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Abstract Multiple autonomous industrial robots can

be of great use in manufacturing applications, partic-

ularly if the environment is unstructured and custom

manufacturing is required. Autonomous robots that are

equipped with manipulators can collaborate to carry

out manufacturing tasks such as surface preparation by

means of grit-blasting, surface coating or spray paint-

ing, all of which require complete surface coverage. How-

ever, as part of the collaboration process, appropriate

base placements relative to the environment and the

target object need to be determined by the robots. The

problem of finding appropriate base placements is fur-

ther complicated when the object under consideration

is large and has a complex geometric shape, and thus

the robots need to operate from a number of base place-

ments in order to obtain complete coverage of the entire
object. To address this problem, an approach for Opti-

mization of Multiple Base Placements (OMBP) for each

robot is proposed in this paper. The approach aims to

optimize base placements for multi-robot collaboration

by taking into account task-specific objectives such as

makespan, fair workload division amongst the robots,

and coverage percentage, and manipulator-related ob-

jectives such as torque and manipulability measure. In

addition, the constraint of robots maintaining an ap-

propriate distance between each other and relative to

the environment is taken into account. Simulated and

real-world experiments are carried out to demonstrate

the effectiveness of the approach and to verify that the

simulated results are accurate and reliable.

M. Hassan · D.K. Liu · G. Paul
Centre for Autonomous Systems (CAS) at the University of
Technology Sydney (UTS), Australia
Tel.: +612-9514-2000
Fax: +612-9514-3654
E-mail: Mahdi.Hassan@student.uts.edu.au

Keywords Autonomous Industrial Robots · Base

Placement Optimization · Complete Coverage ·
Multi-Robot Collaboration

Mathematics Subject Classification (2000) 68T40 ·
65K99

1 Introduction

The fast advancement of robotic technologies is signif-

icantly improving the processes and cost-efficiency of

many manufacturing applications, and in turn enabling

the shift from mass production to custom manufactur-

ing [1]. Unlike the traditional industrial robots used for

mass production where the robots are preprogrammed,

and their bases are commonly fixed, Autonomous In-

dustrial Robots (AIRs) are able to operate in complex

and challenging unstructured environments. An AIR is

an industrial robot, with or without a mobile platform,

that has self-awareness and environmental awareness

that enables it to operate autonomously in unknown or

partially known environments. If the AIR is attached to

a mobile platform, then its definition is the same as the

Autonomous Industrial Mobile Manipulator (AIMM)

[1]. AIRs are able to perform tasks such as exploration

for mapping and localization [2, 3], surface-type iden-

tification [3], task or surface allocation [4], and path

planning and collision-free motion planning [5, 6].

Integrating multiple cooperative AIRs can increase

the capacity and flexibility of an AIR team. As an ex-

ample, the two independent mobile AIRs shown in Fig.

1 are required to perform a manufacturing task (such

as grit-blasting) on the three objects. For such appli-

cations, using multiple AIRs can help minimize overall

completion time of the task, maximize coverage of the
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Fig. 1 Two mobile AIRs performing grit-blasting

target objects, and hence improve productivity. How-

ever, deployment of multiple AIRs requires effective col-

laboration amongst the AIRs during both planning and

operation. The AIRs that are shown in Fig. 1 need to

collaborate with each other to perform tasks such as

deciding on their base placements, task allocation, and

collision-free motion planning.

Surface preparation through abrasive blasting and

high-pressure cleaning, surface coating and spray paint-

ing are common operations in manufacturing. Complete

coverage is an integral part of such operations, i.e. all

surface areas of interest need to be operated on. Cov-

erage Path Planning (CPP) [7, 8, 9, 10] is the task of

determining a path that passes through all points of an

area or volume of interest, so as to achieve complete

coverage. For example, Fig. 1 shows the grit-blasting

application where the surface is cleaned by high-speed

grit particles striking the surface. The stream of grit is

directed by a nozzle attached to the end-effector of each

AIR, which aims at a sequence of targets, i.e. a path

generated using a CPP algorithm.

The work presented considers optimizing the collab-

oration of multiple AIRs for complete coverage tasks in

manufacturing applications. The collaboration is opti-

mized by determining which, out of a set of possible

candidate base placements, should be used for each AIR

in a large unstructured environment. Appropriate team

objectives, which are relevant to the complete coverage

task (maximal coverage and minimal makespan) and

the performance of the AIRs (maximal manipulability

and minimal torque), are considered.

There are research works in the available literature

for finding an appropriate base placement for a single

robot in different environments, such as the manufac-

turing environments [11, 12] and underwater environ-

ments [13, 14]. Many of the methods utilize optimiza-

tion techniques given objectives that are relevant to the

intended task. The problem of finding an optimal base

placement for a robot can be computationally expen-

sive due to the size of the search space and hence, re-

searchers often simplify the problem by considering only

a limited number of critical discrete end-effector posi-

tions [15] when optimizing the base placements. The ob-

jectives taken into account for the optimization are spe-

cific to the task, e.g. maximizing manipulability mea-

sure for the high accuracy needed in the milling applica-

tion [16]. However, other performance measures such as

the task-dependent and direction-selective performance

indexes [17] are also shown to be important under cer-

tain conditions when finding an optimal base placement

for a robot. The problem becomes increasingly compli-

cated when (i) multiple robots are involved in carrying

out the intended tasks [18], and (ii) when each robot

must find multiple base placements such that the robot

team can collectively complete the overall task.

The problem of finding a single base placement for

each of the AIRs to cover a small object was investi-

gated in [18]. This paper extends the prior work so as

to enable the approach to be applicable for large objects

where several base placements for each of the AIRs are

needed so as to achieve complete coverage of the object

under consideration. The sequence of the base place-

ments that each AIR needs to operate from is also de-

termined as part of the approach. In addition to the

objectives relevant to the complete coverage task and

the performance of the AIRs, constraints related to the

robots maintaining a safe distance between each other

and relative to the environment are considered.

The remainder of the paper is structured as follows.

Section 2 provides a detailed description of the prob-

lem. Section 3 presents the methodology, consisting of

three sub-sections: 3.1 provides an overview of the ap-

proach, 3.2 details the mathematical modeling, and 3.3

presents an approach for solving the problem where a

multi-objective genetic algorithm is used. Real-world

and simulated experiments are presented in Section 4

and further analyzed, compared and discussed in Sec-

tion 5. Concluding comments and future studies are

stated in Section 6.

2 Problem Description

Fig. 2 shows an example application where two AIRs

are deployed to clean an I-beam’s surfaces through grit-

blasting, prior to spray painting the surfaces. At their

current base placements, the AIRs can collectively cover

all surfaces of the I-beam by following the boustrophe-

don paths, and thus achieve the complete coverage goal.

However, from a different set of base placements, it may

be impossible to achieve complete coverage. Thus, op-

timizing base placements for each AIR relative to the

object and other AIRs is crucial.
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Fig. 2 The base of two AIRs positioned appropriately

relative to an I-beam and each other so as to jointly

achieve complete grit-blasting coverage of the I-beam

The problem of AIR’s base placement is further

complicated when the object is larger than the AIR’s

workspace or has a complex geometric shape, and hence

multiple base placements for each AIR are required to

achieve complete coverage of all surfaces. For example,

consider the environment shown in Fig. 3 where two

AIRs are deployed to cover all internal and external

surfaces of a boxlike structure. Each AIR needs to be

repositioned several times so as to achieve complete cov-

erage. Therefore, the problem is to find: (i) the minimal

number, nv of base placements for each AIR; (ii) the lo-

cation of the nv base placements for each AIR; and (iii)

the visiting sequence of the nv base placements.

The base placements problem must be solved while

considering the following:

– complete (or above threshold) surface coverage;
– minimal overall completion time (or makespan);

– fair workload division between the AIRs;

– safe distance between the AIRs, and relative to the

environment;

– minimal torque experienced by the AIRs’ joints; and

– high manipulability of the AIRs’ manipulators.

3 Methodology

In this section, first, an overview of the proposed ap-

proach to Optimization of Multiple Base Placements

(OMBP) for each AIR is presented, followed by a de-

tailed explanation of the mathematical model, and fi-

nally, the utilization of multi-objective optimization.

3.1 The OMBP Approach

The flowchart that is shown in Fig. 4 illustrates the

OMBP approach and where it fits in the overall oper-

(a) A boxlike structure (b) Simulated scenario

Fig. 3 Two AIRs to operate on a boxlike structure and

to cover all internal and external surfaces

ation of the AIRs. Table 1 defines the parameters used

in this paper and their notation. Sets and functions are

represented as uppercase letters, scalars are represented

as lowercase letters, and vectors or matrices are repre-

sented as bold lowercase letters. Superscripts are used

to help describe the parameter, whereas subscripts are

used as indices.

AIRs are able to perform tasks autonomously. Two

of these tasks are exploration for mapping [2, 3] and

localization [19], which are shown in block 1 of the

flowchart. Note that appropriate control architectures

[20] needs to be devised for these tasks.

The next step is communication between the AIRs

for sharing of information, as shown in block 2 of the

flowchart. The AIRs share the obtained information to

generate a complete map of the environment. These sets

of information are then used in the OMBP approach

(block 3).

As shown in module 3.1 of Fig. 4, the OMBP ap-

proach starts by discretizing the search space for two

main reasons: (i) the object on which the AIRs oper-

ate is large or complex, thus multiple base placements

for each AIR are needed, and (ii) complete coverage

requires finding feasible AIR poses for a large number

of points that represent the environment or the object,

which is a computationally intense process. Discretiza-

tion is acceptable for many manufacturing applications

if near-optimal solutions can be obtained.

Fig. 5a shows two sets of discrete base placements

Bi = {bi1, bi2, . . . , bi(nb
i )} for i = 1, 2 where i is the

AIR’s index and nbi is the total number of discrete base

placements for the ith AIR. A base placement is defined

as the x, y, z position with respect to a reference point.

If the joint on the base of an AIR is not a full 360◦ revo-

lute joint about the z-axis, then the AIR’s base needs to

rotate a number of times about the z-axis so as to cover
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Fig. 4 A flowchart showing an overview of the OMBP approach and its modules

all the reachable areas from a base placement. For each

AIR, the number of discrete base placements and their

density can be decided based on the application and the

capacity of the AIR such as its workspace size. For ex-

ample, in Fig. 5a, the two AIRs have different capacity;

thus the density of the discrete base placements is dif-

ferent for each AIR. If the two AIRs were identical, then

(a) Discrete base placements of two AIRs

(b) FBPs of AIR 1

Fig. 5 Discrete base placements of two AIRs with dif-

ferent capacity, and the FBPs of the first AIR

the discrete base placements will be the same for both

AIRs. One challenge is to select a number of base place-

ments from the set Bi for each AIR, such that the team

objectives are optimized. However, prior to performing

the base placements optimization, simple preliminary

filtering can prevent potentially poor performing base

placements from becoming candidates, hence reducing

the size of the search space. For example, Fig. 5b shows

the base placements of the first AIR. The base place-

ments with a cross are deemed to be too close to the

objects and are discarded to prevent the AIR from hav-

ing a high likelihood of collision with the objects. The

base placements indicated with filled red circles are also

prevented from becoming candidates due to their pre-

dicted low coverage of the objects. The rest of the base

placements are anticipated to have reasonable to high

coverage and are an acceptable distance away from the

objects. These base placements are henceforth referred

to as Favored Base Placements (FBPs). This process of

finding the FBPs is represented in module 3.2 of the

flowchart.

After determining the FBPs of each AIR, the next

step is to perform the multi-objective optimization (mod-

ule 3.3). The aim is to select a subset of FBPs for each

AIR and to determine the visiting sequence of the se-

lected FBPs such that the team objectives are opti-

mized, and constraints are satisfied.

The output of the multi-objective optimization is

the Pareto optimal solutions that lie on the Pareto

front. The Pareto front will be discussed in Section 3.3.

Coarse discretization of the search space can be ini-

tially considered; however, if certain thresholds are not

met (e.g. if the overall coverage is not above a threshold)

then a finer discretization (module 3.4) can be gener-

ated around the good performing base placements. In

doing so, a time-efficient option is to keep the best so-
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Table 1: Nomenclature

Parameter Definition
Bi A set of discrete base placements for the ith AIR

BFBP
i A subset of base placements from the set Bi,

called Favored Base Placements (FPBs)
bij jth discrete base placement from the set Bi

βββi A favored base placement from the set BFBP
i ,

associated with the ith AIR

βββAIR
i (t) Base placement of the ith AIR at time t
di Distance between two adjacent targets along a

path of the ith AIR
Fj(Z) A function that calculates the value of the jth

objective based on the design variables in Z
δ Minimum distance threshold between the base

placements of two AIRs
δsik A small negative or positive integer to be added

to gik
gik kth nonzero gene in the ith part of a chromosome
Is A set containing the indices of the progress times

in T s

J(qfikj) A function that calculates the Jacobian of the
pose qfikj

Nf (Zik) A function that calculates the number of targets
that can be reached with feasible poses of the ith
AIR at the kth base placement

n Number of AIRs deployed

nb
i Number of discrete base placements in the set Bi

nD
i Number of nonzero genes selected from dad’s

chromosome for the ith part

nF
i Number of favored base placements (i.e. size of

the set BFBP
i )

ng
i Number of genes in the ith part of a chromosome

(i.e. the length) corresponding to the ith AIR

nM
i Number of nonzero genes selected from mom’s

chromosome for the ith part

nj Number of joints of an AIR

nO
i Number of targets associated with the ith AIR

nT
i Total number of targets associated with the ith

AIR which represent all surfaces
nv
i Number of base placements to be visited by the

ith AIR
nv Number of base placements to be visited by all

AIRs

Parameter Definition
Oi A set of discrete points (called targets) that are

associated with the ith AIR and are used to rep-
resent all surfaces

Oal
i A set containing the targets that are allocated to

the ith AIR
Oik A set of targets that are inside the workspace of

the ith AIR at the kth base placement
oikj jth target in the set Oik

qfikj A feasible AIR pose that reaches the target oikj

with correct end-effector position and orientation,
and without collision

Ti(Z) A function that calculates the overall completion
time of the ith AIR based on relevant design vari-
ables in Z

T s A set containing the progress times of the n AIRs
sorted from the lowest time to the highest

T al
i A set containing the maximum torque ratio cor-

responding to each target in Oal
i

Tim(qfikj) A function that calculates the torque experienced

by joint m of the ith AIR at pose qfikj

T Rmax(qfikj) A function that calculates the maximum torque

ratio of the pose qfikj

ti Current progress time of the ith AIR
tc Overall completion time of the task (makespan)
tsi Time associated with the ith AIR setting-up and

moving to the next base placement
τcap
im Torque capacity of joint m of the ith AIR
vi End-effector speed of the ith AIR

vdi Difference between the maximum and minimum
End-effector speeds of the ith AIR

vmin
i Minimum end-effector speed of the ith AIR
vmax
i Maximum end-effector speed of the ith AIR

W (qfikj) A function that calculates the manipulability

measure of the pose qfikj

Wal
i A set containing the manipulability measure cor-

responding to each target in Oal
i

wikj A weighting factor (from 0 to 1) applied to the
end-effector speed of the ith AIR based on the
area in which the target oikj is located

Z A set containing all the nonzero design variables
Zik kth design variable associated with the ith AIR
θj Angle of the jth joint of an AIR pose

lutions obtained from the previous optimization run to

use as part of the initial solution/s for the next op-

timization run. For example, if Genetic Algorithm is

used, then the initial population can be made up of the

best solutions from the previous run combined with the

new base placements generated from finer discretiza-

tion.

Using the OMBP approach, the index and the visit-

ing sequence of the FBPs that each AIR needs to visit

is determined, which is followed by the task execution

(block 4). During the task execution and at each as-

signed base placement of the AIRs, collision-free mo-

tion planning [5] is to be performed by the AIRs in or-

der to cover the paths generated on the surfaces of the

object to obtain complete coverage [7]. Prior to the mo-

tion planning at each base placement, area partitioning

and allocation [4] may also be required to appropri-

ately partition the overlapped areas that fall inside the

overlapped workspace of the AIRs and to allocate the

partitioned areas amongst the AIRs equitably.

3.2 Mathematical Modeling

In this section, firstly the design variables are presented

followed by the design objectives. An explanation of

how the objectives conflict with each other is also pro-

vided after introducing each objective. Finally, the de-

sign constraints are expressed.

3.2.1 Design Variables

Let BFBPi = {βββi1,βββi2, . . . ,βββi(nF
i )} ⊆ Bi be the FBPs

associated with the ith AIR, for i = 1, 2, . . . , n. Note

that for the ith AIR, nFi ≤ nbi , meaning that the num-

ber of FBPs are less than or equal to the total number of

discrete base placements. The design variables are Zik ∈
{0, 1, . . . , nFi } with constraints Zij 6= Zik ⇐⇒ Zik >

0, i = 1, 2, . . . , n, j = 1, 2, . . . , nFi , k = 1, 2, . . . , nFi ,

k 6= j. As an example, the design variable Zik = 3

means that the kth base placement of the ith AIR is

the third FBP, i.e. the ith AIR is to visit βββi(Zik) = βββi3
for its kth base placement. Hence, the ith AIR can visit
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up to a maximum of nFi FBPs where nFi is the total

number of FBPs. If a design variable is given a value

of zero, i.e. if Zik = 0, then one less FBP will be vis-

ited by the ith AIR and the AIR will move from the

(k−1)th base placement βββi(Zik−1) to the (k+ 1)th base

placement βββi(Zik+1). Let Z be a set containing all the

design variables that have a value greater than 0, i.e.

Z = {Zik|Zik > 0,∀i, k : i = 1, . . . , n, k = 1, . . . , nFi }.
The AIRs collectively visit nv FBPs where nv equals

the number of design variables in Z. Similarly, nvi is

defined as the number of FBPs to be visited by the ith

AIR only, and can be determined based on the number

of nonzero design variables that are associated with the

ith AIR. Ultimately, the aim is to obtain values for nv

nonzero design variables such that the team objectives

are optimized while constraints are satisfied.

It needs to be noted that since the number of FBPs

to be visited by an AIR is initially unknown, the ex-

treme, but unlikely case would necessitate visiting all

FBPs, and hence the number of design variables can be

as large as the number of FBPs. However, an approx-

imation of the number of FBPs to be visited by each

AIR, i.e. nvi , can be made based on the size of the ob-

ject (explained in Section 3.3). This approximation can

significantly reduce the size of the search space.

3.2.2 Design Objectives

The main objectives that are relevant to the task of

complete surface coverage and the performance of the

AIRs are (i) maximal coverage, (ii) minimal makespan,

(iii) maximal manipulability measure, and (iv) minimal

AIRs’ joint torques.

Objective 1 - Maximal Coverage: It is vital that the

base placements selected by the AIRs result in maxi-

mum coverage of the surfaces. Fig. 6 shows two AIRs

that are deployed to perform the task of grit-blasting.

At each assigned base placement of an AIR, a set of

discrete points, Oik = {oik1, oik2, . . . , oik(nO
i )}, which

are used to represent the surfaces of an object, are lo-

cated inside the workspace boundary of the AIR where

k is the base placement index of the ith AIR and nOi
is the total number of discrete points that falls inside

the workspace boundary of the ith AIR. These discrete

points will henceforth be referred to as targets. Due to

constraints such as the joint angle limits of the AIR,

some of these targets may be unreachable by the AIR.

In order for a target, oikj ∈ Oik to be reachable by

the ith AIR, a feasible AIR pose qfikj = [θ1, θ2, . . . , θnj ]

needs to be found for the target where θ1 to θnj are the

angles of the nj AIR joints.

(a) An I-beam represented
using targets

(b) Paths generated by
joining targets’ centroid

Fig. 6 Two AIRs to cover all surfaces of an I-beam

A feasible AIR pose is one that can reach the target

with appropriate end-effector orientation and position,

and without collision, e.g. the pose of AIR 1 (i = 1)

shown in Fig. 6a generated to cover the target oikj .
One option for computing a feasible AIR pose for a

target is to use the lookup table explained in [18]. An-

other option is to perform inverse kinematics using a

numeric approach (e.g. optimization based) or an ana-

lytical approach (if possible) and then performing col-

lision checking to assess feasibility. Determining a fea-

sible AIR pose should account for minimal torque on

the AIR’s joints and maximal manipulability measure,

for example as explained in [18], so as to calculate the

following objectives more accurately.

At each assigned base placement of an AIR, the

reachable targets can be joined to form a path using a

single robot coverage path planning algorithm [7]. Ide-

ally, the generated paths of the AIRs at all the selected

base placements result in complete coverage paths, such

as the paths shown in Fig. 6b, which cover all surfaces

of the object. Thus, to achieve complete surface cover-

age, the base placements of all AIRs should be selected

such that all targets representing the surfaces can be

reachable by feasible poses of the AIRs. The size of the

targets shown in Fig. 6a are the same for both AIRs,

since in this example both AIRs are identical. However,

depending on the capacity of each AIR, the size and the

density of the targets can be different, meaning that the

paths generated on the surfaces of an object can also

be different for each AIR.

This objective is therefore to maximize the number

of targets that can be reached by all AIRs. That is, to

minimize missed-coverage:

min
Z
F1(Z) = 1−

n∑
i=1

nv
i∑

k=1

Nf (Zik)

nTi
(1)
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where Z is a set containing all the design variables that

have a value greater than zero, n is the number of AIRs,

nvi is the total number of base placements that the ith

AIR needs to visit, nTi is the total number of targets as-

sociated with the ith AIR which represent all surfaces,

and Nf (Zik) calculates the number of targets that can

be reached with feasible AIR poses at a base placement

decided based on Zik which is a design variable in Z

associated with the ith AIR and its value determines

the FBP to be visited by the ith AIR for the kth base

placement. Since the AIRs can have different capacities,

then each AIR can be associated with a different set of

targets that represent the surfaces. Hence, nTi can be

different for each AIR (i.e. for each i). The overlapped

targets, which more than one AIR can reach, need to

be counted only once. The overlapped targets can be

found by performing a simple distance query, and can

be partitioned and allocated based on the method in

[4] or based on the “first come, first served” basis. Note

that in Eq. (1), F1(Z) = [0, 1] and represents the per-

centage of missed-coverage. A value of 0 for F1(Z) cor-

responds to an optimal result, meaning that there is no

missed-coverage and all areas of interest are covered.

Conversely, a value of 1 corresponds to the worst possi-

ble result, meaning that the AIRs could not cover any

section of the surface.

Objective 2 - Minimal Makespan: The second objec-

tive is to minimize the makespan (i.e. the overall com-

pletion time of the task). Optimizing this objective has

the added benefit of equitably dividing the workload be-

tween the AIRs, since, in order to achieve the minimal

makespan, the coverage task needs to be divided ap-

propriately amongst the AIRs. This objective also takes

into account the set-up time associated with reposition-

ing an AIR. If the cost of repositioning is set appropri-

ately, then minimizing the makespan can also minimize

the number of base placements needed. Thus, this ob-

jective is to minimize the makespan:

min
Z
F2(Z) = max{T1(Z),T2(Z), . . . ,Tn(Z)} (2)

where Ti(Z) is the completion time of the ith AIR,

which can be calculated as

Ti(Z) =

 nv
i∑

k=1

Nf (Zik) · di
vi

+ nvi · tsi (3)

where nvi is the total number of base placements that

the ith AIR needs to visit, Nf (Zik) calculates the num-

ber of targets that can be reached with feasible AIR

poses at a base placement decided based on the value

of Zik in Z, di is the distance between two adjacent

targets along a path of the ith AIR, vi is the chosen

end-effector speed of the ith AIR suitable for the appli-

cation, and tsi is the set-up time associated with the ith

AIR moving to the next base placement, which may in-

clude tasks such as turning off/on accessories and tools.

Note that this objective (minimal makespan) is in

conflict with the Objective 1 (maximal coverage in Eq.

(1)). The conflict is due to the following reasons: (i) the

aim of Objective 1 is to minimize missed-coverage by

increasing the number of targets that each AIR covers

which in turn increases the makespan, hence Objective

1 is optimal when all areas are covered whereas Ob-

jective 2 is optimal when no area is covered, and (ii)

Objective 1 has the potential to cause a larger number

of FBPs to be selected for each AIR so as to maximize

coverage by reaching more targets, whereas Objective 2

aims to minimize the number of FBPs to be selected for

each AIR since the second term in Eq. (3) (after the plus

sign) considers a penalty to account for the set-up time.

Due to the conflict in these objectives and the following

objectives, a multi-objective optimization algorithm is

appropriate to solve the mathematical model.

Equation 3 assumes that a constant end-effector speed

will be employed to achieve uniform coverage of the sur-

faces (e.g. when spray painting a vehicle). However, in

certain situations and applications, non-uniform cover-

age may in fact be required. As an example consider

the task of grit-blasting a rusted object where only cer-

tain areas of the object are heavily rusted. The rusted

areas will need a more intensive, or extended period of

grit-blasting to achieve a uniform surface finish. This

area-specific focus can be accomplished by reducing the

end-effector speed for such target areas. Each target can

thus be weighted based on the surface area it falls in

(e.g. the level of rust). This weighting can then be used

for calculating Ti(Z). That is,

Ti(Z) =

 nv
i∑

k=1

Nf (Zik)∑
j=1

di
(wikj · vdi ) + vmini

+ nvi · tsi

(4)

where vdi = vmaxi − vmini , and where vmaxi and vmini are

the maximum and minimum end-effector speeds of the

ith AIR, respectively, and wikj is the weighting factor,

0 ≤ wikj ≤ 1, applied to the end-effector speed based

on the area in which the target oikj is located.

Objective 3 - Maximal Manipulability Measure: Per-

formance metrics [21] such as the manipulability mea-

sure, the dexterity index, the minimum singular value,

and measures of isotropy can be used to help obtain a

measure for a manipulator or a manipulator pose cor-

responding to a certain point in the workspace. The

use, limitations, and benefits of each of these measures
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depend on the application and the structure of the sys-

tem or the robot manipulator. Manipulability measure

[22] can be used to obtain a measure for a manipula-

tor pose corresponding to a target in the environment.

The aim is to position the AIRs such that the targets

are reached with poses that will increase the likelihood

of finding a feasible trajectory during the task execu-

tion. The higher the sum of the manipulability measures

of the poses corresponding to the targets, the higher

the likelihood of finding a feasible trajectory during

the task execution, since a large manipulability mea-

sure of a pose corresponds to a pose that is far away

from singularities and can move more freely. Therefore,

this objective is to maximize the sum of manipulability

measures for all AIR poses corresponding to all targets

representing the environment. That is,

max
Z

F3(Z) =

n∑
i=1

nv
i∑

k=1

Nf (Zik)∑
j=1

W (qfikj) (5)

where

W (qfikj) =

√
det
(
J(qfikj)J

T(qfikj)
)

(6)

is the manipulability measure (a value from 0 to 1), nvi
is the total number of base placements that the ith AIR

needs to visit, Nf (Zik) calculates the number of targets

that can be reached with feasible AIR poses at a base

placement decided based on the value of design vari-

able Zik in Z, J(qfikj) is the Jacobian of the pose qfikj .
When determining a feasible pose for an AIR, maxi-

mizing manipulability measure for the AIR needs to be

considered, e.g. as per the lookup table in [18].

This objective (maximal manipulability) is in con-

flict with Objective 2 (minimal makespan). Objective 2

aims to minimize the makespan which indirectly min-

imizes the number of targets to be covered and the

number of FBPs for each AIR to operate from. On the

contrary, this objective has the potential to achieve a

greater sum of manipulability measures, F3(Z) (in Eq.

(5)), when more targets are covered and possibly when

the AIRs operate from a larger number of FBPs.

This objective (maximal manipulability) and Ob-

jective 1 (maximal coverage) benefit from covering a

greater number of targets. However, greater coverage

does not necessarily equate to a greater sum of ma-

nipulability measures. Hence, this objective is required.

For example, there may be a number of base placements

from which an AIR can cover the same targets; however,

from one of these base placements the AIR may be able

to reach the targets with better manipulability mea-

sure. That is, there can be multiple solutions for which

coverage is maximal, but not all solutions are the same

in terms of manipulability measure, and vice versa. Ob-

jective 3 and Objective 1 may be combined using the

weighted sum method which requires proper normaliza-

tion of the objectives. In this case, Objective 1 should

be given a greater weight since maximizing coverage is

more important in complete coverage tasks. However,

due to the suitability of multi-objective optimization

with respect to other objectives, it is preferable for Ob-

jectives 1 and 3 not to be combined to enable straight-

forward selection from, and comparison between, the

Pareto optimal solutions.

Objective 4 - Minimal Torque: To improve the oper-

ating condition of an AIR, it is preferable to minimize

the torque experienced by the joints of the AIR.

Let the torque ratio of joint m of a feasible AIR pose

qfikj be the amount of torque the joint has experienced

divided by its torque capacity. The maximum torque

ratio T Rmax(qfikj) for the pose qfikj is the largest torque

ratio from all the joints of the ith AIR, i.e.

T Rmax(qfikj) = max
m

∣∣∣∣∣Tim(qfikj)

τ capim

∣∣∣∣∣ (7)

where Tim(qfikj) is the torque experienced by joint m of

the ith AIR at pose qfikj , and τ capim is the toque capacity

of the mth joint.

This objective is to minimize the sum of maximum

torque ratios of the AIR that experiences the most

amount of torque. That is,

min
Z
F4(Z) = max

i

 nv
i∑

k=1

Nf (Zik)∑
j=1

T Rmax(qfikj)

 (8)

where nvi is the total number of base placements that

the ith AIR needs to visit, and Nf (Zik) calculates the

number of targets that can be reached with feasible AIR

poses based on the design variable Zik in Z.

For a feasible AIR pose qfikj , the torque at each joint

is calculated based on: (i) the weight of the nozzle, joints

(actuators), and links of the AIR; and (ii) the reaction

force generated on the nozzle, e.g. due to the stream of

grit or paint exiting the nozzle. Readers are advised to

refer to [23] for information on calculating torque for

an AIR manipulator pose. When finding a feasible pose

for an AIR at a base placement, the feasible AIR pose

needs to be determined such that the torque on AIR’s

joints is minimized, e.g. using the lookup table in [18].

Note that in the applications under consideration, such

as grit-blasting and spray painting, the AIR moves at a

slow speed when operating on a surface. Hence, torque

due to angular, centripetal, and Coriollis accelerations

[23] can be neglected.
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This objective (minimal torque) is in conflict with

Objective 1 (maximal coverage) and Objective 3 (max-

imal manipulability). Both Objectives 1 and 3 benefit

from covering a larger number of targets, whereas sim-

ilar to Objective 2 (minimal makespan), this objective

(minimal torque) is negatively affected by larger cover-

age since the sum of torque experienced by the AIRs

increases as coverage increases (not at a constant rate).

It may seem then that this objective can be combined

with Objective 2 (minimal makespan) since they both

benefit from lower coverage. However, this objective can

in fact be in conflict with Objective 2. In Objective 4,

selecting a larger number of base placements from which

the AIRs can operate, may result in more reachable

targets and reduced torque experienced by the AIRs,

whereas in Objective 2 there is a set-up time penalty

proportional to the selected number of base placements

so as to minimize makespan.

3.2.3 Design Constraints

Constraint 1 - Distance Between Any Two AIRs:

The proximity of the AIRs with respect to each other

at any time during the task execution should not be

allowed to cause restrictions on their maneuverability

or cause a high risk of collision. A minimum accept-

able distance between the AIRs or a threshold δ should

be determined based on the application or the struc-

ture of the AIRs. For example, for the AIRs shown in

Fig. 6, δ can be the distance from an AIR’s base to

the workspace boundary of the AIR. For simplicity, the

boundary can be approximated to be a sphere. Thus,

the AIRs’ base placement should be chosen such that∥∥βββAIRi (t)− βββAIRl (t)
∥∥ > δ (9)

∀i, l : i = 1, . . . , n, l = 1, . . . , n, i 6= l, and ∀t : t =

0, . . . , tc where βββAIRi (t) and βββAIRl (t) are the base place-

ments of the ith and lth AIRs at time t, respectively, n

is the total number of AIRs, and tc is the overall comple-

tion time of the task. An alternative option is to design

this constraint as an objective function that maximizes

the distance between the AIRs. Although this option

may be helpful for some applications, it does not guar-

antee that it will satisfy the constraint of maintaining

a safe distance between the AIRs. Thus, the solution

needs to be checked afterwards for feasibility.

Constraint 2 - Distance to Obstacles: Note that the

constraint on the distance between any AIR and the

environment or the objects (obstacles) is already con-

sidered as part of the selection of FBPs. Recall that

during the selection of FBPs, the base placements that

are in close proximity to the objects are discarded.

3.3 Multi-objective Optimization

An appropriate optimization algorithm needs to be uti-

lized to solve and test the proposed mathematical model.

Multi-objective optimization algorithms [24] are useful

for simultaneously optimizing multiple objectives that

can be in conflict with each other. The output of the

multi-objective optimization algorithms is the Pareto

front. An advantage of obtaining the Pareto front is

that the strategy for selecting the final solution from

the Pareto front can be conveniently modified to suit

the changes that occur within the application without

the need for repeating the optimization.

For the last two decades, strong and continuing re-

search has been dedicated to the development of evolu-

tionary algorithms [25]. An example of Multi-Objective

Evolutionary Algorithms (MOEAs) is Non-dominated

Sorting Genetic Algorithm II (NSGA-II) [26], which can

be a suitable option for solving the proposed mathemat-

ical model.

Metaheuristic algorithms such as NSGA-II can be

helpful in addressing NP-hard problems, particularly

for problems with high combinatorial complexity and

discrete search space. The optimization problem un-

der consideration is a combination of the well-known

Art Gallery Problem (AGP) and the Multiple Traveling

Salesmen Problem (MTSP) [27, 28], both of which are

considered to be NP-hard. AGP asks for the minimum

number of points (and their locations) from which the

entire environment can be observed, which is, in the

problem under consideration, the same as finding the

minimum number of FBPs (and their locations) from

which the environment can be covered. In the MTSP,

the goal is to find the visiting sequence of a number

of cities by multiple salesmen such that the total cost

(e.g. travel time) is minimized and constraints are sat-

isfied. This is similar to finding the visiting sequence of

the selected FBPs for each AIR such that AIR team’s

objectives and constraints are met. Thus, NSGA-II is

suitable for the problem under consideration, and its

effectiveness is verified using experimental results pre-

sented later in this paper. Note that comparing NSGA-

II to other metaheuristic optimization algorithms that

can solve the proposed mathematical model is outside

the scope of this paper.

3.3.1 Chromosome Representation

A chromosome representation is developed that is de-

signed and tested specifically for the problem under

consideration. The work in [27] uses a two-part chro-

mosome representation to solve the Multiple Traveling

Salesmen Problem (MTSP), and the authors explain
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Fig. 7 A multi-part chromosome representation devel-

oped for the problem under consideration

that the two-part chromosome reduces the search space

when compared to one-chromosome and two-chromosome

representations. The developed chromosome represen-

tation is to a certain extent similar to the two-part chro-

mosome [27]; however, there are two main differences.

As shown in Fig. 7, the first difference is that instead of

having two parts for each chromosome, multiple parts

are considered where each part is associated with one of

the AIRs. The second difference is that instead of hav-

ing a part in the chromosome to represent the required

number of base placements for each AIR, i.e. for deter-

mining the value of nvi ,∀i : i = 1, . . . , n, this parameter

is made to correspond to the fixed length of the ith part

of the chromosome associated with the ith AIR.

Fig. 7 shows an example of the developed chromo-

some representation where the first part of the chro-

mosome corresponding to the first AIR has a length

of three. That is, there are three nonzero genes in this

part, which represent the indices of the FBPs that the

first AIR needs to visit. The visiting sequence of the

selected FBPs is from left to right. Therefore, in this

example, AIR 1 first visits the 3rd FBP followed by the

6th FBP and then the 11th FBP.

Alternatively, each part of the chromosome can be

made with a length equaling the number of FBPs of

the corresponding AIR, and binary encoding can then

be used to determine the FBPs that need to be visited

by the AIR. However, to reduce the length of the chro-

mosome and also to reduce the search space, each part

is generated with a length based on the capacity of the

corresponding AIR. For example, for two identical AIRs

with the same capacity, if either AIR can individually

cover the entire object using a minimum of 8 FBPs,

then the length of each part corresponding to each of

the two AIRs is 4 (i.e. 8/2 = 4). Meaning that if 8 appro-

priate FBPs are chosen for both AIRs (4 for each AIR),

then the entire object is covered. If the AIRs’ capacities

are different, then the length of each part of the chromo-

some can take into account the capacity of the AIRs. In

Fig. 7, the length of the first, second and nth part of the

chromosome is 3, 2 and 4, respectively, meaning that

AIR 2 has a greater capacity (e.g. larger workspace size)

than AIR 1, and AIR 1 has greater capacity than AIR

n. Besides reducing the search space and chromosomes’

length, another advantage of this chromosome repre-

Fig. 8 Multi-part chromosome representation with ad-

ditional zero genes to deal with the uncertainty in de-

termining the number of base placements to visit

sentation is that when additional base placements are

considered for finer discretization of the search space

(Module 3.4 of Fig. 4), the length of the chromosome

doesn’t need to be changed. This is because the num-

ber of base placements to be visited by each AIR will

remain the same.

It may not be possible to accurately determine the

number of base placements nv needed for all AIRs to

collectively cover the entire object. Thus, a reasonable

approximation can be used based on the size of the ob-

ject, or the number and the density of the targets that

represent the object. The initial population can be gen-

erated such that for each part of a chromosome there

are additional genes with a value of zero, as shown in

Fig. 8. When creating a new population at each GA

iteration, chromosomes with a different number of zero

genes can be made, e.g. through crossover operation.

The genes with the value of zero are interpreted as void

(i.e. they don’t represent any base placement). Thus,

incorporating additional genes provides the flexibility

to increase or reduce the number of FBPs to be visited

by each AIR. The greater the uncertainty in approxi-

mating nv for an application or an environment, then

the larger the number of zero genes that can be added

to the chromosome when generating the initial popula-

tion. Note that the requirements that will be outlined in

the following explanation of the crossover and mutation

operators need to be accounted for so as to prevent in-

feasible solutions being added to the initial population

and subsequent population.

3.3.2 Crossover Operator

An example crossover operator is presented in this sec-

tion, and the requirements that need to be taken into

account for achieving feasible solutions are explained.

An offspring generated from a crossover operator is only

added to the subsequent population if it satisfies all

the relevant requirements; otherwise, it is discarded. Al-

ternatively, the crossover operator can be implemented

such that an offspring automatically meets the require-

ments as part of the way the offspring is generated.

In performing a crossover operation, a pair of par-

ent chromosomes are selected, and a child chromosome

is generated from the parents in the hope that the
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Fig. 9 An example of the crossover operation for the

developed multi-part chromosome representation

child chromosome will provide a better solution. There

are several methods for selecting and exchanging genes

from the parents chromosomes to form the child chro-

mosome. Uniform crossover [29, 30] with some modi-

fications is used for the developed chromosome repre-

sentations; however, other crossover methods can also

be used. Fig. 9 is an example where crossover opera-

tion is performed on two selected parents to generate

the child chromosome. There are three parts for each

chromosome meaning that there are three AIRs. The

length of each part of the chromosome is different since

each AIR has a different capacity. It can be seen that

for each part of the chromosome a random number of

nonzero genes are first selected from the dad’s chromo-

some, then a random number of genes are selected from

the mom’s chromosome, and finally the rest of the genes

are given a value of zero.

Several requirements need to be taken into account

so as to obtain feasible solutions when designing the

crossover operator for the problem under consideration:

1. Let ngi be the number of genes in the ith part of a

chromosome (i.e. the length) corresponding to the

ith AIR. nvi nonzero genes are to be selected from

the parents chromosomes for the ith part of a child

chromosome such that nvi ≤ n
g
i . n

v
i can be based on

the nvi value of one of the parents chromosomes or

can be a randomly generated value with the lower

bound being the minimum number of base place-

ments for the ith AIR. The remaining number of

genes, i.e. ngi − nvi genes, are assigned zeros.

2. nDi nonzero genes are selected from dad’s chromo-

some and nMi nonzero genes are selected from mom’s

chromosome for the ith part of a child chromosome

such that nDi + nMi = nvi . Selection of the genes

from the dad’s and mom’s chromosomes can be ran-

dom, left to right, etc. The selected nonzero genes

can then be copied on the same genes of the child’s

chromosome, copied from left to right, or randomly.

3. Let gik be the kth nonzero gene in the ith part of a

chromosome. gik 6= gim, i.e. in the ith part of a chro-

mosome, the kth nonzero gene and the mth nonzero

gene cannot be the same since any AIR should not

visit the same base placement more than once.

4. If the deployed AIRs are identical, then it should

not be possible to have gik = gjm, i.e. it should

not be allowed to have the kth nonzero gene in the

ith part of a chromosome be the same as the mth

nonzero gene in the jth part of a chromosome. Hav-

ing more than one identical AIR visiting the same

base placement will not improve the result. How-

ever, if different AIRs are deployed, then each AIR

would have a different capacity, and there can be po-

tential for better performance or a greater coverage

by another AIR visiting the same base placement.

3.3.3 Mutation Operator

An example mutation operator is presented in this sec-

tion, and the requirements that need to be taken into

account for achieving feasible solutions are explained.

The purpose of the mutation operator is to maintain di-

versity from one population to the next, and this is done

by altering the values of a small number of genes in a

chromosome [29]. For the problem under consideration,

only the nonzero genes are allowed to be altered so as to

avoid increasing or reducing the number of FBPs each

AIR needs to visit as part of the mutation operation.

The genes are altered by a small magnitude, and thus

the aim is to potentially improve the performance of a

chromosome by slightly changing the values (i.e. choos-

ing neighboring FBPs) of a few nonzero genes. Fig. 10

shows an example of the mutation operation where for

each part, a random number of genes of the chromo-

some are slightly altered by adding a small positive or

negative random integer to the genes.

The number of nonzero genes to be selected and the

selection of the genes can, for example, be arbitrary.

Note that points 3 and 4 of the requirements men-

tioned for the crossover operator (i.e. in Section 3.3.2)

are also applicable to the mutation operator. A small

value can be added to, or subtracted from, the kth se-

lected nonzero gene of the ith part of the chromosome.

In doing so, the lower and upper bounds are not to be

Fig. 10 An example of the mutation operation where

small positive or negative random integers are added to

a small number of genes
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violated, i.e. the following condition is to be kept true:

1 ≤ gik+δsik ≤ nFi where δsik is a small negative or posi-

tive integer added to gik, and nFi is the number of FBPs

associated with the ith AIR. This constraint prevents

the mutated gene from having a value of zero (which

means one less base placement would be visited), or to

have a value greater than nFi .

4 Experiments

This section first presents an insight into the procedure

used for evaluating the objective functions, followed by

an explanation of the simulated and the real-world ex-

periments with brief results. Then, Section 5 (Results

and Discussion) provides a more detailed explanation of

the results, studies on repeatability and solution qual-

ity, validation of the simulation results using real AIRs,

and comparisons between different solutions from the

Pareto front. The simulated experiment uses real data

obtained from part of a steel bridge maintenance site,

and the aim is to test the OMBP approach using three

AIRs. The real-world experiment is conducted using

two real AIRs and a vehicle that is targeted for grit-

blasting.

The function ‘gamultiobj’, which is based on NSGA-

II, from the Matlab 2013 optimization toolbox was used

for the experiments. Based on a brief investigation, it

was found that the default parameters for Matlab ‘ga-

multiobj’ function perform well for the problem under

consideration. Detailed investigation on the effects of

different parameters, and comparing between the vari-

ous optimization algorithms, is outside the scope of this

paper. The computer used to run the algorithm has the

following specifications: 2.8GHz Intel Xeon E5-2680 v2

and 256GB 1866MHz ECC DDR3-RAM. However, the

code is single threaded and hence only uses 1 core of

the CPU at any one time.

The experiments consider the grit-blasting applica-

tion, which is similar to many other surface preparation

manufacturing applications, such as spray-painting, sur-

face coating, and surface polishing. The AIRs are made

up of a Neobotix MP700 base, a 6 DOF Schunk in-

dustrial robot, a grit-blasting nozzle, and an RGB-D

camera attached to the nozzle. The following values are

used: (i) the constant end-effector speed of the AIRs is

set to 0.1 meters per second for the simulated exper-

iment, and 0.056 meters per second for the real-world

experiment, (ii) the size of the targets representing the

objects is set to 0.04 meters in radius, (iii) the overlap of

two adjacent targets along a path is set to approx. 30%

of their diameter, (iv) the threshold δ used in Eq. (9) is

set to 1 meter, and (v) the set-up time, tsi used in Eq.

(3) is set to be 10 minutes for the intended application.

To find feasible AIR poses, a lookup table the same

as the one mentioned in [18] was used in the experi-

ments to potentially reduce the computation time. The

aim of finding feasible AIR poses for the targets is not

to generate a trajectory for the AIR for task execution,

but rather to simply examine which targets are reach-

able at a particular base. Thus, the use of a lookup

table is effective and time efficient.

4.1 Objective Functions Evaluation

Various multi-objective optimization algorithms can be

used to solve the proposed mathematical model. How-

ever, regardless of the optimization algorithm used, the

objective functions are required to be evaluated iter-

atively within the optimization solver. Function 1 is

shown and explained in this section so as to give an

insight into the procedure used in the experiments for

evaluating the objective functions within the employed

NSGA-II optimization algorithm. The presented fitness

function is specific to the application being considered;

however its applicability can extend to a wide range of

similar applications or scenarios.

The inputs to the fitness function (Function 1) are

the design variables Z and all targets,O = {Oi, . . . , On}
associated with all AIRs. The design variables are en-

coded as the genes of the chromosomes used in the

multi-objective GA. For example, the design variables

associated with the ith AIR correspond to the nonzero

genes in the ith part of the chromosome. The func-

tion loops nv times (line 3) where nv is the number

of nonzero genes in a chromosome (i.e. the total num-

ber of base placements all AIRs need to visit). At each

loop, the aim is to evaluate the performance (line 13)

of an AIR at one of its assigned base placements. To do

so, the progress times, t1, t2, . . . , tn, of the n AIRs are

first sorted from the lowest to the highest value (line

4) where T s = {T s1 , T s2 , . . . , T sn} with corresponding in-

dices Is = {Is1 , Is2 , . . . , Isn}, and T si ∈ {t1, t2, . . . , tn}
with corresponding index Isi . The progress time of an

AIR is the time expected to have been taken by the AIR

while carrying out the task up to it current base place-

ment (i.e. current loop). Based on the sorted progress

times T s and corresponding indices Is, the AIR with

the minimal progress time (i.e. the ith AIR in line

7) moves to its next assigned base placement. How-

ever, only if the number of base placements assigned

to the AIR has not exceeded (line 9) where nvi is the

total number of base placements the ith AIR needs

to visit. If the base placement βββAIRi that the ith AIR

will move to is close to another AIR’s base placement

βββAIRj (j ∈ 1, . . . , n, j 6= i) (i.e. the distance checking

shown in line 10 where δ is the threshold used in Eq.
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Function 1 Objective Functions Evaluation

1: function FitFunc(Z,O)
2: ki ← 1, ∀i : i = 1, . . . , n
3: for Counterbase = 1 to nv do
4: [T s, Is]← Sort{t1, t2, . . . , tn}
5: í← 1
6: while í ≤ n do
7: i← (Is)í
8: k ← ki
9: if k ≤ nv

i then

10: if ‖βββAIR
i − βββAIR

j ‖ ≤ δ then

11: ti = tj
12: end if
13: [Oal

i , T
al
i ,Wal

i , ti]← Perf(O,Zik)
14: ti = ti + tsi
15: ki ← ki + 1
16: í← n+ 1
17: else if ki > nv

i then

18: í = í+ 1
19: end if
20: end while
21: end for
22: F1 ← Coverage(Oal, O)
23: F2 ←Makespan(t1, . . . , tn)

24: F3 ←Manipulability(Wal)

25: F4 ← Torque(T al)
26: return [F1, F2, F3, F4]
27: end function

(9)), then the ith AIR is made to wait until the jth

AIR has completed the work at its current base place-

ment (line 11). The fitness function is designed based on

the “first come, first served” strategy, such that when

an AIR moves to its next assigned base placement, it

is allocated all the targets that it can reach and that

are not yet allocated to another AIR. The performance

at the next assigned base placement of the ith AIR is

then evaluated (line 13 - further explained below) and

the progress time ti of the AIR is updated (line 14) by

adding the set-up time tsi of the ith AIR to the progress

time. However, in the case that the limit is reached in

terms of the number of base placements to be visited by

the ith AIR (line 17), then the next AIR with minimal

progress time, i.e. (i+ 1)th AIR, is checked to be used

(lines 18).

The output data obtained from the function Perf

(in line 13) can be used to obtain the values of ob-

jectives F1 to F4 (lines 22 to 25) based on Eqs. 1, 2,

5, and 8, respectively. For all the experiments, it is as-

sumed that the AIRs need to obtain a uniform coverage

of all the surfaces, thus the completion time of an AIR

is based on Eq. (3).

The function Perf (Function 2), which was used in

line 13 of Function 1, is to evaluate the performance

of an AIR at a particular base placement. The inputs

to the function are the set of targets O, and Zik which

is the design variable indicating the index of the FBP.

Based on the design variable Zik, the targets Oik that

are inside the workspace boundary of the ith AIR at

the kth base placement can be obtained. An appropri-

ate number of discrete base rotations (i.e. nr in line

Function 2 Evaluate Performance at a Base Placement
1: function Perf(O,Zik)
2: for Counterrot = 1 to nr do
3: for j = 1 to nO

i do
4: if Reachable(oikj , Zik) = true then

5: Oal
i ← Oal

i _ oikj

6: Wal
i ← Wal

i _W (qfikj)

7: T al
i ← T al

i _ T Rmax(qfikj)

8: ti ← ti + t(oikj)
9: end if

10: end for
11: end for
12: return [Oal

i , T
al
i ,Wal

i , ti]
13: end function

2), which an AIR needs to perform in order to cover

all targets at a particular base placement, is to be pre-

determined based on the structure and the kinematics

of the AIR. At the kth base placement, the function

loops through the base rotations (line 2) and all targets

oikj ∈ Oik,∀j : j = 1 . . . nOi (line 3). For each target, if

the target is reachable (line 4), i.e. if a feasible AIR pose

qfikj can be found for the target oikj , then the target

oikj , the manipulability measure W (qfikj) (calculated

based on Eq. (6)) due to the AIR’s pose qfikj , and the

maximum torque ratio T Rmax(qfikj) (calculated based

on Eq. (7)) are added (lines 5 to 7) to the sets Oali ,

T ali and W al
i , respectively. Note that the notation _

represents concatenation. The subscript al is used to

symbolize the allocated targets. The time it takes to

cover the target oikj (i.e. t(oikj)) is also added to the

progress time ti of the ith AIR (line 8).

4.2 Three AIRs Applied in a Steel Bridge

Maintenance Environment

A mock environment as shown in Fig. 11a is created

using real data obtained from a part of a steel bridge

maintenance site. Simulations were then performed on

the data obtained from the mock environment (Fig.

11b). Three identical simulated AIRs modeled upon

real AIRs are used to perform the task of grit-blasting.

The simulated scenario consists of 7518 targets (shown

as small blue disks in Fig. 11b) to represent all the sur-

faces to be cleaned in the environment. The circles on

the ground are all the discrete base placements, from

which the 18 empty circles are the FBPs. When de-

termining the FBPs, in order to discard the base place-

ments that have low coverage of the targets representing

the objects, an estimation for coverage can quickly be

made by calculating the number of targets that fall in-

side the workspace boundary of an AIR at each of the

discrete base placements. This estimation can signifi-

cantly reduce the computation time since feasible AIR

poses are not generated for assessing the reachability of
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(a) The environment in which scan-
ning was performed to obtain the data

(b) The result of the simulation

Fig. 11 AIRs applied for steel bridge maintenance

the targets. However, after determining the FBPs and

during the optimization process, accurate measures of

coverage need to be made based on the aforementioned

lookup table. Note that although only the internal sur-

faces of the structure need to be covered, there are dis-

crete base placements generated at the rear of the struc-

ture, since some of the targets (such as the back-end of

the roof) can only be reached from the rear.

Based on the designed selection strategy (explained

in the next section), a solution from the Pareto front is

selected which is shown in Fig. 11b where the annotated

and filled black circles are the selected base placements

for the AIRs. The notation Ri:Bj represents the ith AIR

at its jth base placement to visit. Based on the chosen

solution, 96.5% of the reachable targets can be covered.

Solutions with over 99% coverage can be obtained from

the Pareto front; however at the cost of a significant

increase to the makespan, as will be explained in the

next section.

4.3 Real-World Experiment Based on Two AIRs

Deployed to Perform Grit-blasting on a Vehicle

As shown in Fig. 12, a real-world experiment using two

AIRs and a vehicle (utility truck) is carried out. The

experiment resembles the one-off task of grit-blasting of

vehicles for removing of old paint from metallic surfaces

as a preparation for new paint. After scanning and pro-

cessing the scan data, the point cloud that is shown in

Fig. 12b can be obtained, which represents the metallic

surfaces of the vehicle. The point cloud can then be used

for target representation of the vehicle as shown in Fig.

12c where 3270 targets (shown as the blue disks) are

used to represent the surfaces. In Fig. 12d, the circles

on the ground are all the discrete base placements, from

which the 87 empty circles (including the black filled

circles) are the FBPs. The annotated and filled black

circles are the chosen base placements for the AIRs.

Solutions with over 99% coverage can be obtained

from the Pareto front. However, based on the designed

selection strategy, a solution from the Pareto front is

selected with 94% coverage of the reachable targets and

a makespan of 3126 seconds. The difference between the

completion times of the AIRs is only 46 seconds (less

than 1.5%).

5 Results and Discussion

In this section, a discussion is made on the selection

of a solution from the Pareto front for the grit-blasting

application, followed by detailed comparisons and eval-

uations of the results. Discussions on the parameters

effecting the computation time and the calculation of

feasible AIR poses are also presented.

The selection strategy to be designed for selection

of a solution from the Pareto front is highly depen-

dent on the application being considered. For the au-

tonomous and one-off grit-blasting scenarios considered

in the experiments, achieving an above threshold cov-

erage is vital. Hence, a small subset of solutions are

selected from the Pareto front such that an acceptable

coverage percentage of the surfaces is obtained, i.e. nar-

rowing down the solutions based on objective 1. Note

that for some applications 100% coverage is necessary.

Hence, the selection strategy in these applications must

only select the solutions with 100% coverage. From this

subset of solutions, a further subset is chosen based on

the makespan (objective 2). Finally, the weighted av-

erage of the manipulability measure (objective 3) and

the torque (objective 4) can be the basis of choosing the

final solution from the reduced subset of solutions. Al-

ternatively, the final solution can be selected based on

improving the manipulability of the AIRs (i.e. objective

3) or minimizing the torque experienced by the AIRs

(i.e. objective 4) if the joints condition of the AIRs is

more critical.
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(a) A photo of the ve-
hicle

(b) Point cloud and
triangle mesh

(c) Target represen-
tation of the vehicle

(d) A solution chosen from the Pareto front

Fig. 12 The vehicle, the point cloud representation and the target representation

5.1 Evaluation of the Simulated Experiment

In Table 2, three solutions from the Pareto front are

presented. For clarity, solutions related to Objective 1

are presented as the coverage percentage of the reach-

able targets rather than missed-coverage. As shown in

the table, 99% coverage of the reachable targets is pos-

sible. However, assuming a coverage threshold of 96%

for this scenario, and based on the selection strategy

describe previously, then solution 3 would be the final

solution (Fig. 11b is based on this solution). Solution

3 has a significantly better makespan than the other

two solutions. Of course, the selection strategy can be

changed to suit the desired expectations for the applica-

tion. As explained in Section 3.1, finer base placement

discretization will be needed if the desired threshold is

not met. It needs to be noted that a maximum of 93.5%

of the targets that represent the object can actually be

covered based on a brute force search used to obtain the

ground truth. The rest of the targets, representing areas

such as the top and the bottom of the I-beam flange and

the back end of the roof, cannot be covered regardless

of the base placement of the AIRs (unless the AIRs are

equipped with a base that can move vertically). Hence,

96.5% of reachable targets correspond to 90.2% cover-

age of the entire object. Note that the optimizer min-

Table 2: Three solutions from the Pareto front for the

simulated experiment

Soln.
#

Obj. 1 (%
coverage)

Obj. 2
(makespan
in sec.)

Obj. 3
(manipu-
lability)

Obj. 4
(Torque
in N.m)

1 99 3328 -459 1991
2 98.4 3261 -435 2565
3 96.5 2505 -374 1724

imizes objectives functions; however, objective 3 (F3),

which is related to manipulability measure, has to be

maximized. Thus, the optimizer minimizes −F3.

5.2 Checking Solution Quality and Consistency

Tuning of optimization parameters have been briefly in-

vestigated and the default parameters for Matlab’s ‘ga-

multiobj’ function were found to perform well for the

problem under consideration. However, comparing be-

tween different optimization algorithms that can solve

the mathematical model and a detailed investigation in

further tuning the optimization algorithm’s parameters

are left for future work. Henceforth is a demonstration

that NSGA-II and the developed chromosome represen-

tation are suitable for solving the proposed mathemat-

ical model. Solution quality and consistency in obtain-

ing acceptable solutions are checked by repeating the

optimization process for the simulated experiment (10

times) and then evaluating the results.

Fig. 13 shows the results for objective 1 (percent-

age of missed-coverage) and objective 2 (makespan in
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Fig. 13 Results for objective 1 (percentage of missed-

coverage) and objective 2 (makespan in seconds) of the

10 optimization runs
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(b) Pareto front for the sec-
ond optimization run

Fig. 14 Pareto fronts for the first two optimization runs

with respect to objectives 1 and 2 only

seconds) of the 10 optimization runs. The solutions are

selected based on the same selection strategy used be-

fore and all solutions satisfy the 96% coverage threshold

of the reachable targets. Fig. 13 shows that a near-

optimal solution is found by each optimization run,

hence demonstrating the robustness of NSGA-II and

the developed chromosome representation for the prob-

lem under consideration. The average of the 10 solu-

tions for objectives 1 to 4 is 8.1% missed-coverage (cor-

responds to 98% coverage of the reachable targets),

2641 sec, -417 and 1605 N.m, respectively.

Figs 14a and 14b show the Pareto front for the first

2 optimization runs. It can be seen that there are a

number of solutions that meet the 96% coverage thresh-

old (less than or equal to 10% missed-coverage). Note

that although the Pareto front is shown with respect

to objectives 1 and 2, the Pareto front actually consid-

ers all four objectives, hence some of the solutions are

better in terms of objectives 3 and/or 4 rather than

objectives 1 and 2. It was found that in all 10 opti-

mization runs, the optimization terminates due to the

average change in the spread of the Pareto front being

less than the default tolerance set in ‘gamultiobj’ func-

tion of the Matlab optimization toolbox. The default

maximum number of generations calculated by the opti-

mization solver based on the number of design variables

is 1200; however, on average optimization terminates at

101 iterations.

Figures 15a and 15b are created from an optimiza-

tion run. Figure 15a shows the average of distances of

individuals at each generation using the field ‘Aver-

ageDistance’ of Matlab ‘gamultiobj’, which tends to fa-

vorably decrease as the generation number increases. At

each generation, the average of distances of each mem-

ber of the population to the nearest neighboring mem-

ber is calculated and saved to the field ‘AverageDis-
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Fig. 15 (a) Average of distances of individuals at each

generation; and (b) average of distances of all individ-

uals in each generation to the selected solution

tance’. Figure 15b shows the average of distances of all

individuals in each generation to the selected solution

from the Pareto front which was presented in Section

5.1. The individuals in each generation were normalized

with respect to the selected solution. It can be seen in

Fig. 15b that for the first 45 generations, the average

of distances decreases with respect to the selected solu-

tion. However, the average value then starts to slowly

increase which could be due to the optimizer attempt-

ing to further diversify the population in the hope of

arriving at better solutions. These solutions may also

be better with respect to other solutions in the Pareto

front.

The aim of the above investigations is to ensure con-

sistency and to test that the solutions are appropriate

for the problem under consideration. However, this in-

formation can also be used for future studies as a means

to investigate faster convergence (e.g. using a hybrid

optimization) and to improve computation efficiency.

5.3 Evaluation and Comparative Study of the

Real-world Experiment

In Section 4.3, an experiment was presented where two

mobile AIRs were deployed to carry out the task of

grit-blasting on a vehicle (utility truck). Based on the

designed selection strategy presented previously and as-

suming a coverage threshold of 90% for this scenario

(one-off grit-blasting of a vehicle), a solution from the

Pareto front is selected (Fig. 12d). The solution pro-

vided values of 20%, 3126 seconds, -186, and 507 N.m

for objectives 1 to 4, respectively. Note that 15% of the

targets, which mostly represent the roof of the vehicle,

can’t be covered by any AIR regardless of the chosen

base placement since these targets are too high relative

to the base of the AIRs. Thus, although the value of ob-

jective 1 for the selected solution is 20% (meaning that
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Fig. 16 Paths of AIRs 1 (blue lines) and 2 (red lines)

20% of the total target were not covered), in reality

only 6% (1−0.8/0.85) of the reachable targets were not

covered. Based on the selected solution, the completion

time of AIRs 1 and 2 is expected to be 3088 and 3126

seconds, respectively. A solution with over 99% cov-

erage can be obtained; however at a significant cost to

makespan. This is because the set-up time, tsi is set to a

conservative value (10 minutes), and to cover a slightly

larger percentage of the reachable targets, the number

of base placements to be visited by at least one of the

AIRs needs to be increased. In some applications (e.g.

autonomous and one-off grit-blasting of objects), it can

be more convenient and time efficient for the missed

out sections to be covered manually by a human opera-

tor; otherwise, the selection strategy needs to consider

a 100% coverage threshold.

Fig. 16 is created to illustrate the areas of the ve-

hicle that are reachable based on the selected solution

by showing the paths generated for both AIRs where

(a) Three highlighted
targets on a path

(b) Set-up of the experiment

(c) Laser point at
the 1st target

(d) Laser point at
the 2nd target

(e) Laser point at
the 3rd target

Fig. 17 The coverage of the path associated with the

first AIR at its second base placement is checked using

a laser that is installed at the end-effector of the AIR

the paths shown as blue lines and red lines are asso-

ciated with AIRs 1 and 2, respectively. The feasibility

of the obtained solution and the paths generated for

both AIRs are checked using the AIRs. As an example,

the path that is generated on the bonnet of the vehicle,

which is associated with the first AIR at its second base

placement, is shown in Fig. 17a. The experiment set-up

at this base placement is shown in Fig. 17b. To check

for the correct coverage of the path by the AIR, a laser

is installed at the end-effector of the AIR and the laser

point is tracked and compared to the simulated path.

The highlighted targets in the path shown in Fig. 17a

correspond to the laser point locations shown in Fig.

17c to 17e. The actual completion time of AIRs 1 and 2

is found to be 3080 and 3111 seconds, respectively. It is

sometimes not possible to generate paths that will ap-

propriately and completely cover all reachable targets,

and as a result, a small difference in completion times

between the simulation result and the experiment can

be present. However, the difference is insignificant (less

than 15 seconds or 0.5%) for this experiment.

Similar to the simulated experiment, to check for

consistency and to test that the employed optimization

algorithm can produce near-optimal results every time

it is run, the optimization process is repeated 10 times

for this experiment using the same procedure outlined

in Section 5.2. A near-optimal solution is found each

time and the average of the 10 solutions for objectives

1 to 4 is 21.6% (corresponds to 92.2% coverage of reach-

able targets), 3170 sec, -181 and 498 N.m, respectively.

5.4 Summary of Main Results

For the steel bridge maintenance environment where

three AIRs were deployed, on average, 98% coverage of

the reachable targets was achieved. Similarly, for the

grit-blasting experiment carried out on a vehicle using

two real AIRs, on average, 92.2% coverage of the reach-

able targets was achieved with near-optimal makespan

(based on the selection strategy designed and the cov-

erage threshold considered for each scenario). For both

experiments, a coverage percentage greater than 99%

could be achieved; however at the cost of a substantial

increase in the makespan. Note that space discretiza-

tion does effect the performance, hence if the desired

threshold is not achieved, then finer discretization of the

search space is needed as per the explanation in Section

3.1. The optimization process was repeated 10 times for

both experiments to ensure consistency in achieving ac-

ceptable results, and to check the suitability of using

NSGA-II and the developed chromosome representa-

tion for the problem. Hence, the solutions are selected

from the Pareto front such that the coverage percentage
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satisfies the threshold considered for the scenario while

providing a near-optimal makespan.

5.5 Computation Time

Table 3 provides the off-line computation time of the

experiments for running the optimization (average of

10 runs). For comparisons, the number of targets repre-

senting the objects, and the number of FBPs evaluated

are also provided. Although the code is single threaded,

it is recognized that a multi-threaded implementation

could potentially lead to a significant reduction in com-

putation time.

There is room for improving the computation ef-

ficiency, and further research that focuses on the effi-

ciency of the approach can be carried out. For exam-

ple, a benchmark for assessing the discretization of the

search space can be developed with the aim of reducing

the computation time. Detailed studies on the tuning

of parameters that effect the multi-objective GA can

also be made to compare time efficiency against solu-

tion quality for the target application. Moreover, the

objects can be represented with fewer targets, mean-

ing that fewer AIR poses need to be found, which is

predicted to reduce the computation time.

6 Conclusions

An approach was presented to address the problem of

effective collaboration of multiple autonomous indus-

trial robots to perform manufacturing tasks such as

grit-blasting, spray-painting and other surface prepa-

ration tasks. More specifically, the problem of collab-

oration through optimal base placements of the au-

tonomous robots that are equipped with manipulators

was investigated. The presented approach enabled each

robot to simultaneously determine: (i) an appropriate

number of base placements, (ii) the location of the base

placements, and (iii) the visiting sequence of the cho-

sen base placements, such that complete coverage of

the surfaces is obtained. The approach included search

space discretization and candidate base placements se-

lection, followed by a mathematical model that takes

Table 3: Computation time for the experiments

Simulated
Experiment

Real-world
Experiment

Computation time 15.3 mins 5.9 mins
# of targets 7518 3270
# of base placements 18 87

into account multiple objectives (i.e. maximal cover-

age, minimal makespan, maximal manipulability mea-

sure and minimal AIRs’ joints torque). A minimum dis-

tance constraint between robots is enforced inherently

by the mathematical model. Simulated and real-world

experiments were conducted to compare the objectives

and to validate the approach.

Future work includes finding optimal base place-

ments by accounting for the various uncertainties inher-

ent to the environment. Methods to improve the compu-

tation time can also be studied. Developing criteria for

measuring the performance of the space discretization

would also be of interest. Variations of the approach

can also be studied, e.g. by accounting for the pres-

ence of immobile AIRs when optimizing coverage for

the mobile AIRs; and incorporating AIR path planning

parameters, such as the actual path traversal time of

the base, while utilizing Spatio-temporal optimization.
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