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ABSTRACT Deep neural networks (DNNs) trained on large data sets have been shown to be able to capture
high-quality features describing image data. Numerous studies have proposed various ways to transfer DNN
structures trained on large data sets to perform classification tasks represented by relatively small data sets.
Due to the limitations of these proposals, it is not well known how to effectively adapt the pre-trained
model into the new task. Typically, the transfer process uses a combination of fine-tuning and training of
adaptation layers; however, both tasks are susceptible to problems with data shortage and high computational
complexity. This paper proposes an improvement to the well-known AlexNet feature extraction technique.
The proposed approach applies a recursive neural network structure on features extracted by a deep
convolutional neural network pre-trained on a large data set. Object recognition experiments conducted on
the Washington RGBD image data set have shown that the proposed method has the advantages of structural
simplicity combined with the ability to provide higher recognition accuracy at a low computational cost
compared with other relevant methods. The new approach requires no training at the feature extraction phase,
and can be performed very efficiently as the output features are compact and highly discriminative, and can
be used with a simple classifier in object recognition settings.

INDEX TERMS Machine learning, pattern recognition, neural networks, knowledge transfer.

I. INTRODUCTION

Extraction of discriminative features from input images is one
of the most challenging tasks in object recognition systems.
Much effort has aimed at determining optimal feature sets
for a specific task, based on the attributes of objects to be
recognized and classifiers to be used. Many of these features
produced very promising results [1], [2]. However, due to
the ambiguity and lack of general task-independent rules for
optimal feature selection, the process of data classification
has been recently dominated by various approaches using
neural networks. The important advantage of these neural
network approaches is that during the training process the
network self-determines the optimal set of features from the
data. The disadvantage is that large training data sets may be
required and thus the training process could be very lengthy.

Neural networks have been shown to provide excellent
performance in multiple image classification benchmarks,
ranging from simple feature datasets such as MNIST [3]
to complicated challenges such as ImageNet [4]. However,
more recent research in computer vision has demonstrated the
dominating power of a neural network methodology known
as deep learning [5]. Similar to the design of optimal image
descriptors being cumbersome in the past, the design and
training of deep learning structures today is also a big chal-
lenge. This is particularly a challenge when the performance
of the design is very sensitive to the implementation details,
which is often the case [6]. Fortunately, using an implemen-
tation of already trained structures is quite straightforward
and if the power of the network depth can be applied to other
classification scenarios, then this offers great advantages.
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The progress of deep learning approaches in recent years
has been spectacular. One of the biggest breakthroughs that
catalyzed the recent wave of neural network deep learning
research may be tracked to the work of Krizhevsky er al. [7],
who proposed ImageNet Classification with Deep Convolu-
tional Neural Networks (CNNs) as a combination of con-
volutional and fully connected neural networks applied with
data augmentation and training techniques. The AlexNet was
the winner of the ImageNet Large Scale Visual Recognition
Challenge 2012, and continues to be the source of inspiration
for winners in years thereafter. While AlexNet has been
outperformed by later proposals [23], [27], [28], the approach
is still valuable as a good compromise between simplicity and
performance.

Much research has been conducted to apply deep neural
networks to other computer vision tasks; however, most tasks
require either a modification of network parameters, or extra
adaptation layers in the networks tailor the application into
the target task [8]-[10]. Further, it takes time and care to
train new layers or fine-tune the pre-trained network model,
especially when the structure is deep. With limited amounts
of labeled data in small datasets, it is thus difficult to manage
the potential issue of overfitting when tuning these deep struc-
tures. This intuition could be one of the factors explaining
why the current classification performance of fine-tuned sys-
tems often show only moderate results [8]-[10]. The Recur-
sive Neural Network (RNN) [11] offers one possible solution
for this problem via a systematic transformation of data with
added non-linearity and randomness, which eliminates the
costs required for adaptive training and label knowledge.

The RNN method proposed by Socher ef al. [11], was
shown to be able to capture repetitive data such as the
information contained in images and speech. Since features
extracted from CNN layers of a deep network still encode
spatial cues from the original images, the RNN provides a
mechanism to explore these cues further without increasing
the costs of training and refinement. The RNN structure is
somewhat similar to the CNN structure, but instead of using
learned weights, the RNN uses randomly initialized weights.
In addition, the RNN has non-overlapping receptive fields,
which is different to the CNN. Processing through the RNN
is simple and extremely fast, and shows the ability to map
the data into a more separable space [11]. This characteris-
tic is particularly helpful in multi-class object classification
tasks [12].

This work proposes a new efficient method for formu-
lating an object recognition system by combining a deep
trained network model with the RNN structure, which will
be referred to as AlexNet-RNN throughout this paper. The
proposed approach has the potential to significantly speed up
the network adaptation process while maintaining a high level
of performance.

The remainder of this paper is organized as follows.
Section II briefly reviews previous studies that are most rel-
evant to the current work, and outlines the contributions of
this work. Section III describes in detail the structure of the
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proposed object recognition system, and Section I'V describes
experimental validation of this new system, presented along-
side with the results and discussion. Finally, Section V con-
cludes the paper.

Il. RELATED WORK

As our work has been conducted on the Washington RGBD
image dataset [13], we will review recent research that has
also been tested on this dataset and then outline the contribu-
tions of the current study.

A. PREVIOUS WORK

Research conducted on the Washington RGBD (W-RGBD)
image dataset investigated both hand designed features and
features generated by neural networks. One of the first object
recognition techniques evaluated on the Washington RGBD
dataset utilized a wide range of features including SIFT,
textons and color histograms. These features were classi-
fied using the random forest classifier and provided 74.7%
accuracy for the RGB data [13]. Later studies based on
the hand-designed features were not able to improve clas-
sification accuracy for the W-RGBD dataset much further,
and since then machine learning approaches have emerged.
Sparse coding [14] and clustering based convolutional extrac-
tors [12], [15] have increased the classification performance
to 85.2%. The recently proposed Fisher Kernel approach [16]
further increased to the accuracy to 86.8%, which can be
considered as the current state of the art result.

Another significant stream of research includes transfer
learning, which is extensively reviewed in [29]. Deep learning
approaches have been shown to be able to capture high-
level features providing both representative and discrimina-
tive information from images to facilitate different vision
tasks. A possible explanation for this capability is presented
in DiCarlo’s hypothesis [30], where the image distributions
are disentangled as they pass through layers of a deep neu-
ral network. Direct application of deep learning into many
machine vision tasks are not possible due to the requirement
of prohibitively large collections of labeled training data.
However, the visualizations in [9] and [23] indicate that, as
the distribution of objects is transformed from overlapped
space to separable space in a deep network, intermediate
representations can be used as generic features to seman-
tically describe the object in the input image. There have
been research efforts aimed at adapting a pre-trained deep
network into specific object classification tasks, both with
and without fine tuning, but the results were only moderate
[17], [18]. Therefore, investigating the concept of adapting
a deep network trained on a large labeled dataset to a new
task represented by a smaller dataset is a current research
challenge.

As already mentioned, the AlexNet approach to object
recognition was one of the most influential breakthroughs
that directed the research community back into deep learning.
Intensive tests have been conducted to examine the activa-
tion weight characteristics of each layer of the AlexNet in
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relation to visual recognition tasks, where it was observed
that the activation weights taken from the fully connected
layer right after the convolutional chain are the best features
for object recognition purposes [9]. The OverFeat feature
extractor proposed in [8] has further explored this issue by
applying a trained convolutional extractor on different scales
of input images during the inference step. Razavian et al. [10]
have reported very promising results when using features
extracted by OverFeat to recognize objects from multiple
image datasets. Similarly, [19] and [20] have successfully
applied features extracted by the AlexNet in object detection
and localization tasks. Pre-trained deep structures can be used
as feature extractors as mentioned above, or the structures
can be fine-tuned to adapt the network from the source task
to the target task (with the assumption of similarity in data
distribution between two tasks). Examples of such methods
applied to AlexNet are [21] and [22].

B. CURRENT STUDY CONTRIBUTIONS
The contributions of the current study can be summarized as
follows:

1. Proposing a new efficient feature extraction method
using a deep convolutional network structure trained on
a large dataset for object recognition tasks represented
by a smaller dataset. The method combines the well-
known AlexNet with a RNN structure.

2. Re-evaluating the use of AlexNet as a feature extrac-
tor to determine applicability of the ‘best layer’ rules
proposed in [9].

This study can be fully reproduced using the code provided
at: https://github.com/hieu-bm/deep_CRNN

ill. METHOD

A. PROPOSED AlexNet-RNN APPROACH

A number of studies have confirmed that intermediate lay-
ers in a deep network can capture features that provide a
good tradeoff between representation and object indepen-
dence [9], [22], [23]. In this work, several low-level layers of
the AlexNet trained on the ImageNet data set were selected,
and each of these layers were examined as a black-box feature
extractor. The full structure of the AlexNet is shown in the
top half of Fig. 1. The network was trained using fixed size
RGB images from ImageNet [4], as explained in [6] and [7].
The network structure consists of 8 layers, where the first
5 layers (convl, conv2, conv3, conv4, conv5) are convolu-
tional and the remaining 3 layers (fc6, fc7, fc8) are fully-
connected. The last fully-connected layer (fc8) has the form
of a Softmax classifier to categorize an input image into
one of the classes used in training. The proposed new object
recognition structure, with part of AlexNet embedded as the
feature extractor, is illustrated in the bottom half of Fig. 1.
This new structure uses the same input format as the AlexNet
and consists of several low-level layers of trained AlexNet.
These layers thus act collectively as the feature extractor.
An RNN unit containing multiple RNN structures, is then
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FIGURE 1. Structures of AlexNet (top) and structure of our system with
part of AlexNet applied as the feature extractor (bottom).

added to further process the extracted features, before feeding
them into the Softmax classifier that performs recognition on
the target data set.

As a part of the new structure, two alternative versions
of the AlexNet were used to extract the deep image fea-
tures: the original version of the AlexNet-2012 [7], and the
AlexNet-2014 [6]. The AlexNet-2014 [6] was more densely
connected but had a smaller number of CNN weights in the
intermediate layers compared to the AlexNet-2012 version
described in [7]. In this paper, the AlexNet-2014 was applied
in most experiments unless stated otherwise, and the original
AlexNet-2012 was used as a reference point.

There were three key reasons behind the use of
AlexNet-2014 over the original AlexNet-2012 in this paper:

1) It provides slightly higher performance than
AlexNet-2012 on multiple datasets;

2) Itis computationally cheaper; and,

3) Its last three convolutional layers have the same size,
which allows for size-independent transferability and
comparison of features between layers.

The pre-trained models of the AlexNet-2014 and
AlexNet-2012 were adapted from the MatConvNet
project [24]. These models were fully trained on the
ImageNet 2012 [4] dataset to achieve performances consis-
tent with the results reported in [6] and [7].

The main feature that differentiates our work from related
studies is the incorporation of the RNN unit, which consists of
an assembly of separate RNN structures processing features
provided by the pre-trained deep convolutional network.

As illustrated in the bottom half of Fig. 2, the RNN struc-
ture is quite similar to the structure of the CNN (top half
of Fig. 2). Both structures divide the input data into patches
of equal size, compute element-wise products of each patch
with a shared array of weights, add the outcomes together
and then process the sum through a sigmoidal or other type
of squashing function. The RNN is different to the CNN in
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FIGURE 2. Structure of the CNN layer (top) and the RNN layer (bottom).

two aspects. Firstly, the RNN set of weights is randomly
initialized based on the input data structure and kept perma-
nently unchanged while the CNN set of weights is learned
from the data. Secondly, the RNN uses non-overlapping input
patches while the CNN typically uses densely overlapped
patches. Due to the random attribution, the RNN does not
require training, thus it is easy and quick to deploy. Due to the
non-overlapping attributes of patches, the RNN is computa-
tionally less expensive than the CNN. The recursive structure
allows RNNs to capture repetitive patterns in the input, while
the random weights and nonlinear squash function help to
differentiate between class clusters.

In this work, different squash functions were used for the
RNN and CNN. The CNN layers of both AlexNet-2012 and
AlexNet-2014 used the ReLU function given as,

y = max(0, x) ey
while the RNN used the fanh squash function given as,

_62)‘—1
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where x denotes the sum of products of input data with the
weight set, and y is the squashed value of the sum, which
is used as input to a later processing layer. ReLU was used
in the AlexNet as it allows for faster training time for large
structures [7]. The RNN does not require training, thus fast
training is no longer an advantage. In addition, ReLU does
not provide the necessary nonlinearity to transform the data,
which makes the squash function unsuitable for RNN nodes.

In this work, the pre-trained AlexNet is used as a black-
box feature extractor, therefore no fine tuning was involved.
As indicated in [9], the fully connected layer number 6 of
the AlexNet provided the highest quality features for the
object classification task. In a fully-connected layer, each
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neuron connects in the same way to all neurons of the
previous layer, and as a result the spatial information that
describes the input data was largely discarded. The current
study thus explores the possibility of utilizing the remaining
spatial characteristics of data processed by the deep network
through application of the RNN structure. Therefore, it is
necessary to examine the features produced by previous CNN
layers, where spatial information still remains. Consequently,
this work separately analyzes and compares the efficiency
of applying RNN processing to CNN features and to fully-
connected features with regards to an object recognition task.

Features produced by a deep neural network layer, either
CNN or fully-connected, typically have the form of a
3-dimensional matrix of size w x h x d. The 3“1, 4th, and
5t CNN layers of both AlexNet-2012 and Alex-Net-2014
set w = h = 13, whilst the value of d was set to either
384 for the 3" and 4™ layers of AlexNet-2012 and to 256
in other cases. The 6 fully-connected layer in both versions
of the AlexNet set 1 = d = 1 and w = 4096. In cases
where a fully-connected layer was used to extract features to
be passed to the assembly of RNNs, the output matrix was set
to have w = h = 8 to ensure compatibility with the assembly
of RNNs. Each RNN within the assembly randomly mapped
the input feature array into smaller feature sub-sets of size
1 x 1 x d each. The RNN outputs were then concatenated to
form the final representation of the original input image.

The output features from the RNNs were used to
train a classifier. The Softmax classifier powered by the
Broyden—Fletcher—Goldfarb—Shanno (L-BFGS) algorithm
was applied to minimize the cross entropy error. The imple-
mentation of the Softmax classifier was adapted from the
minFunc library described in [25].

B. EVALUATION OF THE PROPOSED APPROACH

The proposed object classification approach was vali-
dated and tested using the Washington RGBD image
dataset (W-RGBD) [13], which contained images of 300 dif-
ferent objects placed on a turntable, and captured from around
200 different views. Each object view was described by a
set of 3 images including RGB, depth, and mask. Only the
RGB image was considered in this study as this mode is the
most popular in practical applications. Each image primarily
depicted the object, with occasional small elements of the
background captured by the cropping box placed around
the object. The 300 objects were grouped into 51 different
categories or object classes. The object recognition task was
thus to assign the correct class labels to a test set of unseen
(not used in the training process) images depicting different
object instances.

The complete W-RGBD dataset was split into mutually
exclusive training and testing subsets. There was no val-
idation involved, therefore training was stopped if any of
the following conditions matched: 1) the maximum number
of iterations was reached; 2) the gradient value had fallen
below a threshold; 3) the change in cost function evaluation
between consecutive iterations had fallen below a threshold.
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The iteration limit and thresholds were kept as default from
the minFunc implementation [25]. To ensure valid compar-
isons, the sizes of both subsets and the splitting rule were
consistent with [12], [13], [16]. There are 10 preconfigured
splitting profiles, with each profile completely removing one
chosen instance (around 200 images) of each class for testing,
and using the remaining instances in training. The classifica-
tion results presented in this study were averaged over these
10 training and classification partitioning settings.

IV. EXPERIMENTS

A. EFFECT OF THE RNN UNIT SIZE ON THE

OBJECT RECOGNITION ACCURACY

In this subsection, we evaluate the effect of using the RNN
unit in combination with a pre-trained CNN (see Fig. 1) on the
object recognition accuracy. Deep CNN features from images
in the W-RGBD dataset were extracted at the 4th layer of the
pre-trained AlexNet-2014. The receptive field size of RNN
was 13 x 13.

TABLE 1. Effect of using RNN on recognition accuracy (applied on
activations of layer 4 of AlexNet-2014).

Number of Accuracy +
RNNSs used Standard Deviation (%) Feature size
128 89.34+1.61 32768
64 89.22+1.3 16384
8 86.72+1.47 2048
No RNN 86.37+1.45 43264

As shown in Table 1, using the RNN as in the proposed
approach can effectively improve the recognition accuracy
by approximately 3%, and also produces a more compact
representation of object’s image. By using 8 RNN structures
alone, this system is already able to generate a feature set
that is 20 times smaller in size but provides a competitive
performance to the raw CNN feature set.

Figure 3 shows a plot of classification accuracy versus the
number of RNNs used, ranging from 1 to 128. For the pur-
poses of comparison, Fig. 3 also includes results for closely
related approaches including grayscale clustering based on
the CRNN proposed in [26], and the RGB clustering based
on the CNN proposed in [12]. It can be observed that the
AlexNet-RNN proposed in this paper provided a significant
improvement in recognition accuracy compared to both the
RGB clustering based on CRNN and the grayscale clustering
based on CRNN.

It is important to note that clustering-based convolutional
weights (both RGB and grayscale) were trained very specif-
ically for the target dataset, while the AlexNet-based con-
volutional weights were trained on the ImageNet dataset,
which has a different data distribution than the target dataset.
This provides strong evidence of the power of deep convolu-
tional features in terms of discrimination and generalization.
Nevertheless, the performance of all three models presented
in Fig. 3 becomes constant above around 64 RNNs, which
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FIGURE 3. Recognition performance versus number of RNN.

may either imply a processing limit of the RNN processing,
the Softmax classifier, or both.

TABLE 2. Performance comparison of proposed method with previous
works.

Method Accuracy Feature
(%) size
EMK feature & Histograms + SVM | 74.7+3.6 | >1500

[13]
RGB-CRNN + Softmax [12]

80.8+4.2 | 16384

SP-HMP + SVM [14] 82.4+3.1 590000

Deep-CNN + SVM [18] 83.1+2.0 | 5096

Grayscale-CRNN + Softmax [26] 84+29 16384

Fine-tuning Deep-CNN + Softmax 84.1+£2.7 | 4096

[17]
CNN-SPM-RNN + SVM [15]

85.2+1.2 | 4000
1568000

CNN-Fisher + SVM [16] 86.8+22

AlexNet-RNN+ Softmax
(current proposal)
AlexNet-RNN+ SVM
(current proposal)

89.3+1.6 | 32768

89.7+1.7 | 32768

B. COMPARISON WITH RELATED STUDIES

This subsection compares the proposed AlexNet-RNN
approach with previous approaches. The experiment settings
are kept unchanged from subsection IV-A. As shown in
Table 2, the AlexNet-RNN has significantly surpassed the
current state-of-the-art approach CNN-Fisher [16] by nearly
3%. In addition, the features provided by the AlexNet-RNN
are two orders of magnitude lower in size than the size
of the features generated by the next best performer CNN-
Fisher+SVM. This smaller feature data space allows for the
use of a simpler classifier and thus increases classification
speed. In this regard, many of experiments in our work use
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the L-BFGS Softmax classifier, which is cheaper to train and
faster to use compared to a Support Vector Machine (SVM).
If the SVM is used as classifier, the accuracy can be slightly
increased, however, with a significantly longer training time.
Empirically, the SVM configured in a one-vs-one coding
design takes about 10 hours to be trained, while the Softmax
classifier needs only 1 hour to be trained for the same task.

Table 2 contains two other recently proposed methods
(described in [17] and [18], respectively), which have also
utilized activations from a trained deep network as object
descriptors to classify image objects from the W-RGBD
dataset. In [17], the entire AlexNet was trained on ImageNet
and then fine-tuned on the W-RGBD dataset. In terms of
computational cost, provided that the 4 first layers of the deep
network are shared with the model proposed in this paper, this
approach has to pay for one extra convolutional layer of size
256 x13x 13 and two fully connected layers of size 4096. The
convolutional layer itself is larger than the structure proposed
in this paper with 128 RNNs, not to mention the additional
effort required to fine-tune the network in the training phase.

In [18], the input images to the deep CNN were prepro-
cessed to reduce the effect of the background obscuring the
object in the image, and then activations from layers 6 and 7
were concatenated and passed to the SVM classifier. This
method requires knowledge of the object mask for prepro-
cessing, which is not always available in practice. In a similar
way to [17], this method needs to accommodate the cost of
one convolutional and two fully connected layers, in addition
to a complicated multiclass structure of SVM classifiers.
In contrast, the proposed AlexNet-RNN approach does not
require any preprocessing other than scaling the images to the
target network input size. The proposed approach also does
not alter any of the pre-trained network parameters. As shown
in Table 2, these attributes of the AlexNet-RNN provide high
computational efficiency combined with high accuracy object
classification.

C. DETERMINING THE MOST EFFICIENT

LAYERS FOR FEATURE EXTRACTION

This subsection compares the performance of features
extracted from different layers of AlexNet to determine which
layer provides the most discriminative output vector. Features
from four intermediate layers of an 8-layer network were
examined individually in this experiment, with respect to
the object classification accuracy. These layers included the
last 3 CNN layers (layer 3, 4, 5) and the first fully connected
layer (layer 6). The AlexNet-2014 was used instead of the
AlexNet-2012, as the model provided convolutional features
of the same size across three layers 3, 4 and 5, which elim-
inated the effect of size in comparing features across layers.
In addition, these layers were previously reported to provide
a good balance between generalization and discrimination
for image representation [9]. The lowest-level layers cannot
produce a good abstracted representation of the image, while
the highest-level layers provide features that are too specific
to the dataset on which the network was trained on.
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In this subsection, the receptive field size of RNNs was
kept fixed at 13 x 13 for processing features from the 3™,
4 and 5™ layers, while the receptive field size applied on
features from 6 layer was 8 x 8.

90
89
88
87

Layer 3
128 RNNs

Layer 4

Layer 5 Layer 6
64 RNNs No RNN

FIGURE 4. Recognition accuracy for features from several selected layers
of AlexNet-2014.

Figure 4 shows that features from layer 4 of the
AlexNet-2014 provided the best performance among all other
selected layers, regardless of whether the RNN was used.
It is important to restate at this point that since the
AlexNet-2014 was used, the sizes of feature sets from the
three selected CNN layers (layers 3, 4 and 5) were equal.
In particular, there were 43264 features before the RNN and
32768 features after the RNN processing. The size of features
generated by layer 6 was smaller (4096 weights before the
RNN), but these features led to a significant drop in perfor-
mance compared to layers 4 and 5.

TABLE 3. Performance difference of features from AlexNet-2014 and
AlexNet-2012 across layers.

No RNN 128 RNNs

AlexNet- | AlexNet- | AlexNet- | AlexNet-
Layer 2012 2014 2012 2014
L4 84.93% 86.10% 88.30% 89.34%
L5 85.45% 86.00% 88.35% 89.07%
L6 83.61% 85.61% 86.22% 87.13%

Table 3 indicates that the AlexNet-2012 has shown very
similar trends, however, the best performing layer was layer
number 5. In general, provided that the AlexNet-2012 and
the AlexNet-2014 have very similar configurations, this result
appears to be different to [9], where features from layer 6 of
the AlexNet-2012 were reported to provide the highest object
recognition accuracy.

One of the potential disadvantages of using the fully con-
nected layer 6 is that activations from this layer do not
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contain the spatial information that is present in the lower
layers. Meanwhile, the RNN component of the AlexNet-RNN
structure was designed to capture repetitive patterns in the
time domain, therefore the RNN processing was not nec-
essarily expected to generate an advantage on features col-
lected from this layer. However, as can be seen in Fig. 4,
applying the RNN processing to features from layer 6 still
improved classification performance by almost 2% compared
to the AlexNet without the RNN processing. One of the
possible factors contributing to this improvement could be the
randomness of weights of the RNNs.

Further, in this experiment, we reshaped the output of
the fully connected-layer, which was originally a vector of
size 4096, into a 3-dimensional matrix of several different
sizes. By varying the number of RNNs used we maintained
the same feature size of 8192 weights for classification in
all deformation settings. It was observed that reshaping the
6™ layer activation vector into an 8 x 8 x 16 matrix and
using the RNN receptive field size of 8 x 8resulted in the
highest recognition performance. These results are presented
in Table 3 and in Fig. 4, and further exploration of these
findings will be conducted in our future work.

D. CLASSIFICATION ACCURACY: AlexNet-2012 vs
AlexNet-2014

The experimental settings in this subsection are similar to
settings in previous subsection IV-C. The average recog-
nition rates obtained when using the AlexNet-2012 and
AlexNet-2014 models are shown in Table 3. Features from
AlexNet-2014 provide slightly higher recognition accuracy
compared to the features from AlexNet-2012. More impor-
tantly the best AlexNet-2014 features are those extracted
from layer 4, while the best AlexNet-2012 features are the
features from layer 5, which involves the computation of one
more convolutional stage of size 13x13x256. Layers 3 and 4
of AlexNet-2012 are also 1.5 times larger compared to
the corresponding layers of AlexNet-2014, thus demanding
higher computational resources. At the same time, with RNN
processing applied, both AlexNet-2012 and AlexNet-2014
network models outperform previous state of the art results
achieved by the more complex CNN-Fisher (see Table 2).

E. EFFECT OF IMAGE NORMALIZATION

Since some but not all of the object recognition studies
applied brightness and contrast normalization to the input
data, the experiments described in this paper have tested both
cases. The mean values were subtracted from the image inten-
sities and the results were divided by the standard deviation
of the data set. The results showed that the normalized images
provided slightly lower classification results compared to the
original unnormalized images.

To be specific, Table 4 shows the object classification
accuracy using AlexNet-RNN with 128 RNNs and activation
from layer 4. The results indicate that normalization based
on the ImageNet, which was the data set used to train the
AlexNet, led to better results than normalization based on the
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TABLE 4. Object classification accuracy using AlexNet-2014 with
128 RNNs and activation from layer 4.

No image Normalized Normalized
normalization against against W-RBGD
ImageNet data data
89.34% 88.63% 88.00%

W-RBGD data; however, both cases were outperformed by
classification performed without image normalization.

V. CONCLUSION

This paper presented a new method of feature extraction from
a deep Convolutional Neural Network (CNN) trained on a
large dataset (AlexNet) and combined with the Recursive
Neural Network structure (AlexNet-RNN).

Object recognition experiments conducted on the
Washington RGBD image data set have shown that the
proposed method has the advantages of structural simplicity
combined with the ability to provide state of the art perfor-
mance at a low computational cost compared to the AlexNet.

The proposed approach requires no training during the fea-
ture extraction stage, and can be performed very efficiently.
The output features are compact and highly discriminative,
and can be used with a simple multi-class classifier in object
recognition settings.

Experimental results showed that the activation weights
from the 41 layer of the pre-trained AlexNet-2014, when
combined with RNN processing, can achieve the highest
recognition accuracy on the RGB images from the W-RGBD
dataset.
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