive miR- 

200b was involved in the induction of angiogenesis by direct- 

ly targeting Erythroblastosis virus E26 oncogene homolog 1 

(Ets-1) in human microvascular endothelial cells. These stud- 

ies lend support to the potential role of miRNAs in wound 

healing and angiogenesis. miRNAs block translation of mes- 

senger RNAs (mRNAs) or repress the synthesis of protein via 

mRNA destabilization [5, 6]. They also serve a fundamental 

role during the development of the organism, through effects 

on cell differentiation and metabolism [14]. In 2000, a second 

miRNA (let-7) was identified from Caenorhabditis elegans 

and characterized as a 21-nucleotide small RNA [15]. Since 

these early studies, it is now known that more than 60% of 

human protein-coding genes are regulated by miRNAs [16]. 

The miRBase database provides a searchable online reposito- 

ry for published miRNA sequences and associated annotation 

[14]. The miRBase database contains more than 28,645 hair- 

pin precursors and more than 35,828 mature miRNA se- 

quences in 223 species (Release 21) [17]. 

Hebert et al. observed that a small number of miRNAs have 

altered expression levels in patients with Alzheimer’s disease 

[18]. Caporali and Emanueli reviewed the role of miRNAs in 

angiogenesis focusing on post-ischemicneo-vascularization 

[19]. Using locked nucleic acid, anti-miRNA21 oligonucleo- 

tides, bimodal imaging vectors, and neural precursor cells 

(NPC) expressing a secretable variant of the cytotoxic agent 

tumor necrosis factor-related apoptosis-inducing ligand (S- 

TRAIL), the combined suppression of miRNA21 and NPC- 

S-TRAIL leads to a synergistic increase in caspase activity 

and significantly decreased cell viability in human glioma 

cells in vitro [20]. In a recent report, Hsu et al. found that 

influenza A virus infections lead to increased inflammatory 

and antiviral responses in primary bronchial epithelial cells 

from healthy non-smoking and smoking subjects. The authors 

reported increased expression of miR-125a or miR-125b due 

to influenza Avirus infection, which reduced the expression of 

A20 (TNFAIP3), a negative regulator of NF-κB-mediated in- 

flammatory responses, and mitochondrial antiviral signaling. 

This leads to the exaggeration of inflammation and impaired 

antiviral responses [21]. miRNAs also play an important role 

in autism spectrum disorder, and recent findings associate the 

condition with genetic variants in miRNA genes, miRNA bio- 

genesis genes, and miRNA targets [22]. 

Calin et al. evaluated the miRNA expression profiles in 

chronic lymphocytic leukemia samples. They identified 

germ-line mutations in the miR-16-1-miR-15a primary pre- 

cursor, which caused low levels of miRNA expression 

in vitro and in vivo and was associated with the deletion of 

the normal allele [23]. In a recent study, Zhao et al. found that 

the downregulation of miR-493-5p in hepatocellular carcino- 

ma was correlated with tumor size, tumor differentiation, 

grade, and tumor/node/metastasis stage of hepatocellular car- 

cinoma patients. The authors reported that the miR-493-5p 

was downregulated in hepatocellular carcinoma. This 

miRNA acts to suppress the proliferation of hepatocellular 

carcinoma cells via targeting Golgiprotein73 [24]. Sun et al. 

observed the upregulation of miRNA 223 in colorectal cancer 

tissues and the downregulation of RAS p21GTPase-activating 
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protein 1 (RASA1) in colorectal cancer tissues. The in vivo 

xenograft model of colorectal cancer suggested that the upreg- 

ulation of miR-223 could promote tumor growth and that the 

inhibition of miR-223 might prevent solid tumor growth [25]. 

 

 

Description of miRNA biogenesis and regulation 
 

The regulation of eukaryotic gene expression is based on the 

cytoplasmic control of mRNA translation and degradation. 

The regulation of miRNAs is referred to as RNA interference 

(RNAi) or RNA silencing [26]. miRNAs are generated 

through the cleavage of primary miRNA (pri-miRNA), which 

incorporates into the effector complex RNA-induced silencing 

complex (RISC) [27]. The presence of a single (or multiple) 

imperfect hairpin structure(s) with a stem of approximately 

33 bp is the characteristic feature of a pri-miRNA [19]. 

In brief, the miRNAs are first transcribed into pri-miRNAs 

in the presence of polymerase II or polymerase III. In the 

presence of the RNAse III enzyme, Drosha, the synthesis of 

pri-miRNAs begins in the nucleus. In complex with other 

proteins (double-stranded RNA-binding domain protein 

called Pasha in Drosophila or DGCR8 in mammals), the pri- 

miRNAs convert into precursor miRNAs (pre-miRNAs). Pre- 

miRNAs are transported into the cytoplasm by exportin-5, a 

RanGTP-dependent dsRNA-binding protein, and are subse- 

quently processed by Dicer (a cytoplasmic endonuclease 

RNAse III enzyme) that generates a miRNA duplex [25]. 

The mature duplex miRNA is then incorporated into the 

RNA-induced silencing complex, a ribonucleoprotein effector 

containing a catalytic endonuclease core (Argonaute2); Dicer, 

a dsRNA-binding protein-transactivating response RNA- 

binding protein; and a protein activator kinase R [28]. The 

process of miRNA biogenesis is presented in Fig. 2. 

Circulating miRNAs are released into the blood, and their 

expression level is specifically related to disease stage. 

Circulating miRNAs are considerably stable and can be easily 

evaluated through blood sampling and following molecular 

analysis [31]. A single miRNA molecule can target multiple 

mRNAs [32]. miRNAs have attracted wide attention by both 

the biological and formulation scientists due to their unique 

functional significance and mode of action [33]. 

 

 

Nanotechnology in cancer therapy 
 

In recent years, extensive efforts have been focused on the 

development of nanocarriers that exhibit high delivery effi- 

ciency for miRNAs in various diseased conditions [34]. The 

first polymer-drug nanoconjugate system was reported by 

Jatzkewitz in the 1950s [35]. In contribution to the field, 

Bangham discovered the first liposomal formulation in mid- 

1960s [36, 37] and Scheffel and coworkers developed the first 

albumin-based paclitaxel nanoparticles (Abraxane) in 1972 

[38]. Abraxane was approved by the US Food and Drug 

Administration in 2005 for the treatment of breast cancer 

[39]. Table 1 provides a brief description of the various 

nanoformulations and their approval status. 

An ideal nanoparticulate drug carrier system is one which 

displays prolonged systemic circulation time, is present at 

appropriate concentrations at the target site, retains its thera- 

peutic efficacy against physiological barriers, and finally is 

metabolized in the body. To fulfill all of these properties, an 

ideal drug carrier system should possess physical properties of 

small size, high drug encapsulation efficacy, efficient locali- 

zation of the carriers by tumor cells (effective binding to the 

specific targets through the ligands), prolonged circulation 

time, and finally controlled release of drug at the target site 

[46, 47]. 

Systemic circulation time, biodistribution, and cellular in- 

ternalization of nanoparticles depend on particle size and sur- 

face properties such as surface charge. Nanoparticles accumu- 

late in the spleen due to filtration and are removed by the 

reticulo-endothelial system. The optimum particle size of 

nanocarriers is in the range of 100 to 200 nm as this is ideal 

for enhanced permeability and retention in tumor cells [47]. 

This size range avoids filtration in the spleen and is large 

enough to avoid the uptake in the liver [47]. Nanoparticles 

may be opsonized and thus be recognized and eliminated by 

macrophages. Opsonization is the key factor that determines 

the fate of nanoparticles to a large extent in blood circulation. 

The circulation time of nanoparticles can be altered by mod- 

ifying their surface charge [47]. An increased cellular uptake 

of nanoparticles with cationic surfaces has been reported by 

Chen et al. [48]. It has been established that due to the large 

effective surface area-volume ratio and higher particle concen- 

trations, the nanoparticulate drug carrier systems can maintain 

the drug concentration at the target site within the desired level 

[46, 47]. Accumulation of nanoparticles at target sites can be 

increased selectively by engineering the particle surface with 

polymer selection and coupling of targeting ligands. Cellular 

uptake and drug release profiles from nanocarriers are mainly 

dependent on the particle shape. Champion et al. reported a 

zero-order release profile from hemi-spherical nanoparticles 

[49]. Figure 3 represents a schematic presentation of a multi- 

functional nanocarrier. Various nanotechnology-based drug 

products for cancer therapy under different phases of clinical 

investigations are presented in Table 2. 

 

 

miRNA delivery through nanoparticles 
 

Nanotechnology is one of the principal areas which can be 

used to effectively formulate the delivery of miRNAs due to 

their small size and low molecular weight [69]. When 

miRNAs are attached to the surface of nanoparticles, the 
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Fig. 2 The process of miRNA biogenesis. miRNA genesis initiates in the 

nucleus. (I) In the presence of RNA polymerase II, miRNA genes are 

transcribed and produce pri-miRs. (II) Pri-miRNAs are catalyzed by 

Drosha to produce pre-miRNAs. (III) After nuclear export to the cyto- 

plasm, Dicer processes pre-miRNAs into 20-bp miR:miR duplexes. After 

miRNA duplex unwinding initiated by the Dicer, one strand is selected to 

function as mature miR and loaded into the RNA-induced silencing com- 

plex (RISC). (V) The mature miRNA leads to mRNA translational re- 

pression, as well as protein downregulation (Adapted from [5, 29, 30]) 

 

delivery efficacy of miRNA-conjugated nanoparticles in- 

creases relative to free miRNA [70]. 

Recently, Kato et al. reported bone morphogenetic protein 

2 displays a higher osteogenic effect on MC3T3-E1 cells 

grown on titanium with nanotopography compared with con- 

trol titanium [71]. Antonellis et al. developed miRNA-199b- 

5p-encapsulated stable nucleic acid lipid particles, and a sig- 

nificant impairment of Hes-1 protein levels and cancer stem 

cell markers in a range of different tumorigenic cell lines (co- 

lon, breast, prostate, glioblastoma, and medulloblastoma) was 

observed [72]. Yoo et al. demonstrated the inhibition of ma- 

ture miRNA in a metastatic breast cancer cell line using novel 

layered gadolinium hydroxychloride nanoparticles.  

Specifically, anti-miRNA oligonucleotides delivered with lay- 

ered gadolinium hydroxychloride nanoparticles remained 

functional by inducing changes in the expression of its down- 

stream effect or/and by curbing the invasive properties. 

Layered gadolinium hydroxychloride nanoparticles provide 

a promising multifunctional platform for miRNA therapeutics 

by virtue of their diagnostic, imaging, and therapeutic capa- 

bilities. These nanoparticles had shown good cellular uptake 

profile [73]. Chen et al. developed polycation-hyaluronic ac- 

id-loaded nanoparticles containing single-chain antibody frag- 

ments for systemic delivery of miRNAs into the lung 

metastasis of murine B16F10 melanoma. miRNAs delivered 

by fabricated nanoparticles significantly downregulated the 

survivin expression in metastatic tumors and reduced tumor 

load in the lung [74]. 

A robust method for delivering miRNAs into cells using 

cysteamine-functionalized gold nanoparticles was developed 

by Ghosh et al. The preparation was validated on the basis of 

the highest payload, the lowest toxicity, efficient uptake, the 

fastest endosomal escape, and increased half-lives using two 

different tumor models [75]. 

The first report on a silica nanoparticle-based delivery sys- 

tem for miRNA delivery to neuroblastoma tumors in a murine 

orthotopic xenograft model was demonstrated by Tivnan et al. 

These carriers resulted in a decrease in tumor growth, increase 

in apoptosis, and a reduction in tumor vascularization [76]. 

Polycationic liposome-hyaluronic acid nanoparticles for the 

delivery of miRNA have also been reported by several inves- 

tigators [77]. Systemic delivery of anti-miR-155 peptide 

nucleic acids using polylactic-co-glycolic acid (PLGA) poly- 

mer nanoparticles showed enhanced delivery efficiency and 

achieved therapeutic effects. The surface of the nanoparticles 

was modified with penetration, a cell-penetrating peptide [78]. 

Liu et al. [79] reported PEGylated liposome-polycation- 

hyaluronic acid nanoparticle formulation modified with cyclic 
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Table 1 Nanoformulations investigated for cancer therapy and their approval status 
 

 

Nanoformulation Brief description Product approval status Ref. 
 

 

Liposome Self-assembling vesicles synthesized 

by the dispersion of phospholipids 

with hydrophilic heads and hydrophobic 

anionic/cationic long-chain tails 

Polymeric nanoparticles   Polymeric nanoparticles synthesized by 

self-assembly of block co-polymers 

consisting of two or more polymer 

chains with different hydrophobicity 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
Dendrimer Dendrimers are hyperbranched 

nanoparticles composed of a core, 

branching units, and functionalized 

terminal groups resulting in a nearly 

perfect three-dimensional geometric pattern. 

These can be synthesized via two major approaches: 

(a) divergent approaches and (b) convergent approaches. 

Polymeric micelle Formed from the self-assembly of amphiphilic-block 

co-polymers. These are composed of a hydrophobic 

core and a hydrophilic corona. 

Nanocrystals Nanocrystals are carrier-free solid drug particles. 

These are synthesized by high-pressure 

homogenization or wet milling 

(the colloidal dispersions of drug crystals, 

stabilized by surfactants or polymers). 

• Doxil® (liposomal doxorubicin) 

approved by FDA for the treatment 

of Kaposi’s sarcoma 

 

• Abraxane (albumin-bound paclitaxel) 

is the first polymeric nanoparticle 

formulation approved by FDA in 2005 

for the treatment of metastatic breast 

cancer and and non-small-cell lung carcinoma. 

• Livatag (doxorubicin transdug) is a 

poly(isohexyl cyanoacrylate) 

nanoparticle formulation approved 

for the treatment of multidrug-resistant 

(MDR) protein-overexpressing hepatocellular carcinoma. 

• Genexol-PM™  (paclitaxel-encapsulating 

PLGA-b-methoxyPEG nanoparticles) 

has received regulatory approval in South Korea. 

Currently, it is undergoing phase II 

clinical trials in the USA. 

• BA-003 (doxorubicin transdrug, Livitag)— 

polyisohexylcryano-acrylate-containing 

doxorubicin under phase III for advanced 

hepatocellular carcinoma (this is the first 

nanoparticle to enter in clinical trials) 

• DEP™  docetaxel—Dendrimer-enhanced 

docetaxel (Taxotere®), of Starpharma, 

is under phase I clinical trials for the 

treatment of a wide range of solid tumors 

including breast, lung, and prostate. 

 

 

• Genexol-PM is currently under investigation 

for the treatment of breast, lung, 

and pancreatic cancers. 

• Pexceed® (paclitaxel-containing nanocrystal 

product of Angiotech Pharmaceuticals) 

is currently under phase II investigation. 

• Theralux (thymectacin-containing 

nanocrystal product of Celmed BioScience) 

is currently under phase II investigation. 

[40] 
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arginine-glycine-aspartic acid (RGD) peptide for specific de- 

livery of anti-miRNA antisense oligonucleotides to target 

αvβ3 integrin present on the tumor neovasculature. Anti- 

miR-296 antisense oligonucleotides delivered by nanoparti- 

cles decreased microvessel formation within Matrigel by sup- 

pressing the invasion of cluster of differentiation 31 (CD31)- 

positive cells and prompting hepatocyte growth factor- 

regulated tyrosine kinase substrate expression in angiogenic 

endothelial cells [79]. 

miRNA gold nanoparticle conjugates have been shown to 

control cellular processes by supplementing the endogenous 

miRNA levels in human prostate cancer cells. The miRNA- 

gold nanoparticles mimicked human miR-205 and decreased 

the expression of protein kinase C epsilon (PRKCε) by 52% 

compared to cells treated with control particles functionalized 

with non-targeting sequences [80]. Valadi et al. reported 

miRNA delivery from exosomes to human and mouse mast 

cells. The in vitro translation study proved the functioning of 

exosome mRNAs. They reported that the RNA from mast cell 

exosomes is transferable to other mouse and human mast cells 

[81]. 

Saraiva et al. developed nanoparticles to deliver miR-124 

into neural stem/progenitor cells and boost neuronal differen- 

tiation and maturation in vitro. The intracerebroventricular 

injection of miR-124 nanoparticles increased the number of 

new neurons in the olfactory bulb of healthy and 6- 

hydroxidopamine-lesioned mice, a model for Parkinson’s dis- 

ease. Importantly, miR-124 nanoparticles enhanced the migra- 

tion of new neurons into the 6-hydroxidopamine-lesioned stri- 

atum, culminating in motor function improvement [82]. 

Cai et al. developed monomethoxy(polyethylene glycol)- 

poly(D,L-lactide-co-glycolide)-poly(L-lysine)-lactobionic 

acid-antivascular endothelial growth factor antibody (mPEG- 

PLGA-PLL-LA/ VEGFab or PEAL-LA/VEGFab)   
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Fig. 3  Schematic representation 

of a multifunctional nanocarrier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

nanoparticles to restore the expression of miR-99a both 

in vitro and in vivo, to inhibit hepatic carcinoma progression. 

The nanoparticles selectively and effectively delivered miR- 

99a to hepatic carcinoma cells based on the double-targeting 

character of these nanoparticles, thereby offering potential for 

translation into effective clinical therapies for hepatic carcino- 

ma [83]. Mandli et al. reported novel electrochemical biosen- 

sor gold nanoparticles for miRNA-21 determination. The de- 

veloped biosensor exhibited selective and sensitive detection 

with a linear range from 200 pM to 388 nM, and the detection 

limit was 100 pM [84]. 

miRNA-145-based magnetic nanoparticles have shown 

promising anticancer efficacy in pancreatic cancer cell. The 

miR-NA145 re-expression resulted in the downregulation of 

mucin MUC13, pAKT, and HER2 and inhibition of cell pro- 

liferation, migration, clonogenicity, and invasion of cancer 

cells [85]. Nanoparticles prepared using biodegradable 

polycationic prodrug synthesized from a polyamine analog 

N1,N11-bisethylnorspermine have shown promising results 

in simultaneous regulation of polyamine metabolism and 

miRNA delivery for combination cancer therapy [86]. Chen 

et al. developed liposome-polycation-hyaluronic acid nano- 

particles modified with a tumor-targeting single-chain anti- 

body fragment for systemic co-delivery of miRNA and 

siRNA into experimental lung metastasis of murine B16F10 

melanoma. These nanoparticles significantly reduced tumor 

load and downregulated the survivin expression in the meta- 

static tumor [74]. Babar and coworkers fabricated surface- 

modified anti-miRNA-loaded PLGA nanoparticles using 

double-emulsion solvent evaporation technique. The study 

claimed systemic delivery of antisense peptide nucleic acid 

which inhibited miRNA-155 and suggested promising thera- 

peutic benefits for lymphoma [87]. All the above-stated 

attempts clearly emphasize and highlight the application and 

benefits of nanotechnology as a carrier for miRNAs in the 

cancer treatment. Table 3 summarizes current commercial in- 

vestments in miRNA therapeutics. 

 

 

Role of nanoparticles in biosenseor technology 
 

Various electrochemical nanobiosensors have been fabricated 

for detection or quantification of valuable miRNAs. The First 

electrochemical miRNA biosensor was described in 2006 [94]. 

Azimzadeh et al. reviewed the role of nanotechnology in nano- 

biosensor development for application in microRNA detection 

[31]. Biomarkers are divided into two categories based on their 

application, viz, diagnostic biomarkers and screening bio- 

markers. MicroRNAs are one of the most reliable biomarkers 

reported for the early detection, diagnosis, metastasis, progno- 

sis, and assessment of treatment [95, 96]. Northern blotting, 

microarray, and polymerase chain reaction are the most com- 

mon methods used for the detection of miRNAs [97]. 

Wang et al. reported that alpha-hemolysin protein-based 

nanopore miRNA sensors detected miRNAs at the single mo- 

lecular level in plasma samples from lung cancer patients 

without amplification of the microRNA [98]. In a recent re- 

port, Wei et al. developed a magnetic fluorescent miRNA- 

sensing system for the rapid and sensitive detection of 

miRNAs from cell lysates and serum samples [99]. Albumin 

nanoparticles were prepared from inherently biocompatible 

bovine serum albumin. The results suggested a broad linear 

detection range of 10 fM–10 nM and a low detection limit of 

9 fM within 100 min by detecting a model target miRNA-21. 

Based on gold nanoparticle-decorated molybdenum sulfide 

(MoS2) nanosheet, a dual-mode electronic biosensor was 
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Table 2 Nanotechnology-based drug products for cancer therapy under different stages of clinical investigations 
 

Drug product Active ingredient Indications Stage Ref. 

Aroplatin Cisplatin analog Colorectal cancer Phase [50] 

   II  
Atragen Transretinoic acid Acute promyelocytic leukemia Phase [51] 

   II  
Aurimmune Recombinant human tumor necrosis Head and neck cancers Phase [52] 

(CYT-6091) factor alpha (TNF-α)  II  
Auroshell Gold-silica nanoshells Aurolace therapy of cancer Phase [52] 

   I  
BIND-014 Docetaxel Breast cancer, metastatic castrate-resistant Phase [53] 

  prostate cancer, head and neck cancers, and gastric cancer II  
C-VISA BikDD Pro-apoptotic Bik gene Pancreatic cancer Phase [54] 

   I  
CPX-1 Floxuridine Colorectal cancer Phase [55, 

   II  
56]     

CRLX101 Camptothecin Cancer treatment Phase [53, 

   II  
55]     

CT-2103 Poly-(L)-Glutamic Ovarian cancer Phase [57] 

 acid-paclitaxel/camptothecin  III  
Clariscan Enhanced MRI constrast Solid tumor Phase [58] 

   III  
EndoTAG-I Paclitaxel Breast cancer/pancreatic cancer Phase [59] 

   II  
L-Annamycin Annamycin Acute lymphocytic leukemia Phase [56] 

   II  
LEP-ETU Paclitaxel Ovarian/breast/lung cancers Phase [57] 

   II  
Lipoplatin Cisplatin Pacreatic/head/neck/ and breast cancers Phase [58] 

   III  
MCC-465 Doxorubicin Anticancer Phase [60] 

   I  
MBP-426 Oxaliplatin Anticancer Phase [61, 

   II  
62]     

MTX-HSA Methotrexate Kidney cancer Phase [63] 

   II  
NK105 Paclitaxel Gastric cancer Phase [56, 

   II  
64]     

NKTR-105 PEG-docetaxel Solid tumors Phase [65] 

   I  
NK911 Doxorubicin Solid tumors Phase [57] 

   III  
Opaxio™ or 

CT-2103 

Paclitaxel poliglumex Ovarian cancer Phase 

III 

[66] 

OSI-211 Lurtotecan Lung cancer/recurrent ovarian Phase [57] 

   II  
Panzem NCD Panzem Several types of cancers Phase [67] 

   II  
ProLindac™ Oxaliplatin Ovarian cancer Phase 

II 

[67, 

68]     
Paclical Paclitaxel Ovarian cancer Phase [66] 

   III  
SPI-77 Cisplatin Head/neck cancers/lung cancer Phase [56] 

   III  
ThermoDox™ Doxorubicin Liver cancer, breast cancer Phase 

III 

[66] 
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Table 3 Companies investing in the development of miRNA therapeutics 
 

Company Product Chemical composition and properties Diseases/product category Ref. 

Regulus RG101 miRNA inhibitors using 2′-methoxyethyl, Immuno-inflammatory, [88, 89] 
Therapeutics  2′-fluoro RNA, bicyclic ribose modifications cardiovascular, metabolic  

   diseases; oncology; fibrosis; and hepatitis  
   C infection  
miRagen MRG-201 A synthetic microRNA mimic (promiR) to microRNA-29b Antifibrosis [90] 

Therapeutics 

miRagen 

Therapeutics 

 
MRG-106    A synthetic microRNA antagonist 

(LNA antimiR®) of microRNA-155 

 
Anticancer [90] 

Santaris 

Pharma A/S 

Miravirsen   miR-122 inhibitors using locked nucleic acid chemistry Cancer and inflammatory diseases, 

hepatitis C infection 

[91, 92] 

Mirna 

Therapeutics 

MRX34 miRNA replacement using small interfering RNA 

(siRNA); deliver high numbers of microRNA 

mimic molecules to cancerous cells 

Non-small-cell lung cancer and prostate cancer   [93] 

 
 

 
 

developed for miRNA-21 detection. The proposed biosensor 

displayed high selectivity and stability to determine miRNA- 

21 in human serum samples with satisfactory results [100]. 

The development of microRNA biosensors has attracted 

great attention. miRNA is considered as an ideal biomarker 

for cancer detection in early stages. Electrochemical biosen- 

sors have been used widely due to the fact that they can pro- 

vide simple, rapid, and reliable detection [101]. 

 

 

miRNAs are important regulators of cancer MDR 
and metastatic capacity 

 
Extracellular vesicles serve as important intercellular vectors 

in the regulation of many biological processes. Microparticles 

(MPs) are a subtype of extracellular vesicle, typically defined 

as having a size of 0.1–1 μm in diameter, exposure of 

phosphatidylserine, and the expression of surface antigens 

originating from their donor cells [68]. MPs also contain func- 

tional proteins, second messengers, growth factors, and genet- 

ic material from the cell of origin and confer onto recipient 

cells biological effects [102–111]. MPs together with 

exosomes are important cancer biomarkers through their dis- 

crete protein and nucleic acid signatures [112]. 

MPs are important mediators in the dissemination of func- 

tional multidrug resistance (MDR) in cancer cell populations. 

Cancer MDR is a significant cause of treatment failure and 

disease relapse and is attributed to the overexpression of drug 

efflux transporters belonging to the ATP-binding cassette 

(ABC) superfamily. MPs can confer MDR through the pack- 

aging and intercellular transfer of these functional resistance 

proteins and nucleic acids from MDR cells to drug-responsive 

cells [102, 104, 108, 109]. 

In addition to the presence of proteins and transcripts 

encoding resistance proteins, these MPs also carry miRNAs, 

which are involved in the acquisition of MDR and other dele- 

terious traits associated with this complex phenotype. MPs 

comprise the major source of systemic RNA, including 

miRNA, the aberrant expression of which appears to be asso- 

ciated with stage, progression, and spread of many cancers 

[103, 104]. 

In a study conducted by Bebawy and coworkers in 2012, 

Affymetrix miRNA microarray was used to explore the 

miRNA expression profiles of MPs shed from MDR cells as 

well as cells that acquired MDR following MP transfer [103]. 

The analysis showed the selective packaging of seven 

miRNAs including miR-1228*, miR-1246, miR-1308, miR- 

149*, miR-455-3p, miR-638, and miR-923 within the MP 

cargo upon release from MDR cells. The pathway analysis 

of the predicted targets for these miRNAs showed target genes 

to be significantly related to pathways in cancer and at least 

seven other pathways that were cancer-related. The selective 

packaging of miRNAs was also reported by the same team for 

miR-451 and miR-326 in MPs shed from MDR breast and 

leukemia cells in earlier studies, supporting the presence of a 

mechanism for the selective dissemination and transfer of 

miRNAs within cancer cell populations [104]. Following co- 

culture with recipient cells, there was again an increase in the 

levels of miR-1246, miR-1308, miR-1228*, miR-149*, miR- 

638, and miR-923 in recipient cells [103]. Certainly, this was 

attributed to the unloading of MP cargo to the recipient fol- 

lowing binding and uptake; however, MP effects on the tran- 

scriptional regulation of these miRNAs in recipient cells also 

cannot be excluded. Indeed, the acquired cell population dem- 

onstrated miRNA expression trends reflective of the donor 

cells, a finding consistent with previous reports demonstrating 

a Bre-templating^ of the transcriptional landscape of recipient 

cells to reflect that of the donor cells [104]. 

The abovementioned miRNAs play important roles in can- 

cer cell biology. For instance, the NF-κB inhibitor, NKIRAS1, 

is targeted by miR-1308. miR-1308 is upregulated in many 

cancers, including in aggressive inflammatory breast cancer 

[113, 114]. Likewise, miR-1228* is highly expressed in ma- 

lignant mesothelioma [115]. 
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The role of miRNAs in the regulation MDR is an emerging 

area [103, 105, 110]. miR-455-3p, among others selectively 

packaged in the MP cargo shed from MDR cells, targets the 

multidrug resistance protein, P-glycoprotein (P-gp), and 

HIF1AN (hypoxia-inducible factor 1, alpha subunit inhibitor). 

HIF-1 alpha has been shown to induce MDR in hepatocellular 

carcinoma [115]. This is consistent with miRNA profiling 

studies conducted by Bebawy and coworkers [103] which 

showed resistant leukemia cells to have lower levels of this 

miRNA compared to drug-sensitive cells, a finding consistent 

with the resistant state. In the acquired cell population follow- 

ing MP transfer, miR-455-3p levels were suppressed 

supporting the acquisition of increased P-gp levels. 

The role of miRNAs in the regulation of the functional 

redundancy that resides among members of the ABC trans- 

porters, of which the prototypical members include the MDR 

proteins P-gp (ABCB1) and multidrug resistance protein 

(ABCC1), has also recently been demonstrated [116]. This 

significant functional redundancy that exists between mem- 

bers of this superfamily of drug transporters is attributed to 

significant sequence homology, broad and overlapping sub- 

strate specificities, and significant tissue co-localization. This 

ensures a fail-proof survival mechanism for cell survival, 

more so in the context of malignancy. This was first attributed 

to the suppression of endogenous ABCC1 transcript levels in 

recipient CEM cells by MPs shed from ABCB1-overexpress- 

ing VLB100 cells to the presence of miRNA326 in the MP 

cargo and to its subsequent transfer to recipient cells [104]. 

Indeed, the suppressive effect of miR-326 on ABCC1 has been 

shown previously and MRP1 expression is inversely correlat- 

ed with miR-326 in advanced breast cancer [117]. 

The transfer of miR-326 from P-gp-mediated MDR breast 

cancer and leukemia cells to recipient cells was previously 

shown [104]. Relative to breast cancer MPs, leukemic MPs 

were shown to package significantly greater amounts of the 

ABCB1 transcripts. Despite the miR-326 levels in both breast 

cancer and leukemia MPs being comparable, suppression of 

ABCC1 was only observed in recipient cells following co- 

culture with the latter [104]. The molecular basis for the dif- 

ferential effect of miR326 on ABCC1 suppression in breast 

cancer and leukemia cells has been shown to be regulated by 

the presence of ABCB1 transcript demonstrating a novel 

mechanism regulating the expression of ABC transporters in 

cancer. This work positions ABCB1 mRNA as a transcription- 

al regulator of ABCC1 through its actions on miRNA326 of 

which there are no known putative binding sites [110]. 

Other miRNAs associated with cancer MDR include miR- 

27a and miR-451. These miRNAs have been detected in resis- 

tant breast cancer and leukemia cells as well as in their MP cargo 

[101] with the former possibly playing a role in the upregulation 

of ABCB1 transcript in recipient breast cancer cells. miR-345 

and miR-7 have also been previously shown to target ABCC1 in 

MDR breast cancer cells relative to parental cells [118]. 

Although the development of MDR and metastases are 

both major considerations in the clinical treatment of can- 

cer, their significance in the context of one another has only 

recently been studied. Microparticles shed from MDR 

breast cancer cells also mediate the intercellular transfer 

ofmiRNA-503 to alter the migration and invasion capacities 

of recipient breast cancer cell populations [107]. 

Microarray analysis identified miRNAs common to the re- 

sistant state and which contribute to the dissemination of 

metastatic traits. Among the miRNAs identified, miR- 

503was downregulated in recipient cells following co- 

culture with MPs isolated from drug-resistant cells. miR- 

503 was shown to be inversely associated with metastatic 

and invasive capacities, as demonstrated using wound 

healing/scratch migration assays and Matrigel®-coated 

transwell invasion assays. This is consistent with earlier 

reports whereby miR-503 was previously shown to be in- 

volved in the development of drug resistance and metastatic 

traits, with reduced levels of miR-503 being identified in 

drug-resistant cells and highly metastatic cells [119, 120]. 

Activation of the NF-κB pathway has been shown to sup- 

press the expression of miR-503 in epithelial cells and may 

also be responsible for the miRNA-503 suppression follow- 

ing MP transfer [121]. Reduced levels of miR-503 have 

been observed in cisplatin-resistant non-small-cell lung 

cancer cells (NSCLC), while its overexpression re- 

sensitizes cells to cisplatin via modulation of the apoptosis 

regulator Bcl-2. miR-503 has also been shown to directly 

target and repress the Fanconi anemia complementation 

group A protein (FANCA) gene to sensitize NSCLC to cis- 

platin treatment [122]. 

miR-503 is also an important tumor suppressor, the over- 

expression of which inhibits the migration and invasion of 

highly invasive hepatocellular carcinoma cells. miR-503 also 

acts to induce G1 cell cycle arrest and reduce cell proliferation 

[119, 123, 124]. Its tumor-suppressive activity has been 

shown to be via regulation of PI3K/AKT signaling by its ef- 

fect on inhibiting AKT activation [120, 125]. 

miRNA-494 is another miRNA found in abundance in 

recipient cells following co-culture with MPs isolated from 

MDR cells [107]. miR-494 is predicted to target the focal 

adhesion kinase family-interacting protein of 200-kDa 

(FIP200) gene. FIP200 binds directly to the kinase domain 

of proline-rich tyrosine kinase 2 (PYK-2) to inhibit its ac- 

tivity [126]. miR-494 downregulation of the FIP200 gene 

may be responsible for enhanced PYK2-dependent phos- 

phorylation of AKT and activation of PI3K/AKT pathway 

resulting in increased metastatic capacity in recipient cells 

following MP co-culture [107]. MPs shed from resistant 

cells not only mediate the intercellular transfer of MDR 

but are also implicated in promoting migration and invasion 

in recipient cells, potentially providing a link between these 

two deleterious traits. 
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Conclusions and future prospects 
 

miRNA therapeutics provide a promising strategy for the 

treatment of disease. The present miRNA research is mainly 

centered on post-transcriptional gene silencing induced by 

RISC binding to the 3ʹ-untranslated region of the mRNA 

[127]. Extensive research is required to develop rapid and 

sensitive analytical methods for the identification of 

miRNAs present in a particular cell, tissue, or fluids (such 

as serum and plasma) [28]. Gene silencing with miRNAs 

using nanoparticles is another area of investigation [128]. 

During the past decade, a strong research focus has been on 

the biology of miRNAs with special attention to miRNA 

regulation and miRNAs as biological targets in human 

disease. 

The first miRNA-targeted drug, LNA-antimir-122, is un- 

der phase II clinical trial (Miravirsen, Santaris Pharma). 

Over the last several years, extensive efforts have been giv- 

en for the development of liposome- and nanoparticle- 

associated and naked oligonucleotides for targeted delivery 

of miRNA [127]. Various therapeutic miRNAs have been 

studied in the context of exosome delivery vehicles [129]. 

Unfortunately, only a few miRNA therapeutics have 

reached clinical trials (Table 1). 

An ideal carrier system should protect the therapeutic 

agent from the circulatory nucleases and deliver it intact 

to the target site. Despite the advancement in miRNA- 

based therapies to clinical trials, there remain many hurdles 

which need to be overcome for the use of the novel 

nanocarrier-based delivery technologies. Irrespective of 

their clinical significances, nanocarriers are also not devoid 

of limitations. These delivery vehicles are reported for in- 

travenous or subcutaneous administration. The develop- 

ment of oral delivery vehicles is needed in advancing 

miRNA delivery through clinical development and com- 

mercial application [130]. 

A successful nanocarrier-based miRNA therapeutic 

must be safe and composed of  biocompatible active/ 

effector ingredients together with an organic or inorganic 

core; it must have a sustainable half-life (PEGylation is 

the most used method to achieving this) and should have 

target specificity and outstanding pharmacokinetic pro- 

file; the manufacturing process must be robust and fea- 

sible. The product needs FDA approval [32, 131–134]. 

There is significant risk for investment in miRNA thera- 

peutics due to the biological challenges, the cost of pro- 

duction and scale-up, and clinical approval challenges 

[133]. 

Overall, the application of nanotechnology is paving a 

new path in the development of effective drug delivery sys- 

tems containing miRNAs. This will introduce new vistas in 

clinically considering their various merits like maximum 

efficacy, targeted effects, and improved patient compliance. 
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