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Abstract 11 

Automated techniques for analyzing the dynamic behavior of full-scale civil structures are becoming 12 

increasingly important for continuous structural health monitoring applications. This paper aims to extract the 13 

structural modal parameters of a full-scale cable-stayed bridge from the collected ‘output-only’ vibration data 14 

without the need of any user interactions. The work focuses on the development of an automated and robust 15 

operational modal analysis (OMA) algorithm, utilizing a multi-stage clustering approach. The main 16 

contribution of the work is to define a novel way of automatically defining the hierarchical clustering threshold 17 

to enable the accurate identification of a complete set of modal parameters. The proposed algorithm is 18 

demonstrated to work with any parametric system identification algorithm that uses the system order ‘n’ as the 19 

sole parameter. In particular the results from Covariance-driven Stochastic Subspace Identification (SSI-Cov) 20 

methods are presented.  21 
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1 Introduction 1 

During the last couple of decades, modal analysis techniques have been widely used in structural health 2 

monitoring (SHM) applications. In particular, the operational modal analysis (OMA) has been popularly 3 

adopted to analyze the dynamic behavior and damage conditions of full-scale civil structures (Cunha et al. 4 

2013; Koo et al. 2013; Daraemaeker et al. 2008; Siringoringo and Fujino 2008; Ivanovic et al. 2000). Unlike 5 

traditional experimental modal analysis methods, OMA techniques are non-disruptive to an operating structure 6 

as they utilize ambient excitations originated by the natural sources including the traffic loads, wind and 7 

seismic activity. OMA techniques enable the extraction of the modal features of a structure which are typically 8 

represented by natural frequencies, damping factors and mode shapes. These modal features are commonly 9 

used as important indicators for damage localization, damage-severity determination and tracking the damage 10 

evolutions in a structure over time (Doebling et al. 1996; Brownjohn et al. 2005; Abdel Wahab and De Roeck 11 

1999). 12 

Continuous monitoring of a large-scale operating structure is usually critical for studying the changes in 13 

modal features and the damage evolution over time. Thus the development of automated OMA algorithms 14 

have become a popular research area during the recent years aiming to simplify the modal identification 15 

processes and enhance the overall efficiency of modal tracking and damage detection (Rainieri and Fabbrocino 16 

2015; Rainieri and Fabbrocino 2014a; Verboven et al. 2002; Parloo et al. 2002; Rainieri et al. 2011; Bakir 17 

2011). 18 

There have been several past research works focusing on the development of automated OMA algorithms. 19 

A method based on the non-parametric frequency domain approaches was reported by Rainieri (2010). This 20 

method offers high accuracy in the identification of higher order modes; however, it is not well suited for 21 

identifying weakly excited modes. There have also been several research works aiming at developing fully 22 

automated OMA algorithms compatible with parametric time-domain methods, in particular, the Stochastic 23 

Subspace Identification (SSI) (Reynders et al. 2012; Magalhaes et al. 2009) and the eigen-system Realization 24 

Algorithm (ERA) (Zhang et al. 2014). These methods are widely used for vibration-based SHM (Rainieri and 25 

Fabbrocino 2015; Magalhaes et al. 2012). The Covariance driven Stochastic Subspace Identification (SSI-Cov) 26 

method was applied by Magalhaes et al. (2012) for monitoring the damage conditions of a bridge based on the 27 
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identified modal characteristics over a 2-year period. The results demonstrate clear relationships between the 1 

damage states of the bridge and frequency shifts of the vibration modes.  2 

Both ERA and SSI are expressed based on the state-space model, where the maximum number of modes 3 

that can be identified is determined by the selected model order 𝑛 which governs the size of the state-space 4 

matrix (Rainieri and Fabbrocino 2014a). Since the true model order is unknown and inappropriate model order 5 

selection can generate biased identification results (Rainieri and Fabbrocino 2014b), the selected model order 6 

is normally over-specified to ensure a complete coverage for all the real structural modes. However, spurious 7 

mathematical modes are also introduced as a result of this over-specification; thus, stabilization procedure is 8 

commonly adopted to identify the physical modes among all the identified modes. In contrast to physical 9 

modes, mathematical modes are not identified in a consistent way. The purpose of stabilization is to identify 10 

the stable modes with identical modal properties demonstrated through consecutive model orders. (Rainieri 11 

and Fabbrocino 2014a). 12 

The stabilization process is usually difficult and complex as it requires several parameters to be manually 13 

adjusted. Past automated methods have been successful in eliminating all the spurious modes according to a 14 

manually tuned model order  𝑛. However, an inappropriate selection of the model order could result in poor 15 

modal identification (Rainieri and Fabbrocino 2014b; Ljung 2014). Thus, a critical step towards the 16 

development of a fully automated algorithm is the elimination of any manual tuning process associated with 17 

the selection of the model order. To address this issue, an improved algorithm for automatically eliminating 18 

all mathematical poles is proposed in the present study, which produces accurate results regardless of the model 19 

order 𝑛 selected. The algorithm is developed based on the ideas of clustering approaches for automated OMA 20 

by Reynders et al. (2012), along with the following contributions: 21 

1. A novel approach of defining the clustering threshold for hierarchical clustering is proposed. This 22 

threshold enables accurate modal identification for any model order 𝑛 selected.  23 

2. The approach works with any parametric system identification algorithm that uses the system order n 24 

as the sole parameter. In particular, the results from Covariance-driven Stochastic Subspace Identification 25 

(SSI-Cov) method is presented (Rainieri and Fabbrocino 2014a).  26 
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3. Finally, the performance and benefits of the approach for automated modal identification is 1 

demonstrated through extensive investigations on a cable-stayed bridge. 2 

The structure of this paper is as follows. In Section 2, a brief background for the SSI-Cov method is 3 

provided. In Section 3, the proposed automated OMA algorithm is explained in detail. In Section 4, a detailed 4 

description of the cable-stayed bridge structure studied in the paper is provided. Finally, the OMA 5 

identification results of the cable-stayed bridge structure and a detailed discussion on the implications of the 6 

results are presented in Section 5. 7 

2 Operational Modal Analysis  8 

The discrete-time representation of the equation of motion for a linear time-invariant dynamic system can 9 

be given by the state-space formulation as (He and Fu 2001; Ewins 2000; Reynders and De Roeck 2008): 10 

      𝑧(𝑘 + 1) = 𝑨𝑧(𝑘) + 𝑤(𝑘)

              𝑢(𝑘) = 𝑪𝑧(𝑘) + 𝑣(𝑘)               
 

(1) 

 11 

where 𝑨 ∈ ℛ𝑛×𝑛 is the discrete-time state-space matrix, 𝑧 ∈ ℛ𝑛  is the state vector, 𝑤 ∈ ℛ𝑛 is the external 12 

input assumed to be a white Gaussian noise process, 𝑢 ∈ ℛ𝑙  is the vector of measured responses, 𝑪 ∈ ℛ𝑙×𝑛 is 13 

the output matrix and 𝑣 ∈ ℛ𝑙  is another white noise vector process representing the noise content of the 14 

measurements. 𝑘 indicates the generic time step.   15 

This equation describes an output-only dynamic system using a stochastic state-space model (Rainieri, C. 16 

et al. 2007, Peeters and Roeck, 1999, Hermans and Auweraer, 1999). Basically, the idea of OMA is to use 17 

output-only or stochastic system identification algorithms, in which the unknown ambient loading conditions 18 

are modelled as stochastic quantities with unknown parameters but with known behaviour (for instance, white 19 

noise time series with zero mean and unknown covariances). The eigenvalues of the state transition matrix 𝑨 20 

characterize the dynamic behaviour of a physical system. By computing the state transition matrix 𝑨 and 21 

measurement matrix 𝑪, it is possible to obtain the modal parameters of the system. The theoretical problem 22 

considered here is the estimation of the modal parameters from a given discrete-time output vector {𝑢} which 23 

is modelled by a discrete-time stochastic state-space as shown in Eq. (1). 24 
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According to (Turner and Pretlove, 1998), for a bridge structure, it is valid to assume that the source of 1 

excitation as a result of passing traffic is a white Gaussian process. This can be attributed to the randomness 2 

in vehicle configurations i.e. different weights and axle configurations, randomness in arrival times, suspension 3 

system and road surface profile. 4 

In this paper, SSI-Cov algorithm is adopted to identify a stochastic state-space model from output-only data.  5 

SSI-Cov algorithm is a time-domain parametric algorithm that deals with the stochastic realization problem to 6 

fit a state space model to the covariance of the responses driven by ambient excitation.  SSI-Cov algorithm 7 

consists of the following steps (Rainieri and Fabbrocino 2014a): (1) computation of output covariance, �̂�𝒊, (2) 8 

construction of the block Toeplitz matrix, 𝑻𝟏|𝒊, (3) decomposition of the Toeplitz matrix, (4) estimation of the 9 

controllability and observability matrices and (5) extraction of the modal parameters. These steps are 10 

elaborated below. 11 

 12 

Let 𝒀, an 𝐿 × 𝑄 matrix be the ambient vibration measurements for a structure, in which 𝐿 is the total 13 

number of sensors and 𝑄 is the number of time steps in each set of sensor measurement as,  14 

𝒀 = [

𝑦1,1
𝑦1,2 ⋯ 𝑦1,𝑄

𝑦2,1

⋮
𝑦𝐿,1

𝑦2,2 ⋯ 𝑦2,𝑄

⋮
𝑦𝐿,2

⋮
⋯

⋮
𝑦𝐿,𝑄

]  
(2) 

 

The first step of SSI-Cov algorithm is the computation of output correlations �̂�𝒊 according to, 15 

 �̂�𝒊 =
1

𝑄 − 𝑖
[𝒀(𝟏:𝑸−𝒊)][𝒀(𝒊+𝟏:𝑸)]

𝑻
 (3) 

 

where 𝒀(𝟏:𝑸−𝒊)  is obtained from the matrix 𝒀  by removing the last 𝑖  samples of data and 𝒀(𝒊+𝟏:𝑸)  is 16 

obtained by removing the first 𝑖 samples of data. The parameter 𝑖 represents the time lag and it is required to 17 

be defined by the user. The calculated output correlations at different time lags are then combined to form a 18 

block Toeplitz matrix 𝑻𝟏|𝒊 ∈ ℛ𝐿𝑖×𝐿𝑖  as, 19 
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𝑻𝟏|𝒊 =

[
 
 
 

�̂�𝒊  �̂�𝒊−𝟏 ⋯ �̂�𝟏

�̂�𝒊+𝟏

⋮
�̂�𝟐𝒊−𝟏

     �̂�𝒊 ⋯ �̂�𝟐

⋮
�̂�𝟐𝒊−𝟐

⋮
⋯

⋮
�̂�𝒊]

 
 
 

 

(4) 

 

 1 

The block Toeplitz matrix 𝑻𝟏|𝒊 is decomposed via singular value decomposition as, 2 

[𝑻𝟏|𝒊] = 𝑈𝛴𝑉𝑇 (5) 

 

where 𝑈 ∈ ℛ𝐿𝑖×𝐿𝑖  and  𝑉 ∈ ℛ𝐿𝑖×𝐿𝑖  are orthonormal matrices and 𝛴 ∈ ℛ𝐿𝑖×𝐿𝑖  is a diagonal matrix 3 

containing the positive singular values in descending order. Let 𝑛 be the number of none zero singular values 4 

of 𝑻𝟏|𝒊  which indicates the rank of Toeplitz matrix. The observability matrix 𝑂𝑖 ∈ ℛ𝐿𝑖×𝑛  and the 5 

controllability matrix 𝛤𝑖 ∈ ℛ𝑛×𝐿𝑖 can be defined as follows: 6 

 7 

[𝑂𝑖] = [𝑈1][𝛴1]
1

2 

[𝛤𝑖] = [𝛴1]
1

2[𝑉1]
𝑇 

(6) 

 

 8 

where 𝑈1 ∈ ℛ𝐿𝑖×𝑛, 𝛴1 ∈ ℛ𝑛×𝑛 and 𝑉1 ∈ ℛ𝐿𝑖×𝑛 are obtained by eliminating the zero singular values and 9 

the corresponding singular vectors.  10 

The solution of the identification problem can be then obtained by, 11 

[𝑨] = [𝛴1]
−

1

2 [𝑈1]
𝑇[𝑇2|𝑖][𝑉1] [𝛴1]

−
1

2  

 

(7) 

 

          [𝑪]= 𝑂𝑖(1: 𝐿) 
(8) 

 

where 𝑻𝟐|𝒊 is composed of covariances from lag 2 to 2𝑖 as, 12 
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[𝑇2|𝑖+1] =

[
 
 
 
 
[�̂�𝑖+1] [�̂�𝑖] ⋯ [�̂�2]

[�̂�𝑖+2]

⋮
[�̂�2𝑖]

[�̂�𝑖+1] ⋯ [�̂�3]

⋮
[�̂�2𝑖−1]

⋮
⋯

⋮
[�̂�𝑖+1]]

 
 
 
 

 

 

(9) 

 

At this point the identification problem is theoretically solved. The modal parameters of the system can be 1 

extracted from the identified system description [𝑨] and [𝑪] as, 2 

[𝛹]−1[𝑨][𝛹] = [𝑍] (10) 

 

𝜆𝑟 = ln(𝑍𝑟) /𝛥𝑡 

 

(11) 

 

𝜔𝑟 = √(𝜆𝑟

𝑅
)2 + (𝜆𝑟

𝐼
)2/2𝜋 

 

(12) 

 

[𝜙] = [𝑪] × [𝛹] 
(13) 

 

𝜉𝑟 =
|𝜆𝑟

𝑅
|

√(𝜆𝑟

𝑅
)
2

+ (𝜆𝑟

𝐼
)
2
 

 

(14) 

 

where 𝛥𝑡 is the time step and 𝑍𝑟 is the r-th component of the matrix [𝑍]. 𝜆𝑟
𝑅

 and 𝜆𝑟
𝐼
 are, respectively, the 3 

real and imaginary components of 𝜆𝑟.  𝜉𝑟 is the damping factor for the r-th mode and [𝜙] is the matrix of mode 4 

shapes. 5 

3 Automated Algorithm for Stabilization Process 6 

As previously mentioned since SSI-Cov algorithm is established based on the state-space model, the 7 

number of modes to be identified is determined by the model order n that is the size of the state-space matrices. 8 

Since the automated algorithm is aimed to work with any model order n, a large value of n is selected to ensure 9 
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full identification of all structural modes within a given frequency range. However, this might produce many 1 

non-physical spurious modes which are to be detected and eliminated through the stabilization process. The 2 

identified poles are summarized in a so-called ‘stabilization diagram’ which is a representation of the estimated 3 

poles at each system order.  4 

The initial stage of the elimination of spurious modes from stabilization diagram is to look for certain 5 

indicators of mathematical modes (Reynders et al. 2012).  These indicators are as follows and the poles that 6 

meet either of these criteria are immediately eliminated.  7 

1. The damping ratio of a mode is not within the range of 0% to 10%. Negative damping ratios and high 8 

damping ratios suggest the mode is certainly non-physical. 9 

2. The mode does not have a complex conjugate pair. All physical modes of a structure ought to 10 

correspond to another mode where a complex conjugate pair could be formed. 11 

3. The frequency of the mode is not between zero and half of the sampling frequency 𝑓𝑠  of the 12 

measurement. 13 

3.1 Modal Validation Criteria 14 

The next step of the automated OMA is to further eliminate the modes which are undoubtedly spurious 15 

using a k-means clustering.  Every mode in the stabilization diagram is assigned a characteristic feature vector 16 

including five distinctive validation criteria defined in Sections 3.1.1 to 3.1.5. The clustering is established on 17 

the basis of these modal validation criteria in order to group the poles to two sets of probably physical modes 18 

and certainly mathematical modes. 19 

3.1.1 Distance Measure for Frequencies 20 

The dimensionless distance between undamped eigen-frequencies 𝑓𝑗 and 𝑓𝑘 of modes 𝑗 and 𝑘: 21 

𝑑𝑓 = 𝑑(𝑓𝑗, 𝑓𝑘) =
|𝑓𝑗 − 𝑓𝑘|

max(|𝑓𝑗|, |𝑓𝑘|)
 

(15) 
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3.1.2 Distance Measure for Damping Ratio 1 

The dimensionless distance between the damping ratios 𝜉𝑗 and 𝜉𝑘 of modes 𝑗 and 𝑘: 2 

𝑑𝜉 = 𝑑(𝜉𝑗 , 𝜉𝑘) =
|𝜉𝑗 − 𝜉𝑘|

max(|𝜉𝑗|, |𝜉𝑘|)
 

(16) 

 

3.1.3 Modal Assurance Criteria 3 

The Modal Assurance Criteria (MAC) compares the similarity between the unscaled mode shapes 𝜙𝑗 and 4 

𝜙𝑘 of modes 𝑗 and 𝑘 as: 5 

𝑀𝐴𝐶(𝜙𝑗, 𝜙𝑘) =
|{𝜙𝑗}

𝐻
{𝜙𝑘}|

2

({𝜙𝑗}
𝐻
{𝜙𝑗}) ({𝜙𝑘}

𝐻{𝜙𝑘})
 

(17) 

  

where, {𝜙𝑗}
𝐻

 denotes the Hermitian of {𝜙𝑗}. The value of 𝑀𝐴𝐶(𝜙𝑗, 𝜙𝑘) lies between 0 and 1 where 1 6 

indicates the maximum similarity.  7 

The functionality of the first three criteria, 𝑑𝑓, 𝑑𝜉 and 𝑀𝐴𝐶 are based on the fact that if a mode is a real 8 

physical mode, there should be a similar mode with nearly identical modal properties at other system orders. 9 

Hence, these three criteria aim to provide a measure of similarity between two modes, one from the current 10 

model order, mode 𝑗, and the other from the nearest neighbor from the next higher order, mode 𝑘.  If a similar 11 

mode is found at the next higher order, chances are high that the mode at hand is a physical mode. The nearest 12 

neighbor is identified based on the mutual distance measured between mode 𝑗 at model order 𝑚 and every 13 

other mode in the stabilization diagram at model order 𝑚 + 2 according to, (Reynders et al. 2012; Magalhaes 14 

et al. 2009): 15 

𝑑(𝑗, 𝑘) = 𝑑(𝑓𝑗, 𝑓𝑘) + 1 − 𝑀𝐴𝐶(𝜙𝑗 , 𝜙𝑘) (18) 

  

The mode 𝑘 at model order 𝑚 + 2 which has the smallest mutual distance to the mode 𝑗 is taken as the 16 

nearest neighbor to mode 𝑗. 17 
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Besides the above three criteria, single mode criterion can be defined based on the strength and the 1 

complexity of each mode. In a lightly damped structures such as bridges, it is expected that a real physical 2 

mode has less complexity and acceptable energy level. On this basis, two more single-mode criteria is 3 

considered in the feature vector as follows. 4 

3.1.4 Modal Phase Collinearity 5 

The complexity of a single mode is investigated by the Modal Phase Collinearity (MPC) (Rainieri and 6 

Fabbrocino, 2014a; Pappa et al. 1993). The MPC determines the linear relationship between the real (Re) part 7 

and the imaginary (Im) part of the mode shape vector  𝜙𝑗 for mode 𝑗 as: 8 

𝑀𝑃𝐶𝑗 =
‖𝑅𝑒({�̃�𝑗})‖

2
+ (𝑅𝑒 ({�̃�𝑗}

𝑇
) 𝐼𝑚({�̃�𝑗})) (2(𝜀𝑀𝑃𝐶

2 + 1)𝑠𝑖𝑛2(𝜃𝑀𝑃𝐶) − 1)/𝜀𝑀𝑃𝐶

‖𝑅𝑒({�̃�𝑗})‖
2
+ ‖𝐼𝑚({�̃�𝑗})‖

2  

(19) 

 

 9 

The 𝑞th component of  {�̃�𝑗} is given by: 10 

�̃�𝑞,𝑗 = 𝜙𝑞,𝑗 − 
∑ 𝜙𝑞,𝑗

𝑙
𝑞=1

𝑙
  ,        𝑞 = 1,… , 𝑙 (20) 

 

  

 11 

𝜀𝑀𝑃𝐶 and 𝜃𝑀𝑃𝐶 are given by: 12 

𝜀𝑀𝑃𝐶 =
‖𝐼𝑚({�̃�𝑗})‖

2
− ‖𝑅𝑒({�̃�𝑗})‖

2

2 (𝑅𝑒 ({�̃�𝑗}
𝑇
) 𝐼𝑚({�̃�𝑗}))

     
(21) 

 

  

  

𝜃𝑀𝑃𝐶 = arctan (|𝜀𝑀𝑃𝐶| + sgn(𝜀𝑀𝑃𝐶)√1 + 𝜀𝑀𝑃𝐶
2 ) (22) 

 

A MPC value close to 1 indicates a real mode whereas a value of 0 represents a spurious mode. 13 
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3.1.5 Modal Energy Level 1 

Modal energy level (MEL) is the fifth parameter introduced to indicate the energy contribution of each 2 

mode, so as to indicate the real vibration mode and remove spurious modes. It can be defined as (Zhang et al. 3 

2014): 4 

𝑀𝐸𝐿𝑗 = max(σ(∫ 𝐶𝛹𝑟(exp (𝑗𝑤Δ𝑡) − 𝜆𝑗)
−1

𝑓𝑠/2

0

𝛹𝑟
−1𝐵Δ𝑡𝑑𝑤)) 

(23) 

 

  

where, 𝜎(∙) denotes a set of singular values, 𝑓𝑠 is the sampling frequency, 𝐵 and 𝐶 are the input and output 5 

matrices, respectively, and 𝛹𝑟 is the 𝑟th column of  𝛹. 𝛹 is determined from the eigenvalue decomposition of 6 

the matrix 𝐴. A mode is considered as a real mode if the normalized MEL is close to 1. 7 

3.2 k-means Clustering 8 

A distinctive 5-dimensional feature vector is established for each identified pole as, 𝐶𝑋 . A k-means 9 

clustering is applied to classify the modes into two groups of possibly physical and certainly mathematical 10 

spurious modes. The number of clusters (two) is therefore known in advance. Table 1 indicates the ideal values 11 

of the modal validation criteria for real and spurious modes.  12 

The centroids of the physical and spurious mode clusters are, respectively, initialized as 𝐶𝑅 = [0,0,1,1,1] 13 

and 𝐶𝑆 = [1,1,0,0,0]. The Euclidean distance between each mode at location 𝐶𝑋 on the stabilization diagram 14 

and the centroids are computed. The mode is then allocated to the group with a smaller distance. The centroids 15 

are then relocated by minimizing the objective function as: 16 

{𝐶𝑅, 𝐶𝑆} = args min
𝐶𝐾

∑ ∑‖𝐶𝑋 − 𝐶𝐾‖

𝑛𝐾

𝑋=1

2

𝐾=1

   
(24) 

 

  

where 𝐾 represents the number of modes in each cluster. This process is iteratively updated until the 17 

objective function in Eq. (24) is minimized. The modes are finally categorized into two clusters. The cluster 18 

with a centroid 𝐶𝑆 is discarded from the stabilization process. 19 
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3.3 Automated Identification Process  1 

In the previous step, a k-means clustering algorithm was applied to separate the mode candidates into 2 

probably physical and certainly mathematical modes. The aim of this step is to cluster the remaining probably 3 

physical modes into homogeneous sets that correspond to the same structural modes.  The challenge is that the 4 

number of structural modes is not known beforehand in the vast majority of cases. Therefore, a hierarchical 5 

clustering technique, which is a suitable approach for cases where the number of clusters is not known, is 6 

adopted. In hierarchical clustering, each identified mode is linked based on the similarities in specific attributes 7 

such as natural frequency and mode shape. The core concept of the automated algorithm with hierarchical 8 

clustering is that an automatic threshold is defined so that modes belong to the same set are separated into 9 

individual clusters and thus identified. There have been prior applications of hierarchical clustering on OMA 10 

with the SSI-Cov method where the algorithm has been demonstrated to be efficient and effective in automatic 11 

modal identification (Reynders et al. 2012; Magalhaes et al. 2009). The technique utilized in this work is as 12 

follows. 13 

First, each observation (pole) is taken as an individual cluster. The mutual distance between each cluster 14 

and all other clusters are calculated according to Eq. (18) and the two clusters with the closest mutual distance 15 

are grouped into a new cluster. The mutual distances between every two clusters are then re-computed and this 16 

procedure is repeated until the mutual distance between the two closest clusters is greater than a threshold 17 

value 𝑑𝐻 . This threshold can be understood as the distance up to which modes from different orders are 18 

considered to belong to the same physical mode.  19 

Previous works suggested a 𝑑𝐻 value based on the mean and standard deviations of the probably physical 20 

mode distances as (Reynders et al. 2012; Rubén and Joaquín 2015): 21 

𝑑𝐻 = 𝜇𝐶𝑅
+ 2𝜎𝐶𝑅

 
(25) 

where the 𝜇𝐶𝑅
 and 𝜎𝐶𝑅

 are the sample mean and sample standard deviation, respectively, of the mutual 22 

distance values. The mutual distances are calculated based on the values of undamped eigen-frequency and 23 

MAC assigned to each mode in the final cluster 𝐶𝑅 from the previous k-means clustering stage.  24 

In this study, a novel approach to identify 𝑑𝐻, is proposed. At each model order m, the mutual distance 25 

between every two poles is calculated and the minimum distance is determined. The threshold value 𝑑𝐻 is 26 
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selected as the median value of the minimum distances obtained for all the model orders. The median value is 1 

capable of more effectively eliminating the impact of outliers. This threshold is demonstrated to be capable of 2 

generating robust results regardless of the model order 𝑛 selected and is considered as one of the contributions 3 

of the presented work. 4 

Since a real structural mode, theoretically, emerges as a stable pole at different model orders, only the 5 

clusters with a high number of modes are real mode clusters, and the other clusters with low number of modes 6 

should be ignored. To automate this process, another k-means clustering algorithm with 𝑘 = 2 clusters is 7 

applied. The centroid 𝐶𝑅 is selected as the number of modes in the largest cluster and 𝐶𝑆 = 0. To account for 8 

the case that all clusters identified from the hierarchical clustering stage represent real mode, a number of 9 

additional empty sets are added. This number is equal to the number of clusters with more than one fifth of the 10 

number of modes in the largest set; this will avoid any real structural mode to be discarded accidently in the 11 

clustering stage (Reynders et al. 2012).  12 

As a result, the final clusters calculated by the k-means method with the centroid closer to 𝐶𝑅 will contain 13 

all the real vibration modes of the structure. Finally, a demonstrative mode is selected from each cluster 14 

utilizing the density-based spatial clustering algorithm (DBSCAN) method (Rubén and Joaquín 2015; Ester et 15 

al. 1996; Daszykowski et al. 2002).  16 

Figure 1 illustrates the flowchart of the entire SSI-Cov algorithm adopted in this work.  17 

4 Testing Structure 18 

A short-span cable-stayed bridge over the Great Western Highway in the state of New South Wales, 19 

Australia (33°45'50.49"S, 150°44'31.14"E) was considered as a case study to test and validate the performance 20 

of the proposed method. Figure 2 shows an illustration of the bridge. 21 

 22 
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4.1 Description of Bridge  1 

The considered cable-stayed bridge has a single A-shaped steel tower with a composite steel-concrete deck. 2 

The bridge is composed of 16 stay cables with semi-fan arrangement. The bridge span and the tower height 3 

are 46 m and 33 m, respectively. This bridge provides a connection between two Western Sydney University 4 

campuses over the Great Western highway and carries one traffic lane and one sidewalk. The deck has a 5 

thickness of 0.16 m and a width of 6.3 m and it is supported by four I-beam steel girders.  These girders are 6 

internally attached by a set of equally-spaced floor beams as depicted in Figure 3.  7 

4.2 Sensor Array 8 

The measurement grid for the dynamic test consists of 25 synchronized accelerometers to measure the 9 

acceleration responses of the deck, cables and the mast. These sensors were permanently installed on the bridge 10 

in order to monitor the dynamic behavior of the bridge and to identify the modal parameters. It is worth noting 11 

that during the instrumentation, the traffic lanes in Great Western Highway under the bridge were partially 12 

closed; thus, no roving of the sensors were considered due to the access limitations.   13 

24 uni-axial sensors were placed under the deck at the intersection of the girders and floor beams to measure 14 

the vertical acceleration of the bridge, (see Figure 4). These sensors are low noise accelerometers with model 15 

number 2210-002 manufactured by Silicon Design, Inc (2010). The 2210-002 is a sensor that incorporates a 16 

1210L micro-machined capacitive accelerometer. This model can detect accelerations within the range of ± 2 17 

g with an output noise of 10 μg/√Hz and sensitivity of 2,000 mV/g.  18 

The under deck accelerometers were adhered to the lightly sanded and cleaned paint using adhesive tape 19 

and covered with elastic joint sealant. All installations were coated with paint to reduce corrosion and improve 20 

the visual amenity of the installation. Figure 5 shows one of the sensors mounted under the girder before 21 

coating.  22 

Another four 2210-002 uni-axial accelerometers were mounted on the cables on the eastern side of the 23 

bridge. These sensors measure the acceleration response of the cables in the vertical plane orthogonal to the 24 

line of the stay. In addition, one tri-axial accelerometer (Silicon Designs 2460-002) was installed on top of the 25 

mast to measure the vertical, lateral and longitudinal acceleration responses of the tower.  26 
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4.3 Data Acquisition and Measurement Set up 1 

The signal conditioning and data logging software consist of an embedded PC and HBM Quantum‐X data 2 

logger to record data. This system provides an integrated and reliable device to log high quality data with 24bit 3 

resolution with bandwidth capability of 0 to 3 kHz. This hardware combines instrument excitation, voltage 4 

regulation, digitization, anti‐aliasing filters and data logging. The logging software is Catman. The software 5 

collects all channels at a default sample rate of 600 Hz with an anti‐aliasing filter. The 3 dB cut-off frequency 6 

of the filter is 100 Hz and it is a fourth order Bessel low-pass filter.  The selection of this high sampling 7 

frequency in the system is solely to meet the requirements of other research activities on this bridge i.e. Bridge-8 

Weigh-in-Motion (BWIM) and tensor analysis. It should be noted that a dense array of strain gauges, timely 9 

synchronized with the accelerometers, have been installed under the deck in this bridge which is out of the 10 

scope of this paper (Hamed Kalhori et al. 2017).  11 

For the purpose of identifying the modal properties of the bridge under operational conditions and 12 

consequently building time histories of modal parameters, the dynamic monitoring system continuously 13 

records the vibration response of the bridge and it produces a file with acceleration time series per 10 minutes. 14 

A total number of 144 files is generated per day. 360,000 samples are acquired for each channel for a 10-15 

minute-long acceleration signal. The measured data are continuously transferred over a 4G cellular network to 16 

the database.  17 

Figure 6 (a) illustrates typical acceleration time signal obtained from a 10-minute file from channel A7. 18 

Light traffic flow over the bridge is evident from this figure. Typical ambient part of the response, once no 19 

vehicle is traveling over the bridge i.e. the first 16.67 seconds (≈ 0.3 min) is illustrated in Figure 6 (b). As seen, 20 

the vibration of the bridge with its first natural frequency is quite obvious in the acceleration response.  21 

22 days of monitoring data, continuously acquired from the 1st of November until the 22nd of November 22 

2016 are used in this paper for the purpose of the operational modal analysis. This selection was only made 23 

due to the availability of the data in this time period. For each day, three files were considered. The files were 24 

selected from different times within 24 hours including midnight, and rush traffic hours. This provides a total 25 

number of 66 10-minute-files for our investigations. 26 

 27 
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4.4 Preprocessing and Parameters of the Algorithm 1 

The analysis of the experimental data involves initial pre-processing operations to eliminate the offset and 2 

to ensure there is no spike or unreasonable noise in the signals. The entire 10-minute acceleration response 3 

was adopted for the analysis. This includes 360,000 data points from each channel. A Hanning window was 4 

applied to the time signals to minimize leakage. Parameter 𝑖, was selected to be 100 and a maximum model 5 

order of 160 was considered to construct the stabilization diagram.  6 

In a separate study, the time signals were decimated with a factor of 5 which resulted in 72,000 samples 7 

from each channel. Decimation of the signals can help to enhance the ability of the estimation process in 8 

identification of the lower frequency modes. However, it was realized that the results with and without 9 

decimation are quite similar, hence, the results obtained from the original time signals were only presented.   10 

5 Operational Modal Analysis Results 11 

The collected responses from all 24 accelerometers installed under the deck of the bridge are used to study 12 

the vibration characteristics of the bridge. The operational modal analysis adopting SSI-Cov algorithm is 13 

performed on the previously elaborated datasets including 66 files, which each of them is a 10-min acceleration 14 

response from the bridge.  15 

Table 2 summarizes the identification results within the frequency range of [0-13 Hz]. As seen, within this 16 

frequency range, nine modes have been extracted including two closely-spaced modes around 3.5 Hz. It was 17 

realized that not all of the modes are extracted from every single dataset. The last column of Table 2 specifies 18 

the percentage of identification for each particular mode amongst 66 datasets. As shown, the first mode has 19 

been identified from all of the 66 datasets, however, the ninth mode have been identified only from 76% of 20 

datasets i.e. 50 datasets.  A detailed discussion explaining the missed identification of some modes can be 21 

found in Section 5.2.  22 

mean  shows the mean value of the natural frequency for each mode obtained from 66 datasets and RSD23 

shows the relative standard deviation (RSD) for the identified natural frequencies; RSD is a standardized 24 

measure obtained by normalizing the standard deviation with respect to the mean value and it shows the 25 

dispersion of a distribution. A relative standard deviation of 1% to 2% is observed for the identified eigen-26 
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frequencies which is quite low and indicates the consistency of the modal identification over time. mean and 1 

RSD , respectively, show the mean damping ratio for each mode and the corresponding relative standard 2 

deviation. As illustrated in Table 2, the uncertainty on the damping ratio estimates is much higher than the 3 

uncertainty obtained for the natural frequencies and greater discrepancies are observed in damping estimation. 4 

Past research works (Magalhaes et al. 2009; Geothals et al. 2004) have also had similar observations and the 5 

explanation for this is that large scattering and dispersion are common for the damping ratios estimated from 6 

OMA methods. Rainieri et al. (2010) suggested that the presence of inherent limitations or inaccuracies of data 7 

processing methodologies can both lead towards high variations in damping ratio estimates. Inappropriate 8 

selection of the model order for the stabilization diagram may also enlarge the scattering of damping ratio for 9 

each identified mode. The high uncertainty in the identification of damping in civil structures can also be 10 

attributed to the fact that damping is strongly influenced by the magnitude of the dynamic response of a 11 

structure (Reynders et al. 2008).  12 

Figure 7 illustrates the boxplot of the nine identified modes. Based on this figure, higher modes are 13 

experiencing higher standard deviation compared to the lower modes. Figure 8 shows the first nine mode 14 

shapes of the structure. Mode shape estimates were constructed using only the data locations corresponded to 15 

the measuring points in the testing and also zero deflection boundaries at supports. In the plan view 16 

presentation of each mode shape, an interpolating function is applied to provide a shaded approximation of the 17 

continuous mode shape. As seen in Figure 8, the reconstructed mode shapes encompass bending and torsional 18 

modes of the deck. Mode 1 is the first vertical bending mode of the deck which was consistently identified 19 

from all 66 datasets. Modes 2 and 3 make up a double mode which corresponds to the second vertical bending 20 

mode. Mode 4 corresponds to the third bending mode and modes 5 and 6 show a mixture of torsion and 21 

bending. The last three modes is a combination of the fourth bending mode and torsion.  22 

5.1 Consistency of Mode Shapes over Time 23 

For any modal identification process, it is quite important to ensure the consistency of the mode shapes 24 

over time. MAC can be used for this purpose to quantify the correlation between the modes measured during 25 

different tests. MAC makes use of the orthogonality properties of the mode shapes to compare modes from 26 

different tests. If the modes are identical, a scalar value of one is calculated, otherwise it would be very small 27 
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close to 0. The utilization of MAC can help for mode pairing to track a particular mode from different datasets 1 

and to see the consistency of identification of a particular mode between different datasets. For two arbitrary 2 

datasets, the MAC matrix was generated and it was illustrated in Figure 9. Basically, the horizontal axis shows 3 

the nine modes identified from a particular dataset and the vertical axis shows the identification results from a 4 

separate dataset. As seen, the diagonal MAC values are very high (>0.9) which shows the fact that the identified 5 

nine modes from two datasets are very similar and highly correlated. In general, very small MAC numbers are 6 

observed for off-diagonal members which is expected due to the orthogonality of the mode shapes. However, 7 

the closely-spaced modes 2 and 3 show some coupling through the off-diagonal MAC values. These results 8 

generally outline a very good agreement between the identified modes from different datasets. Similar graphs 9 

were obtained from different datasets and because of space restriction only one graph was presented.  10 

5.2 Missed Identification 11 

As discussed earlier, not all of the modes can be extracted from all 66 datasets. To further investigate the 12 

missed identification of some modes, the acceleration responses of the bridge (10 minutes) for two different 13 

cases were compared with each other: a case where only one mode, which is the first mode, has been identified, 14 

and a case that all of the nine modes have been identified. Figure 10 (a) illustrates the acceleration response 15 

obtained from channel A7 for a case that all modes have been extracted whereas Figure 10 (b) shows the 16 

response for a case that only the first mode has been identified and no identification of the other eight modes 17 

has been achieved. From this figure, it is quite obvious that the level of response is almost 25 times higher in 18 

Figure 10 (a) compared to the response presented in Figure 10 (b) which coincides with the time windows of 19 

these two files, i.e. mid-day versus mid-night. It demonstrates the fact that if the ambient excitation on the 20 

bridge is not adequate enough, there is a high chance that the modes, in particular the higher modes, are not 21 

excited. To fully address the issue of missing modes, a separate study was conducted. This time, the vibration 22 

response of the bridge was collected from two different days: a working day and a weekend. Each day provides 23 

24 hr×6 files/hr=144 10-minute files. It should be noted that the previously elaborated datasets including 66 24 

files from 22 days of monitoring in November 2016 are the main datasets which have been adopted for our 25 

investigations in this paper and the continuous 24 hour data from these two days i.e. one weekday and one 26 

weekend has been solely adopted to further validate the impact of ambient excitation on missing modes and 27 

no further data analysis has been done using these datasets).  28 
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For each file, (in total, 144 files per day) the first singular value of SVD (Singular Value Decomposition) 1 

of spectral density matrix was calculated. This provides an estimation of the auto spectral density of the system 2 

in modal coordinates and the peak in the SVD curve is expected to represent a structural mode. Figure 10 (a) 3 

and (b), respectively, show the spectrograms of the response combining all of the 144 files from 24 hours for 4 

a weekday and for a weekend. The horizontal axis in these figures is frequency and the vertical axis is the time 5 

within 24 hours. The starting time in the vertical axis is almost 11:00 am. The color reflects the strength of the 6 

frequency component, i.e. the lighter the shade is, the higher the strength of the frequency component is. From 7 

this figure, it is quite evident that the first mode has been well excited at any time within the 24 hours during 8 

weekday and weekend. This figure also implies that modal identification process fails to extract the modes 9 

while there is not enough traffic on the bridge i.e. the time window between 8:00 pm to 6:00 am.  It can also 10 

be observed that within the time window of 6:00 am to 8:00 pm the identification process has been more 11 

successful on weekday rather than weekend, again due to sufficiency of excitation on the bridge as a result of 12 

passing traffic. Additional piece of information that can be captured from this figure is that there is frequency 13 

variation in the modal frequencies which can be related to the environmental changes within 24 hours. From 14 

these investigations it appears that while the excitation level during ambient vibration is insufficient to produce 15 

reasonably strong vibration, the estimation process more likely fails to extract all of the modes particularly the 16 

higher modes.  17 

5.3 Effectiveness of the Newly Proposed Hierarchical Clustering Threshold 18 

As mentioned earlier, one of the main contributions of the current work is to define a novel way of 19 

automatically defining the hierarchical clustering threshold, 𝑑𝐻  to enable the accurate identification of a 20 

complete set of modal parameters, regardless of the system order chosen. In order to demonstrate the 21 

superiority of this new threshold over the previous threshold (old threshold) (see Eq. 25), the following 22 

investigation was carried out.  23 

For a typical 10-minute acceleration response collected from the bridge, shown in Figure 12, the SSI-Cov 24 

technique was applied. Five different system orders ranging from 160 to 200 with an increment of 10 were 25 

considered. Both the new and the old thresholds were adopted and the results were compared. Table 3 and 26 

Table 4, respectively, summarize the identified modes using the old and the new thresholds. As seen, the old 27 

https://www.google.com.au/search?sa=X&biw=1670&bih=936&q=define+sufficiency&forcedict=sufficiency&ved=0ahUKEwiWvcStzNnSAhVBvpQKHa29DvMQ_SoIODAA
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threshold can only provide successful identification of the modes where the system order is 160 and it fails to 1 

identify the modes for the other system orders, i.e. 170, 180, 190 and 200. However, by using the new threshold 2 

all the modes are successfully identified no matter what system order is considered.  3 

Figure 13 illustrates the stabilization diagrams for the system orders 170, 180 and 190. Column (a) is the 4 

unfiltered stabilization diagram, column (b) is the filtered stabilization diagram using the old threshold and 5 

column (c) is the filtered stabilization diagram using the new threshold. The green vertical lines indicate the 6 

stable modes and the blue curve shown in the figures indicates the first singular value of SVD (Singular Value 7 

Decomposition) of spectral density matrix at each frequency coordinate.  8 

Consistent to the results presented in Table 3 and Table 4, it is clear that the old threshold fails to identify 9 

the modes even at situations that they look stable. In contrast, by utilizing the new threshold, all of the modes 10 

even the closely-spaced modes are successfully identified. Please note that in the filtered stabilization diagram 11 

using the new threshold, there are two closely-spaced modes around 3.5 Hz (3.597 Hz and 3.643 Hz). System 12 

order 200 provides similar result to the one obtained from the system order 190 and because of space 13 

restrictions it was not presented. This investigation implies that the procedure of eliminating the spurious 14 

modes using the new threshold is effective and as a result, the homogeneous groups of modes which represent 15 

the real physical modes are clearly detected.    16 

To further investigate the superiority of the new threshold over the old threshold, the dendrogram of the 17 

hierarchical clustering for the system order 170 was studied and the result was shown in Figure 14. The red 18 

dotted line and the grey dashed lines, respectively, illustrate the position of the cut-off distances for the 19 

hierarchical clustering obtained by the old and the new thresholds. It is clear that the new threshold proposes 20 

a much lower threshold (0.0040) than the old threshold (0.1513) for system order 170. As indicated by the 21 

identification results, within the frequency range of 0-13Hz, nine structural modes have been successfully 22 

identified with the new threshold however no structural mode is identified using the old threshold.  These 23 

results imply that the old threshold value is too high for the hierarchical clustering. In hierarchical clustering, 24 

modes with similar attributes are linked to each other to produce the dendrogram. Ideally, the threshold value 25 

signifies that each tree underneath the threshold should represent a single real structural mode. However, 26 

because the old threshold is much higher than the desired threshold, distinct modes have been merged into the 27 

same cluster. This usually results in one big cluster containing many modes of distinctive frequencies where 28 
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the total number of the modes in this cluster is much greater than the number of the modes in the other clusters. 1 

Consequently, during the next stage of the algorithm where the second k-means clustering is applied, based on 2 

the number of the modes in each cluster, the largest cluster significantly overweighs the other smaller clusters 3 

and thus the smaller clusters are classified as the clusters with spurious modes.  4 

5.4 Automatic versus Manual OMA 5 

This section aims to compare the identification results using manual and automatic algorithms. Basically, 6 

the manual cleaning of the stabilization diagram is performed based on manually tuning some parameters i.e. 7 

the frequency tolerance ( 𝑡𝑓), damping ratio tolerance ( 𝑡𝜉), and MAC value. Obviously, the smaller values of 8 

 𝑡𝑓 and 𝑡𝜉 and a larger value of MAC indicate more strict tolerances, resulting in identification of the most 9 

dominant modes of the structures.  These modes are actually the modes that consistently appear in the 10 

stabilization diagram as stable modes. Hence, for the strict tolerances, we are confident that most of the 11 

identified modes are real, however, we may potentially miss some real modes because they do not satisfy the 12 

defined tolerances. 13 

To investigate the effect of the parameters to be manually tuned for cleaning of the stabilization diagram, 14 

sufficiently excited datasets were chosen. Table 5 compares the first nine natural frequencies of the bridge 15 

obtained from the manual algorithm for different values of 𝑡𝑓, 𝑡𝜉 and MAC values with the modes obtained 16 

from the automated algorithm. For very strict tolerances ( 𝑡𝑓 = 0.001, 𝑡𝜉 = 0.005 and MAC=0.99), a few 17 

number of modes are identified. However, less strict tolerances result in identification of a larger number of 18 

modes, as expected. The tolerance set of 𝑡𝑓, 𝑡𝜉 and MAC, respectively, equal to 0.010, 0.100, and 0.99 looks 19 

suitable as the damping ratio tolerance is neither very small nor very large. This tolerance set leads to 20 

identification of the first eight modes. Figures 15 (a) and (b), respectively, show the unfiltered stabilization 21 

diagram and the filtered stabilization diagram obtained from the manual SSI-Cov algorithm using this tolerance 22 

set. By making the tolerances less strict, additional modes are identified, where the majority of them vary 23 

between 20 Hz and 50 Hz. However, chances are high that some of these additional modes are spurious. It 24 

should also be noticed that none of tolerance sets in Table 5 resulted in identifying the ninth mode, whereas, 25 

this mode is identified by the automated algorithm and is visually identifiable in the unfiltered stabilization 26 

diagram as depicted in Figure 15 (a). 27 
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As a general conclusion, finding the most appropriate tolerance values is the key factor in the manual 1 

algorithm so that as many real modes as possible are identified and, at the same time, no spurious modes are 2 

generated. This highlights the importance of the automated parameter tuning and also the superiority of the 3 

automatic algorithm. 4 

It is also important to see the consistency of the identification results between the manual and the automated 5 

algorithms to make sure that the identified modes are identical. The mode shapes identified by the automated 6 

algorithm and the manual algorithm with the tolerance values of 0.010, 0.100, and 0.99, respectively, for 𝑡𝑓, 𝑡𝜉 7 

and MAC were used for calculation of MAC matrix. The generated MAC matrix is shown in Figure 16. Since, 8 

the manual algorithm did not identify the ninth mode, the MAC was computed for the first eight modes. The 9 

horizontal axis represents the modes obtained from the automated algorithm and the vertical axis shows the 10 

modes identified by the manual algorithm. As seen, the diagonal MAC values are very high (>0.9) representing 11 

the high correlation between the modes obtained from the both methods. However, the closely-spaced modes 12 

2 and 3 and modes 6 and 7 show some coupling through the off-diagonal MAC values. In general, this figure 13 

highlights the consistency of the identified modes between two methods. 14 

6 Conclusions 15 

In this paper, an automated operational modal analysis algorithm using Covariance-driven Stochastic 16 

Subspace Identification (SSI-Cov) method was presented. Based on the ideas of implementing clustering 17 

approaches to automatically clear the stabilization diagram, this algorithm incorporates the concept of Mode 18 

Energy Level as a new criterion for the initial k-means clustering and introduces a novel threshold for the 19 

hierarchical clustering process.  Accurate and robust modal identification results are obtained when this 20 

automated operational modal analysis algorithm is applied to a cable-stayed bridge structure. The superiority 21 

of the proposed threshold over the old threshold was validated and it was demonstrated that the new threshold 22 

can result in successful modal identification regardless of the system order considered.  The method was also 23 

proved to provide consistent identification results using nearly one month of data from this bridge. High MAC 24 

values (Modal Assurance Criteria) (> 0.9) was observed between the identified modes from different datasets. 25 

The issue of missed identification was extensively investigated and it was realized that while the excitation 26 
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level during ambient vibration is insufficient to produce reasonably strong vibration, the estimation process is 1 

more likely to fail to extract all of the modes particularly the higher modes. This automated algorithm is proved 2 

to generate results with comparable accuracy to the corresponding results from expertise manual analysis and 3 

it is recommended to be used as an operational modal analysis framework for testing the full scale bridge and 4 

building structures. 5 
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Table 1. The ideal values of the modal validation criteria for real and spurious modes. 1 

No. Criterion Physical Mode Spurious Mode 

1 𝑑(𝑓𝑗, 𝑓𝑘) 0 1 

2 𝑑(𝜉𝑗 , 𝜉𝑘) 0 1 

3 𝑀𝐴𝐶(𝝓𝒋, 𝝓𝒌) 1 0 

4 𝑀𝑃𝐶𝑗 1 0 

5 𝑀𝐸𝐿𝑗 1 0 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
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Table 2. Modal identification results from 22 days of monitoring in November 2016. 1 

Mode number 
mean  RSD (%) mean (%) RSD (%) Identified modes 

1 2.032 0.98 0.9 42.23 100% 

2 3.548 1.66 2.5 60.00 85% 

3 3.649 1.15 2.2 63.14 81% 

4 5.584 1.45 1.9 57.89 67% 

5 6.136 2.33 2.8 42.85 82% 

6 8.044 1.71 1.7 52.94 73% 

7 8.671 2.09 1.7 70.58 60% 

8 11.561 1.89 1.8 27.77 64% 

9 12.31 1.46 1.4 42.86 76% 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 
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Table 3. Identification results using the old threshold. 1 

System Order 1  2  3  
4  5  6  7  8  9  

160 2.017 3.570 3.643 5.569 6.046 8.257 8.739 11.309 12.172 

170 --- --- --- --- --- --- --- --- --- 

180 2.017 3.597 --- --- --- --- 8.739 11.309 --- 

190 --- --- --- --- --- --- --- 11.305 --- 

200 --- --- --- --- --- --- --- 11.305 --- 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Table 4. Identification results using the new threshold. 1 

System Order 1  2  3  
4  5  6  7  8  9  

160 2.017 3.597 3.643 5.568 6.044 8.255 8.739 11.309 12.176 

170 2.017 3.597 3.643 5.568 6.051 8.255 8.740 11.309 12.176 

180 2.017 3.597 3.643 5.568 6.051 8.255 8.740 11.307 12.176 

190 2.017 3.597 3.643 5.568 6.051 8.255 8.739 11.307 12.176 

200 2.017 3.597 3.643 5.568 6.051 8.255 8.740 11.305 12.177 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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 1 

Table 5. Natural frequencies obtained from  the automated SSI-Cov algorithm and the manual SSI-Cov algorithm for 2 

different values of frequency tolerance ( 𝒕𝒇), damping ratio tolerance ( 𝒕𝝃), and MAC. 3 

Manual algorithm 

Manual 

parameters 
1  2  3  

4  5  6  7  8  9  

 𝑡𝜉 ,       𝑡𝑓,    𝑀𝐴𝐶          

0.005,  0.001,  0.99 2.017 3.597 3.643 --- --- --- 8.740 --- --- 

0.008,  0.002,  0.99 2.017 3.597 3.643 --- --- 8.255 8.739 --- --- 

0.010,  0.007,  0.99 2.017 3.597 3.643 --- 6.044 8.262 8.747 --- --- 

0.050,  0.010,  0.99 2.017 3.596 3.644 --- 6.044 8.262 8.740 11.303 --- 

0.100,  0.001,  0.99 2.017 3.596 3.644 --- 6.044 8.255 8.747 11.304 --- 

0.100,  0.010,  0.99 2.017 3.596 3.643 5.568 6.044 8.258 8.747 11.293 --- 

0.100,  0.010,  0.95 2.017 3.596 3.643 5.568 6.044 8.258 8.747 11.293 --- 

0.100,  0.500,  0.95 2.017 3.596 3.643 5.568 6.044 8.258 8.747 11.293 --- 

0.500,  0.010,  0.95 2.017 3.596 3.643 5.579 6.044 8.258 8.747 11.293 --- 

0.800,  0.500,  0.95 2.017 3.596 3.643 5.561 6.044 8.258 8.747 11.291 --- 

 

Automated algorithm 

 1  2  3  
4  5  6  7  8  9  

 2.017 3.597 3.643 5.568 6.044 8.255 8.739 11.309 12.176 

 4 

 5 
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Figure 1. Illustration of SSI-Cov algorithm flowchart adopted in this work. 

 

Figure 2. A cable stayed bridge over the Great Western Highway NSW Australia (Ref. 

Google Earth), (a) side view, (b) top view. 

 

Figure 3. Illustration of deck, steel girders and floor beams. 

 

Figure 4. The accelerometer array on the deck. 

 

Figure 5. Illustration of the attached uni-axial accelerometer under the girder. 

 

Figure 6. (a) Typical 10-minutes acceleration time history including response as a result of 

passing traffic, (b) typical ambient part of the response while there is no vehicle on the 

bridge. 

 

Figure 7. The boxplot of the first nine modes extracted from 66 datasets. 

 

Figure 8. Illustration of the first nine mode shapes of the deck. 

 

Figure 9. Orthogonality check using MAC between the identified modes from two different 

datasets. 

 

Figure 10. Illustration of acceleration response collected by sensor A7 while, (a) all of the 

nine modes have been extracted, (b) only the first mode has been identified. 

Figure Captions List



 

Figure 11. Illustration of the spectrogram of acceleration response for (a) weekday, (b) 

weekend. 

 

Figure 12. Illustration of a 10-minute acceleration response collected by sensor A7. 

 

Figure 13. (a) Unfiltered stabilization diagram, (b) filtered stabilization diagram using the old 

threshold, (c) filtered stabilization diagram using the new threshold. (1) system order= 170, 

(2) system order = 180, (3) system order = 190. 

 

 

Figure 14. Illustration of dendrogram of the hierarchical clustering (system order 170) and the 

cut-off distances using the old threshold (red dotted line) and the new threshold (grey dashed 

line). 

 

Figure 15. (a) The unfiltered stabilization diagram and; (b) the filtered stabilization 

diagram obtained from the manual SSI-Cov algorithm. 

 

Figure 16. Orthogonality check using MAC between the identified modes from the manual 

and automated algorithms. 
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First of all, we apologize for the low quality of the first draft of the paper, mainly caused by the lack of 

available data, which prevented us from conducting a comprehensive investigation. We appreciate the 

constructive feedback from the reviewers. This report provides detailed answers to all of the comments 

suggested by the reviewers. Accordingly, significant modifications were made in the manuscript in 

order to address these points. All the changes were made with red color in the revised paper. 

Since some of the comments raised by the reviewers were in common, to avoid unnecessary 

duplications, we have referred to the answers provided earlier in the report for those questions which 

are repetitive; therefore, it is the authors request to share the entire document with all three reviewers.  

Please find our responses to the comments as detailed below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                         Journal of Bridge Engineering- Response to reviewers 

3 

 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                         Journal of Bridge Engineering- Response to reviewers 

4 

 

4 

1. Reviewer I 

 

“This paper aims to present an automated operational modal analysis algorithm without the 

need of user interactions. The proposed algorithm is applied to the identification of a cable-

stayed bridge structure through several case studies using real data. The paper is interesting 

but more clarifications and revisions are needed before it can be accepted.”  

 

 

1.1 Reviewer 1 - Comment 1 

   “As indicated in the introduction part of this paper, the proposed algorithm is developed 

based on the ideas of clustering approaches for automated OMA by Reynders et al. (reference 

16). In Sect. 3 on automated algorithm for stabilization process, all the modal validation criteria 

are the same as those in references 16 and 18. Also, the reviewer is aware of many similar 

algorithms have been developed for automated operational modal analyses. Therefore, the 

technical innovations of the proposed algorithm should be compared with previous ones in 

details.” 

 

Response: 

As mentioned in the first draft of the paper, the main contribution of the work is to define a novel way 

of automatically defining the hierarchical clustering threshold, 𝑑𝐻 to enable the accurate identification 

of a complete set of modal parameters, regardless of the system order chosen. Previous works suggested 

a 𝑑𝐻 value based on the mean and standard deviations of the probably physical mode distances as 

(Reynders et al. 2012; Rubén and Joaquín 2015): 

𝑑𝐻 = 𝜇𝐶𝑅
+ 2𝜎𝐶𝑅

  

where the 𝜇𝐶𝑅
 and 𝜎𝐶𝑅

 are the sample mean and sample standard deviation, respectively, of the mutual 

distance values.  



                         Journal of Bridge Engineering- Response to reviewers 

5 

 

5 

In this study, a novel approach to identify 𝑑𝐻, was proposed which provides reliable modal 

identification results, regardless of the system order selected. At each model order m, the mutual 

distance between every two poles is calculated and the minimum distance is determined. The threshold 

value 𝑑𝐻 is selected as the median value of the minimum distances obtained for all the model orders. 

The median value is capable of more effectively eliminating the impact of outliers. In the first draft of 

the paper, the discussion on superiority of this newly established threshold (new threshold) over the 

previous one proposed by Reynders (old threshold) was limited; however, significant improvement was 

carried out to resolve this problem.  

For a typical 10-minute acceleration response collected from the bridge, shown in Figure 1 (for all the 

details/ changes made in the measurement set-up and data collection procedure, please see Section 4 of 

the revised paper), the SSI-Cov technique was applied (the parameters and details have been elaborated 

in Section 4 of the revised paper). Five different system orders ranging from 160 to 200 with an 

increment of 10 were considered. Both the new and the old thresholds were adopted and the results 

were compared. Table 1 and Table 2, respectively, summarize the identified modes using the old and 

the new thresholds. As seen, the old threshold can only provide successful identification of the modes 

where the system order is 160 and it fails to identify the modes for the other system orders, i.e. 170, 

180, 190 and 200. However, by using the new threshold all the modes are successfully identified no 

matter what system order is considered.  

Figure 2 illustrates the stabilization diagrams for the system orders 170, 180 and 190. Column (a) is the 

unfiltered stabilization diagram, column (b) is the filtered stabilization diagram using the old threshold 

and column (c) is the filtered stabilization diagram using the new threshold. Consistent to the results 

presented in Table 1 and Table 2, it is clear that the old threshold fails to identify the modes even at 

situations that they look stable. In contrast, by utilizing the new threshold, all the modes even the 

closely-spaced mods are successfully identified. Please note that in the filtered stabilization diagram 

using the new threshold there are two closely-spaced modes around 3.5 Hz (3.597 Hz and 3.643 Hz). 

System order 200 provides similar result to the one obtained from the system order 190 and because of 

space restrictions it was not presented. This investigation implies that the procedure of eliminating the 
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spurious modes using the new threshold is effective and as a result, the homogeneous groups of modes 

which represent the real physical modes are clearly detected.    

 

 

Figure 1. Illustration of a 10-minute acceleration response collected by sensor A7. 

Table 1. Identification results using the old threshold. 

System Order 1  2  3  
4  5  6  7  8  9  

160 2.017 3.570 3.643 5.569 6.046 8.257 8.739 11.309 12.172 

170 --- --- --- --- --- --- --- --- --- 

180 2.017 3.597 --- --- --- --- 8.739 11.309 --- 

190 --- --- --- --- --- --- --- 11.305 --- 

200 --- --- --- --- --- --- --- 11.305 --- 

 

Table 2. Identification results using the new threshold. 

System Order 1  2  3  
4  5  6  7  8  9  

160 2.017 3.597 3.643 5.568 6.044 8.255 8.739 11.309 12.176 

170 2.017 3.597 3.643 5.568 6.051 8.255 8.740 11.309 12.176 

180 2.017 3.597 3.643 5.568 6.051 8.255 8.740 11.307 12.176 

190 2.017 3.597 3.643 5.568 6.051 8.255 8.739 11.307 12.176 

200 2.017 3.597 3.643 5.568 6.051 8.255 8.740 11.305 12.177 
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(a-1)

 

(b-1)

 

(c-1)

 

(a-2) 

 

(b-2)

 

(c-2)

 

(a-3) (b-3)  (c-3) 

 
  

Figure 2. (a) unfiltered stabilization diagram, (b) filtered stabilization diagram using the old threshold, (c) filtered 

stabilization diagram using the new threshold. (1) system order= 170, (2) system order = 180, (3) system order = 190. 

To further investigate the superiority of the new threshold over the old threshold, the dendrogram of the 

hierarchical clustering for the system order 170 was studied and the result was shown in Figure 3. The 

red dotted line and the grey dashed line, respectively, illustrate the position of the cut-off distances for 

the hierarchical clustering obtained by the old and the new thresholds. It is clear that the new threshold 

proposes a much lower threshold (0.0040) than the old threshold (0.1513) for system order 170. As 
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indicated by the identification results, within the frequency range of 0-13Hz, nine structural modes have 

been successfully identified with the new threshold however no structural mode is identified using the 

old threshold.  These results imply that the old threshold value is too high for the hierarchical clustering. 

In hierarchical clustering, modes with similar attributes are linked to each other to produce the 

dendrogram. Ideally, the threshold value signifies that each tree underneath the threshold should 

represent a single real structural mode. However, because the old threshold is much higher than the 

desired threshold, distinct modes have been merged into the same cluster. This usually results in one 

big cluster containing many modes of distinctive frequencies, where the total number of the modes in 

this cluster is much greater than the number of the modes in the other clusters. Consequently, during 

the next stage of the algorithm, where the second k-means clustering is applied, based on the number 

of the modes in each cluster, the largest cluster significantly overweighs the other smaller clusters and 

thus the smaller clusters are classified as the clusters with spurious modes.  

 The authors hope that the above explanation is adequate enough to answer the reviewer’s comment, 

however, we are more than happy to provide further details if required.   

Revised text: 

Please look at Section 5 in the revised paper. 

 

Mode Number 

Figure 3. Illustration of dendrogram of the hierarchical clustering (system order 170) and the cut-off distances using 

the old threshold (red dotted line) and the new threshold (grey dashed line). 
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1.2 Reviewer 1 - Comment 2 

   “Although it is claimed that a novel approach for the hierarchical clustering process is 

proposed, it is essential to compare the numerical identification results by the proposed 

approach with those by previous ones.” 

 

Response: 

Please look at the response provided to Reviewer 1 – Comment 1.  

 

1.3 Reviewer 1 - Comment 3 

   “In Table 2, some modal parameters extracted by the proposed automated approaches are 

missed by the manual analyses. The reviewer wanders this superiority of the automated 

approaches.” 

 

Response: 

The manual cleaning of the stabilization diagram is performed based on the pre-defined frequency 

tolerance ( 𝑡𝑓), damping ratio tolerance ( 𝑡𝜉), and MAC value. Obviously, the smaller values of  𝑡𝑓 

and 𝑡𝜉 and a larger value of MAC indicate more strict tolerances, resulting in identification of the most 

dominant modes of the structures.  These modes are actually the ones that consistently appear in the 

stabilization diagram as stable modes. Hence, for the strict tolerances, we are confident that most of the 

identified modes are real, however, we may potentially miss some real modes because they do not 

satisfy the defined tolerances. 

The results presented in Table 2 of the first version of the paper were basically obtained from random 

values of 𝑡𝑓, 𝑡𝜉 and MAC. To investigate the effect of the parameters to be manually tuned for cleaning 

of the stabilization diagram, sufficiently excited datasets were chosen. Table 3 compares the first nine 

natural frequencies of the bridge obtained from the manual algorithm for different values of 𝑡𝑓, 𝑡𝜉 and 
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MAC values with the modes obtained from the automated algorithm. For very strict tolerances ( 𝑡𝑓 =

0.001, 𝑡𝜉 = 0.005 and MAC=0.99), a few number of modes are identified. However, less strict 

tolerances result in identification of a larger number of modes, as expected. The tolerance set of 𝑡𝑓, 𝑡𝜉 

and MAC, respectively, equal to 0.010, 0.100, and 0.99 looks suitable as the damping ratio tolerance is 

neither very small nor very large. This tolerance set leads to identification of the first eight modes. 

Figures 4 (a) and (b), respectively, show the original (unfiltered) stabilization diagram and the filtered 

stabilization diagram obtained from the manual SSI-Cov algorithm using this tolerance set. By making 

the tolerances less strict, additional modes are identified, where the majority of them vary between 20 

Hz and 50 Hz. However, chances are high that some of these additional modes are spurious. It should 

also be noticed that none of the tolerance sets in Table 3 resulted in identifying the ninth mode, whereas, 

this mode is identified by the automated algorithm and is visually identifiable in the unfiltered 

stabilization diagram as depicted in Figure 4 (a). 

As a general conclusion, finding the most appropriate tolerance values is the key factor in the manual 

algorithm so that as many real modes as possible are identified and, at the same time, no spurious modes 

are generated. This highlights the importance of the automated parameter tuning and also the superiority 

of the automatic algorithm. 
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Table 3. Natural frequencies obtained from  the automated SSI-Cov algorithm and the manual SSI-Cov 

algorithm for different values of frequency tolerance ( 𝑡𝑓), damping ratio tolerance ( 𝑡𝜉), and MAC. 

Manual algorithm 

Manual parameters 1  
2  3  

4  5  6  7  8  9  

 𝑡𝜉 ,       𝑡𝑓,    𝑀𝐴𝐶          

0.005,  0.001,  0.99 2.017 3.597 3.643 --- --- --- 8.740 --- --- 

0.008,  0.002,  0.99 2.017 3.597 3.643 --- --- 8.255 8.739 --- --- 

0.010,  0.007,  0.99 2.017 3.597 3.643 --- 6.044 8.262 8.747 --- --- 

0.050,  0.010,  0.99 2.017 3.596 3.644 --- 6.044 8.262 8.740 11.303 --- 

0.100,  0.001,  0.99 2.017 3.596 3.644 --- 6.044 8.255 8.747 11.304 --- 

0.100,  0.010,  0.99 2.017 3.596 3.643 5.568 6.044 8.258 8.747 11.293 --- 

0.100,  0.010,  0.95 2.017 3.596 3.643 5.568 6.044 8.258 8.747 11.293 --- 

0.100,  0.500,  0.95 2.017 3.596 3.643 5.568 6.044 8.258 8.747 11.293 --- 

0.500,  0.010,  0.95 2.017 3.596 3.643 5.579 6.044 8.258 8.747 11.293 --- 

0.800,  0.500,  0.95 2.017 3.596 3.643 5.561 6.044 8.258 8.747 11.291 --- 

 

Automated algorithm 

 1  2  3  
4  5  6  7  8  9  

 2.017 3.597 3.643 5.568 6.044 8.255 8.739 11.309 12.176 
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(a)                                                                              (b) 

 

 

 

 

Figure 4. (a) The original (unfiltered) stabilization diagram and; (b) the filtered stabilization diagram obtained 

from the manual SSI-Cov algorithm. 

 

1.4 Reviewer 1 - Comment 4 

   “From the results in Table 3, it is quite puzzled to explain the effect of vehicle passing velocity 

on the identification results as some modes may not be extracted with the increase of velocity.” 

Response: 

First of all, the authors would like to emphasize that section “5.2. Ambient vibration data at 600Hz with 

vehicle passing” presented in the first draft of the paper has been eliminated since we believe there was 

not adequate amount of data from controlled vehicles passing over the bridge with various known 

speeds to enable us to perform a comprehensive investigation to fully understand the impact of vehicle 

speed on modal identification results. However, in order to investigate the effect of the ambient 

excitation on the modal identification results, further analyses were performed as outlined below.  

In the revised version of the paper, significant effort has been made to study the long term vibrational 

behavior of the structure using the proposed technique of operational modal analysis; details of the 

experiments and results can be found in Sections 4 and 5 of the revised paper.  
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Basically, 22 days of monitoring data, continuously acquired from the 1st of November until the 22nd of 

November 2016 are used in the revised version of the paper for the purpose of the operational modal 

analysis. This selection was only made due to the availability of the data in this time period. For each 

day, three files were considered. The files were selected from different times within 24 hours including 

midnight, and rush traffic hours. This provides a total number of 66 10-minute-files for our 

investigations. The operational modal analysis adopting SSI-Cov algorithm was only performed on 

these 66 datasets (please note that in the revised version of the paper NExT-ERA has been eliminated, 

please look at the response provided to Reviewer 3 - Comment 2). Details on pre-processing of the data 

and the parameters adopted for the algorithm can be found in Section 4 of the revised paper.  

Table 4 summarizes the identification results within the frequency range of [0-13 Hz]. As seen, within 

this frequency range, nine modes have been extracted including two closely-spaced modes around 3.5 

Hz. It was realized that not all of the modes are extracted from every single dataset. The last column of 

Table 4 specifies the percentage of identification for each particular mode amongst 66 datasets. As 

shown, the first mode has been identified from all of the 66 datasets, however, the ninth mode have 

been identified only from 76% of datasets i.e. 50 datasets.  A detailed discussion explaining the missed 

identification of some modes can be found in the next section.  

mean  shows the mean value of the natural frequency for each mode obtained from 66 datasets and 

RSD  shows the relative standard deviation (RSD) for the identified natural frequencies; RSD is a 

standardized measure obtained by normalizing the standard deviation with respect to the mean value 

and it shows the dispersion of a distribution. A relative standard deviation of 1% to 2% is observed for 

the identified eigen-frequencies which is quite low and indicates the consistency of the modal 

identification over time. mean and RSD , respectively, show the mean damping ratio for each mode and 

the corresponding relative standard deviation. As illustrated in Table 4, the uncertainty on the damping 

ratio estimates is much higher than the uncertainty obtained for the natural frequencies and greater 

discrepancies are observed in damping estimation. Past research works (Magalhaes et al. 2009; Geothals 

et al. 2004) have also had similar observations and the explanation for this is that large scattering and 
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dispersion are common for the damping ratios estimated from OMA methods. Rainieri et al. (2010) 

suggested that the presence of inherent limitations or inaccuracies of data processing methodologies 

can both lead towards high variations in damping ratio estimates. Inappropriate selection of the model 

order for the stabilization diagram may also enlarge the scattering of damping ratio for each identified 

mode. The high uncertainty in the identification of damping in civil structures can also be attributed to 

the fact that damping is strongly influenced by the magnitude of the dynamic response of a structure 

(Reynders et al. 2008).  

Figure 5 illustrates the boxplot of the nine identified modes. Based on this figure, higher modes are 

experiencing higher standard deviation compared to the lower modes. Figure 6 shows the first nine 

mode shapes of the structure. Mode shape estimates were constructed using only the data locations 

corresponded to the measuring points in the testing and also zero deflection boundaries at supports. In 

the plan view presentation of each mode shape, an interpolating function is applied to provide a shaded 

approximation of the continuous mode shape. As seen in Figure 6, the reconstructed mode shapes 

encompass bending and torsional modes of the deck. Mode 1 is the first vertical bending mode of the 

deck which was consistently identified from all 66 datasets. Modes 2 and 3 make up a double mode 

which corresponds to the second vertical bending mode. Mode 4 corresponds to the third bending mode 

and modes 5 and 6 show a mixture of torsion and bending. The last three modes is a combination of the 

fourth bending mode and torsion.  
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Table 4. Modal identification results from 22 days of monitoring in November 2016. 

 

Mode number 
mean  RSD (%) mean (%) RSD

(%) 

Identified modes 

1 2.032 0.98 0.9 42.23 100% 

2 3.548 1.66 2.5 60.00 85% 

3 3.649 1.15 2.2 63.14 81% 

4 5.584 1.45 1.9 57.89 67% 

5 6.136 2.33 2.8 42.85 82% 

6 8.044 1.71 1.7 52.94 73% 

7 8.671 2.09 1.7 70.58 60% 

8 11.561 1.89 1.8 27.77 64% 

9 12.31 1.46 1.4 42.86 76% 

 

 

 

Figure 5. The boxplot of the first nine modes extracted from 66 datasets. 
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Mode 1: 2.014 Hz Mode 2: 3.51 Hz Mode 3: 3.645 Hz 

  
 

Mode 4: 5.538 Hz Mode 5: 6.068 Hz Mode 6: 7.852 Hz 

 
  

Mode 7: 8.628 Hz Mode 8: 11.281 Hz Mode 9: 12.164 Hz 

 

Figure 6. Illustration of the first nine mode shapes of the deck. 

 

Consistency of Mode Shapes over Time 

For any modal identification process, it is quite important to ensure the consistency of the mode shapes 

over time. MAC can be used for this purpose to quantify the correlation between the modes measured 

during different tests. MAC makes use of the orthogonality properties of the mode shapes to compare 

modes from different tests. If the modes are identical, a scalar value of one is calculated, otherwise it 

would be very small close to 0. The utilization of MAC can help for mode pairing to track a particular 

mode from different datasets and to see the consistency of identification of a particular mode between 

different datasets. For two arbitrary datasets, the MAC matrix was generated and it was illustrated in 

Figure 7. Basically, the horizontal axis shows the nine modes identified from a particular dataset and 

the vertical axis shows the identification results from a separate dataset. As seen, the diagonal MAC 

values are very high (>0.9) which shows the fact that the identified nine modes from two datasets are 
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very similar and highly correlated. In general, very small MAC numbers are observed for off-diagonal 

members which is expected due to the orthogonality of the mode shapes. However, the closely-spaced 

modes 2 and 3 show some coupling through the off-diagonal MAC values. These results generally 

outline a very good agreement between the identified modes from different datasets. Similar graphs 

were obtained from different datasets and because of space restriction only one graph was presented.  

The authors would like to emphasize that the procedure for calculation of the MAC values in the first 

draft of the paper (please see Figure 7 in the first draft) has not been correctly addressed. The reason is 

that the MAC had been calculated using the modes identified from a single dataset only and it is evident 

that all the diagonal members have to be 1 which does not add any value. This problem has been 

resolved in the revised version as elaborated above. 

 

 

Figure 7. Orthogonality check using MAC between the identified modes from two different datasets. 

 

Missed Identification 

As discussed earlier, not all of the modes can be extracted from all 66 datasets. To further investigate 

the missed identification of some modes, the acceleration responses of the bridge (10 minutes) for two 

different cases were compared with each other: a case where only one mode, which is the first mode, 

has been identified, and a case that all of the nine modes have been identified. Figure 8 (a) illustrates 

the acceleration response obtained from channel 7 for a case that all modes have been extracted whereas 
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Figure 8 (b) shows the response for a case that only the first mode has been identified. From this figure, 

it is quite obvious that the level of response is almost 25 times higher in Figure 8 (a) compared to the 

response presented in Figure 8 (b) which coincides with the time windows of these two files, i.e. mid-

day versus mid-night. It demonstrates the fact that if the ambient excitation on the bridge is not adequate 

enough, there is a high chance that the modes, in particular the higher modes, are not excited. To fully 

address the issue of missing modes, a separate study was conducted. This time, the vibration response 

of the bridge was collected from two different days: a working day and a weekend. Each day provides 

24 hr×6 files/hr=144 10-minute files. Please note that the previously elaborated datasets including 66 

files from 22 days of monitoring in November 2016 are the main datasets which have been adopted for 

our investigations in this paper and the continuous 24 hour data from these two days i.e. one weekday 

and one weekend has been solely adopted to further validate the impact of ambient excitation on missing 

modes and no further data analysis has been done using these datasets. 

For each file, (in total, 144 files per day) the first singular value of SVD (Singular Value Decomposition) 

of spectral density matrix was calculated. This provides an estimation of the auto spectral density of the 

system in modal coordinates and the peak in the SVD curve is expected to represent a structural mode. 

Figure 9 (a) and (b), respectively, show the spectrograms of the response combining all of the 144 files 

from 24 hours for a weekday and for a weekend. The horizontal axis in these figures is frequency and 

the vertical axis is the time within 24 hours. The starting time in the vertical axis is almost 11:00 am. 

The color reflects the strength of the frequency component, i.e. the lighter the shade is, the higher the 

strength of the frequency component is. From this figure, it is quite evident that the first mode has been 

well excited at any time within the 24 hours during weekday and weekend. This figure also implies that 

modal identification process fails to extract the modes while there is not enough traffic on the bridge 

i.e. the time window between 8:00 pm to 6:00 am.  It can also be observed that within the time window 

of 6:00 am to 8:00 pm the identification process has been more successful on weekday rather than 

weekend, again due to sufficiency of excitation on the bridge as a result of passing traffic. Additional 

piece of information that can be captured from this figure is that there is frequency variation in the 

modal frequencies which can be related to the environmental changes within 24 hours. From these 

https://www.google.com.au/search?sa=X&biw=1670&bih=936&q=define+sufficiency&forcedict=sufficiency&ved=0ahUKEwiWvcStzNnSAhVBvpQKHa29DvMQ_SoIODAA
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investigations it appears that while the excitation level during ambient vibration is insufficient to 

produce reasonably strong vibration, the estimation process more likely fails to extract all of the modes 

particularly the higher modes.  

 (a) 

 

 

(b) 

 

 

 

Figure 8. Illustration of acceleration response collected by sensor A7 while, (a) all of the nine modes have been 

extracted, (b) only the first mode has been identified. 

(a) 

             

 

(b) 

         

        

Figure 9. Illustration of the spectrogram of acceleration response for (a) weekday, (b) weekend. 
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Revised text: 

Please look at Section 5 in the revise paper. 
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2.  Reviewer II 

   “The manuscript deals with the automation of the operational modal analysis of a cable 

stayed bridge. The discussion of the proposed procedure, based in the NExT-ERA and SSI-

CoV methods, is reported together with some results of experimental tests on a real scale 

structure.” 

2.1 Reviewer 2 - Comment 1 

“The background literature and the related state of the art show some weak aspects that need 

to be improved.” 

 

Response: 

 The authors agree with the reviewer that the comprehensiveness of the background literature section 

needs to be enhanced. Therefore the author has improved the thoroughness of the literature review by 

including extra descriptions on the background of the algorithm which forms the basis of the proposed 

methodology in the manuscript. In particular, emphasises have been given to the initial literature work 

by Magalhaes et al. (2009) (http://dx.doi.org/10.1016/j.ymssp.2008.05.003) which utilizes hierarchical 

clustering algorithm in automated operational modal analysis. This work has been considered as an 

important background reference for the core of the automated algorithm proposed by the author. 

Furthermore, the work by Rainieri C and Fabbrocino G 

(http://dx.doi.org/10.1504/IJLCPE.2014.064099) has been included in the manuscript to provide 

stronger theoretical basis on the automation of the stabilization diagram analysis with the SSI algorithm. 

The details of these modifications on the literature review sections are specifically addressed in the 

individual comments provided to Reviewer 2-Comment 4 and Reviewer 2-Comment 8, where the 

relevant sections of the revised text are also provided. 

2.2 Reviewer 2 - Comment 2 

http://dx.doi.org/10.1016/j.ymssp.2008.05.003
http://dx.doi.org/10.1504/IJLCPE.2014.064099
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“The section #2 devoted to the presentation of OMA basics is too short and ineffective also in 

relation to the fragmentation into sub-sections made of a few lines. The same applies to some 

parts of the section #3, where the core of the work is discussed.” 

Response: 

Sections 2 and 3 in the original draft of the paper were significantly modified to resolve this issue. 

Revised text: 

The discrete-time representation of the equation of motion for a linear time-invariant dynamic system 

can be given by state-space formulation as (He and Fu 2001; Ewins 2000; Reynders and De Roeck 

2008): 

      𝑧(𝑘 + 1) = 𝑨𝑧(𝑘) + 𝑤(𝑘)

              𝑢(𝑘) = 𝑪𝑧(𝑘) + 𝑣(𝑘)               
 

 

 

where 𝑨 ∈ ℛ𝑛×𝑛 is the discrete-time state-space matrix, 𝑧 ∈ ℛ𝑛  is the state vector, 𝑤 ∈ ℛ𝑛 is the 

external input assumed to be a white Gaussian noise process, 𝑢 ∈ ℛ𝑙  is the vector of measured 

responses, 𝑪 ∈ ℛ𝑙×𝑛 is the output matrix and 𝑣 ∈ ℛ𝑙  is another white noise vector process representing 

the noise content of the measurements. 𝑘 indicates the generic time step.   

According to (Turner and Pretlove, 1998), for a bridge structure, it is valid to assume that the source of 

excitation as a result of passing traffic is a white Gaussian process. This can be attributed to the 

randomness in vehicle configurations i.e. different weights and axle configurations, randomness in 

arrival times, suspension system and road surface profile. 

In this paper, SSI-Cov algorithm is adopted to identify a stochastic state-space model from output-only 

data.  SSI-Cov algorithm is a time-domain parametric algorithm that deals with the stochastic realization 

problem to fit a state space model to the covariance of the responses driven by ambient excitation.  SSI-

Cov algorithm consists of the following steps: (1) computation of output covariance, �̂�𝒊, (2) 

construction of the block Toeplitz matrix, 𝑻𝟏|𝒊, (3) decomposition of the Toeplitz matrix, (4) estimation 

of the controllability and observability matrices and (5) extraction of the modal parameters. These steps 

are elaborated below. 
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Let 𝒀, an 𝐿 × 𝑄 matrix be the ambient vibration measurements for a structure, in which 𝐿 is the total 

number of sensors and 𝑄 is the number of time steps in each set of sensor measurement as,  

𝒀 = [

𝑦1,1
𝑦1,2 ⋯ 𝑦1,𝑄

𝑦2,1

⋮
𝑦𝐿,1

𝑦2,2 ⋯ 𝑦2,𝑄

⋮
𝑦𝐿,2

⋮
⋯

⋮
𝑦𝐿,𝑄

]                                                             

The first step of SSI-Cov algorithm is the computation of output correlations �̂�𝒊 according to, 

�̂�𝒊 =
1

𝑄 − 𝑖
[𝒀(𝟏:𝑸−𝒊)][𝒀(𝒊+𝟏:𝑸)]

𝑻
,                                                     

where 𝒀(𝟏:𝑸−𝒊) is obtained from the matrix 𝒀 by removing the last 𝑖 samples of data and 𝒀(𝒊+𝟏:𝑸) is 

obtained by removing the first 𝑖 samples of data. The parameter 𝑖 represents the time lag and it is 

required to be defined by the user. The calculated output correlations at different time lags are then 

combined to form a block Toeplitz matrix 𝑻𝟏|𝒊 ∈ ℛ𝐿𝑖×𝐿𝑖  as, 

𝑻𝟏|𝒊 =

[
 
 
 

�̂�𝒊  �̂�𝒊−𝟏 ⋯ �̂�𝟏

�̂�𝒊+𝟏

⋮
�̂�𝟐𝒊−𝟏

     �̂�𝒊 ⋯ �̂�𝟐

⋮
�̂�𝟐𝒊−𝟐

⋮
⋯

⋮
�̂�𝒊]

 
 
 

                                                    

The block Toeplitz matrix 𝑻𝟏|𝒊 is decomposed via singular value decomposition as, 

[𝑻𝟏|𝒊] = 𝑈𝛴𝑉𝑇 

where 𝑈 ∈ ℛ𝐿𝑖×𝐿𝑖 and 𝑉 ∈ ℛ𝐿𝑖×𝐿𝑖 are orthonormal matrices and 𝛴 ∈ ℛ𝐿𝑖×𝐿𝑖 is a diagonal matrix 

containing the positive singular values in descending order. Let 𝑛 be the number of none zero singular 

values of 𝑻𝟏|𝒊 which indicates the rank of Toeplitz matrix. The observability matrix 𝑂𝑖 ∈ ℛ𝐿𝑖×𝑛  and 

the controllability matrix 𝛤𝑖 ∈ ℛ𝑛×𝐿𝑖 can be defined as follows: 

 

[𝑂𝑖] = [𝑈1][𝛴1]
1
2 

[𝛤𝑖] = [𝛴1]
1
2[𝑉1]

𝑇 
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where 𝑈1 ∈ ℛ𝐿𝑖×𝑛, 𝛴1 ∈ ℛ𝑛×𝑛 and 𝑉1 ∈ ℛ𝐿𝑖×𝑛 are obtained by eliminating the zero singular values and 

the corresponding singular vectors.  

The solution of the identification problem can be then obtained by, 

[𝑨] = [𝛴1]
−

1
2 [𝑈1]

𝑇[𝑇2|𝑖][𝑉1] [𝛴1]
−

1
2  

          [𝑪]= 𝑂𝑖(1: 𝐿)  

where 𝑻𝟐|𝒊 is composed of covariances from lag 2 to 2𝑖 as, 

[𝑇2|𝑖+1] =

[
 
 
 
 
[�̂�𝑖+1] [�̂�𝑖] ⋯ [�̂�2]

[�̂�𝑖+2]

⋮
[�̂�2𝑖]

[�̂�𝑖+1] ⋯ [�̂�3]

⋮
[�̂�2𝑖−1]

⋮
⋯

⋮
[�̂�𝑖+1]]

 
 
 
 

 

 

At this point the identification problem is theoretically solved. The modal parameters of the system can 

be extracted from the identified system description [𝑨] and [𝑪] as, 

[𝛹]−1[𝑨][𝛹] = [𝑍] 

𝜆𝑟 = ln(𝑍𝑟) /𝛥𝑡 

𝜔𝑟 = √(𝜆𝑟

𝑅
)2 + (𝜆𝑟

𝐼
)2/2𝜋 

[𝜙] = [𝑪] × [𝛹] 

𝜉𝑟 =
|𝜆𝑟

𝑅
|

√(𝜆𝑟

𝑅
)
2

+ (𝜆𝑟

𝐼
)
2
 

where 𝛥𝑡 is the time step and 𝑍𝑟 is the r-th component of the matrix [𝑍]. 𝜆𝑟
𝑅

 and 𝜆𝑟
𝐼
 are, respectively, 

the real and imaginary components of 𝜆𝑟.  𝜉𝑟 is the damping factor for the r-th mode and [𝜙] is the 

matrix of mode shapes. 
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Revised text: 

Please look at Section 2 in the revised paper.  

2.3 Reviewer 2 - Comment 3 

“The description of the experimental tests on the bridge needs to be improved; some weak 

aspects rely with the measurement chain and the resulting recorded acceleration time 

histories. Others rely with the presentation, discussion and interpretation of the results.” 

 

The authors absolutely agree with the reviewer that in the first draft of the paper the description of the 

experimental tests on the bridge and the measurement set-up have not been properly addressed. 

Significant effort has been made to resolve this issue in the revised paper. As mentioned earlier, since 

a limited number of data were available in the first draft of the paper, (the bridge had just been 

instrumented), no significant data analysis were carried out. In the revised version of the paper, the 

acceleration recordings were available 24/7 for about one month which provided us with this 

opportunity to perform further analyses in order to investigate the performance of the method.  

Details on the experimental tests, measurement set-up and the resulting time histories have been 

elaborated and can be found in the answers provided to Comment 5 of Reviewer 2. Also, please look at 

Sections 4 and 5 in the revised paper. Additionally, significant effort was made to ensure the proper 

interpretation and presentation of the results as can be seen in Sections 4 and 5 of the revised paper.  

 

 

2.4 Reviewer 2 - Comment 4 

“In order to support the authors in the revision process, a list of comments on specific aspects 

are reported below.” 

- It has been already observed that the background literature does not properly reflect available 

studies and achievements on the subject. In particular, as paper #17 is considered, it is worth 
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noting that the most significant achievements on the subject are reported elsewhere 

(Magalhaes, 2009) http://dx.doi.org/10.1016/j.ymssp.2008.05.003; thus, reference #17 has to 

be modified accordingly. 

Response: 

The authors agree with the reviewer that reference #17 in the original manuscript demonstrates a lack 

of focus in the field of automated OMA. Thus reference #17 is replaced by the suggested paper by 

Magalhaes et al. (2009) (http://dx.doi.org/10.1016/j.ymssp.2008.05.003) and the relevant sections in the 

text are modified in accordance to this work. The suggested paper is a pioneer study for efficiently 

implementing the concept of hierarchical clustering for automatic OMA with SSI-Cov algorithm and 

the corresponding contribution is articulated in the revised text. 

Revised text:  

In hierarchical clustering, each identified mode is linked based on the similarities in specific attributes 

such as natural frequency and mode shapes. The core concept of the automated algorithm with 

hierarchical clustering is that an automatic threshold is defined so that modes belong to the same set are 

separated into individual clusters and thus identified. There have been prior applications of hierarchical 

clustering on OMA with the SSI-Cov method where the algorithm has been demonstrated to be efficient 

and effective in automatic modal identification (Reynders et al. 2012; Magalhaes et al. 2009). 

 

- Reference to a set of doctoral theses to support the statement appears to be not appropriate 

- see page 2, line 20 - and to be reductive of the research carried out on the subject. Reference 

#19 can be removed, eventually substituted by the book quoted as #10; journal papers like 

http://dx.doi.org/10.1016/j.ymssp.2015.01.019 and:  

http://dx.doi.org/10.1016/j.ymssp.2008.05.003;
http://dx.doi.org/10.1016/j.ymssp.2008.05.003
http://dx.doi.org/10.1016/j.ymssp.2015.01.019
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http://dx.doi.org/10.1155/2014/845106 should be considered. Their reference to a different 

approach to the automated modal analysis based on the concept of the hybridization of the 

traditional identification techniques fulfills the framework to the interested reader. 

Response: 

The authors strongly agree with the reviewer’s comment that referencing to the doctoral theses #19 and 

#20 are ineffective as the focuses of the theses are very much irrelevant to the development of automatic 

OMA algorithms. In conjunction with the comments from reviewer 3, reference #19 was replaced by a 

more relevant study on automated OMA and damage detection by Magalhaes et al. (2012) (doi: 

10.1016/j.ymssp.2011.06.011). This work highlights the capabilities of utilizing automated OMA 

algorithms for modal tracking and damage identification over a 2-year period with the utilization of the 

Covariance driven Stochastic Subspace identification (SSI-Cov) method. Comprehensive demonstration 

on the current progress on automated OMA is clearly revealed within this paper in support of the 

algorithm outlined in the authors’ manuscript. Thus, the following revised text in Section 1 has been 

added to articulate the contribution of this work by Magalhaes et al. (2012). 

Revised text:  

These methods are widely used for vibration-based SHM (Rainieri and Fabbrocino 2015; Magalhaes et 

al. 2012). The Covariance driven stochastic Subspace Identification (SSI-Cov) method was applied by 

Magalhaes et al. (2012) for monitoring the damage conditions of a bridge based on the identified modal 

characteristics over a 2-year period. The results demonstrate clear relationships between the damage 

states of the bridge and frequency shifts of the dominant vibration modes. 

- Reference to thesis #19 at page 3, line 3 seems to be ineffective. In combination with the 

book ref. #10 it is recommended to consider the following journal papers more focused on the 

concepts recalled in the text: http://dx.doi.org/10.3233/SAV-2010-0534 and: 

http://dx.doi.org/10.1155/2014/845106
http://dx.doi.org/10.3233/SAV-2010-0534
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 http://dx.doi.org/10.1504/IJLCPE.2014.064099 

Response: 

The authors agree with the reviewer’s comment that referencing to thesis #19 is irrelevant to the 

discussion on the system order selection for stabilization diagram. Therefore, this reference was 

eliminated and the paper by Rainieri C and Fabbrocino G 

(http://dx.doi.org/10.1504/IJLCPE.2014.064099) was included, as this work deals with much greater 

relevance on the relationships between the model order and accuracy of the identification results using 

SSI. 

Revised text:  

Both ERA and SSI are expressed based on the state-space model, where the maximum number of modes 

that can be identified is determined by the selected model order 𝑛 which governs the size of the state-

space matrix (Rainieri and Fabbrocino 2014a). Since the true model order is unknown and inappropriate 

model order selection can generate biased identification results (Rainieri and Fabbrocino 2014b), the 

selected model order is normally over-specified to ensure a complete coverage for all the real structural 

modes. However, spurious mathematical modes are also introduced as a result of this over-specification; 

thus, stabilization procedure is commonly adopted to identify the physical modes among all the 

identified modes. In contrast to physical modes, mathematical modes are not identified in a consistent 

way. The purpose of stabilization is to identify the stable modes with identical modal properties 

demonstrated through consecutive model orders. (Rainieri and Fabbrocino 2014a). 

 

-This referee agrees with the statement by the authors reported at page 3, line 7-8-9. However, 

the current form of the text does not take into account available experiences reported in the 

technical literature, see for instance: 

http://dx.doi.org/10.1504/IJLCPE.2014.064099
http://dx.doi.org/10.1504/IJLCPE.2014.064099
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http://dx.doi.org/10.1016/j.engstruct.2011.10.001 . Particularly, the mentioned paper seems 

to be able to support the set of criteria discussed by the authors to discriminate between 

physical and 'virtual' modal parameters (see also page 5, line 9-10). 

Response: 

The authors agree with the reviewer’s comment that on page 3, line 7-8-9, inadequate articulation is 

presented on the current available research for fully automated OMA techniques. However, the author’s 

manuscript focuses on the automation of time-domain-based OMA method such as SSI-Cov algorithm 

where the elimination of any manual tunning steps in the process of clearing the stabilization diagram 

is critical for determining the performance of the automated algorithm. The suggested research article 

by (Rainieri C et al. 2012) (http://dx.doi.org/10.1016/j.engstruct.2011.10.001) seems to provide a 

comparison of different automated OMA techniques in both time and frequency domains and highlights 

the superiority in the performance of the frequency-domain LEONIDA method. Since stabilization 

diagram is not implemented in LEONIDA or other similar frequency-domain OMA techniques, the 

authors argue that the relevance of this work is not so high to the current manuscript. The authors also 

agree that the suggested article (Rainieri C et al. 2012) does provide some necessary basics for 

supporting the set of criteria applied in the initial stage of eliminating the spurious modes from the 

stabilization diagram (on page 5, line 9-10). However, this work does not include sufficient details on 

the rationale behind the design and selection of the set of criteria whereas a clearer basis can be obtained 

from the currently cited paper by Reynders et al. (2012) 

(http://dx.doi.org/10.1016/j.ymssp.2012.01.007). 

 

 

 

2.5 Reviewer 2 - Comment 5 

http://dx.doi.org/10.1016/j.engstruct.2011.10.001
http://dx.doi.org/10.1016/j.engstruct.2011.10.001
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“Description of the measurement chain adopted during the experimental campaign is primarily 

focused on the commercial designation of the components. This circumstance - apart from any 

publisher's policy issues - is not satisfactory from the technical standpoint. The authors, instead 

of the commercial designation are recommended to report in detail the technical features and 

characteristics of the acquisition system and sensors. In particular, presence of anti-aliasing 

filters, sensitivity and full-range of the accelerometers, their technology and suitability for modal 

analysis - noise levels vs recorded accelerations -. On these specific aspects, the analysis of 

the records should confirm the acceptance of the measures in view of OMA processing.” 

Response:  

The authors agree with the reviewer that the technical features and characteristics of the 

instrumentation/ measurement and experimental campaign might not be adequately addressed in the 

first draft. In the revised version, this issue was resolved and the commercial designation of the 

hardware was minimized.  

Sensor array 

The measurement grid for the dynamic test consists of 25 synchronized accelerometers to measure the 

acceleration responses of the deck, cables and the mast. These sensors were permanently installed on 

the bridge in order to monitor the dynamic behavior of the bridge and to identify the modal parameters.  

It is worth noting that during the instrumentation, the traffic lanes in Great Western Highway under the 

bridge were partially closed; thus, no roving of the sensors were considered due to the access limitations.   

24 uni-axial sensors were placed under the deck at the intersection of the girders and floor beams to 

measure the vertical acceleration of the bridge, (see Figure 10). These sensors are low noise 

accelerometers with model number 2210-002 manufactured by Silicon Design, Inc (2010). The 2210-

002 is a sensor that incorporates a 1210L micro-machined capacitive accelerometer. This model can 

detect accelerations within the range of ± 2 g with an output noise of 10 μg/√Hz and sensitivity of 2,000 

mV/g.  
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The under deck accelerometers were adhered to the lightly sanded and cleaned paint using adhesive 

tape and covered with elastic joint sealant. All installations were coated with paint to reduce corrosion 

and improve the visual amenity of the installation. Figure 11 shows one of these sensors mounted under 

the girder before coating.  

 

Figure 10. The accelerometer array on the deck. 

 

 

Figure 11. Illustration of the attached uni-axial accelerometer under the girder. 

Another four 2210-002 uni-axial accelerometers were mounted on the cables on the eastern side of the 

bridge. These sensors measure the acceleration response of the cables in the vertical plane orthogonal 

to the line of the stay. In addition, one tri-axial accelerometer (Silicon Designs 2460-002) was installed 

on top of the mast to measure the vertical, lateral and longitudinal acceleration responses of the tower.  

Data acquisition and measurement set up 

The signal conditioning and data logging software consist of an embedded PC and HBM Quantum‐X 

data logger to record data. This system provides an integrated and reliable device to log high quality 

data with 24bit resolution with bandwidth capability of 0 to 3 kHz. This hardware combines instrument 
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excitation, voltage regulation, digitization, anti‐aliasing filters and data logging. The logging software 

is Catman. The software collects all channels at a default sample rate of 600 Hz with an anti‐aliasing 

filter. The 3 dB cut-off frequency of the filter is 100 Hz and it is a fourth order Bessel low-pass filter 

with details shown in Figure 12.  The selection of this high sampling frequency in the system is solely 

to meet the requirements of other research activities on this bridge i.e. Bridge-Weigh-in-Motion 

(BWIM) and tensor analysis. It should be noted that a dense array of strain gauges, timely synchronized 

with the accelerometers, have been installed under the deck in this bridge which is out of the scope of 

this paper (Kalhori et al. 2017). Moreover, according to the initial finite element modeling some modes 

around 60 Hz were observed in this bridge, and this high sampling rate was selected to make accurate 

identification of these high frequency modes possible. However, in this study, the frequency range of 

interest is only up to 13 Hz and no effort has been made to extract the higher frequency modes.    
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Figure 12. Details of the Bessel low-pass filter. 

 

For the purpose of identifying the modal properties of the bridge under operational conditions and 

consequently building time histories of modal parameters, the dynamic monitoring system continuously 

records the vibration response of the bridge and it produces a file with acceleration time series per 10 

minutes. A total number of 144 files is generated per day. 360,000 samples are acquired for each channel 

for a 10-minute-long acceleration signal. The measured data are continuously transferred over a 4G 

cellular network to the database.  

Figure 13 (a) illustrates typical acceleration time signal obtained from a 10-minute file from channel 

A7. Light traffic flow over the bridge is evident from this figure. Typical ambient part of the response, 

once no vehicle is traveling over the bridge i.e. the first 16.67 seconds (≈ 0.3 min) is illustrated in Figure 

13 (b). As seen, the vibration of the bridge with its first natural frequency is quite obvious in the 

acceleration response.  

22 days of monitoring data, continuously acquired from the 1st of November until the 22nd of 

November 2016 are used in this paper for the purpose of operational modal analysis. This selection was 

only made due to the availability of data in this time period. For each day, three files were considered. 

The files were selected from different times within 24 hours including midnight, and rush traffic hours. 

This provides a total number of 66 10-minute-files for our investigations. 
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 (a) (b) 

 

Figure 13. (a) Typical 10-minutes acceleration time history including response as a result of passing traffic, (b) 

typical ambient part of the response while there is no vehicle on the bridge. 

 

Preprocessing and parameters of the algorithm 

 

The analysis of the experimental data involved initial pre-processing operations to eliminate the offset 

and to ensure there is no spike or unreasonable noise in the signals. The entire 10-minute acceleration 

response was adopted for the analysis. This includes 360,000 data points from each channel. A Hanning 

window was applied to the time signals to minimize leakage. Parameter 𝑖, was selected to be 100 and a 

maximum model order of 160 was considered to construct the stabilization diagram.  

In a separate study, the time signals were decimated with a factor of 5 which resulted in 72,000 samples 

from each channel. Decimation of the signals can help to enhance the ability of the estimation process 

in identification of the lower frequency modes. However, it was realized that the results with and 

without decimation are quite similar, hence, the results obtained from the original time signals were 

only presented.   

 

 

Ambient 

Acceleration 
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Revised text: 

Please look at Section 4 in the revised paper.  

2.6 Reviewer 2 - Comment 6 

 “The duration of the acceleration records represents another key issue of the paper. Since 

the authors claim an automated identification of the modal parameters, it is really surprising 

that a so short time record (10 min) is referred. Apart from the reliability of the estimates 

related to this parameter, it is worth noting that the capabilities of an automated procedure 

should be assessed by means of a validation of the process in time. In other words, the 

authors are invited to better explain if the procedure is aimed at solving the problem of a 

single test or to be the core of long-term vibration based structural health monitoring system. 

If the latter is the case, stability accuracy and frequency of failed/missed identifications should 

be considered and discussed in the text.” 

Response: 

 

With all respect, the authors believe the duration of 10 minutes measurement is not too short as it 

provides 360,000 samples for each channel; also according to the literature on operational modal 

analysis of bridge structures, the duration of 10 minutes seems to be quite comparable.  According to 

(Cantieni. 2005) the length of time window should be 1000-2000 times the period of the structure’s 

fundamental mode; in our case, this number is 1200 which satisfies the recommended range. In the 

previously published works, a duration of three minutes with sampling frequency of 128 Hz has been 

adopted in (Whelan et al. 2009) to identify modal parameters of a highway bridge.  In a separate study 

by (Siringoringo and Fujino. 2008) the duration of 15 minutes has been considered for system 

identification of a suspension bridge from ambient vibration response. In another study, vibration 

analysis of a cable-stayed arch bridge has been performed by analyzing 16-minute vibration response 

under ambient excitation (Galvín and Domínguez. 2007). Finally, 250 seconds vibration response of a 
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cable-stayed bridge subject to wind-induced ambient vibration has been considered in (He et al. 2008) 

to extract the modal parameters. Hence, according to the previously reported research works on OMA 

for bridge structures, it is obvious that our data acquisition setting i.e. sampling frequency of 600 Hz 

and duration of 10 minutes is quite reasonable.  

The authors absolutely agree with the reviewer that the capability of the method has not been well 

assessed which was mainly due to the lack of data while the first draft of the paper was prepared.  The 

aim of the procedure is not a single test whereas it is a long-term vibration-based structural health 

monitoring system. This has been elaborated earlier in this report and the reviewer is kindly asked to 

look at the responses provided to: Reviewer 1 - Comment 4.  

2.7 Reviewer 2 - Comment 7 

“The results provided in Table 2, 3 & 4 show some criticism that need careful consideration. 

Unfortunately, the format of Figure 5 & 6, the graphical representation of the mode shapes 

(Fig. 7) do not enable the interested reader - at the moment this reviewer - to carry out a 

verification of the values collected in the above reported tables. A more detailed scaling of the 

frequency axis of the stabilization diagrams, a different scale and format of the modal shape 

plots could be more effective and significant. In principle, it is opinion of this reviewer that some 

words should be dedicated to the role of the cables and their dynamic interaction with the 

identification of the deck. This circumstance is by far more relevant since the bandwidth of the 

modes reported in Table 2 & 3 is not narrow. Then, the motivation of a so large number of 

identified modes should be provided, especially in a case like the one reported in the 

manuscript were missed identification often affects the primary modes (see Table 4, for 

instance).” 

Response: 

First of all, the authors accept that the presentation and discussion of the results in the first draft of the 

paper had a lot of problems and needed significant improvements. In the revised paper, all the analyses 

have been done from the scratch on new datasets that were not available while the first draft of the 
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paper was prepared. Details about all the changes made in the revised paper on data acquisition, 

measurement set-up, data analysis and results have been elaborated in responses to: Reviewer 1 - 

Comment 1, Reviewer 1 - Comment 4 and Reviewer 2 - Comment 5 which answer all the comments 

raised by the reviewer in this question.   

The reviewer is absolutely right. Basically, the cable-stayed bridges are low-damped structures 

experiencing high amplitude vibrations; the dynamic coupling between the cables and the bridge deck 

is an important and a very complex phenomenon which corresponds to occurrence of internal 

resonances between the global (deck-dominant) and local (cable-dominant) modes. This coupling might 

involve lateral bending and torsional motions of the deck together with the vertical and swinging 

motions of the cables. Although, there is not yet a complete knowledge of the mechanism behind this 

strong interaction, several potential causes have been considered such as wind/rain-induced excitations. 

According to our literature, the dynamic interaction between the cables and the deck/tower system 

associates with the appearance of several closely-spaced modes, involving different cable movements, 

but similar configurations of the deck vibration; this phenomenon can be clearly seen in the mode shapes 

presented in Figure 6 (Abdel-Ghaffar and Khalifa, 1991, Caetano et al. 2000, Caetano et al. 2008, 

Larose et al. 2003). 

 

2.8 Reviewer 2 - Comment 8 

“As damping estimates are concerned, see page 15 line 17-19, it is worth checking and 

referring to the paper http://dx.doi.org/10.3233/SAV-2010-0534 that appears to fit very well the 

context recalled by the authors.” 

Response: 

The authors agree with the reviewer’s comment that the suggested paper by Rainieri et al. (2010) 

(http://dx.doi.org/10.3233/SAV-2010-0534) is closely relevant to the context of page 15 line 17-19. This 

work provides thorough explanations on the high scatterings and variations observed in the identified 

http://dx.doi.org/10.3233/SAV-2010-0534
http://dx.doi.org/10.3233/SAV-2010-0534
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damping ratios for identical modes. Thus, the following revised texts are added for articulating the 

relevance between these findings by Rainieri et al. and the identification results presented in this 

manuscript. 

Revised text:  

Rainieri et al. (2010) suggested that the presence of inherent limitations or inaccuracies of data 

processing methodologies can both lead towards high variations in damping ratio estimates. 

Inappropriate selection of modal order for the stabilization diagram may also enlarge the scattering of 

damping ratio for each identified mode. 

2.9 Reviewer 2 - Comment 9 

“A detailed discussion of the outcomes of the AUTOMAC checks is recommended. Too high 

appear some values off the main diagonal in the absence of comprehensive analysis of the 

results (see the above comments).” 

First of all, the authors would like to emphasize that the procedures for calculating the MAC values in 

the first draft of the paper (please see Figure 7 in the first draft) has not been correctly addressed. The 

reason is that the MAC has been calculated using the modes identified from a single dataset only and it 

is evident that all the diagonal members have to be 1 which does not add any value. This problem has 

been resolved in the revised version as elaborated in response to Reviewer 1 - Comment 4. 

 

2.10 Reviewer 2 - Comment 10 

“It is not really clear the motivation of the missed manual identification reported in Table 2, 3 

and 4. Authors should well explain this circumstance that could be again strictly related to the 

answers to comments #5 and #6.” 

Response: 



                         Journal of Bridge Engineering- Response to reviewers 

39 

 

39 

With regards to the comment about the missed modes presented in Table 2, the reviewer is kindly asked 

to read through the response to Reviewer 1-Comment 3. Regarding Tables 3 and 4, the reviewer is also 

kindly asked to look at the response to Reviewer 1 - Comment 4. 

 

2.11 Reviewer 2 - Comment 11 

“Plots of the recorded acceleration time histories refer to different time durations (see comment 

#6) and miss the units on the vertical axis. On this subject, the authors should discuss in detail 

the motivation of the 600 Hz sampling frequency and the adoption of eventual data pre-

treatment before OMA processing (trend removal, decimation, windowing and so on).” 

Response: 

The authors have significantly modified the plots of acceleration responses and the units have been 

included.  

The selection of this high sampling frequency in the system is solely to meet the requirements of other 

research activities on this bridge i.e. Bridge-Weigh-in-Motion (BWIM) and tensor analysis. It should 

be noted that a dense array of strain gauges, timely synchronized with the accelerometers, have been 

installed under the deck in this bridge which is out of the scope of this paper. Moreover, according to 

the initial finite element modeling some modes around 60 Hz were observed in this bridge, and this 

high sampling rate was selected to make accurate identification of these high frequency modes 

possible. However, in this study, the frequency range of interest is up to 13 Hz and no effort has been 

made to extract the higher frequency modes.    

Please look at the response provided to Reviewer 2 - Comment 5 for all the details related to the pre-

processing of data.  

 



                         Journal of Bridge Engineering- Response to reviewers 

40 

 

40 

2.12 Reviewer 2 - Comment 12 

“A more detailed description of the dynamic tests carried out in the presence of vehicle crossing 

the bridge is recommended. Some basic information about the vehicles and their approach to 

the bridge (position, trajectories, crossing frequency, number of vehicle in the crossing line and 

so on). This should provide to the reader any useful information to explain the missed 

identification of some primary flexural modes of the deck. The above comments prevent the 

publication of the paper in the present form. Major revisions are consequently required.” 

Response: 

Please kindly look at the response provided to Reviewer 1 - Comment 4. 
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3. Reviewer III 

“The paper deals with the development of an automated Operational Modal Analysis (OMA) 

procedure to be used for modal based damage detection of civil structures. The originality of 

the proposed method is limited. Discussion and validation are not sufficient. I recommend to 

significantly revise the paper in order to make it eligible for publication. The following comments 

can provide guidance to strengthen the manuscript.” 

3.1 Reviewer 3 - Comment 1 

“The literature review is sufficient but it includes some inappropriate references. Moreover, it 

should be rearranged to highlight the novelty of the proposed method, which appears very 

similar to the one described in Ref. [16]. About the references, Ref. [9] does not deal with 

automated OMA: you can replace it (and Ref. [17] on pag. 15 line 18) with the following: Rainieri 

C., Fabbrocino G. Development and validation of an automated operational modal analysis 

algorithm for vibration-based monitoring and tensile load estimation. Mechanical Systems and 

Signal Processing, 60-61, 512-534, 2015. Moreover, I recommend to replace Ref. [19] and 

[20], which are just Ph.D. theses, with peer reviewed papers or books: for instance, you can 

replace Ref. [19] with Magalhaes F., Cunha A., Caetano E. Vibration based structural health 

monitoring of an arch bridge: from automated OMA to damage detection, Mechanical Systems 

and Signal Processing, 28, 212-228, 2012, and Ref. [20] with Farrar C.R., Worden K. Structural 

Health Monitoring: A Machine Learning Perspective, John Wiley & Sons Ltd., Chichester, UK, 

2013. Finally, I recommend to cite the following original paper: Magalhaes F., Cunha A., 

Caetano E. Online automatic identification of the modal parameters of a long span arch bridge, 

Mechanical Systems and Signal Processing, 23, 316-329, 2009, instead of Ref. [17], since that 

is definitely more appropriate and relevant to the discussion than Ref. [17].” 

 

 



                         Journal of Bridge Engineering- Response to reviewers 

42 

 

42 

Response: 

The authors agree with the reviewer’s comment that certain references are inappropriate for supporting 

the literature review. Regarding the references, reference #9 was replaced by Rainieri C. and Fabbrocino 

G., 2015. The work by Rainieri and Fabbrocino suits well in the context of this manuscript as it focuses 

on the implementation of SSI-Cov algorithm for automated modal identification with the 

implementation of clustering approaches. The authors also agree with the reviewer’s comment that 

referencing to the PhD theses #19 and #20 are ineffective as the focuses of the thesis are very much 

irrelevant from the development of automatic OMA algorithms. In conjunction with the comments from 

reviewer 2, reference #19 was replaced by a more relevant study on automated OMA and damage 

detection by Magalhaes et al. (2012) (doi: 10.1016/j.ymssp.2011.06.011). This work highlights the 

capabilities of utilizing automated OMA algorithms for mode tracking and damage identification over 

a 2-year period with the utilization of the Covariance driven Stochastic Subspace identification (SSI-

Cov) method. Comprehensive demonstration on the current progress on automated OMA is clearly 

revealed within this paper in support of the algorithm outlined in the authors’ manuscript. Thus the 

following revised text has been added to articulate the contribution of this work by Magalhaes et al. 

2012. 

 

Revised text:  

These methods are widely used for vibration-based SHM (Rainieri and Fabbrocino 2015; Magalhaes et 

al. 2012). The Covariance driven stochastic Subspace Identification (SSI-Cov) method was applied by 

Magalhaes et al. (2012) for monitoring the damage conditions of a bridge based on the identified modal 

characteristics over a 2-year period. The results demonstrate clear relationships between the damage 

states of the bridge and frequency shifts of the dominant vibration modes. 
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Response (continued): 

The original doctoral thesis cited in reference #20 is removed due to its low relevance with automated 

OMA. The author has considered replacing this reference by the following recommended book; Farrar 

C.R., Worden K. Structural Health Monitoring: A Machine Learning Perspective, John Wiley & Sons 

Ltd., Chichester, UK, 2013. This work introduces the applicability of widely applied machine learning 

approaches in the context of structural health monitoring. However, the primary focus of the authors’ 

manuscript is the development and application of an automatic algorithm for OMA, which is not closely 

relevant to the book. Therefore the original reference #20 was deleted from the manuscript. 

The authors agree with the reviewer that reference #17 in the original manuscript demonstrates a lack 

of focus in the field of automated OMA. Thus, reference #17 is replaced by the suggested paper; 

(Magalhaes F., Cunha A., Caetano E. Online automatic identification of the modal parameters of a long 

span arch bridge, Mechanical Systems and Signal Processing, 23, 316-329, 2009). The relevant sections 

in the text are modified in accordance to this work. This paper is a pioneer study for efficiently 

implementing the concept of hierarchical clustering for automatic OMA identification with SSI-Cov 

algorithm and the corresponding contribution is articulated in the following additional paragraph in the 

revised text. 

Revised text:  

In hierarchical clustering, each identified mode is linked based on the similarities in specific attributes 

such as natural frequency and mode shapes. The core concept of the automated algorithm with 

hierarchical clustering is that an automatic threshold is defined so that modes belong to the same set are 

separated into individual clusters and thus identified. There have been prior applications of hierarchical 

clustering on OMA with the SSI-Cov method where the algorithm has been demonstrated as efficient 

and effective in automatic modal identification (Reynders et al. 2012; Magalhaes et al. 2009). 
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3.2 Reviewer 3 - Comment 2 

“Section 2 is definitely useless in its current form: it should be expanded in order to include 

relevant information (for instance, it should discuss how the modal properties are finally 

estimated). Moreover, SSI-Cov and NExT-ERA are basically the same method, as remarked 

by several Authors in the literature. Thus, I recommend presenting the theoretical background 

of SSI-Cov only, and removing the fictitious distinction between the two methods. Finally, 

Equation (1) is inappropriate for two reasons: 1) it refers to input-output modal analysis instead 

of OMA; 2) it does not include the direct transmission matrix, even if it should be there taking 

into account the content of Section 4.” 

Response: 

In the revised paper, Section 2 was significantly improved and the detailed procedure of modal 

parameters identification was elaborated.  

With all respect, the authors do not agree with the reviewers’ comment that SSI-Cov and NExT-ERA 

are the same. Basically, the development of OMA in the time domain can be classified into three main 

approaches: (1) natural excitation technique (NExT) based approaches, (2) stochastic subspace 

identification (SSI) based approaches and (3) autoregressive moving average (ARMA) based 

approaches. In the original draft of the paper the first two approaches have been adopted. The basic idea 

of NExT is that the cross- correlation function of two random responses of the structure that result from 

an unknown white noise excitation can be expressed as a summation of decaying sinusoids. These 

sinusoids have the same characteristics as the system’s impulse response function (IRF). Hence, time 

domain modal identification techniques which are typically applied to IRF (i.e. Ibrahim time domain, 

eigenvalue realization algorithm, polyreference complex exponential), can be applied to these cross-

correlation functions to estimate modal parameters (Karbhari & Ansari, 2009). In this study NExT was 

paired with eigenvalue realization algorithm (ERA). The variables in this procedure include the shape 

of the Hankel matrices (number of lags used) and the number of reference channels (Brownjohn, 

Magalhaes, Caetano, & Cunha, 2010). The stochastic subspace identification (SSI) based methods are 
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based on the concept of system realization to identify the system matrices. In the covariance-driven 

stochastic subspace identification method (SSI-Cov), adopted in this study, stochastic realization is 

calculated by performing the decomposition of the covariance matrix of the response instead of the 

decomposition of IRF. Thus this procedure is similar to NExT-ERA method, however, they are not the 

same (Karbhari & Ansari, 2009). The input parameters are also different with the ones in ERA. SSI-

Cov algorithm requires the user to choose an important setting which is the number of lines of the 

covariance function to build the Toeplitz matrix (Brownjohn & Carden, 2007). According to the above, 

although two methods are similar, they are not the same and it is expected that application of these two 

methods on the same dataset provides different results as also evident from the literature; for instance, 

in (Brownjohn, Magalhaes, Caetano, & Cunha, 2010) a maximum difference of 8.4% and 2.6% has 

been, respectively, reported for the identified vertical and torsional modes and the lateral modes 

obtained from these two approaches. However, the authors decided to eliminate the NExT-ERA from 

the revised paper and only focused on SSI-Cov algorithm.  

As for the Equation (1),  it was slightly modified and the current form is as follows, 

 

      𝑧(𝑘 + 1) = 𝑨𝑧(𝑘) + 𝑤(𝑘)

              𝑢(𝑘) = 𝑪𝑧(𝑘) + 𝑣(𝑘)               
 

 

 

This equation describes an output-only dynamic system using a stochastic state-space model (Rainieri, 

C. et al. 2007, Peeters and Roeck, 1999, Hermans and Auweraer, 1999). Basically, the idea of OMA is 

to use output-only or stochastic system identification algorithms, in which the unknown ambient loading 

conditions are modelled as stochastic quantities with unknown parameters but with known behaviour 

(for instance, white noise time series with zero mean and unknown covariances). The eigenvalues of 

the state transition matrix 𝑨 characterize the dynamic behaviour of a physical system. By computing 

the state transition matrix 𝑨 and measurement matrix 𝑪, it is possible to obtain the modal parameters of 

the system. The theoretical problem considered here is the estimation of the modal parameters from a 

given discrete-time output vector {𝑢} which is modelled by a discrete-time stochastic state-space as 

shown in Equation (1). Please also look at the response provided to Reviewer 2 - Comment 2.  
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Revised text: 

3.3 Reviewer 3 - Comment 3 

“The method presented in Section 3 basically resembles the one described in Ref. [16]. The 

novelty is limited to the approach to select the threshold in hierarchical clustering. The 

discussion of the method is obscure in several parts. For instance, the MEL index defined by 

Equation (10) is based on the input matrix B, which cannot be computed in the OMA 

framework. In addition, when the second application of k-means (right after the hierarchical 

clustering) is discussed, even if k is set equal to 2, the Authors declare that "a number of 

additional empty sets are added". What is the role of these empty sets? Is the number of 

identified clusters larger than 2? Lines 18-20 on page 10 seem to confirm that k-means 

clustering with k>2 is applied. Please, add a flowchart of the proposed algorithm.”  

Please look at the response provided to the Reviewer 1- Comments 1, 3 and 4 for more details on the 

new analyses performed. 

In the covariance driven stochastic subspace identification algorithm (SSI-Cov) utilized in this work, 

the input matrix [𝐵] is equivalent to the state-output covariance matrix [𝐺] represented in the following 

reversed controllability matrix according to Rainieri and Fabbrocino (2014a). 

[𝛤𝑖] = [[𝐴]𝑖−1[𝐺]   ∙ ∙ ∙   [𝐴][𝐺]  [𝐺]] 

This reversed controllability matrix along with the observability matrix form the block Toeplitz matrix 

[𝑇1|𝑖] can be identified directly based on the output vibration responses using SSI-Cov algorithm, with 

the details shown in Chapter 4.5.3.1 by Rainieri and Fabbrocino (2014a). In addition, the block Toeplitz 

matrix can be represented by the following equations based on singular value decomposition: 

[𝑇1|𝑖] = [𝑂𝑖][𝛤𝑖] = [𝑈1][𝛴1][𝑉1]
𝑇 

[𝑂𝑖] = [𝑈1][𝛴1]
1/2 

[𝛤𝑖] = [𝛴1]
1/2[𝑉1]

𝑇 
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The matrix [𝐺] or matrix [𝐵] is the last 𝑙 columns of [𝛤𝑖], where 𝑙 is the number of sensor measurements 

available from the vibration responses. For more clarification, please also look at the response provided 

to Reviewer 2 - Comment 2.  

The authors agree that the descriptions in lines 18-20 on page 10 of the original manuscript are 

misleading. During the final stage of the automatic algorithm, the k-means clustering applied; the 

number of clusters is always equal to 2 where one cluster represents the real modes and the other cluster 

represents the spurious modes. When the authors wrote “a number of additional empty sets are added”, 

the authors mean that the empty sets are added to the overall sample before the k-means clustering is 

applied. For example, if four clusters are to be analyzed by the k-means clustering which contain 100, 

75, 55 and 25 poles, respectively, the number of empty clusters added are equal to the number of clusters 

with poles greater than one fifth of the largest cluster so that four empty sets are added. Thus there will 

be a total of eight clusters or sets where four of them will be empty before the k-means clustering is 

applied to determine the final identified clusters that represent real modes. The purpose of adding these 

empty sets is to avoid any physical (real) modes being accidentally deleted during the k-means 

clustering. For the above example, assume that the first three clusters with 100, 75 and 55 poles 

represent real modes and the final cluster with 25 poles represents spurious mode. If no empty set is 

added, the k-means clustering will classify the first two clusters with 100 and 75 poles as real modes 

however, the third real mode represented by the cluster with 55 poles is misclassified as spurious mode. 

On the other hand, if four empty sets are added, then the k-means clustering will identify the first three 

clusters with 100, 75 and 55 poles as real and the other ones as spurious so that the results are the same 

as predicted. Therefore it is clearly demonstrated that with the addition of the empty sets, the 

performance of the algorithm is enhanced. A flowchart for the proposed algorithm is shown in the 

following figure: 
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Figure 14. Illustration of SSI-Cov algorithm flowchart adopted in this work. 

 

3.4 Reviewer 3 - Comment 4 

 

“Please, explain why an unnecessarily high sampling frequency (600 Hz) has been adopted. 

Based on Figure 5 and Figure 6, I assume that data have been significantly decimated. If so, 

please add details about filtering and discuss the reliability of the last identified mode.” 

Please kindly look at the response provided to Reviewer 2 - Comment 5. 

3.5 Reviewer 3 - Comment 5 

“Even if I do not agree with the distinction between NExT-ERA and SSI-Cov, some 

inconsistencies can be identified by comparing Figures 5-6 and Table 2: for instance, the 

modes at 3.63 Hz and 3.68 Hz seem to be identifiable by manual identification (Figure 5a) 

while they are not identified by the automated OMA method (Figure 5b); the same happens for 

the modes at 5.71 Hz and 6.04 Hz. Moreover, the Authors should explain why the application 
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of two methods (that are actually the same) to the same dataset can provide very different 

results in terms of natural frequencies as well as damping ratios, in particular for the 

fundamental modes (see Table 2).” 

Response: 

The authors agree with the reviewer’s comment that the modes at 3.63 Hz and 3.68 Hz and the modes 

at 5.71 Hz and 6.04 Hz were somehow visually identifiable from the uncleaned stabilization diagram 

presented in Figure 5 (a) of the original draft of the paper. It is worth mentioning that these modes were 

identified by the automated algorithm as well. However, because of the large scale of the horizontal 

axis (0 Hz to 60 Hz) in Figure 5 (b), closely-spaced modes might not be clearly visible to the reader. 

Please note that in the revised manuscript, we have replaced Table 2 and performed further 

investigations using new datasets.  We kindly ask the reviewer to take a look at response to Reviewer 

1- Comment 3. 

In addition, based on the reviewer’s suggestion, we have removed all the analyses performed by the 

ERA method and only have presented the results of SSI-Cov method in the revised manuscript. 

 

3.6 Reviewer 3 - Comment 6 

“MAC between the mode shapes estimated by the manual OMA and the automated OMA are 

missing but they are necessary to verify how modes are coupled for comparison, in particular 

in the presence of closely spaced modes as in the proposed application.” 

Response: 

The mode shapes identified by the automated algorithm and the manual algorithm with the tolerance 

values of 0.010, 0.100, and 0.99, respectively, for 𝑡𝑓, 𝑡𝜉 and MAC were used for calculation of MAC. 

The generated MAC matrix is shown in Figure 14. Since, the manual algorithm did not identify the 

ninth mode, the MAC was computed for the first eight modes. The horizontal axis represents the modes 

obtained from the automated algorithm and the vertical axis shows the modes identified by the manual 
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algorithm. As seen, the diagonal MAC values are very high (>0.9) representing the high correlation 

between the modes obtained from the both methods. However, the closely-spaced modes 2 and 3 and 

modes 6 and 7 show some coupling through the off-diagonal MAC values. In general, this figure 

highlights the consistency of the identified modes between two methods. 

 

Figure 15. Orthogonality check using MAC between the identified modes from the manual and automated 

algorithms. 

3.7 Reviewer 3 - Comment 7 

“Please, explain what you mean with the sentence: "The blue curves shown in the figures are 

the power spectral density functions calculated using the singular values of the acceleration 

measurements from all 24 channels on the deck of the bridge". It is probably incorrect.” 

Response: 

The authors agree with the reviewer that the message has not been properly conveyed. The blue curve 

is indicating the first singular value of SVD (Singular Value Decomposition) of spectral density matrix 

at each frequency coordinate. This provides an estimate of the auto spectral density of the SDOF system 

in modal coordinates and the peak in the SVD curve is expected to be a structural mode.  

 

3.8 Reviewer 3 - Comment 8 
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“Section 5.2 is too short and it does not add further information, while retaining the main 

problems reported for Section 5.1. Thus, Section 5.2 can be removed, while Section 5.1 should 

be extended to better demonstrate the validity of the method.” 

Response: 

Section 5.2 in the first draft has been eliminated. Please kindly look at the response provided to Reviewer 

1 - Comment 1 and Reviewer 1 - Comment 4. Also, look at Sections 4 and 5 in the revised paper.  

  Reviewer 3 - Comment 9 

“Additional comments: the expression "dominant modal feature" to indicate modal properties 

is inappropriate (line 5, pag. 2). Hermitian already include transpose, so please replace 

"Hermitian transpose" with "Hermitian" on pag. 6 line 10. Replace "donates" with "denotes" on 

line 5 pag. 8.” 

Response: 

These mistakes and typos were modified in the revised paper.  
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