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ABSTRACT. This paper considers a financial market with heterogeneous agents hav-
ing CRRA power utility functions. To characterise asset pricing and the evolution in
population and wealth dynamics, we introduce a population weighted average wealth
measure. Using this measure, we develop an adaptive model of asset price and wealth
dynamics. Some numerical simulations are included to illustrate the evolution of the
wealth dynamics, market behaviour and market efficiency within the framework of
heterogeneous agents.
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1. INTRODUCTION

The paradigm of the representative agent is built on the assumption that all agents are
homogeneous with regard to their preferences, their expectations and their investment
strategies. However, as already argued by Keynes in the 1930s, agents do not have
sufficient knowledge of the structure of the economy to form correct mathematical
expectations that would be held by all agents. Recent literature involves some depar-
ture from the classical assumptions of strict rationality and unlimited computational
capacity, and introduces heterogeneity and bounded rationality of agents. In financial
markets, individuals are imperfectly rational. They seek to learn about the market from
their trading outcomes, as a result the market may fluctuate around the fully rational
equilibrium. A number of recent models use this approach to characterize the inter-
actions of heterogeneous agents in financial markets (e.g. Frankel and Froot (1987),
Day and Huang (1990), Chiarella (1992), Lux (1995), Brock and Hommes (1997,
1998), Bullard and Duffy (1999), Farmer (1999), Farmer and Lo (1999), Franke and
Nesemann (1999), Lux and Marchesi (1999) LeBaron (2000), Hommes (2001) and
Chiarella and He (2002b, 2002c),).

Brock and Hommes (1997, 1998) propose to model economic and financial markets
as an adaptive belief system (ABS), which is essentially an evolutionary competition
among trading strategies. A key aspect of these models is that they exhibit expectations
feedback and adaptiveness of agents. Agents adapt their beliefs over time by choosing
from different predictors or expectations functions, based upon their past performance
as measured by realized profits. By assuming that agents have the standard CARA util-
ity function, the evolutionary model generates endogenous price fluctuations with sim-
ilar statistical properties to those observed in financial markets. The model of Brock
and Hommes has been extended in Chiarella and He (2002c) by allowing agents to
have different risk attitudes and different expectation formation schemes for both first
and second moments of the price distribution.

The use of CARA utility functions has been standard in much of asset pricing the-
ory. It has the characteristic of leading to demands that do not depend on the agents’
wealth, but this dependence turns out to be quite crucial in developing a model exhibit-
ing a growing price trend that is observed in the market. A CRRA utility function is
sufficient to capture the interdependence of price and wealth dynamics. The selection
of power utility function in the model developed here is based on a number of experi-
mental and empirical studies, as summarized in Levy, Levy and Solomon (2000) that,
“it is reasonable to assume decreasing absolute risk aversion (DARA) and constant
relative risk aversion (CRRA)” (p.65). They show that the only utility function with
DARA and CRRA property is the power utility function, among which, the logarithmic
utility function is a special case.

Levy and Levy (1996) and Levy, Levy and Solomon (1994) consider a model where
investors’ optimal decisions depend on their wealth (as a result of an underlying CRRA
utility function) and both price and wealth processes are intertwined and thus growing.
Using numerical simulations and comparing the stock price dynamics in models with
homogeneous and heterogeneous expectations, they conclude that the homogeneous
expectation assumption leads to a highly inefficient market with periodic (and therefore
predictable) booms and crashes while introduction of heterogeneous expectations leads
to much more realistic dynamics and more efficient markets.
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Chiarella and He (2001) develop a theoretical model of interaction of portfolio de-
cisions and wealth dynamics with heterogeneous agents having logarithmic CRRA
utility function. A growth equilibrium model of both the asset price and wealth is
obtained. To characterize the interaction of heterogeneous agents in financial markets
and conduct a theoretical analysis, stationary models in terms of return and wealth
proportions (among different types of agents) are then developed. As a special case
of the general heterogeneous model, these authors consider models of homogeneous
agents and of two heterogeneous agents without switching of strategies. It is found
that, in these cases, the heterogeneous model can have multiple steady states and the
convergence to the steady states follows an optimal selection principle—the return and
wealth proportions tend to the steady state which has relatively higher return. The
model developed displays the volatility clustering of the returns and the essential char-
acteristics of the standard asset price dynamics model of continuous time finance in
that the asset price is fluctuating around a geometrically growing trend.

To characterize the profitability of popular trading strategies, such as the momen-
tum and contrarian trading strategies, we extend the model in Chiarella and He (2001)
to allow agents to switch amongst different types of trading strategies and develop a
simplified version of adaptive model. Under the assumption on the wealth dynamics
of heterogeneous agents that, when agents switch from old strategy to new strategy,
they agree to accept the average wealth level of the agents using the new strategy, the
paper shows the capability to characterize some of the existing evidence on some of
the anomalies observed in financial markets, including the profitability of momentum
trading strategies over short time intervals and of contrarian trading strategies over long
time intervals. This simplified assumption is aimed to concentrate on the profitability
of particular trading strategies, not on the effect of the agents’ wealth evolution on the
equilibrium price. However, to characterize the equilibrium price and wealth evolution
among heterogeneous agents, this assumption is rather unrealistic. The model devel-
oped in this paper is based on a more realistic assumption that, whenever a new agent
switches from one group to another group, he/she brings his/her current wealth to the
second group, all agents within the group agree to share their wealth.1

The key characteristics of this modelling framework are the adaptiveness, the het-
erogeneity and the interaction of the economic agents. The heterogeneity is expressed
in terms of different views on expectations of the distribution of future returns on the
risky asset. The model is developed in the discrete time setting of standard portfolio
theory in that agents are allowed to revise their portfolios over each time interval, the
new element being the heterogeneity of agents and the way in which they form expec-
tations on the return distributions. Another important new element of the framework
developed here is that it is able to generate an asset price evolution that has the char-
acteristics of the geometric Brownian motion behavior observed in financial markets,
viz the asset price is moving stochastically around a growing trend.

The paper is organised as follows. A general adaptive model with heterogeneous
agents is developed in the following section. Some numerical examples are then in-
cluded in Section 3 to illustrate the asset price, wealth dynamics.

1We would like to thank Prof. Thomas Lux to draw our attention to this crucial distinguish between
these two assumptions.
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2. ADAPTIVE MODEL WITH HETEROGENEOUS AGENTS

This section is devoted to establishing an adaptive model of asset price and wealth
dynamics with heterogeneous beliefs among agents. The framework of the adaptive
model developed here is similar to the one in Levy and Levy (1996) and Chiarella and
He (2001, 2002a). Our hypothetical financial market contains two investment choices:
a stock (or index of stocks) and a bond. The bond is assumed to be a risk free asset
and the stock is a risky asset. For the standard portfolio optimization problem, a model
in terms of price and wealth is established first in this section. In order to characterise
the evolution of agent population and wealth dynamics, a population weighted average
wealth measure is introduced. Consequently the equilibrium model is reduced to a
stationary model in terms of the return on the risky asset and the weighted average
wealth proportions among heterogeneous investors. Based on certain performance (or
fitness) measures, an adaptive mechanism is finally introduced, leading to the general
adaptive model. The final model includes the dynamics of both the asset price and
wealth and it characterizes three important and related issues in the study of financial
market: heterogeneity, adaptiveness, and interaction of agents.

2.1. Notation. Denote

pt : Price (ex dividend) per share of the risky asset at time t;

yt : Dividend at time t;

R : Risk free return with risk free rate r = R − 1;

N : Total number of shares of the risky asset;

H : Total number of investors;

Ni,t : Number of shares acquired by agent i at time t;

Wi,t : Wealth of agent i at time t;

Wi,0 : Initial wealth of agent i;

πi,t : Proportion of wealth of agent i invested in the risky asset at time t;

ρt : The return on the risky asset at period t.

It is assumed that agents have the power utility function with different risk aversion
coefficients, that is,

Ui(W ) =
W 1−γi − 1

1 − γi

, γi > 0 (i = 1, 2, · · · , H).

Following the above notation, the return on the risky asset at period t is then defined
by2

ρt =
pt − pt−1 + yt

pt−1

. (2.1)

2The return can also be defined by the difference of logarithms of the prices. It is known that the
difference between these two definition becomes smaller as the time interval is reduced (say, from
monthly to weekly or daily).
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2.2. Portfolio Optimization Problem of Heterogeneous Agents. Following the stan-
dard portfolio optimization approach, the wealth of agent (or investor) i at time period
t + 1 is given by

Wi,t+1 =(1 − πi,t)Wi,tR + πi,tWi,t(1 + ρt+1)

=Wi,t[R + πi,t(ρt+1 − r)]. (2.2)

As in Brock and Hommes (1998) and Levy and Levy (1996), a Walrasian scenario is
used to derive the demand equation, i.e., each trader is viewed as a price taker and the
market is viewed as finding (via the Walrasian auctioneer) the price pt that equates the
sum of these demand schedules to the supply. That is, the agents treat the period t price,
pt, as parametric when solving their optimisation problem to determine πi,t. Denote
by Ft = {pt−1, · · · ; yt, yt−1, · · · } the information set3 formed at time t. Let Et, Vt be
the conditional expectation and variance, respectively, based on Ft, and Ei,t, Vi,t be the
“beliefs” of investor i about the conditional expectation and variance. Then it follows
from (2.2) that

Ei,t(Wi,t+1) = Wi,t[R + πi,t(Ei,t(ρt+1) − r)],
Vi,t(Wi,t+1) = W 2

i,tπ
2
i,tVi,t(ρt+1).

(2.3)

Consider investor i, who faces a given price pt, has wealth Wi,t and believes that the
asset return is conditionally normally distributed with mean Ei,t(ρt+1) and variance
Vi,t(ρt+1). This investor chooses a proportion πi,t of his/her wealth to be invested in
the risky asset so as to maximize the expected utility of the wealth at t+1, as given by

max
πi,t

Ei,t[U(Wi,t+1)].

It follows that4 the optimum investment proportion at time t, πi,t is given by

πi,t =
Ei,t(ρt+1) − r

γiVi,t(ρt+1)
. (2.4)

Heterogeneous beliefs are introduced via the assumption that

Ei,t(ρt+1) = fi(ρt−1, · · · , ρt−Li
), Vi,t(ρt+1) = gi(ρt−1, · · · , ρt−Li

) (2.5)

for i = 1, · · · , H , where Li are integers, fi, gi are some deterministic functions which
can differ across investors. Under this assumption, both Ei,t(ρt+1) and Vi,t(ρt+1) are
functions of the past prices up to t− 1, which in turn implies the optimum wealth pro-
portion πi,t, defined by (2.4), is a function of the history of the prices (pt−1, pt−2, · · · )5.

3Because of the Walrasian scenario, the hypothetical price pt at time t is included in the information set
to determine the market clearing price. However, agents form their expectations by using the past prices
up to time t − 1.
4See Appendix A.1 in Chiarella and He (2001) for details.
5In Levy and Levy (1996), the hypothetical price pt is included in the above conditional expectations
on the return and variance. In this case, the market clearing price is solved implicitly and is much more
involved mathematically. The approach adopted here is the standard one in deriving the price via the
Walrasian scenario and also keeps the mathematical analysis tractable. A similar approach has been
adopted in Brock and Hommes (1997), (1998) and Chiarella and He (2002c). Of course other market
clearing mechanisms are possible, e.g., a market-maker. It turns out that the type of market clearing
mechanism used does affect the dynamics, on this point see Chiarella and He (2002b).
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2.3. Market Clearing Equilibrium Price—A Growth Model. The optimum pro-
portion of wealth invested in the risky asset, πi,t, determines the number of shares at
price pt that investor i wishes to hold:

Ni,t =
πi,tWi,t

pt

.

Summing the demands of all agents gives the aggregate demand. The total number
of shares in the market, denoted by N , is assumed to be fixed, and hence the market
clearing equilibrium price pt is determined by

H∑
i=1

Ni,t =
H∑

i=1

πi,tWi,t

pt

= N,

i.e.,
H∑

i=1

πi,tWi,t = Npt. (2.6)

Thus, equations (2.2) and (2.6) show that, in this model, as in real markets, the equi-
librium price pt and the wealth of investors, Wt ≡ (W1,t, · · · ,WH,t), are determined
simultaneously. The optimum demands of agents are functions of the price and their
wealth. Also, as observed in financial markets, the model implies that both the price
and the wealth are growing processes in general.

2.4. Adaptiveness and Population Distribution. We focus on a simple case where
all the agents can be grouped into two types in terms of their risk aversion coefficient
and conditional expectations of mean and variance of returns of the risky asset. That is,
within each group, all the agents have the same risk aversion coefficient and follow the
same expectation schemes on the conditional mean and variance of the return ρt+1, and
hence the optimum wealth proportion (πi,t) invested in the risky asset for the agents
are the same. Let group j have �j,t agents at time t with j = 1, 2. Then �1,t + �2,t = H .
Denote by nj,t the proportion of the number of agents in group j, at time t, relative to
the total number of the investors, H , that is,

nj,t = �j,t/H, for j = 1, 2, n1,t + n2,t = 1.

Some simple examples on return and wealth dynamics when proportions of different
types of agents nj,t are fixed over time are given in Chiarella and He (2001). However,
this is a highly simplified assumption and it would be more realistic to allow agents to
adjust their beliefs from time to time, based on some performance or fitness measures,
as discussed later. As a consequence, the proportions of different types of agents
become endogenous state variables. Therefore (n1,t, n2,t) measures the population
distribution among two different types of heterogeneous agents. The change in the
distribution over time can be used to measure herd behavior among heterogeneous
agents, in particular, during highly volatile periods in financial markets.

2.5. A Population Weighted Average Wealth Measure and It’s Dynamics. By as-
suming the adaptiveness of agents’ behavior, agents may switch among different groups
from time to time. To track the wealth evolution of each individual agent is certainly
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an interesting and important issue, but is rather a difficult problem within the current
framework. We make following simplified assumption:

(H1). Whenever a new agent switches from one group to another group, he/she brings
his/her current wealth to the second group, all agents within the group agree to
share their wealth.

Under this assumption, we introduce a population weighted average wealth measure
to characterise and compare the wealth evolution for both groups. More precise con-
struction of such measure is given as follows.

By the notation introduced above, the agents are distributed according to (n1,t−1, n2,t−1)
and (n1,t, n2,t) at time t − 1 and t, respectively. Note that

n1,t + n2,t = n1,t−1 + n2,t−1 = 1

and
�1,t = Hn1,t, �2,t = Hn2,t.

Let W̄j,t be the average wealth of agents within group j at time t, so that �j,tW̄j,t gives
the total wealth of group j for j = 1, 2. Following from (2.2), for group j, formed at
time period t − 1, the average wealth of agents at time t is given by

W̄j,t = W̄j,t−1[R + π̄j,t−1(ρt − r)]. (2.7)

Without loss of generality, we assume that n1,t ≥ n1,t−1. Then �1,t ≥ �1,t−1 and
�2,t ≤ �2,t−1. Among �1,t, the number �1,t−1 of agents come from the group 1, and the
rest �1,t − �1,t−1 come from the group 2. Therefore the total wealth of group 1 at time
t, �1,tW̄1,t is generated by �1,t−1 agents from the whole group 1 and �1,t − �1,t−1 agents
from group 2, formed at t − 1. By (2.7), this total wealth of group 1 at time t is given
by

�1,tW̄1,t =[�1,t−1 + (�1,t − �1,t−1)]W̄1,t

=�1,t−1W̄1,t−1[R + π̄1,t−1(ρt − r)]

+ (�1,t − �1,t−1)W̄2,t−1[R + π̄2,t−1(ρt − r)]. (2.8)

For group 2, as �2,t ≤ �2,t−1, the total wealth at time t is generated by the total wealth
of �2,t−1 agents from group 2, deducted by the total wealth of �2,t−1 − �2,t agents from
group 1, formed at time t − 1, that is,

�2,tW̄1,t =[�2,t−1 − (�2,t−1 − �2,t)]W̄1,t

=�1,t−1W̄2,t−1[R + π̄2,t−1(ρt − r)]

+ (�2,t − �2,t−1)W̄1,t−1[R + π̄1,t−1(ρt − r)]. (2.9)

Define w̄j,t as the average wealth proportion of group j weighted by population
within the group at time t, that is,⎧⎪⎨

⎪⎩
ω̄1,t = �1,tW̄1,t

�1,tW̄1,t+�2,tW̄2,t
,

ω̄2,t = �2,tW̄2,t

�1,tW̄1,t+�2,tW̄2,t
,

(2.10)

We then have the following result on the evolution of the weighted wealth measure.
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Lemma 2.1. Under the assumption (H1), the weighted average wealth levels (w̃1,t, w̃2,t)
evolve according to⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ω̄1,t =
ω̄1,t−1[R+π̄1,t−1(ρt−r)]+

(
1− n2,t

n2,t−1

)
ω̄2,t−1[R+π̄2,t−1(ρt−r)](

2− n1,t
n1,t−1

)
ω̄1,t−1[R+π̄1,t−1(ρt−r)]+

(
2− n2,t

n2,t−1

)
ω̄2,t−1[R+π̄2,t−1(ρt−r)]

ω̄2,t =

(
1− n1,t

n1,t−1

)
ω̄1,t−1[R+π̄1,t−1(ρt−r)]+ω̄2,t−1[R+π̄2,t−1(ρt−r)](

2− n1,t
n1,t−1

)
ω̄1,t−1[R+π̄1,t−1(ρt−r)]+

(
2− n2,t

n2,t−1

)
ω̄2,t−1[R+π̄2,t−1(ρt−r)]

.

(2.11)

Proof. From the current notation, the total wealth Wt at time t is given by

Wt = �1,tW̄1,t + �2,tW̄2,t,

which, by use of (2.10), can be seen to evolve according to

Wt = �1,tW̄1,t + �2,tW̄2,t

= �1,t−1W̄1,t−1 [R + π1,t−1(ρt − r)] + �2,t−1W̄2,t−1 [R + π2,t−1(ρt − r)]

+
�1,t − �1,t−1

�2,t−1

�2,t−1W̄2,t−1 [R + π̄2,t−1(ρt − r)]

+
�2,t − �2,t−1

�1,t−1

�1,t−1W̄1,t−1 [R + π̄1,t−1(ρt − r)]

= Wt−1 [ω̄1,t−1 (R + π̄1,t−1(ρt − r)) + ω̄2,t−1(R + π̄2,t−1(ρt − r))

+

(
1 − �1,t

�1,t−1

)
ω̄1,t−1 (R + π̄1,t−1(ρt − r))

+

(
1 − �2,t

�2,t−1

)
ω̄2,t−1 (R + π̄2,t−1(ρt − r))

]

= Wt−1

[(
2 − �1,t

�1,t−1

)
ω̄1,t−1 (R + π̄1,t−1(ρt − r))

+

(
2 − �2,t

�2,t−1

)
ω̄2,t−1 (R + π̄2,t−1(ρt − r))

]
. (2.12)

Following from (2.8), (2.9), and (2.10),

�1,tW̄1,t = Wt−1

[
ω̄1,t−1[R + π̄1,t−1(ρt − r)]

+

(
1 − �2,t

�2,t−1

)
ω̄2,t−1[R + π̄2,t−1(ρt − r)]

]
, (2.13)

and

�2,tW̄2,t = Wt−1

[
ω̄2,t−1 (R + π̄2,t−1(ρt − r))

+

(
1 − �1,t

�1,t−1

)
ω̄1,t−1 (R + π̄1,t−1(ρt − r))

]
. (2.14)

Then equations (2.12)-(2.14) lead to the result.
�
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2.6. Market Equilibrium Return. With the help of the population weighted average
wealth measure, we are able to obtain the market equilibrium return ρt of the risk asset.

Lemma 2.2. Under the assumption (H1), the market equilibrium rate of return of the
risky asset satisfies

ρt = r +
F

G
, (2.15)

where

F = (αt − R)[ω̄1,t−1π̄1,t−1 + ω̄2,t−1π̄2,t−1]

+ R

[
(π̄1,t + π̄2,t) − n1,t

n1,t−1

π̄2,tω̄1,t−1 − n2,t

n2,t−1

π̄1,tω̄2,t−1

]
, (2.16)

G =[1 − (π̄1,t + π̄2,t)][(ω̄1,t−1π̄1,t−1 + ω̄2,t−1π̄2,t−1)]

+
n1,t

n1,t−1

ω̄1,t−1π̄1,t−1π̄2,t +
n2,t

n2,t−1

ω̄2,t−1π̄2,t−1π̄1,t. (2.17)

and αt = yt/αt denotes the dividend yield.

Proof. It follows from (2.12) that

Wt

Wt−1

=

(
2 − �1,t

�1,t−1

)
ω̄1,t−1[R + π̄1,t−1(ρt − r)]

+

(
2 − �2,t

�2,t−1

)
ω̄2,t−1[R + π̄2,t−1(ρt − r)]. (2.18)

The market clearing condition (2.6) implies that

�1,tπ̄1,tW̄1,t + �2,tπ̄2,tW̄2,t = Npt (2.19)

By considering (2.19) at two successive times one obtains the expression for return

�1,tπ̄1,tW̄1,t + �2,tπ̄2,tW̄2,t

�1,t−1π̄1,t−1W̄1,t−1 + �2,t−1π̄2,t−1W̄2,t−1

= 1 + ρt − αt, (2.20)

where αt = yt/pt−1 defines the dividend yield. Using the weighted average wealth
measure, equation (2.20) can be written as follows:

[ω̄1,tπ̄1,t + ω̄2,tπ̄2,t]Wt

[ω̄1,t−1π̄1,t−1 + ω̄2,t−1π̄2,t−1]Wt−1

= (R − αt) + (ρt − r). (2.21)

Substituting (2.18) into equation (2.21),

(ω̄1,tπ̄1,t + ω̄2,tπ2,t)

[(
2 − �1,t

�1,t−1

)
ω̄1,t−1[R + π̄1,t−1(ρt − r)]

+

(
2 − �2,t

�2,t−1

)
ω̄2,t−1[R + π̄2,t−1(ρt − r)]

]

= [(R − αt) + (ρt − r)][ω̄1,t−1π̄1,t−1 + ω̄2,t−1π̄2,t−1]. (2.22)
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Substituting (2.11) into (2.22),

(ρt − r)

{
[π̄1,t−1w̄1,t−1 + π̄2,t−1w̄2,t−1]

− π̄1,t

[
ω̄1,t−1π̄1,t−1 + +

(
1 − n2,t

n2,t−1

)
ω̄2,t−1π̄2,t−1

]

− π̄2,t

[
ω̄2,t−1π̄2,t−1 + +

(
1 − n1,t

n1,t−1

)
ω̄1,t−1π̄1,t−1

]}

=R

[
(π̄1,t + π̄2,t) − (π̄1,t−1w̄1,t−1 + π̄2,t−1w̄2,t−1)

− n2,t

n2,t−1

π̄1,tw̄2,t−1 − n1,t

n1,t−1

π̄2,tw̄1,t−1

]

+ αt[π̄1,t−1w̄1,t−1 + π̄2,t−1w̄2,t−1]

�
Let

Γt = ω̄1,tπ̄1,t + ω̄2,tπ̄2,t

be the corresponding proportion of total weighted wealth invested in the risky asset.
Then, in terms of this quantity, both equations (2.16) and (2.17) may be written as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F = (αt − R)Γt−1

+R

[
(π̄1,t + π̄2,t) − n1,t

n1,t−1
π̄2,tω̄1,t−1 − n2,t

n2,t−1
π̄1,tω̄2,t−1

]

G = [1 − (π̄1,t + π̄2,t)]Γt−1

+ n1,t

n1,t−1
ω̄1,t−1π̄1,t−1π̄2,t + n2,t

n2,t−1
ω̄2,t−1π̄2,t−1π̄1,t.

(2.23)

2.7. Performance Measure and Agents’ Adaptiveness. Following Brock and Hommes
(1997, 1998), a performance measure or fitness function, denoted (Φ1,t, Φ2,t), is pub-
licly available to all agents. Based on the performance measure agents make a (bound-
edly) rational choice among the predictors. This results in the Adaptive Rational
Equilibrium Dynamics, introduced by Brock and Hommes (1997), an evolutionary
dynamics across predictor choice which is coupled to the dynamics of the endogenous
variables. In the limit as the number of agents goes to infinity, the probability that an
agent j chooses trading strategy j is given by the well known discrete choice model or
‘Gibbs’ probabilities6

nj,t = exp[β(Φj,t−1 − Cj)]/Zt Zt =
h∑

j=1

exp[β(Φj,t−1 − Cj)], (2.24)

where Cj ≥ 0 measures the cost of the strategy j for j = 1, 2, · · · , h.
A natural performance measure or fitness function can be taken as the cumulated

wealth following agents’ optimal choice. More precisely,

Φj,t = φj,t + λΦj,t−1; φj,t = W0[r + (ρt − r)π̄j,t−1] (2.25)

6See Manski and McFadden (1981) and Anderson, de Palma and Thisse (1993)) for extensive discussion
of discrete choice models and their applications in economics.
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for j = 1, 2, where Wo is the average initial wealth for both groups, 0 ≤ λ ≤ 1 is a
memory parameter measuring how strongly the past realized fitness is discounted for
strategy selection, so that Φj,t may be interpreted as the accumulated average wealth
of group j.

2.8. An Adaptive Model on Wealth Dynamics and Return. By summarising the
above analysis, we obtain the following adaptive model on the evolution dynamics of
weighted average wealth proportions of two types of agents and risk asset return.

Proposition 2.3. Under the assumption (H1), the weighted average wealth propor-
tions of two types of agents evolve according to (2.11) and the return ρt satisfies (2.23),
where αt denotes the dividend yield defined by αt = yt/pt−1, both function F and G
are defined by (2.23), and the population proportions nj,t evolve according to (2.24),
in which the fitness functions are defined by (2.25).

Equations (2.11) and (2.23) constitute a difference equation system for w̄j,t and ρt

whose order depends on the choice by agents of the Lj at equation (2.5).

2.9. A Degenerate Case—Homogeneous Model. As a special case of the adaptive
model established in Proposition 2.3, assume that all the agents are homogeneous.
Then

�1,t = �2,t = H, �1,t−1 = �2,t−1 = H, ω̄1,t = ω̄2,t = ω̄t

and
π̄1,t = π̄2,t = π̄t, γ1 = γ2 = γ.

It then follows from (2.11) and (2.23) that w̄t = 1 and

F1 = (αt − R)π̄t−1 + Rπ̄t, G1 = π̄t−1 − π̄tπ̄t−1.

Therefore, the equilibrium return satisfies

ρt = r +
R(π̄t − π̄t−1) + αtπ̄t−1

π̄t−1(1 − π̄t)
(2.26)

with the optimal proportion

π̄t =
Et(ρt+1) − r

γVt(ρt+1)
, (2.27)

where Et and Vt denote the common conditional mean and variance on the return of
the risky asset of all agents. We will focus on the simplest case where the mean of the
dividend yield is constant so that the expected fundamental rate of return is a constant,
i.e.,

Et[αt] = αo, Et(ρt+1) = Et(ρt) = ρ̄.

By assuming Vt(ρt+1) = σ2 is a constant, the optimal proportion corresponding to the
fundamental return, π̄, is given by

π̄ =
E(ρt+1) − r

γV (ρt+1)
=

ρ̄ − r

γσ2
, (2.28)

and the fundamental return ρ̄ is solved from equation

(ρ̄ − r)(1 − π̄) = α0. (2.29)
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From (2.28) and (2.29)

(ρ̄ − r)

[
1 − ρ̄ − r

γσ2

]
= α0,

from which

(ρ̄ − r)2 − γσ2(ρ̄ − r) + γσ2α0 = 0.

Thus the constant fundamental return ρ̄ is found to be given by

ρ̄ = r +
1

2

[
γσ2 ±

√
γ2σ4 − 4γσ2α0

]

= r +
1

2
γσ2

[
1 ±

√
1 − 4α0

γσ2

]
. (2.30)

Therefore, ρ̄ ∈ R
+ if and only if 4α0/(γσ2) ≤ 1. In particular, let γ = 4α0

σ2 , then
ρ̄ = r + 2α0. Based on the data for the United States during the 1926-1994 period,
as reported by Ibboston Associates, the annual risk-free interest rate, r = 3.7%, corre-
sponds to the average rate during that period. A dividend yield αo = 4.7% corresponds
to the historical average yield on the S&P500, ρ̄ = r + 2αo = 13.1% is close to the
average historical rate of return of 12.2% over the period.

3. SOME EXAMPLES

The adaptive model established in Proposition 2.3 is incomplete unless the condi-
tional expectations of agents on the mean and variance of returns are specified. Differ-
ent trading strategies can be incorporated into this general adaptive model as indicated
by equation (2.5). It is not trivial to study nonlinear, non-stationary dynamical systems
subject to random shocks. This section consider some simple examples of the adaptive
model in which two simple types of agents, termed fundamentalists and trend follow-
ers, are considered in the following example.7 Neither type is fully rational in the sense
used in the rational expectations literature. The information on the dividends and re-
alised prices is publicly available to all agent types. The examples discussed below
exhibits a new element of the framework developed here, that is, it is able to generate
an asset price evolution that has the characteristics of the geometric Brownian motion
behavior observed in financial markets, viz the asset price is moving stochastically
around a growing trend.

To illustrate the time series properties generated by our adaptive model, we assume
γ1 = γ2 = γ = 4αo

σ2 and all the agents realize a long-run mean of rate return ρ̄ =
r + 2αo, which corresponds to the constant fundamental return of the homogeneous
model. With two types of traders, their conditional expected returns are assumed by

Ej,t(ρt+1) = ρ̄ − dj[ρ̄j,t−1 − ρ̄], dj ∈ R, j = 1, 2, (3.1)

where

ρ̄j,t−1 =
1

Lj

[ρt−1 + ρt−2 + · · · + ρt−Lj
], (j = 1, 2)

with some integer Lj ≥ 1. For dj ≤ 0, agents are classified as fundamentalists,
believing that the moving average return over the last Lj periods will move back to

7To simplify the analysis, we focus on the conditional mean estimation by assuming that subjective
estimation of variance of all the agents’ is given by a constant, that is, Vi,t = σ2.
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the fundamental return with a reverting factor dj . For dj > 0 agents are classified
as trend followers, extrapolating the excess moving average return from the constant
fundamental return over the last Lj period returns.

To catch model approximation error (such as agents behaviour are driven not only
by rational expected utility maximization but also by a multitude of other factors, see
Levy et.al. (2000) and references cited there) and exogenous shocks to the market
equilibrium, we add a noise term ε̃t to the equilibrium rate of return equation (2.15)
where ε̃t is a random variable drawn from a normal distribution with mean of zero and
volatility of σε.

Using data for the United States during the 1926-94 period, as reported by Ibbotson
Associates, the annual risk-free interest rate, r = 3.7%, corresponds to the average rate
during that period. The history of rates of return on the stock consists of a distribution
with a mean of 12.2% and a standard derivation of 20.4%. A dividend yield of αo =
4.7% corresponds to the historical average yield on the S&P500.

In the following simulations, the time period between each trade is one day. The
number of trading days in a year is selected as K = 250 and simulations are con-
ducted over twenty years. We choose the initial share price po = $10.00, the annual
volatility of the dividend yield σy = 1.5%, the switching intensity β = 0.5, the mem-
ory parameter λ = 0.6, the initial average wealth level Wo = $1, 000 for all agents.
The random noise term ε̃t follows a normal distribution with mean of zero and annual
volatility of σε = 8%.

Our simulations are conducted for different combinations of d1, d2, L1, L2, initial
average wealth (w̃1,o, w̃2,o) and population proportions (n1,o, n2,o), as listed in Table 1.

Figure d1 d2 L1 L2 w̃1,o n1,o

F1 (Fig.3.1) 0 0.2 5 0.5 0.5
F2 (Fig.3.2) 0.15 -0.1 3 5 0.5 0.5
F3(Fig.3.3) 0.03 -0.03 3 5 [0.3, 0.7] [0.3, 0.7]
F4 (Fig.3.4) -0.1 0.15 3 5 0.5 0.5
F5 (Fig.3.5) -0.05 0.1 3 5 [0.3, 0.7] 0.5

TABLE 1. Parameters selection.

Figures 3.1-3.5 plot the time series for the rate of return of the risky asset (top left),
the evolution of the average wealth of group 1 (top right), the population proportions
of group 1 (bottom left), and the price of the risk asset (bottom right).

The statistical properties of those time series are conducted over the sample of 100
to 5,000, which are summarised in Table 2.8

Based on these simulations, we obtain the following observations in general:

• Comparing with the exogenous noise term (as indicated by the last row for
each block of the figure in Table 2), the return series exhibits a no-normal
distribution, which are characterised by either negative or positive skewness
and kurtosis. The autocorrelation coefficients in Figure 3.6 are significant for

8For the chosen set of parameters, the statistical properties are optimal for different simulations
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FIGURE 3.1. Time series plots for rate of return (top left), average
wealth proportion (top right) and population proportion (bottom left) of
the fundamentalists, and prices (bottom right) with L2 = 5.

short lags. In particular, when trend followers extrapolate strongly over long
windows of lag 5, as the case in Figures 3.1, the ACs in Figure 3.6(F1) have a
strong oscillatory decay pattern in lags. However, such strong pattern become
less persistent when the trend followers use short windows of lag 3 (as the
case in Figures 3.2 and 3.6(F2)) or extrapolate weakly (as the case in Figures
3.3-3.5 and 3.6(F3-F5)).

• In terms of the average wealth among two groups, the fundamentalists tend to
accumulate more wealth than the trend followers, as indicated by the time se-
ries plots (except when the reverting coefficient of the fundamentalists is zero,
as in Figure 3.1). This wealth dominance of the fundamentalists is also hold
even when the initial average wealth levels are not evenly distributed among
the two groups (as indicated in Figures 3.3 and 3.5).

• In terms of the evolution of the population, there is no significant difference in
the dominance of one group over the other, although there is strong tendency of
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FIGURE 3.2. Time series plots for rate of return (top left), average
wealth proportion (top right) and population proportion (bottom left) of
the trend followers, and prices (bottom right) with L1 = 3, L2 = 5 and
w̃1,o = n1,o = 0.5.

switching toward the fundamentalists (as indicated in Figure 3.2), even when
the initial population are not evenly distributed (as the case in Figure 3.3).

• The return series tend to have higher volatility comparing with the volatility of
the exogenous noise term ε̃t, as indicated in Table 2.

• The price series moves stochastically along a growing trend, as observed for
S&P500.

• Herd behaviour can be found from the time series plots of the population pro-
portion n1,t, in particular, when the fundamentalists accumulate more wealth
over the period.
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FIGURE 3.3. Time series plots for rate of return (top left), average
wealth proportion (top right) and population proportion (bottom left) of
the trend followers, and prices (bottom right) with L1 = 3, L2 = 5 and
w̃1,o, n1,o ∈ [0.3, 0.7].
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Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque-Bera Probability

F1
ρt 0.000955 0.001124 0.026356 -0.024443 0.007004 -0.112494 3.097305 12.27053 0.002165

w̃1,t 0.505573 0.505139 0.548637 0.458286 0.00711 0.343825 7.073934
n1,t 0.501695 0.501134 0.541231 0.456292 0.006499 0.299697 9.191908
εt -0.000158 -0.000198 0.017939 -0.021512 0.005026 -0.02694 3.120077 3.537188 0.170573
F2
ρt 0.001073 0.001195 0.027156 -0.026075 0.00723 -0.098077 2.934216 8.740929 0.012645

w̃1,t 0.48156 0.482919 0.526071 0.415637 0.012387 -0.655989 3.696983
n1,t 0.494675 0.496533 0.540051 0.443308 0.008219 -1.279141 7.067605
εt -3.29E-05 4.00E-05 0.020222 -0.015843 0.005145 -0.010919 3.03378 0.330403 0.847723
F3
ρt 0.001057 0.001099 0.027838 -0.024118 0.006719 -0.077442 3.065987 5.787952 0.055356

w̃1,t 0.287357 0.28739 0.297204 0.275261 0.001907 -0.114369 4.898328
n1,t 0.499938 0.49995 0.508669 0.490803 0.001209 0.044067 9.545977
εt -1.85E-05 2.90E-05 0.02673 -0.024972 0.006368 -0.06334 3.025257 3.407333 0.182015
F4
ρt 0.001067 0.001079 0.024177 -0.020027 0.006195 0.009274 2.967005 0.292571 0.863911

w̃1,t 0.499551 0.499823 0.517439 0.475021 0.003469 -0.948397 7.889587
n1,t 0.499863 0.500127 0.517709 0.47546 0.003461 -0.930515 7.84123
εt -3.29E-05 4.00E-05 0.020222 -0.015843 0.005145 -0.010919 3.03378 0.330403 0.847723
F5
ρt 0.000988 0.000999 0.027329 -0.026254 0.006091 0.013901 3.501613 51.53974 0

w̃1,t 0.670145 0.670326 0.693688 0.635113 0.004716 -0.260128 5.344007
n1,t 0.499835 0.499987 0.517667 0.472231 0.002612 -1.147335 21.29021

TABLE 2. Statistics of time series
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FIGURE 3.6. Autocorrelation coefficients for the rate of return series.


